第一篇:基于PLC的智能交通灯控制系统毕业设计文献综述
文献综述
一. 绪论
1.交通灯的由来:
交通灯是指由红、黄、绿三种颜色灯组成用来指挥交通的信号灯,最早出现在19世纪初在英国中部的约克城的一个典故中,当时交通灯只有两种颜色红绿,随着各种交通工具的发展和交通指挥的需要,第一盏名副其实的三色灯(红、黄、绿三种标志)于1918年诞生。它是三色圆形四面投影器,被安装在纽约市五号街的一座高塔上,由于它的诞生,使城市交通大为改善。2.交通灯的发展史:
19世纪初,在英国中部的约克城,红、绿装分别代表女性的不同身份。其中,着红装的女人表示我已结婚,而着绿装的女人则是未婚者。后来,英国伦敦议会大前经常发生马车轧人的事故,于是人们受到红绿装启发,1868年12月10日,信号灯家族的第一个成员就在伦敦议会大厦的广场上诞生了,由当时英国机械师德?哈设计、制造的灯柱高7米,身上挂着一盏红、绿两色的提灯--煤气交通信号灯,这是城市街道的第一盏信号灯。在灯的脚下,一名手持长杆的警察随心所欲地牵动皮带转换提灯的颜色。后来在信号灯的中心装上煤气灯罩,它的前面有两块红、绿玻璃交替遮挡。不幸的是只面世23天的煤气灯突然爆炸自灭,使一位正在值勤的警察也因此断送了性命。
从此,城市的交通信号灯被取缔了。直到1914年,在美国的克利夫兰市才率先恢复了红绿灯,不过,这时已是“电气信号灯”。稍后又在纽约和芝加哥等城市,相继重新出现了交通信号灯。
随着各种交通工具的发展和交通指挥的需要,第一盏名副其实的三色灯(红、黄、绿三种标志)于1918年诞生。它是三色圆形四面投影器,被安装在纽约市五号街的一座高塔上,由于它的诞生,使城市交通大为改善。
黄色信号灯的发明者是我国的胡汝鼎,他怀着“科学救国”的抱负到美国深造,在大发明家爱迪生为董事长的美国通用电器公司任职员。一天,他站在繁华的十字路口等待绿灯信号,当他看到红灯而正要过去时,一辆转弯的汽车呼地一声擦身而过,吓了他一身冷汗。回到宿舍,他反复琢磨,终于想到在红、绿灯中间再加上一个黄色信号灯,提醒人们注意危险。他的建议立即得到有关方面的肯定。于是红、黄、绿三色信号灯即以一个完整的指挥 1
信号家族,遍及全世界陆、海、空交通领域了。
二. 主体
1.发展智能交通灯系统的意义:
汽车已经逐渐成为了人们日常生活中最主要的交通工具。但是,城市基础设施建设特别是城市交通道路的发展速度却满足不了汽车数量增长的需求,这就使城市交通拥堵现象越来越严重,车辆通行速度成为了城市发展的瓶颈。在加强城市基础建设的同时,改善十字路口的交通信号灯运行模式,提高十字路口的通行效率,对缓解城市交通堵塞有着重要的现实意义。而目前城市的交通灯控制,是根据一定时间段的各车道车流量的调查而分配出的相对合理的同定红绿灯转化周期。但在特定的时间段,会出现某一方向车辆早已通行完,而另一方向车辆排队等绿灯的情况,这严重降低了实际的十字路口交通效率。
针对现实中越来越严重的城市交通拥堵现象,可设计出一种城市十字路口交通信号灯控制的新方法。可根据车流量来智能控制红绿灯的读秒时间,解决了各车道车流量不均衡所造成的十字路口交通资源浪费问题,设计的智能交通控制系统利用对相向车道采用不同步的红绿灯信号控制方法,能够减少交通资源浪费,大幅提高十字路口的车辆通行效率。2.国内外智能交通灯系统的发展现状:
交通信号控制系统是现代城市交通控制和疏导的主要手段。而作为城市交通基本组成部分的平面交叉路口,其通行能力是解决城市交通问题的关键,而交通信号灯又是交叉路口必不可少的交通控制手段。随着计算机技术和自动控制技术的发展,以及交通流理论的不断发展完善,交通运输组织与优化理论、技术的不断提高,国内外逐步形成了一批高水平有实效的城市道路交通控制系统。
(1)澳大利亚SCAT系统:
SCATS采取分层递阶式控制结构。其控制中心备有一台监控计算机和一台管理计算机,通过串行数据通讯线路相连。地区级的计算机自动把各种数据送到管理计算机。监控计算机连续地监视所有路El的信号运行、检测器的工作状况。地区主控制器用于分析路El控制器送来的车流数据,确定控制策略,并对本区域各路口进行实时控制。SCATS系统充分体现了计算机网络技术的突出优点,结构易于更改,控制方案较易变换。SCATS系统明显的不足:第一,系统为一种方案选择系统,限制了配时参数的优化程度;第二,系统过分依赖于计算机硬件,移植能力差:第三,选择控制方案时,无实时信息反馈。
(2)英国SCOOT系统:
SCOOT是由英国道路研究所在TRANSYT系统的基础上采用自适应控制方法于1980年提出的动态交通控制系统。SCOOT的模型与优化原理与TRANSYT相仿,不同的是SCOOT为方案生成的控制系统,是通过安装在交叉口每条进口车道最上游的车辆检测器所采集的车辆信息,进行联机处理,从而形成控制方案,并能连续实时调整周期、绿信比和相位差来适应不同的交通流。SCOOT系统的不足是:相位不能自动增减,任何路E1只能有固定的相序;独立的控制子区的划分不能自动完成,只能人工完成;安装调试困难,对用户的技术要求过高。
(3)国内智能交通控制系统:
国内应用和研究城市交通控制系统的工作起步较晚,20世纪80年代以来,国家一方面进行以改善城市市中心交通为核心的UTSM(urban traffic sys—tem manage)技术研究;另一方面采取引进与开发相结合的方针,建立了一些城市道路交通控制系统。以北京、上海为代表的大城市,交通控制系统主要是简易单点信号机、SCOOT系统、TRANSYT系统和SCATS系统其中几个结合使用;而如湘潭、岳阳等国内中小城市,交通控制系统主要还是使用国产的简易单点信号机和集中协调式信号机。
3.采用基于PLC的智能交通灯控制系统的好处:
(1)特点:
① 能适应各种恶劣的运行环境,抗干扰能力强,可靠性强,远高于其他各种机型; ② 通用性高,使用方便; ③ 程序设计简单,易学,易懂;
④ 采用先进的模块化结构,系统组合灵活方便; ⑤ 系统设计周期短;
⑥ 安装简便,调试方便,维护工作量小;
⑦ 对生产工艺改变的适应性强,可经行柔性生产; ⑧ 体积小,功耗小,性价比高。(2)PLC的应用:
① 开关量的逻辑控制:这是PLC最基本、最广泛的应用领域,它取代传统的继电器电路,实现逻辑控制、顺序控制,既可用于单台设备的控制,也可用于多机群控制及自动化流水线。
② 模拟量控制:在工业生产过程当中,有许多连续变化的量,如温度、压力、流量、液位和速度等都是模拟量。为了是可编程控制器处理模拟量,必须实现模拟量和数字量质之间的A/D转换及D/A转换。PLC厂家都生产配套的A/D和D/A转化模块,使可编程控制器用于模拟量控制。
③ 运动控制:PLC可以用于圆周运动或直线运动的控制。从控制机构配置来说,早起直接用于开关量I/O模块连接位置传感器和执行机构,现在一般使用专用的运动控制模块。如可驱动的步进电机或者伺服电机的单轴或多轴位置控制模块。
④ 过程控制:过程控制是指对温度、压力、流量等模拟量的闭环控制。作为工业控制计算机,PLC能编程控制各种各样的控制算法程序,完成闭环控制。PID调节是一般闭环控制系统中用得较多的调节方法。大中型PLC都有PID模块,目前许多小型PLC也具有此功能模块。PID处理一般是运行专用的PID子程序。
⑤ 通信及联网:PLC通信含PLC间的通信及PLC与其他智能设备间的通行。随着计算机控制的发展,工厂自动化网络发展很快,各PLC厂商都十分重视PLC的通行功能,纷纷推出各自的网络系统。新近生产的PLC都具有通信接口,通信非常方便。
⑥ 数据处理:现代PLC具有数学运算(含矩阵运算、函数运算、逻辑运算)、数据传送、数据转换、排表、查表、位操作等功能,可以完成数据的采集、分析及处理。这些数据可以与存储在存储器中的参考值比较,完成一定的控制操作,也可以利用通信功能传送到别的智能装置,或将它们打印制表。数据处理一般用于大型的控制系统。
三. 总结
采用基于PLC的智能交通灯控制系统,可以根据车流量合理的调节交通信号灯的读秒时间,这样不仅可以有效的防治交通拥堵而且可以合理的利用交通资源,进而大大缓解交通压力。在基于PLC的智能交通灯控制系
统的设计过程中可能牵涉到信号的采集与传输,在考虑到施工的成本以及安装困难度的前提下,本设计主要想采用光电计数器。因为光电计数器叫一般的传感器而言,它不仅成本低而且安装方便。
四. 参考文献
[1] 彭树生.PLC单片机原理及应用.机械工业出版社.2002.1.1 [2] 王晓军.可编程控制器原理及应用.化学工业出版社.2010.9.4 [3] 杜荔编.微机原理及其接口.清华大学出版社.2011.3.1 [4] 曹克澄.单片机原理及应用.第二版.机械工业出版社.2009.1.1 [5] 龚捷.接口技术.化学工业出版社.2009.1.1 [6] 韩九强.传感器与检测技术.清华大学出版社.2010.9.1 [7] 于泉.城市交通信号控制基础.冶金工业出版社.2011.1.1 [8] 周蔚吾.道路交通信号灯控制设置技术手册.知识产权出版社.2009.1.1 [9] 高钦和.可编程控制器应用技术与设计.人民邮电出版社.2004.7.1 [10] 路林吉.PLC应用开发技术与工程实践.人民邮电出版社.2009.4.8 [11] 陈立定.电气控制与可编程控制器.华南理工大学了版社2006.2 [12] 何衍庆.可编程控制器原理及应用技巧.第二版.化学工业出版社.2003.1.1 [13] 廖常初.可编程控制器的编程方法与应用.重庆大学出版社.2001.2.1 [14] 廖常初.PLC梯形图程序的设计方法与技巧.电工技术出版社.2004.9 [15] 廖常初.PLC梯形图的书许控制设计法与顺序功能图.电子技术杂志.2001.第11期
[16] 廖常初.PLC梯形图的顺序控制设计法.电子技术杂志.2001.第10期 [17] 吴建强.可编程控制器原理及应用.哈尔滨工业大学出版社.2011.7.12 [18] 邱公伟.可编程网络通讯及应用.清华大学出版社.2000.3 [19] 郑凤翼.轻松解读三菱FX2N系列PLC原理与应用.机械工业出版社.2011.10
第二篇:基于PLC交通灯控制系统毕业设计概要
毕业设计题目: 交通灯毕业论文 系别:电气与信息工程学院 专业 : 电气自动化 班级:电气自动化10-01 姓名: 指导教师: 【摘要】:交通信号灯的出现,使交通得以有效管制,对于疏导交通流量、提高道路通行能力,减少交通事故有明显效果。为了实现交通道路的管理,力求交通管理先进性、科学化。用可编程控制器实现交通灯管制的控制系统,以及该系统软、硬件设计方法,实验证明该系统实现简单、经济,能够有效地疏导交通,提高交通路口的通行能力。分析了现代城市交通控制与管理问题的现状,结合交通的实际情况阐述了交通灯控制系统的工作原理,给出了一种简单实用的城市交通灯控制系统的PLC设计方案。可编程序控制器在工业自动化中的地位极为重要,广泛的应用于各个行业。随着科技的发展,可编程控制器的功能日益完善,加上小型化、价格低、可靠性高,在现代工业中的作用更加突出
1.1交通信号灯的作用和意义
随着社会经济的发展,城市交通问题越来越引起人们的关注。人,车,路三者关系的协调,已成为交通管理部门需要解决的重要问题之一。城市交通控制系统是用于城市交通数据监测,交通信号灯控制与交通疏导的计算机综合管理系统,它是现代城市交通监控指挥中最重要的组成部分。
随着城市机动车量的不断增加,许多大城市如北京,上海,南京等出现了交通超负荷运行的情况,因此,自80年代后期,这些城市纷纷修建城市高速公路,在高速公路建设完成的初期,它们也曾有效地改善了交通状况。然而,随着交通量的快速增长和缺乏对高速道路的系统研究和控制,高速道路没有充分发挥出预期的作用。而城市高
速道路在构造上的特点,也决定了城市高速道路的交通状况必然受高速道路和普通道路耦合出交通状况的制约。所以,如何采用合适的控制方法,最大限度利用好耗费巨资修建的城市高速道路,缓解主干道与匝道,城区与周边地区的交通拥堵状况,越来越成为交通运输管理和城市规划部门亟待解决的主要问题, 根据交通等工艺控制要求和特点,我们采用了日本三菱公司FX2N_48MR。三菱PLC 有小型化,高速度,高性能等特点,三菱可编程控制器指令丰富,可以接各种输入,输出扩充设备,有丰富的特殊扩展设备,其中的模拟输入设备和通信设备是系统所必需的,能够方便地联网通信。本系统就是应用可编程控制器(PLC对十字路口交通控制等实现控制。本系统采用PLC是基于以下四个原因:(1PLC具有很高的可靠性,抗干扰能力。通常的平均无障碍时间都在30万小时以上;(2系统设计周期短,维护方便,改造容易,功能完善,实用性强;(3干扰能力强,具有硬件故障的自我检查功能,目前空中各种电磁干扰日益严重,为了保证交通控制的可靠稳定,我们选择了能够在恶劣的电磁干扰环境下正常工作的PLC;(4近年来PLC的性能价格比有较大幅度的提高,是的实际应用成为可能。【关键词】:PLC可编程控制器、交通型号灯、可靠性高。【目录】: 关键词(01 第1章交通信号控制系统(02 1.1十字路口交通灯控制实际情况(04 1.1.1南北向(列和东西向(行主干道(04
1.1.2南北向和东西向人行道(04 1.2结合十字路口交通灯的路况模拟控制实验(04 1.2.1南北向(列和东西向(行主干道(04 1.2.2南北向和东西向行人道(04 1.2.3盲人安全通道控制和手动控制车流量(04 1.3流程图(05 第2章可编程控制器程序设计(07 2.1可编程控制器选择(07 2.2十字路口交通灯模拟控制时序图(07 2.3可编程控制器IO端口分配(10 2.4程序设计(10 第3章总结(13 3.1难点分析(13 3.1.1行人道红绿灯和主干道红绿灯的对应关系(13 3.1.2盲人脉冲按键(13 3.1.3手动车流控制按键的控制方式(13 3.1.4交通灯闪亮问题(13 3.2调试错误与修改方法(13 3.3PLC智能化控制交通灯的方法(13
3.4收获与感悟(14 致谢(14 参考文献(14 第1章交通灯信号控制系统 1.1 十字路口交通灯控制实际情况
a.南北主干道:直行绿27S、直行绿闪3S、左转绿10S、左转绿闪3S、黄2S、红45S;b.东西人行道:红45S、绿27S、绿闪3S、红60S;c.东西主干道:红45S、直行绿27S、直行绿闪3S、左转绿10S、左转绿闪3S、黄2S;d.南北人行道:绿27S、绿闪3S、红60S;e.循环控制方式;f.交通灯变化顺序表(单循环周期90秒。1.1.1 南北向(列和东西向(行主干道
南北向(列和东西向(行主干道均设有直行绿灯27S,直行绿灯闪亮3S,左行绿灯10S,左转绿闪3S,黄灯2S和红灯45S。当南北主干道红灯点亮时,东西主干道应依次点亮直行绿灯,直行绿灯闪,左转绿灯,左转绿灯闪亮和黄灯;反之,当东西主干道红灯点亮时,南北主干道依次点亮直行绿灯,直行绿灯闪,左转绿灯,左转绿灯闪亮和黄灯。1.1.2南北向和东西向人行道
南北向和东西向人行道均设有通行绿灯和禁行红灯。南北人行道通行绿灯应在南北主干道直行绿灯点亮时点亮,当南北主干道直行绿灯闪亮时南北行人道绿灯也
要对应闪亮,其它时间为红灯。东西人行道通行绿灯于东西主干道直行绿灯点亮时点亮,当东西主干道直行绿灯闪亮是东西行人道绿灯也要对应闪亮,其它时间为红灯。
1.2结合十字路口交通灯的路况模拟控制实验
在PLC交通灯模拟模块中,主干道东西南北每面都有3个控制灯,分别为: ●禁止通行灯(亮时为红色 ●准备禁止通行灯(亮时为黄色 ●直通灯(亮时为绿色
另外行人道东西南北每面都有2个控制灯,分别为: ●禁止通行灯(亮时为红色 ●直通灯(亮时为绿色
结合十字路口交通灯实际情况设计交通灯模拟控制系统如下: 当交通灯系统启动开关接通时。1.2.1南北向(列和东西向(行主干道
南北向(列和东西向(行主干道均设有绿灯 10S,绿灯闪亮2S(亮0.1 灭0.1,黄灯2S和红灯14S。当南北主干道红灯点亮时,东西住干道应依次点亮绿灯,绿灯闪亮,黄灯,反之,当东西主干道红灯点亮时,南北主干道依次点亮绿灯,绿灯闪,黄灯。
1.2.2南北向和东西向行人道
南北向和东西向行人道均设为通行绿灯和禁行红灯。南北人行道通行绿灯应在南北主干道绿灯点亮时点亮,当南北主干道绿灯闪亮和黄灯点亮时南北行人道绿灯也要对应闪亮,其它时间为红灯。东西行人道通行绿灯于东西主干道绿灯点亮是点
亮,当东西主干道绿灯闪亮和黄灯点亮时东西行人道绿灯也要对应闪亮,其它时间为红灯。
1.2.3盲人安全通道控制和手动控制车流量
除此之外另设两个功能,使用10个脉冲开关。实现让盲人可以方便通过十字路口和手动控制车流量。其中8个安装在人行道的两边当东西方向行走的盲人要过马路的时候,按下脉冲开关东西向行人道绿灯亮起,南北向主干道红灯闪亮,延迟10秒恢复原来的控制系统。南北向脉冲开关对应东西向功能相同,另外两个脉冲开可以控制车流量,当东西向主干道等待车量较多的时候,按下东西向控制脉冲开关,东西向主干道延长绿灯点亮时间到15秒。东西向行人道绿灯也要对应延长。南北向脉冲开关对应东西向功能相同。
1.3 流程图 启动开关
东西绿灯亮 东西绿灯闪 东西黄灯亮 东西红灯亮 东西主干道 10S 2S 2S 14 南北红灯亮 南北绿灯亮 南北绿灯闪 南北黄灯亮 南北主干道 14S 10S 2S 2S 启动开关
南北红灯亮 南北绿灯 南北绿灯闪 14S 10S 4S 东西绿灯亮 东西绿灯闪 东西红灯亮 10S 4S 14S 东西行人道 南北行人道 结束 结束
交通灯模拟控制系统流程图 启动开关 按下脉冲开关
原来控制循环系统
行人道绿灯点亮,主干道红灯闪亮 结束 Y N 启动开关 按下脉冲开 关
对应方向绿灯点亮时间延长到15秒,另一方向红灯点亮延长到15秒 再次按下启动 开关
按此次控制方式进行循环 原来方式控制系统 结束 Y N Y
N 手动控制车流量流程图 第2章 可编程控制器程序设计 2.1 可编程控制器选择
本次交通灯设计用的是来自OMRON 的CPM1A-30CDR-A 可编程控制器。产品规格:CPM1A CPU 单元CPM1A 在编程环境等方面,它不仅具备了以往的小型PLC 所具有的功能,尽可能使安装空间最小化,并实现了具有10点-100点输入输出点数的弹性构成。而且还可 连接可编程控制终端,创造了尚无前例的灵活运用。它不仅可以替代继电器控制柜,就是作为小型控制器或在传感器应用中,亦能适应生产现场不同的需求AC 电源输入,继电器输出,能加扩展单元。
2.2 十字路口交通灯模拟控制时序图 启动 行人道绿灯 2S 10S 盲人脉冲按键控制时序图 和此行人道相交叉的主干道红灯 启动 南北红 东西绿
东西红 南北绿 4S 14S 启动
南北红东西绿 东西黄东西红 南北绿南北黄 10S 2 S 2 S 10S 2 S 2 S 14S 10S 2 S 2 S
ON OFF 十字路口主干道交通灯模拟控制时序图 南北红东西绿 东西黄东西红 南北绿南北黄 15 2 S 2 S 10S 2 S 2 S 14S 15 2 S 2 S 东西向绿灯延时时序图 启
动 OFF ON 2.3 可编程控制器I/O 端口分配 启动开关 0000 停止开关
0001 东西主干道绿灯 1000 东西主干道黄灯 1001 东西主干道红灯 1002 南北主干道绿灯 1003 南北主干道黄灯 1004 南北主干道红灯 1005 东西行人道绿灯 1100 东西行人道红灯 1101 南北行人道绿灯
1102 南北行人道红灯 1103 东西向绿灯延迟控制按钮 0004 南北向绿灯延迟控制按钮 0005 东西盲人脉冲按钮
0003 南北盲人脉冲按钮 0002 2.4 程序设计 0 LD 0000 1 OR 20300 2 AND-NOT 0001 3 AND-NOT 20000 4 OUT 20300 LD 20300 6 AND-NOT 20001 7 AND-NOT 20203 8 OUT 20301 PLC 0000 0001 1000 1001 1002 1003 1004 1005 1100 1101 1102 1103 交通灯控制PLC I/O 端口 0002 0003 0004 0005 9 LD 20301 10 OR TIM 005 11 OR TIM 027 12 OR 20000 13 AND-NOT TIM 002 14 AND-NOT 20103 15 AND-NOT 0001 16 OUT 20000 17 TIM 000 #100 18 TIM 001 #120 19 TIM 002 #140 20 LD TIM 002 21 OR 20001 22 OR TIM 018 23 AND-NOT TIM 005 24 AND-NOT 0001 25 AND-NOT 20203 26 OUT 2001 TIM 003 #100 28 TIM 004 #120 29 TIM 005 #140 30 LD 0004 31 OR 20100 32 AND-NOT 0000 33 AND-NOT 0005 34 AND-NOT 0001 35 OUT 20100 36 LD 20100 37 AND 20105 38 OUT 20102 39 LD TIM 005 40 OR TIM 027 41 OUT 20105 42 LD 20102 43 OR 20103 44 AND-NOT 0001 45 AND-NOT TIM 018 46 OUT 20103 47 TIM 016 #150 48 TIM 017 #170 49 TIM 018 #190 50 LD 0005 51 OR 20200 52 AND-NOT 0001 53 AND-NOT 0000 54 AND-NOT 0004 55 OUT 20200 56 LD TIM 002 57 LD TIM 018 58 OUT 20205 59 LD TIM 20200 60 AND 20205 61 OUT 20202 62 LD 20202 63 OR 20203 64 AND-NOT 0001 65 AND-NOT 027 66 OUT 20203 67 TIM 025 #150 68 TIM 026 #170 69 TIM 027 #190 70 LD 20000 71 AND-NOT TIM 000 72 LD 20103 73 AND-NOT TIM 016 74 OR LD 75 AND-NOT 0001 76 OUT 20002 77 LD TIM 000 78 AND-NOT TIM 001 79 LD TIM 016 80 AND-NOT TIM 017 81 OR LD 82 AND-NOT 20004 83 AND-NOT 0001
OUT 20003 85 TIM 006 #002 86 LD TIM 006 87 OR TIM 008 88 OR TIM 010 89 OR TIM 009 90 OR 20004 91 AND-NOT TIM 007 92 AND-NOT 0001 93 OUT 20004 94 TIM 007 #002 95 LD 20002 96 OR 20003 97 AND-NOT 0001 98 AND-NOT 20009 99 OUT 1000 100 LD TIM 001 101 AND-NOT TIM 002 102 LD TIM 017 103 AND-NOT TIM 018 104 OR LD 105 AND-NOT 20009 106 AND-NOT 0001 107 OUT 1001 108 LD 20000 109 AND-NOT TIM 002 110 LD 20103 111 AND-NOT TIM 018 112 OR LD 113 AND-NOT 20009 114 AND-NOT 0001 115 OUT 1103 116 LD20000 117 AND-NOT TIM 002 118 LD 20103 119 AND-NOT TIM 018 120 OR LD 121 AND-NOT 20103 122 AND-NOT 0001 123 OUT 20015 124 LD 20015 125 OR 20014 126 AND-NOT 0001 127 OUT 1005 128 LD 20001 129 AND-NOT TIM 003 130 LD 20203 131 AND-NOT TIM 025 132 OR LD 133 AND-NOT 0001 134 OUT 20005 135 LD TIM 003 136 AND-NOT TIM 004 137 LD TIM025 138 AND-NOT TIM 026 139 OR LD 140 AND-NOT 20004 141 AND-NOT 0001 142 OUT 20006 143 TIM 008 #002 144 LD 20005 145 OR 20006 146 AND-NOT 20013 147 AND-NOT 0001 148 OUT 1003 149 LD TIM 004
AND-NOT TIM 005 151 LD TIM 026 152 AND-NOT TIM 027 153 OR LD 154 AND-NOT 0001 155 AND-NOT 20013 156 OUT 1101 157 LD 20001 158 AND-NOT TIM 005 159 LD 20203 160 AND-NOT TIM 027 161 OR LD 162 AND-NOT 20013 163 AND-NOT 0001 164 OUT 1101 165 LD 20001 166 AND-NOT TIM 005 167 LD 20203 168 AND-NOT TIM 027 169 OR LD 170 AND-NOT 0001 171 AND-NOT 20009 172 OUT21000 173 LD 21000 174 OR 20011 175 AND-NOT 0001 176 OUT 1002 177 LD TIM 001 178 AND-NOT TIM 002 179 LD TIM 017 180 AND-NOT TIM 018 181 OR LD 182 AND-NOT 20004 183 AND-NOT 0001 184 OUT 20007 185 TIM 009 #002 186 LD TIM 004 187 AND-NOT TIM 005 188 LD TIM 026 189 AND-NOT TIM 027 190 OR LD 191 AND-NOT 20004 192 AND-NOT 0001 193 OUT 20008 194 TIM 010 #2 195 LD 20007 196 OR 20003 197 OR 20002 198 OR 20013 199 AND-NOT 0001 200 OUT 1100 201 LD 20008 202 OR 20005 203 OR 20006 204 OR 20009 205 AND-NOT 0001 206 OUT 1102 207 LD 0002 208 OR 20009 209 AND-NOT TIM 011 210 OUT 20009 211 TIM 011 #100 212 LD 20009 213 AND-NOT 20010 214 OUT 20011 215 TIM 012 #010
216 LD TIM 012 217 OR TIM 015 218 OR 20010 219 AND-NOT TIM 013 220 OUT 20010 221 TIM 013 #010 222 LD 0003 223 OR 20013 224 AND-NOT TIM 014 225 OUT 20013 226 TIM 014 #100 227 LD 20013 228 AND-NOT 20010 229 OUT 20014 230 TIM 015 #010 231 END 215 216 217 218 219 220 221 222 223 224 225 第3章总结 3.1 难点分析
本程序在设计过程遇到了一些难点我把它整理了一下发现有以下几个问题。3.1.1行人道红绿灯和主干道红绿灯的对应关系
因为实际的红绿灯控制中行人道的红绿灯和主干道的红绿灯是有这一定的对应关系的,所以在编程前一定要理清它们,这样有利于在编程时简化程序、减少PLC不必要的运算。
3.1.2盲人脉冲按键
盲人在东西南北的行人道同时通过十字路口的情况不会经常出现,可以说是非少的,如果我们要把盲人脉冲分开东西控制和南北控制使他不影响和它没关系的主干道就可以使车辆行走更加通顺减少车辆堵塞的情况。要实现这样的功能就要在脉
冲按键按下时不影响他们的计时程序只在对应的主干道红绿灯输出程序上进行插入常闭继电器以此把输出程序断开。
3.1.3手动车流控制按键的控制方式
手动车流控制按键是对相应的主干道绿灯延长的进行控制,但不能使它在按下时使改变当时的红绿灯显示情况,如现在是南北红灯东西绿灯时按下南北绿灯延长按键就不能使它变成南北绿灯东西红灯。这就涉及到了一个请求和响应的关系。
3.1.4交通灯的闪亮
交通灯绿灯在实际运行中是要经过闪烁的,所以在设计程序中也要加入这个功能,参考了一些PLC的交通灯程序介绍时发现PLC中有一些继电器可以实现闪烁这些继电器也就是PLC内部的功能继电器,这是一种硬件实现功能的方法,虽然程序可以减少但比较死板闪烁频率不能控制。由于对PLC内部的功能继电器不太熟悉(不同型号的PLC内部功能继电器编号也不一样我想了一个用程序实现的方法(程序段在第86条~第94条指令之间,此方法可以说是软件实现功能的方法,虽然程序加长了但闪烁频率可以控制比较灵活。
3.2调试错误与修改方法
经过设计,想一次性把程序完成是非常难的,在调试中就出现了不少的错误。刚开始的时候把程序写进去然后运行却发现有些灯亮不起来而且在完成了一个周期后就循环不起来了。那时真的不知道从哪里入手,只好一条一条地检查才发现了一条指令把常闭写成了输出真正的输出口就没有收到信号了。灯虽然是亮了但仍然循环不起来。从梯形图又仔细的看了一次却看不出什么问题出来。突然想起来编程器还可以进行监控于是再在运行的同时进行监控,于是发现了在程序的第一周期一切都运行正常但再运行下去的时候第二周期就再没有反应了,包括里面的辅助继电器,最后发现原来是程序前面没有并上完成这个循环的继电器号。后来就这样把加上其他功能出现的错误也找出来了。虽然找错误是一个枯燥无味的工作,但只要你耐心的去做的话,你肯定能学到有用的动西。
3.3PLC智能化控制交通灯的方法
传统的十字路口交通控制灯,通常是事先经过交通流量的调查,运用统计的方法将两个方向红绿灯的延时预先设置好。然而实际上交通流量的变化往往是不确定的,有的路口在不同的时段甚至可能产生很大的差异。即使是经过长期运行、适用的方案,仍然会发生这样的现象:绿灯方向几乎没有什么车辆,而红灯方向却排着长队等候通过。这种流量变化的偶然性是无法建立准确模型的,统计的方法已不能适应迅猛发展的交通现状,需要有一种能够根据流量变化情况自适应控制的交通灯。而模糊控制恰恰具有这方面的优势。此系统就是应
用可编程序控制器(PLC对十字路口交通控制灯实现模糊控制传统的十字路口交通控制灯,通常是事先经过交通流量的调查,运用统计的方法将两个方向红绿灯的延时预先设置好。然而实际上交通流量的变化往往是不确定的,有的路口在不同的时段甚至可能产生很大的差异。即使是经过长期运行、适用的方案,仍然会发生这样的现象:绿灯方向几乎没有什么车辆,而红灯方向却排着长队等候通过。这种流量变化的偶然性是无法建立准确模型的,统计的方法已不能适应迅猛发展的交通现状,需要有一种能够根据流量变化情况自适应控制的交通灯。而模糊控制恰恰具有这方面的优势。
此系统就是应用可编程序控制器(PLC对十字路口交通控制灯实现模糊控制此控制系统的输入量是指十字路口各方向上车辆数的动态变化量。具体由传感器采集后送入可编程序控制器。在十字路口的四个方向(E、S、W、N的近端J(斑马线附近和远端Y(距斑马线约100米处各设置一个传感器,分别统计通过该处的车辆数。为了实现模糊控制,需要将绿灯时间分为两部分:其一是固定的10秒作为路口车辆状态参数的采集时间t1;其二是根据两个方向车辆流量变化进行模糊决策的延时t2。然后通过传感器采集后的排队等候的车辆数送往PLC进行模糊推理运算得出延迟时t2,最后由t1和t2来实现对十字路口车流量的灵活控制。
3.4收获与感悟
经过半个多月的艰苦奋斗,设计成果终于出来了,我才松了一口气,我通过采集资料、进行实际考察后,做出以上设计的方法。
查找资料也是一件繁琐的事情,虽说网上有资料但要找到一些真正有用的资料也不是一件容易的事,需要耐心查找。
花了整整十几天,终于完成了设计,不过调试的时候却发现结果和想的有所不同,通过监控和修改才得出了需要的设计。这次的设计让我们增长了实践技能,还增加了有关交通知识,这些对于我们真是受益匪浅。最后,我们觉得,不见风雨,怎么能见彩虹呢?我把体会用十个字概括:天下无难事,只怕有心人
一次又一次的学习,我们慢慢地在体会,研究和感悟,终于领会到成功的那一份喜悦,从撰写开报告,查找资料,程序设计,到整理每一个次的调试,我们学会了细心和耐心,也品尝到了酸、甜、苦、辣,无数的成功与失败更加肯定了我们的研究成果。兴趣是自发形成的,而默契是慢慢培养出来的。当前的社会,科技迅速发展,知识更新速度大大加快,只有我们共同去探索,用自己的双手去征服每一片天空,用我们新的力量去打造一片创新的领域。结束语
通过这次设计,我对PLC设计控制有了深刻的认识,对以前学的PLC又有了一定的新认识,温习了以前学的知识,就像人们常说的温故而知新嘛,但在设计的过程中,遇到了很多的问题,我和同学之间互相帮助,有什么不懂的大家在一起商量,听听不同的看法对我们更好的理解知识,所以在这里非常感谢帮助我的同学。
在此要感谢我的指导老师徐彬,以及李颂洲老师和甘小梅老师,感谢老师给我这样的机会锻炼。在整个毕业设计过程中我懂得了许多东西,也培养了我独立工作的能力,树立了对自己工作能力的信心,相信会对今后的学习工作生活有非常重要的影响。而且大大提高了动手的能力,使我充分体会到了在创造过程中的探索的艰难和成功的喜悦。虽然这个项目还不是很完善,但是在设计过程中所学到的东西是这次毕业设计的最大收获和财富,使我终身受益。
参考文献 [1].廖常初著.PLC 基础及应用.第 2 版.北京:机械工业出版社,2007.[2].廖常初编.S7-300/400PLC 应用技术[M].北京:机械工业出版社,2005.[3].三菱电机.FX3U,FX3UC 微型可编程控制器编程手册.2005.[4].三菱电机.FX1S,FX1N,FX2N,FX2NC 编程手册.2002.电气自动化 2012 年 5 月 16
第三篇:智能交通灯控制系统 毕业设计总结
无
锡
职
业
技
术
学
院
毕业设计总结 毕业设计总结
本次毕业设计,我的指导老师是李丽老师,首先,我们进行总体规划,包括控制系统组成、控制系统工作过程、控制系统功能、控制系统技术指标;之后,进行了硬件系统设计,学习单片机原理与接口技术,网上搜索下载AT89C51、数码显示管、点亮LED技术资料,并学习消化,设计硬件控制原理,用Protel绘图软件设计出控制器原理图,并对控制器硬件进行了调试;接着,研究设计六线四相步进电机控制方式和方法;而后,规划出了控制软件结构图,设计出了主控模块程序流程图、各功能模块程序流程图,并逐功能模块编辑、编译、连接、测试控制程序,在编程过程中,我一边学习C51程序设计,一边熟悉Keil C51开发平台,一边编程设计控制程序;最后,对控制程序进行了测试和修改完善。
本次毕业设计创新点一是提出了六线四相步进电机启动加速控制技术方案,二是研究了六线四相步进电机各种运行控制方式。
本次毕业设计体会一是深刻认识到专业理论对指导实践工作的重要性,上学期间,专业理论学的不够扎实,不够深入、不够全面、不懂用途;二是现有的技能不能胜任实际工作,实际动手能力欠缺;三是不知道如何进行课题需求分析、课题总体规划;四是不知道如何进行软件结构设计;五是实际编程经验欠缺,缺少排除故障能力。所以,我们即将毕业的大学生需要与时俱进,克服不足,勤学苦练,迎接挑战,为国争光。
在该课题后续研究设计时,应重视步进电机特性研究,重视控制方法、控制方式研究;增加联网控制功能;增加LCD数据显示功能。
在这篇毕业设计论文即将完成的时候,我突然意识到自己的校园生活即将画上一个句号。当我踏上工作岗位的时候即将面对的是完全不同于之前十几年校园生活的新的旅程。如果说之前的日子是学会如何做人、如何做事、如何认识和理解世界、如何学会感恩,那么,今后的日子,我将真正成为一个有用的人,一个能与别人合作或者独立完成任务的人,一个真正懂得世界、懂得感恩并真正付出的人。
我要感谢我存在的这个世界赋予我的认知和理解,感谢父母给了我机会认识并引导抚育我这个世界,感谢二十几年来成百上千的老师与朋友让我能够在正确的道路上走得更远并且激励我成为一个坚定信念不做让自己后悔事情的人。
“穷则独善其身,达则兼济天下”,古训教导我们不做自私人,懂得尽己所能,知恩图报。一切来之不易,珍惜且能尽其用,算是在自己能力有限的时候对社会,对生活最大的慰藉和回报。今年的二月份,在经历了将近一年的苦苦寻觅之后,我终于遇到了一个适合自己发展的岗位,也终于能够将全部的精力投入到这次毕业设计之中。首先我非常感谢我的导师李老师对我的支持和宽容,因为这次毕设的题目来源于我在生活的灵感,并且有着强烈的愿望,期望它能够成为现实,期望在离开校园之前见证自己所学是有用的学问。李老师在我的毕设过程中给予我鼎力的支持,因而有机会实现这个愿望。同时,在漫长的设计和实践过程中,身边的同学和朋友都给了我很多支持和帮助,这也证明了即便是一个人的任务也需要集体的力量,庆幸自己在离开校园之前学到了很多今后可能及其重要的东西。
回顾自己的学习历程,感觉今天的生活与状态是由一系列的偶然与必然串联成的结果。在这个过程中自己承受了比别人更多的挫折,但也学到了更多的感悟,获得了比别人更大的成就。我体会了人生的正弦曲线,知道很多情况下结果是之前很长时间的累积,很有趣的是,我的这些感悟在大学的专业课学习的时候得到
/ 2
无
锡
职
业
技
术
学
院
毕业设计总结
了理论上描述的一致。因为我的每一次成功的获得都比别人晚了许多,但也都是在最关键的时候比别人得到了更多的收获,也比别人体会到更多的付出后的充实。很庆幸自己在过去岁月中每一次困难抉择中做出的选择,以及在不断地激励中为目标而不断奋斗的坚持。
“来到社会做什么?毕业后做一个怎样的人?”虽然即将毕业,但是这两个问题将常伴左右。第一个问题的答案已经深深写在自己三年大学生活的美好回忆之中,而第二个问题,将是我今后不断反省自我并思考未来的信条。
学无止境,无论每天往返于公司和住所,还是奔走于实验室与宿舍之间,作为一个职员或者学生,无时无刻不在接受新的知识、观点、理念。即便是创造社会价值,也仍需要不断补给养分。于此,作为刚刚走出校园的人,我将牢记于心。
最后,真诚期望每一个已经出现在或是即将出现在我不同人生阶段却是同一条生活轨迹的师长、亲友、战友们,能够始终拥有美好幸福的生活状态、以及一颗热忱于探索未知和真理的心,同时也是对自己未来生活的期冀。
第四篇:智能交通灯控制系统设计文献综述
石河子大学信息科学与技术学院
毕业设计(论文)文献综述
课题名称: 智能交通灯控制系统设计 学生姓名: 学 号:
学 院: 信息科学与技术学院 专业年级: 电子信息工程 指导教师: 职 称: 副教授
完成日期: 二○一五年一月九日
文献综述
前言:
随着人口快速的增多,交通工具爆炸性的发展,以及道路资源有限性,交通控制就应运而生,在人类的生活、工作环境中,交通扮演着极其重要的角色,人们的出行都无时无刻与交通息息相关。自18世纪工业革命以来,工业发展带动整个交通运输的发展,从而催生了单独的交通控制学问与管理机构。
交通控制系统是近现代社会随着物流、出行等交通发展产生的一套独特的公共管理系统。要保证高效安全的交通次序,除了制定一系列的交通规则,还必须通过一定的科技手段加以实现。现代人类科学技术,特别是电子科技的发展和成熟能比较好的解决系统建立中软硬件方面要求的科技难题。目前交通控制方面的研究能完全实现自动智能化,甚至将整个区域整合成一个统一的系统范围,还能根据正常时段以及突发时段的情况进行科学的自动调整。交通对于社会的工业发展和人类的生活生产中有着十分重要的意义。随着单片机和传感器技术的迅速发展,自动检测领域发生了巨大的变化,交通监控方面的研究有了明显的进展,并且必将以其优异的性能比,逐步取代传统的交通控制措施。
正文
1.交通控制系统的发展
城市进路交通自动控制系统的发展是以城市交通信号控制技术为前导,与汽车工业并行发展的。在其各个发展阶段,由于交通的各种矛盾不断出现,人们总是尽可能地把各个历史阶段当时的最新科技成果应用到交通自动控制中来从而促进了交通自动控制技术的不断发展。
早在1850年,城市交叉口处不断增长的交通就引发了人们对安全和拥堵的关注。世界上第一台交通自动信号灯的诞生,拉开了城市交通控制的序幕,1868年,英国工程师纳伊特在伦敦威斯特敏斯特街口安装了一台红绿两色的煤气照明灯,用来控制交叉路口马车行,但一次煤气爆炸事故致使这种交通信号灯几乎销声匿迹了近半个世纪。1914年及稍晚一些时候,美国的克利夫兰、纽约和芝加哥才重新出现了交通信号灯,它们采用电力驱动,与现在意义上的信号灯己经相差无几。1926年英国人第一次安装和使用自动化的控制器来控制交通信号灯,这是城市交通自动控制的起点。
早期的交通信号灯使用“固定配时”方式实行自动控制,这种方式对于早期交通量不大的情况曾起过一定的作用。但随着汽车工业的发展、交通流量增加、随机变化增流强,采用以往那种单一模式的“固定配时”方式己不能满足客观需要,于是一种多时段多方案的信号控制器开始出现并逐步取代了传统的只有一种控制方案的控制器
20世纪30年代初,美国最早开始用车辆感应式信号控制器,之后是英国,当时使用的车辆检测器是气动橡皮管检测器。车辆感应控制器的特点是它能根据检测器测量的交通流量来调整绿灯时问的长短,使绿灯时间更有效地被利用,减少车辆在交叉口的时问延误,比定时控制方式有更大的灵活性。车辆感应控制的这一特点刺激了车辆检测器技术的发展。继气动橡皮管式检测器之后,雷达、超声波、光电、地磁、电磁、微波、红外以及环形线圈等检测器相继问世。当今在城市道路交通自动控制、交通监测和交通数据采集系统中,应用最广的是环形线圈车辆检测器。超声波检测器主要在日本等少数国家得到广泛应用。
计算机技术的出现为交通控制技术的发展注入了新的活力,更是实现了以一个城市或者更大地域,而非简单的一个路口的交通总体控制系统。1952年,美国科罗拉多州丹佛市首次利用模拟计算机和交通检测器实现了对交通信号机网的配时方案自动选择式信号灯控制,而加拿大多伦多市于1964年完成了计算机控制信号灯的实用化,建立了一套由IBh1650型计算机控制的交通信号协调控制系统,成为世界上第一个具有电子数字计算机城市交通控制系统的城市。这是道路交通控制技术发展的里程碑。
可以说,在近百年的发展中,道路交通信号控制系统经历了手动到自动,从固定配时到灵活配时,从无感应控制到有感应控制,从单点控制到干线控制,从区域控制到网络控制的长远过程。交通控制研究的发展,旨在解决人类交通因需求的增多而日益繁重带来的问题,局限于进路建设的暂时不足和交通工具的快速增长,就要使更多的车辆安全高效的利用有限的道路资源,避免因无序和抢行等无控制原因造成的不必要阻塞甚至瘫痪,另外,针对整个交通线路车辆的多少实时调整和转移多条线路的分流也十分必要。
交通网络是城市的动脉,象征着一个城市的工业文明水平。交通关系着人们对于财产、安全和时间相关的利益。具有优良科学的交通控制技术对资源物流和人们出行都是十分有价值的,保证交通线路的畅通安全,才能保证出行舒畅,物流准时到位,甚至是生命通道的延伸。
2.国内外交通控制技术研究现状
当前世界各国广泛使用的最具代表性却有实施的城市道路交通信号控制系统有英国的TRANSYT与SCOOTS交通控制系统和澳大利亚的SCATS系统。信号机的发展历程中,自适应理论一直受到各研究机构的欢迎,比如上面所述的SCOOTS和SCATS系统。最近几年,国外仍偏向于引进自适应理论来对交通信号控制系统进行研制,特别是美国有十几个大学或研制机构正在研制自适应交通信号控制系统,具有代表性的有美国亚利桑那大学研制的RHODES。
我国交通领域的发展起步较晚,基本是从新中国建国之后,随着各方面的条件的成熟以及社会发展的要求,才建立及健全交通控制系统的,主要引用国外的交通控制系统。各级交通管理部门通过技术引进和自主创新,在中国部分大中城市里,摒弃旧有的控制方式,一些先进的控制技术得到应用。虽然在整体规模和层次上与世界发达国家还有不少差距,但部分领域技术水平已处于世界先进位置。目前,我国交通控制系统己不单单是对交叉口信号灯进行控制,而是集交叉口信号的控制和干线控制以及现代城市高速公路交通控制于一体的混合型交通,实现区域信号控制和城市高速公路集成控制。
3.交通控制存在的问题
目前,城市交通控制还存在如下问题:(1)随着城市机动车增长速度加快的同时,城市道路建设规模也在加大,我国城市普遍存在进路密度,进路面积率偏低的问题,这是我国城市尤其是大城市进路交通出现问题的一个重要原因。我国城市道路的密度只有6.8k.每平方千米,而在20世纪80年代,世界发达国家就己到达20km每平方千米。20世纪90年代,我国部分城市道路面积率,北京为5.9%,上海为6.4%,而国外东京为13.8%,巴黎为25%}普遍高于我国。近几年,国家虽不断加大城市道路建设的力度,但仍赶不上车辆的增长速度,且与世界其他国家相比,差距仍很大。
(2)出租车以及公交的发展运营情况并不尽如人意,虽然车辆和线路长度增长,但运营速度成了瓶颈,新增的运力被运输效率低下所抵消。
(3)交通管理方面水平还欠发展,随着交通需求越来越旺盛,而我国城市中小交通管理和交通安全的现代化设施却做得不足。在车辆、道路和交通管理系统,城市交通信号控制系统,城市交通管制中应用人工智能技术、信息采集和信息提供技术等方面都与发达国家有很大差距。近几年,虽然有部分城市研究和引进一些国外先进的交通信号管理系统,但是由于交通管理设施不足等原因,我国交通事故率居高不下。城市车流行驶速度逐年下降,目前不少城市交通运量年年增长,但运输速度普遍下降,这都源于交通通行不佳。
针对我国城市交通运输的现状和存在的问题,应采取如下对策:借鉴国外城市交通管理的先进经验,强调建立城市交通管理体制的重要性,提出加强城市交通研究的交通规划,建立稳定的交通基础设施建设的资金出道,实行公交优先政策,建立先进的交通信息系统等。
4.交通控制系统的发展方向
综合分析国内外先进的城市交通控制系统,结合我国城市道路及交通的实际情况,同时也对今后城市交通与道路建设的发展的前瞻性考量,我国道路智能交通控制系统的发展模式应具有如下功能:
(1)多模式化。首先从系统结构上吸收集中式SCOOT、分布式SCAT等智能交通系统的长处,在控制范围内各个区域采用灵活可转换的系统结构,使系统结构根据交通流的区域变化而改变。此外,充分根据不同地区实时交通情况,对路口能力最大、延迟时间最短等作为遴选不同系统的参考标准。
(2)智能化。随着信息技术的高度发展,作为道路交通控制系统所承担的工作不仅仅是对交通流的引导,更承担了诸如为车辆提供道路交通信息的职能,利用对车辆的CPS诱导,使道路通行更加顺畅。3)最优化。随着计算机技术和优化理论的发展,模型算法的求解和交通模型的建立就有可能获得最优解并建立最佳模型。当我们建立整个交通路网的动态交通分配模型和整体优化模型并求最优解,从而达到对路口的控制参数进行调整进而实现某个地域范围内对交通流进行动态协调控制就成为可行口
(4)规整化。任何控制系统部是立足于具体的道路和交通条件,所以采用道路的方法和疏导交通流的方法对控制系统会有很大的参考作用.我国在建立完整的道路交通控制系统之前,必须针对进路状况和交通流做出若干种交通疏导预案和进路使用预案,从而使交通和进路更加规整。
(5)通用性和模块化。根据计算科学的发展,我国在制定和实施智能交通控制系统时必须在硬件设计和软件编程上采用通用化和模块化,有利于将来的逐步升级和换代。
5.交通灯控制系统方案比较
交通控制系统有许多方案:PLC交通控制系统、单片机交通控制系统等。(1)PLC具有以下特点
PLC(Programmable Logic Controller)可编程逻辑控制器,是工业控制计算机。采用梯形图、助记符、功能图等编程语言,完成逻辑运算、顺序控制、记数、定时、计算及模拟量处理等功能。具有光电隔离的输入输出端子,可代替大量的定时器、记数器、继电器,具有极高的可靠性。通过各种扩展模块,可增加输入/输出点数,增加模拟量功能如可直接接热电偶等,增加通信功能及特殊通信协议等,具有较高的使用灵活性。PLC包括操作系统及强电的光电隔离的输入/输出,方便应用并具有极高的可靠性与抗干扰能力、扩展能力及使用方便性。但是相对于它强大的功能而言,价格也是十分昂贵的。(2)单片机具有以下特点
单片计算机是将电子计算机的基本环节,如:CPU,存储器,总线,输入输出接口等,采用集成电路技术集成在一片硅基片上。由于单片计算机体积很小(仅手指般大小),功能强(控制功能强大、指令简单等),它还具有抗干扰性强、可靠性高、电磁辐封小、更新换代速度慢等优点,因而广泛用于电子设备中作控制器之用。
城市交通是一个高度综合而又复杂的问题,必须从政策、机构、体制、管理、收费价格、基础设施建设和投资各个方面同时入手解决。单片机具有抗干扰性强、可靠性高、电磁辐射小等优点,但是它的价格相对于PLC来说就便宜的多。因此,本文中采用单片机作为交通灯控制系统。
6.单片机交通控制系统主要研究的内容
基于整个交通控制系统的发展情况,本设计主要进行如下方面的研究:用智能、集成,且功能强大的单片机芯片为控制中心,设计出一套十字路口的交通控制系统,以指挥该路口的实时通行状态。本设计中将采用8051系列单片机交通控制系统实现多时段多相位的交通控制目的。
8051单片机的交通灯控制系统由8051单片机、交通灯显示、车流量检测及调整、紧急处理、时间模式手动设置等模块组成。系统除基本交通灯功能外,还具有通行时问手动设置、可倒计时显示、急车强行通过、车流量多时段调整、多相位、交通异常状况判别及处理等相关功。本设计主要做了以下几方面的工作:(1)确定系统交通控制的总体设计,包括:十字路口具体的通行禁行方案设计以及系统应拥有的各项功能。本设计除了有信号灯状态控制能实现基本的交通功能,还增加了倒计时显示提示等。基于实际情况,又要求了对车流量多时段调整模拟功能,多相位,紧急状况处理盲人提示音和键盘可设置等强大功能。(2)控制系统硬件电路设计,包括CPU、存储器、显示电路等模块的选择及连接,大体分配各个器件及模块的基本功能要求。
(3)软件系统的设计,对于本系统,拟采用单片机汇编语言编写,目前己对单片机内部结构和工作情况做了充足的研究,了解定时器,中断以及延时原理。
结论
城市交通是一个高度综合而又复杂的问题,必须从政策、机构、体制、管理、收费价格、基础设施建设和投资各个方面同时入手解决。我国城市经济和社会的高速发展使得社会对交通的需求急剧增加,也对此提出了严峻的挑战。要保证高效安全的交通秩序,除了制定一系列的交通规则,还必须通过一定的科技手段加以实现。本文在对目前交通控制进行深入分析的基础上,运用实时调整智能化控制的实现技术,拟将实时调整车辆通行时问的算法与单片机控制作用相结合,提出多时段多相位控制的单片机交通控制系统,来实现基本交通灯功能、倒计时显示、车流量多时段调整、多相位、急车强行通过、通行时间手动设置等功能,实现多时段多相位控制的以AT89C51为基础的单片机交通控制系统。
参考文献:
[1] 张毅刚,彭喜元,董继成.单片机原理及应用[M].北京:高等教育出版社,2003 [2] 周立功.增强型80C51单片机速成与实战[M].北京航空航天大学出版社2004.5 [3] 雷丽文等.微机原理与接口技术[M].北京:电子工业出版社,1997.2 [4] 周航慈,单片机应用程序设计技术 [M].北京:航空航天大学出版社,1991 [5] 胡汉才.单片机原理及其接口技术 [M].清华大学出版,1996 [6] 蔡美琴.MCS-51系列单片机系统及其应用[M].高等教育出版社 2004.2 [7] 付家才.单片机控制工程实践技术[M].化学工业出版社,2004.5 [8] 潘新民.微型计算机控制技术 [M].人民邮电出版社,1999.9 [9] 蒋万君.在论循环时序电路的简便设计[J].机电一体化,2005 第5期
[11] 何立民.MCS-51系列单片机应用系统设计[M].北京航空航天大学出版社, 1995 [12] 谢自美.电子线路设计·实验·测试[M].华中理工大学出版社,2001 [13] 吴金戎, 沈庆阳.8051单片机实践与应用[M].清华大学出版社, 2003 [14] 张志良等.单片机原理与控制技术[M].机械工业出版社,2001 年7 月第1 版 [15] 陆坤.电子设计技术1[M].电子科技大学出版社, 1997 [16] 梁文海.单片机AT89C2051构成的智能型频率计[J].现代电子技术,2002 [17] 谭浩强.C程序设计[M].北京:清华大学出版社,2005:1-7.[18] 江力.单片机原理与应用技术[M].北京:清华大学出版社,2006:42-43.[19] Donald A.Neamen.Electronic circuit analysis and design [M].Tsinghua University Press and Springer Verlag.2002.[20]Srinivasari, T.;Jonathan, J.B.S.;Chandrasekhar,A.Sentient autonomous vehicle using advanced neural net technology [A].Cybernetics and Intelligent Systems, 2004
[21] Zou Zhijun.A study of capacity of major/minor priority T-intersection by means of computer simulation[J],China Journal of Highway and Transport,2000, 13(3): 101-105.
第五篇:基于机器视觉智能交通灯控制系统
机器视觉的论述作业
题
目 :
基于机器视觉智能交通灯控制系统
学院名称 :
电气工程学院
专业班级 :
姓
名 : 学
号 :
时 间 : 绪论.........................................................3 2 基于机器视觉的智能交通灯系统设计.............................3 3 智能交通灯控制策略...........................................5 3.1 模糊控制...............................................5 3.2 智能交通灯模糊控制策略.................................5 3.3 解模糊化算法...........................................6 4 系统硬件设计.................................................6 4.1 摄像头的安装和特性.....................................6 4.2 视频采集模块设计.......................................8 4.3 DSP控制处理模块设计...................................9 4.4 信号灯驱动模块设计.....................................9 4.5 电源模块设计..........................................10 5 系统软件设计及调试..........................................11 5.1 软件总体设计方案......................................11 5.2 视频采集模块的软件设计................................12 5.3 系统调试..............................................13 6 总结........................................................13 7 参考文献........................................................................................................13 绪论
随着社会经济的发展,城市车辆数量迅速增长,交通拥挤日益严重,造成的交通事故和环境污染等负面效应也日益突出。城市交通问题直接制约着城市的建设和经济的增长,与人们的日常生活密切相关。通常交通阻塞大都是由于城市路口实际通行能力不足所造成的,路口交通问题逐步成为经济和社会发展中的重大问题,为此世界大多数国家都在进行智能交通灯控制系统的研究。
本文的目的是对基于机器视觉的智能交通灯控制系统进行了研究。基于机器视觉的智能交通灯控制系统对路口交通灯进行智能控制,根据各相位车流量大小,智能分配红绿灯时间,彻底改变了传统交通灯控制方式的不足。目前由于城市路口交通信号灯的控制策略不理想,导致了路口实际通行能力下降,停车次数比较多,车辆通过路口的延误时间较长,容易造成不必要的拥堵。改善交通灯控制策略,来提高路口的实际通行能力,这是城市交通控制中需要解决的主要问题。自从计算机控制系统应用于交通灯控制以来,硬件设备的不断更新和改进,智能化和集成化成为城市道路交通信号控制系统的研究趋势,而路口交通灯控制系统是智能交通系统中的关键点和突破口。基于机器视觉的智能交通灯系统设计
基于机器视觉的智能交通灯控制系统是由摄像机、视频采集模块、DSP控制处理模块、信号灯驱动模块、电源模块、时钟模块、复位模块和信号灯组等组成,其组成框图如2.1图所示
图2.1系统组成框图
系统中摄像机是用来拍摄路口车辆视频,是路口车流量获取的基础设备,其
拍摄的视频图像质量高低直接影响到系统对交通灯控制的精度。摄像机的选择决定着视频的质量,所以一般要选择稳定性高,分辨率符合系统要求的摄像机。目前摄像机主要分为两种,一种是电荷耦合器件_℃CD图像传感器;一种是互补性氧化金属半导体—CMoS图像传感器。CCD图像传感器是由很多感光单位组成的,其表面受到光线照射时,产生的电荷将由感光单位反映在组件上,所有感光单位产生的电信号组合在一起,就能够形成一幅完整的图画。而CMOS图像传感器的制造技术与工艺和制造普通计算机芯片的技术非常类似,CMOS中同时存在着N级和P级半导体,这两个半导体之间互补效应能够产生的电流信号,能够被处理芯片记录,同时将其解读成影像,形成一幅图画。画。比较CCD和CMOS的结构,ADC(放大兼类比数字信号转换器)的位置和数量是最大的不同。通常CCD摄像头每曝光一次,当快门关闭之后立即进行像素的转移处理,将其每一行中的每一个像素的电信号依次送到“缓冲器"中,再输入到放大器中进行放大,然后串联ADC输出;而CMOS的设计中每个像素旁直接连着ADC,对电信号进行放大同时转换成数字信号。CCD与CMOS的特性比较如下表2-1 表2-1 CCD和CMOS的比较
通过对CCD和CMOS的特性进行比较,以及视频处理系统对视频图像的要求,本文采用CCD摄像机JAB.55 15EB作为视频输入部分的图像传感器。智能交通灯控制策略
3.1 模糊控制
模糊控制是将模糊理论引入控制领域,将人的经验形式化模型化,采用模糊逻辑的近似推理方法,通过计算机系统代替人对被控对象进行有效的实时控制。模糊控制系统是由模糊规则基、模糊推理、模糊化算子和解模糊化算子组成,其组成框图如图3.1所示。
图3.1 模糊控制的组成框图
模糊化是对系统的输入量进行论域变换,将精确量转化成模糊输入信息的过程。由于实际过程中的输入值通常为连续变化的,必须将其范围分成有限个模糊集,并与输入量相对应,然后通过隶属函数求出输入量对各模糊集合的隶属度,将普通变量转化为模糊变量,完成了模糊化工作。
3.2 智能交通灯模糊控制策略
模糊控制过程是将实际检测的当前方向车辆排队长度进行模糊量化处理,映射到输入论域的模糊集合,根据实践经验确定模糊控制规则,进行模糊推理,再经清晰化处理转为绿灯延长时间的精确量,实现交通灯智能控制。通常情况下,在某一方向红灯时间内该车道的车流量在停车线后的排队长度越长而绿灯方向车流量不多,为了保证下一周期车辆通行最大化,就得适当延长下一周期的绿灯时间。反之,当前绿灯方向的车流量较多而当前红灯方向车道的车流量在停车线
后的排队长度较短,就得适当减少下一周期的绿灯时间,以确保路口车辆通行量的最大化。考虑到司机和行人心理承受能力,不至于在其等待过程中产生焦急烦躁的情绪,路口的红绿灯周期不能过长,通常可以设置一个最大绿灯时间,比如120S。如果系统已经执行了最大绿灯过,立即进行相位切换,当前方向绿灯进入黄闪状态,一般设定为3秒,然后执行红灯状态。当路口的车流量较小时,信号周期则比较短,但一般也要设定一个最小绿灯时间,女1:120S,否则车辆和行人由于来不及通过路VI而影响交通安全n时间,不考虑当前方向还有多少辆车等待通过。
3.3 解模糊化算法
通过对被控制量的模糊化,根据模糊控制规则进行推理,做出模糊决策,得到模糊控制的输出量,这个输出量为模糊量,而被控对象最终只能接受精确的控制量,所以必须将输出的模糊量转化为精确的控制量,将其转化为精确量的过程通常称之为解模糊化。也就是从模糊量变为清晰量的过程,即把通过模糊推理得到的输出量的模糊集合,一一映射到输出量的普通集合。解模糊的方法有通常有最大隶属度法、平均最大隶属度法、取中位数法以及加权平均法。系统硬件设计
4.1 摄像头的安装和特性
(1)所采集车辆视频图像质量的高低将直接影响到系统对交通灯控制的精度,而决定视频质量的关键因素在于CCD摄像头的选择和安装。本文采用CCD摄像机JAB-5515EB,可以在室外恶劣环境下全天候工作,其性能如表4-表4-1 JAB-5515EB摄像头的特性
(2)摄像头的安装直接影响到视频采集的过程,而且安装摄像头的位置既要不能对交通产生任何影响,又要满足视频采集模块的需求。图4.1为两相位路口示意图,摄像头的安装位置应在图中A、B、C、D点的上方高于7米为宜。视频图像处理只针对车道,所以可视角度只需满足横向覆盖整个车道,纵向能够覆盖车辆排队信息的长度即可。
图4.1 城市路口示意图
4.2 视频采集模块设计
本设计中的视频采集模块主要分为视频输入和视频处理两个部分,其功能是利用图像传感器将物体的光信号转换成模拟的视频电信号,然后利用视频解码芯片将视频模拟信号转化成数字视频信号输入到DSP的视频处理前端。模拟视频信号主要分为PAL和NTSC两种制式,在将模拟视频信号直接转换成数字信号的时
候,通常需要用到视频解码芯片,本设计中选择TI公司的TVP5150视频解码芯片来主要用来完成模拟视频信号到数字视频信号的转换以及对图像亮度、色度的预处理等。
4.3 DSP控制处理模块设计
DSP控制处理模块作为系统的主控模块,以TMS320DM6437为核心,由视频处理前端、DDR2存储器、EMIF接121电路、以太网接口电路、12C总线和JTAG接口电路组成,其设计框图如图4.2所示
图4.2 DSP控制处理模块设计框图
视频处理前端用来接收TVP5150发送的数字视频信号,DDR2存储器用来存储程序和数据,EMIF接口电路可以外接NAND Flash用于固化程序和数据,以太网接口电路用于DM6437与外接设备之间的通信,I2C总线对TVP5150内部存器进行初始化设置,JTAG接121电路主要用来连接DSP仿真器,进行程序的载和系统的调试与仿真。芯片DM6437用于控制各个外围功能芯片及完成算法处理。
4.4 信号灯驱动模块设计
LED交通信号灯驱动模块设计以LM3407芯片核心,其输入电压范围4.5V-30V,并且能够提供精准的恒定电流输出,本文所需电压为24V,电流为350mA,以驱动高功率发光二极管(LED)。常用LED交通灯的灯盘内LED数量约在100-200个
之间,本文采用119个LED灯通过串并联结合的方式进行连接。每个LED工作电压为3.3V,工作电流为20mA,结合驱动芯片参数和灯盘的规格,采用并联17组,每组串联7个LED灯的方式,对交通信号灯进行驱动。交通灯连接方式如图4.4所示。
图4.4 LED交通灯连接图
4.5 电源模块设计
整个系统的硬件平台采用+5V外接电压进行供电,但是根据各个模块对电源电压需求各有不同,因此对整个硬件平台的供电设计很重要。DM6437内核使用1.05V1.20V两种工作电压,当其工作频率为600MHz/500MHz/400MH时要求供电电压为1.20V,当工作频率为400MHz时要求供电电压为1.05V。设计中的内核工作频率为600MHz,故而采用1.2V的内核供电电压。而系统中TVP5150视频解码芯片的内核和外接的以太网物理层芯片等均是采用1.5V电源进行供电,其他则供电电压为3.3V。在给系统上电的过程中,首先应当确内核电源先上电。关闭电源的时候,同样先进行内核电源的关闭,然后再关闭I/O电源等。若只对CPU内核进行供电,而对周围I/O没有进行供电,则不会对芯片产生任何损害。假如周围的I/O均获得供电而对CPU内核没有进行供电,导致芯片缓冲/驱动部分的晶体管在未知状态下进行工作,对系统会产生一定的损害。电源模块设计功能框
图如图4.5所示。
图4.5 电源模块功能框图 系统软件设计及调试
5.1 软件总体设计方案
基于机器视觉的智能交通灯控制系统的功能主要通过C语言进行软件编程来实现的,其软件设计部分主要包括视频采集模块软件、DSP控制处理模块软件以及交通灯智能控制软件。其软件总体设计框图如图5.1所示。视频采集模块以TVP5150芯片为核心,接收来自摄像头的视频,进行和亮度等预处理,然后将模拟视频信号转换为数字视频信号,其软件设计主要包括TVP5150芯片的配置、芯片的工作过程;DSP控制处理模块要对车辆视频进行图像处理,计算出精确的车流量,根据模糊控制算法智能控制红绿灯时间。DSP控制处理模块软件设计主要包括模块主要寄存器配置、CACHE大小配置及存储器映射、EMIF接口初始化设计
和DSP代码优化原则;交通灯智能控制软件主要通过交通灯智能控制策略,根据车流量大小,对绿灯时间进行自动控制。
图5.1 软件总体设计框图
5.2 视频采集模块的软件设计
视频采集模块开始工作时,首先读取跳线设置,进行视频捕捉参数的更新,然后建立视频输入通道,同时为将要获取的视频信息分配内存缓冲区,再将获取的每一个视频帧发送给视频解码芯片TVP5150。当TVP5150发送结束信号,表示视频采集过程结束。在本文中,CCD摄像头为PAL制式,输入的宽度是704,输入高度是576,帧速是25帧/秒。所以将JPI设置成PAL制式,输入的视频数据像素为704x 576。设计中将帧间间隔设置为25,故最大的帧速是每秒25帧。其每个像素点的大小是2Bit,因此一帧数据大小为792KB。再进行视频输入通道的创建,创建过程是通过DSP/BIOS系统创建视频前端微型驱动的管道对象,采用
扩展的GIO函数FVID-create()来进行创建。
5.3 系统调试
电源、时钟和复位模块属于整个系统的最小系统部分,是硬件电路的基础,所以首先对其进行调试,以保证其正常工作。电源模块的调试主要通过万用表进行测量,当电源电路上电后,测试其输出端口电压是否符合系统的要求,分别为3.3V、1.8V和1.2V。时钟模块在调试过程中采用逻辑分析仪进行观测输时钟频率,确定其是否满足系统所需时钟频率的要求,视频解码芯片TVP5150所需的时钟输入频率为14.31818MHz,CPU核所需的时钟输入为27MHz。复位模块也采用万用表进行测量,当按下复位键输出为低电平有效,否则输出为高电平。总结
本文根据国内外交通灯控制系统的研究现状,分析研究了目前常用的交通灯控制策略,提出了一种基于机器视觉的智能交通灯控制系统的设计方案,将模糊控制理论引入交通灯控制系统中,提出了智能交通灯控制策略。采用了TI公司推出的TMS320C6000系列中性能较高的TMS320DM6437芯片,结合其它外围电路,设计了智能交通灯控制系统的硬件,并进行了相应的软件设计。最后进行了实验和调试。
基于机器视觉的智能交通灯控制系统涉及的领域很多,技术手段较为复杂。由于作者知识有限以及相关条件的限制,有些方面研究不够深入,还有待于进一步改进与完善。参考文献
【1】刘智勇.智能交通控制理论及其应用【M】.北京:科学出版社,2003.
【2】高海军.城市交通信号控制研究[D】.北京:中国科学院自动化研究所,2005.
【3】陈俊.基于DSP的汽车视觉系统研究【D】.武汉:武汉理工大学,2009.
【4】王史春.基于模糊控制算法实现信号灯智能化研究【J】.电子科技.2009 【5】李玉.交通信号灯的模糊控制[D】.辽宁:辽宁科技大学,2008.