第一篇:合成氨工业现状及节能技术(DOC)
化工工艺论文 合成氨工业现状和节能技术
化工工艺论文
题 目 名 称: 合成氨的工业现状
和节能技术
系 别:
化学与化工学院 专 业: 应 用 化 学 班 级: 学 生:
学 号:
指 导 教 师:
化工工艺论文 合成氨工业现状和节能技术
摘 要
本论文介绍了合成氨的一些生产方法,分别为煤制气合成法、固定床气化法、流化床气化法、气流床气化法、溶浴床气化法以及对现代典型合成氨工业生产流程详细介绍;节能技术分别从工艺改造和护手各项余热和余能进行研究。
关键字:合成氨,煤制气,固定床,节能,回收
化工工艺论文 合成氨工业现状和节能技术
abstract
This paper introduces some methods of production of synthetic ammonia,for coal gas synthesis method, fixed bed gasification, fluidized bed gasification, entrained flow gasification method, melting bath bed gasification method and typical of modern synthetic ammonia industry production process in detail.Energy-saving technology from process improvement and hand the residual heat and energy research.key words: synthetic ammonia coal gas energy conservation reclaim
化工工艺论文 合成氨工业现状和节能技术
目录
第一章 合成氨工艺现状..............................................................1
1.1 国外传统型蒸汽转化制氨工艺阶段..............................................1 1.2 我国目前合成氨技术的基本状况................................................2 第二章 几种典型的合成氨工艺介绍....................................................3
2.1 煤制气合成氨工艺............................................................3 2.2 固定床气化法................................................................3 2.3 流化床气化..................................................................4 2.4 气流床气化..................................................................4 2.5 熔浴床气化..................................................................5 第三章 合成氨典型工业生产工艺流程..................................................6
3.1 造气工段....................................................................6 3.2 脱硫工段....................................................................6 3.3 变换工段....................................................................7 3.4 变换气脱硫与脱碳............................................................8 3.5 碳化工段....................................................................8 3.5.1 气体流程...........................................................................8 3.5.2 液体流程...........................................................................9
3.6 甲醇合成工段................................................................9 3.7 精炼工段...................................................................10 3.8 压缩工段...................................................................10 3.9 氨合成工段.................................................................11 3.10 冷冻工段..................................................................12 第四章 合成氨的节能技术...........................................................13 4.1 选择先进的节能工艺.........................................................13 4.2 回收各项余热和余能进行热能综合利用.........................................14 参考文献..........................................................................16
化工工艺论文 合成氨工业现状和节能技术
第一章 合成氨工艺现状
合成氨工业在整个国民经济中占有重要的地位。它的发展速度、产品产量在一定程度上说明了一个国家工业的发展水平。这主要是因为俺的用途非常广泛。氨是一种重要的化工原料和化工中间产品,其产量居各种化工产品的首位,世界上大约有10%的能源用于生产合成氨。它既可以用来制造尿素、碳铵、硝铵等氨类肥料,也可以用来做制药、高分子化学、有机化学等工业中的氨基原料。此外,氨还应用于国防和尖端科学技术部门。如制造各种硝基炸药、火药与导弹的推进剂等。工业上合成氨的方法,根据原料的不同分为三大类:固体燃料气化、重油分解及气体烃裂解制取。一下分别介绍国内外合成氨工艺的情况。
1.1 国外传统型蒸汽转化制氨工艺阶段
从20世纪20年代世界第一套合成氨装臵投产,到20世纪60年代中期,合成氨工业在欧洲、美国、日本等国家和地区已发展到了相当高的水平。美国Kellogg公司首先开发出以天然气为原料、日产1000t的大型合成氨技术,其装臵在美国投产后每吨氨能耗达到了4210GJ的先进水平。Kellogg传统合成氨工艺首次在合成氨装臵中应用了离心式压缩机,并将装臵中工艺系统与动力系统有机结合起来,实现了装臵的单系列大型化(无并行装臵)和系统能量自我平衡(即无能量输入),是传统型制氨工艺的最显著特征,成为合成氨工艺的/经典之作。之后英国ICI、德国Uhde、丹麦Topsoe、德国Braun公司等合成氨技术专利商也相继开发出与Kellogg工艺水平相当、各具特色的工艺技术,其中Topsoe、ICI公司在以轻油为原料的制氨技术方面处于世界领先地位。这是合成氨工业历史上第一次技术变革和飞跃。
传统型合成氨工艺以Kellogg工艺为代表,其以两段天然气蒸汽转化为基础,包括如下工艺单元:合成气制备(有机硫转化和ZnO脱硫+两段天然气蒸汽转化)、合成气净化(高温变换和低温变换+湿法脱碳+甲烷化)、氨合成(合成气压缩+氨合成+冷冻分离)。
传统型两段天然气蒸汽转化工艺的主要特点是:1)采用离心式压机,用蒸汽轮机驱动,首次实现了工艺过程与动力系统的有机结合;2)副产高压蒸汽,并将回收的氨合成反应热预热锅炉给水;3)用一段转化炉烟道气预热二段空气,提高一段转化压力,将部分转
化工工艺论文 合成氨工业现状和节能技术
化负荷转移至二段转化;4)采用轴向冷激式氨合成塔和三级氨冷,逐级将气体降温至-23℃,冷冻系统的液氨亦分为三级闪蒸。在传统型两段蒸汽转化制氨工艺中,Kellogg工艺技术应用最为广泛,约有160套装臵,其能耗为3717-41.8GJ/t。经过节能改造后平均能耗已经降至3517GJ/t左右。
1.2 我国目前合成氨技术的基本状况
我国的氮肥工业自20世纪50年代以来,不断发展壮大,目前合成氨产量已跃居世界第一位,现已掌握了以焦炭、无烟煤、焦炉气、天然气及油田伴生气和液态烃多种原料生产合成氨、尿素的技术,形成了特有的煤、石油、天然气原料并存和大、中、小生产规模并存的生产格局。目前合成氨总生产能力为4500万t/a左右,氮肥工业已基本满足了国内需求,在与国际接轨后,具备与国际合成氨产品竞争的能力,今后发展重点是调整原料和产品结构,进一步改善经济性。
化工工艺论文 合成氨工业现状和节能技术
第二章 几种典型的合成氨工艺介绍
2.1 煤制气合成氨工艺
煤制气合成氨工艺中,以煤为原料的固定层煤气发生炉制得的半水煤气,经压缩机三级压缩后,被送去净化工序进行脱硫;然后经变换炉将水蒸气和一氧化碳进行变换,变换气经过脱除二氧化碳后,重新回压缩机四、五段提升压力,然后经过甲醇合成塔进行合成甲醇的反应,以便脱除部分一氧化碳和少量二氧化碳;出甲醇塔的气体经过冷却分离甲醇后送入精炼工序,经过水洗、铜氨液、氨水洗涤塔后得到满足合成氨需要的氢气和氨气;气体再次进入压缩机六段提升压力,压力达到20-30MPa,送去氨合成塔,借助合成触媒作用进行氨气的合成。生成的液氨经减压后送往液氨库存储备用。
图2-1 煤制气合成氨工艺图
2.2 固定床气化法
煤的固定床气化是以块煤为原料。煤由气化炉顶部间歇加入,气化剂由炉底送入,气化剂与煤
逆流接触,气化过程进行得很完全,灰渣中残碳少,产物气体的显热中的相当部分供给煤气化前的干燥和干馏,煤气出口温度低,而且灰渣的显热又预热了入炉的气化剂,因此气化剂效率高。这是一种理想的完全气化方式。
(1)固定床常压气化
此方法比较简单,但对煤的类型有一定要求,即要求用块煤,低灰熔点的煤难以使用常压方法用空气或空气-水蒸汽作为气化剂,制得低热值煤气。
化工工艺论文 合成氨工业现状和节能技术
(2)固定床加压气化
固定床加压气化最成熟的炉型是鲁奇炉。它和常压移动床一样,也是自热式逆流反应床。所不同的是采用氧气-水蒸汽或空气-水蒸汽为气化剂,在2.0-3.0Mpa和900-1100℃的湿度条件下连续气化方法。
2.3 流化床气化
流化床气化又称沸腾床气化,它是以小颗粒煤为原料,将气化剂(蒸汽和富氧或氧气)送入炉内,是煤颗粒的炉内呈沸腾状态进行气化反应。它是一种介于逆流操作和顺流操作这两种情况之间的操作。
(1)温克勒法
温克勒法是最早开发的流化方法,在常压下,把煤粒度为0-8mm的褐煤、弱粘结性烟煤或焦碳经给煤机加入到气化炉内。在炉底部通入空气或氧气作介质,没与经过预热的气化剂发生反应。
(2)高温温克勒法
将含水分85-12%的褐煤输入到充压至0.98Mpa的密闭料锁系统后,经给煤机加入气化炉内。白云石、石灰石或石灰经给料机输入炉内。没与白云石类添加物在炉内与经过预热的气化剂(氧气/蒸汽或空气/蒸汽)发生气化反应。粗煤气由气化炉上方逸出进入第一旋风分离器,在此分离出的较粗颗粒、灰粒循环返回气化炉。粗煤气再进入第二旋风分离器,在此分离出的细颗粒通过密闭的灰锁系统将灰渣排出,除去煤尘。
(3)灰团聚气化法
它是在流化床中导入氧化性高速气流,使煤灰在软化而未熔融的状态下在锥形床层中相互熔聚而粘结成含碳量低的球状灰渣,有选择性地排出炉内。它与固态排渣相比,降低了灰渣的碳损失。
(4)加氢气化法
所谓的流化床气化就是煤气化过程中汽化剂(蒸汽和氧)将煤或煤浆带入气化炉进行气的方
2.4 气流床气化
所谓加氢气化就是在煤气化过程中直接用氢或富含H2的气体作为气化剂,生成富含CH4的煤气化方法,其总反应方程式可表示为:煤+H2→CH4+焦
化工工艺论文 合成氨工业现状和节能技术
(1)K—T法
此法是最早工业化的气流床气化方法,它采用干法进料技术,因在常压下操作,存在问题较多。它是1948年德国海因里希-柯柏斯和托切克博士提出的一种气流床气化粉煤的方法。
(2)德士平古法
它是一种湿法(水煤浆)进料的加压气化工艺。气化炉是由美国德平古石油公司所属德平古开发公司开发的气流床气化炉。
2.5 熔浴床气化
50年代熔浴床煤气气化方法开始得到开发。熔浴床有熔渣床、熔盐床和熔铁床3类。下面分别介绍这3类床的某些制气方法。
(1)罗米方法
此法为常压粉煤熔渣浴气法,此法有单简式和双简式两种炉型。此方法的特点是:(1)适用于各种固体或液体燃料;(2)气体温度高;(3)气体强度高。
(2)觊洛格法
此法为—加压熔浴气化法。它是在熔融的Na2CO2盐浴内进行,熔融的Na2CO2对煤与蒸汽的反应具有强烈的催化作用,在较低温度下就可获得很快的反应速度。此法目前尚处于开发研究阶段,实验能否成功,关键在于气化炉。
(3)ATGAS熔铁床气化法
ATGAS法的实质是把煤粉与石灰石、蒸汽氧(或空气)一起吹到熔铁内,使煤的挥发份逸出,残留的碳溶解在熔铁中被气化。此法效率高,有害物质少,气化反应在常压下进行。煤种适用范围广,且气化炉结构简单。因此,此工艺被认为有可能放大到工业化生产。
化工工艺论文 合成氨工业现状和节能技术
第三章 合成氨典型工业生产工艺流程
合成氨的生产过程包括三个主要步骤:原料气的制备、净化和压缩、合成。整个生产流程总共分为十个工段:1)造气工段;2)脱硫工段;3)变换工段;4)变换气脱硫与脱碳;5)碳化工段;6)甲醇合成工段;7)精炼工段;8)压缩工段;9)氨合成工段;10)冷冻工段。以下就详细的介绍整个生产流程。
3.1 造气工段
造气实质上是碳与氧气和蒸汽的反应,主要过程为吹风和制气。具体分为吹风、上吹、下吹、二次上吹和空气吹净五个阶段。原料煤间歇送入固定层煤气发生炉内,先鼓入空气,提高炉温,然后加入水蒸气与加氮空气进行制气。所制的半水煤气进入洗涤塔进行除尘降温,最后送入半水煤气气柜。
图3-1造气工艺流程示意图
3.2 脱硫工段
煤中的硫在造气过程中大多以H2S的形式进入气相,它不仅会腐蚀工艺管道和设备,而且会使变换催化剂和合成催化剂中毒,因此脱硫工段的主要目的就是利用DDS脱硫剂脱出气体中的硫。气柜中的半水煤气经过静电除焦、罗茨风机增压冷却降温后进入半水煤气脱硫塔,脱除硫化氢后经过二次除焦、清洗降温送往压缩机一段入口。脱硫液再生后循环使用。
化工工艺论文 合成氨工业现状和节能技术
图3-2脱硫工艺流程图
3.3 变换工段
变换工段的主要任务是将半水煤气中的CO在催化剂的作用下与水蒸气发生放热反应,生成CO2和H2。河南中科化工有限责任公司采用的是中变串低变工艺流程。经过两段压缩后的半水煤气进入饱和塔升温增湿,并补充蒸汽后,经水分离器、预腐蚀器、热交换器升温后进入中变炉回收热量并降温后,进入低变炉,反应后的工艺气体经回收热量和冷却降温后作为变换气送往压缩机三段入口。
图3-3变换工艺流程图
化工工艺论文 合成氨工业现状和节能技术
3.4 变换气脱硫与脱碳
经变换后,气体中的有机硫转化为H2S,需要进行二次脱硫,使气体中的硫含量在25mg/m3。脱碳的主要任务是将变换气中的CO2脱除,对气体进行净化,河南中科化工有限责任公司采用变压吸附脱碳工艺。来自变换工段压力约为1.3MPa左右的变换气,进入水分离器,分离出来的水排到地沟。变换气进入吸附塔进行吸附,吸附后送往精脱硫工段。
被吸附剂吸附的杂质和少量氢氮气在减压和抽真空的状态下,将从吸附塔下端释放出来,这部分气体称为解析气,解析气分两步减压脱附,其中压力较高的部分在顺放阶段经管道进入气柜回收,低于常压的解吸气经阻火器排入大气。
图3-4变换与脱硫工艺流程图
3.5 碳化工段
3.5.1 气体流程
来自变换工段的变换气,依次由塔底进入碳化主塔、碳化付塔,变换气中的二氧化碳分别在主塔和付塔内与碳化液和浓氨水进行反应而被吸收。反应热由冷却水箱内的冷却水移走。气体从付塔顶出来,进入尾气洗涤塔下部回收段,气体中的少量二氧化碳和微量的硫化氢被无硫氨水继续吸收,再进入上部清洗段。气体中微量二氧化碳被软水进一步吸收,最后达到工艺指标经水分离后,送往精脱硫塔进一步脱硫后,送往压缩机三段进口。
化工工艺论文 合成氨工业现状和节能技术
3.5.2 液体流程
浓氨水由浓氨水泵从吸氨岗位浓氨水槽打入付塔,一方面溶解塔内的结疤,另一方面吸收主塔尾气中的剩余二氧化碳,逐步提高浓氨水的碳化度。然后,付塔的溶液由碳化泵从底部抽出,打入主塔,在主塔内进一步吸收变换气中的二氧化碳,生成含碳酸氢铵结晶的悬浮液,再由底部取出管压入分离岗位进行分离。
回收塔回收段中的无硫氨水来自合成或铜洗工段使用过的无硫氨水和回收段的稀氨水压入稀氨水压入吸氨岗位母液槽和稀氨水槽或送脱硫岗位使用,从回收段出来的水直接排污水沟。
图3-5碳化工艺流程图
3.6 甲醇合成工段
联醇是将经变换、脱碳后的净化气中的CO:1-5%、CO2<0.5%(其含量可根据生产所要求的醇氨比调节)与气体中的H2经压缩机加压到15MP后,依次经过洗氨塔、油分、预热器、废热锅炉进入合成塔,在催化剂的作用下合成为甲醇,同时起到气体净化的作用。醇后气中CO<0.5%、CO2<0.2%。出塔气体经水冷却到40℃左右,将气体中的甲醇冷凝,使气体中的甲醇含量小于0.5%,经醇分离器分离出甲醇后,一部分气体经甲醇循环机返回甲醇合成塔,大部分气体进入精炼工段。
图3-6粗醇生产工艺流程示意图
化工工艺论文 合成氨工业现状和节能技术
3.7 精炼工段
醇后工艺气中还含有少量的CO和CO2。但即使微量的CO和CO2也能使氨催化剂中毒,因此在去氨合成工序前,必须进一步将CO和CO2脱除。我们公司是采用醋酸铜氨液洗涤法,铜洗后的工艺气体中的含量将至25ppm以下。醇后气体由铜洗塔底部进入,与塔顶喷淋的醋酸铜氨液逆流接触,将工艺气中的CO和CO2脱除到25ppm以下,经分离器将吸收液分离后送往压缩机六段进口。铜氨液从铜洗塔经减压还原、加热、再生后,补充总铜、水冷却、过滤、氨冷后经铜氨液循环泵加压循环使用。
图3-7精炼工段流程图
3.8 压缩工段
压缩工段的压缩机为六段压缩。由于合成氨生产过程中,变换、脱碳、粗醇与氨合成分别在0.87MPa、3.7MPa、15MPa、27MPa条件下进行,压缩工段的任务就是提高工艺气体压力,为各个生产工段提供其所需的压力条件。
化工工艺论文 合成氨工业现状和节能技术
图3-8压缩工段示意图
3.9 氨合成工段
氨合成工段的主要任务是将铜洗后制得的合格N2、H2、混合气,在催化剂的存在下合成为氨。压缩机六段来的压力为27MPa的新鲜补充气,与循环气混合后进入氨冷器、氨分离器、冷交换器,经循环机升压并经过油分离器除油后进入氨合成塔的内件与外筒的环隙,冷却塔壁,出来后经预热器升温后进入氨合成塔内件,完成反应后离开反应器,分别进入废热锅炉、预热器、软水加热器回收热量,最后经水冷器、冷交换器、氨冷器降温冷却,将合成的氨液化分离出系统,未反应的氮氢气循环使用。
图3-9氨合成工段示意图
化工工艺论文 合成氨工业现状和节能技术
3.10 冷冻工段
由于氨合成工段需要通过液氨气化来产生低温生产条件,因此冷冻工段的任务就是把气态的氨重新液化。由氨蒸发器蒸发的气氨经气氨总管进入冰机前分离器,分离出液氨后进入氨压缩机加压,加压后的气氨经油分离器后进入水冷器,在此气氨冷凝为液氨并回到冰机液氨贮槽,由支出阀送给氨蒸发器循环使用或氨库。
图3-10冷冻工段示意图
化工工艺论文 合成氨工业现状和节能技术
第四章 合成氨的节能技术
从合成氨行业发展历史来看,技术创新与进步是发展的主要推动力。多年来经合成氨企业与设计、科研、高等院校及设备制造单位共同努力,研究开发出很多的新工艺、新设备、新催化剂等节能先进技术和产品,以及行之有效的小改小革节能技术措施,在合成氨行业节能降耗中发挥了很大作用。下面就以无烟煤为原料生产合成氨的主要节能途径作归纳简述。
4.1 选择先进的节能工艺
根据合成氨生产的不同产品方案(尿素、碳酸氢铵、联醇等)选择不同工艺路线及组合是否合理,是最终能耗的关键。目前主要采用与推广的有如下几项。
(1)提升型固定床气化工艺。在传统固定床气化工艺基础进行了多项系统改造与创新,主要内容有造气炉改造、不停炉加煤与下灰、DCS系统优化控制、集中式余热回收与洗气塔、吹风气与炉渣回收利用等。其主要效果有:①气化强度可达1200-1300m3/(m2.h)。②蒸汽分解率达55%-60%。③炉渣残碳达15%以下(质量分数)。④1000m(标态)CO+H2原料
3煤消耗达550-590kg。⑤余热回收率可实现蒸汽自给。
(2)节能型的全低变与中低低变换工艺。在采用宽温钴钼低变催化剂的前提下,根据企业生产条件的不同情况,可选择节能型全低变或中低低变换工艺。这两种工艺变换率高、流程简单、系统阻力低、蒸汽消耗少,在0.8MPa压力与出系统气体中CO体积分数1.5%左右时,吨氨蒸汽消耗分别为250kg和350kg。同时结合企业产品结构调整与改造,可将变换压力从0.8MPa提升到1.5-2.1MPa(视整个生产工艺不同而确定),从而减少每吨氨870-940m3(标态)原料气体压力从0.8MPa压缩到1.5-2.1MPa的压缩功,吨氨节电约30-40kW/h。
(3)节能环保型的醇烷化(称双甲)或醇烃化气体精制工艺:该项技术是属清洁生产工艺,主要取代传统的铜洗工艺,铜洗工艺既消耗多种化学品,又耗电,操作不易稳定,易带液,是合成氨生产不稳定的环节,泄漏铜氨液及回收下来的稀氨水,影响到环境保护。醇烷化或醇烃化的工艺具有流程短、净化度高、操作安全稳定等优点,它既可节能节约原材料(吨氨节约蒸汽、电力等折标准煤40kg左右),又有很好的环保效果,而且有很好的经济效益。
化工工艺论文 合成氨工业现状和节能技术
(4)经运行的节能合成工艺:在采用低温活性好、宽温高强度氨合成催化剂与相匹配的高效节能合成塔基础上,结合塔外提温与二级余热回收工艺,实行低空速、低阻力、低压力的经济运行,使操作压力降至22-24MPa(低时还可降2MPa左右),吨氨节电50-60kW/h,并减少放空量,节约原料煤耗30-40kg(折标煤)。
(5)使用高效节能单元设备、催化剂及新材料在工艺流程确定后,如何使用高效节能的催化剂和单元操作设备对节能也起到重要作用。①新型催化剂:如宽温钴钼低变催化剂、低温高活性氨合成催化剂、高效的888脱硫剂、常温精脱硫剂等。②各种高效塔器:如规整填料塔、格栅填料塔、垂直筛板塔等多种塔器在合成氨各生产工序都有应用,并都取得一定的效果。以变脱塔为例,采用QYD型气液传质组合塔板内件取代传统填料塔,经实际使用证明,使传质效率大大提高、塔高可降低1/
3、溶液循环量减少30%-50%,吨氨节电5-6kW/h,并解决了填料堵塞问题。③各种高效换热器:如折流杆异形管换热器、波纹管热交换器(冷凝器)、板式换热器、热管式换热器、蒸发式冷凝器等多种换热器在合成氨工序都有应用,并都取得一定的效果。以冷冻系统使用蒸发式冷凝器为例,该设备应用热力学、传热学等工程学的先进技术,使用了高效传热元件加以优化组合,大大提高了换热效果和冷却冷凝效果,达到节电与节约冷却水用量的节能效果,是取代传统立式水冷冷凝器的有效节能设备。④各种分离过滤设备:如高效双级旋风除尘器、静电除焦油器、组合式高效氨分离器、高效油分离器、LH系列高效溶液过滤器,新型硫泡沫过滤器等。在合成氨生产过程中,这些设备对确保气体与溶液的净化度、提高运行的稳定性及节能降耗都起到相当有效作用。
4.2 回收各项余热和余能进行热能综合利用
(1)充分回收合成氨各工艺过程中的余热和余能:如造气系统的造气炉夹套、炉渣、飞屑的余热,上、下行煤气的显热,吹风气的显热与潜热,脱碳系统脱碳富液和铜洗系统铜液的能量,变换系统的变换气和合成系统合成塔出口合成气的余热等。
(2)回收合成两气中氨和氢,提高有效资源利用率:在合成氨生产过程中,由于生产负荷的变化,为保持氨合成系统的适宜操作压力,造成合成系统中的放空气和氨槽弛放气量增加,而这部分气体中均含有大量氢与氨随之放空,导致合成氨各项消耗增多,成本升高。根据这两种气源的不同组分和弹性,可分别采用膜分离技术回收放空气中氢气和采用无动力氨回收技术回收氨槽弛放气中的氨。
(3)实施系统热能综合利用、提高能量回收利用率:从化工过程系统工程与热力学相
化工工艺论文 合成氨工业现状和节能技术
结合的角度出发,把节能推上一个新的高度,将合成氨生产过程所有的余热、余能按能位的高低加以优化组合与合理利用,使能量获得多级利用,提高能量回收利用率。根据企业不同生产规模与不同氨加工产品等不同情况进行不同的热能综合利用的设计方案。如采取热电联产(余热发电)或热功联产(汽轮机驱动),还可利用低位能余热,通过溴化锂吸收制取低温冷水,用于冷却氮氢压缩机一级、三级、六级、七级入口煤气、脱碳吸收液和合成循环气等,提高压缩机打气量,减少脱碳液循环量,降低氨冷和冰机负荷,达到增产节电的明显效果,尤其是夏季高温时,其效果更为突出。对于热电联产或热功联产,可根据各企业条件加以分别选择,此部分节能效果十分明显,以100kt/a合成氨规模为例,利用吹风气、合成放空气、弛放气、造气炉渣、飞屑等余热资源可副产3.82MPa,450℃过热蒸汽约25t/h,入背压发电机组可每小时发电约2250kW/h,折吨氨副产发电180kW/h左右。全年节约外供电达1800万kW/h。
(4)其它有关节能技术措施:如DCS系统控制调优技术、机泵电机采用变额调速技术、企业电网系统节电技术、蒸汽管道系统节能、冷凝水回收利用等,以及各项行之有效的改革措施。
(5)充分利用资源、提升产品价值,降低万元产值能耗水平,提高企业经济效益。合成氨生产过程排放的各种废气如何加以充分利用是值得研究并加以发展。以回收合成放空气中的氢气和回收脱碳放空气中的CO2为例,按生产80kt/a合成氨规模计算,回收放空气中氢气可生产40kt/a双氧水,并用其回收的脱碳放空气中的CO2生产液体CO2(工业级)30kt/a,则其年销售产值可从2.00亿元提高至2.69亿元,而年消耗标准煤从128.00kt增至130.85kt,万元产值能耗(折标煤)从6.400t降低到4.864t,下降了24%,年增加经济效益(利税)约2500万元,其节能与经济效果十分明显。
化工工艺论文 合成氨工业现状和节能技术
参考文献
[1] 蒋德军.合成氨工艺技术的现状及其发展趋势.现代化工,2005,年8月.[2] 韩明山.合成氨生产技术探讨.化学工程设备,2011年5月.[3] 於子方.合成氨行业能耗现状与主要节能途径.上海达门化工工程技术,2009年2月.[4] 张辉,赵红柳,冯树波.合成氨生产中含尾气回收工艺进展.河北阶级大学化学与制药工程学院,2009年8月.[5] 曹仑,张卫峰,高力.中国合成氨生产能源消耗状况及其节能潜力.华中农业大学资源与环境学院,2008年4月.[6] 韩铁飞.大型合成氨生产节能分析.中国神华煤制油化工,2010年2月.[7] 陈实,袁令,高林.合成氨工艺系统的分析及节能研究.北京理工大学化工与环境学院,2009年11月.[8] 王士荣.合成氨节能降耗改造.武汉大学,2012年5月.
第二篇:合成氨工业技术现状及节能技术研究论文
随着国家工信部颁布出台《合成氨行业准入条件(征求意见稿)》,在合成氨生产上提高了能耗的准入条件,因此加快实施合成氨生产的节能改造已经成为企业适应新形势发展的基本要求。本文首先在合成氨生产原料以及主要生产工艺指标等方面介绍了合成氨工业技术现状,并提出了实现合成氨生产节能改造的主要技术措施,可以为相关人员熟悉了解合成氨生产以及合成氨节能改造提供合理的参考。工业技术
随着科学技术的不断进步以及市场对于化工产品需求量的不断增加,化工行业正处于迅猛发展阶段。氨合成产品作为重要的化工产品,可以用于氮肥、硝酸以及铵态化肥的生产加工制造。随着市场对于合成氨产品要求的不断提高以及国家对于化工行业节能减排的要求,改善合成氨生产技术,加大节能技术开发,应经成为合成氨等相关化工行业迫切需要解决的主要问题。
一、现阶段合成氨工业主要生产原料
合成氨的反应公式为3H2+N2=2NH3+Q,合成氨的反应特点主要为:可逆反应,氢气与氮气反应生成氨,同时氨在一定条件下也可以分解成氢气和氮气;此外,合成氨的反应为放热过程,反应过程中反应热与温度以及压力有关;而且需要催化剂的催化方能迅速进行合成氨反应。现阶段用硬合成氨生产的原料主要有天然气、重质油以及煤或焦炭,具体生产工艺如下所示:
1.天然气
采用天然气生产合成氨主要工序为脱硫、二次转换、一氧化碳转换以及去除二氧化碳等工序,在上述工序完成后即可得到氮氢混合气,再利用甲烷化技术去除少量残余的一氧化碳以及二氧化碳,并经压缩机进行压缩处理,即可得到合成氨产品。
2.重质油
重质油主要是指常压或者减压蒸馏后的渣油以及利用原油深度加工后的燃料油。利用重质油生产合成氨的工艺为首先重油与水蒸气反应值得含氢气体。通过将部分重油燃烧以为反应转化吸热提供足够的热量以及足够的反应温度,进而通过重油制氢为合成氨的生产提供基础原料。
3.煤
以煤作为原料制取氢气的工艺流程主要包括煤的高温干馏焦化以及煤的气化两种,煤的焦化主要是将煤处于空气隔绝的高温条件下制取焦炉煤气,通常情况下焦炉煤气中含有60%左右的氢气,作为合成氨生产的原料。而煤的气化,将煤在高温条件下,通过常压或者加压的方式与水蒸气或者氧气反应,得到含氢的气体产物,以此为制作合成氨的原料。
二、合成氨生产工艺指标
1.合成氨生产压力
通常情况下将压力控制在3~4MPa左右,这主要是由于采取加压的条件可以降低能耗,保证能量的合理利用,而且采取加压的方式还可以提高反应余热的利用。
2.生产温度
对于一段炉的温度,一般控制在760~800℃左右,这主要是由于一段炉设备价值高,而且主要为合金钢管,合金钢管的特点在于温度过高容易造成使用寿命大幅度降低。对于二段炉温度,主要根据甲烷控制指标来确定。在合成氨的生产压力以及水碳比得出后,应该根据平衡甲烷的浓度来确定合成氨的生产温度。通常情况下要求yCH4<0.005,出口温度应为1000°C左右。实际生产中,转化炉出口温度比达到出口气体浓度指标对应的平衡温度高
3.水碳比
由于水碳比高的条件下,残余甲烷含量降低,且可防止析碳。因此一般采用较高的水碳比,约3.5~4.0。
三、合成氨生产节能措施研究
合成氨的生产作为需要大量能好的工业,对于合成氨生产工艺进行节能技术改造已经成为合成氨工业提高经济效益,实现健康可持续发展的关键。降低合成氨生产过程中的能耗,可以采取以下措施:
1.实现合成氨生产规模的大型化
生产规模的大型化在于可以综合利用能量,并且可以采用离心压缩机,在降低成本投入的同时,实现生产过程的节能。大型化的合成氨生产可以建立完善的热回收系统,进而降低能量的消耗,提高技术经济指标。此外,大型化的合成氨生产工艺由于采用了高速离心压缩机,减少了合成氨的设备,并实现了合成氨生产工艺的优化。
2.实现制气系统的节能优化
合成氨的生产主要集中在制气环节,制气环节的能耗达到成产工艺的70%以上,因此实现合成氨的节能,必须提高转化率降低燃料消耗。
对于利用天然气生产合成氨的工艺,可以采取以下几种措施:结合用于生产合成氨的天然气的密度以及其他信息,判断天然气碳含量,并及时调整蒸汽,并通过适当降低水碳比来实现生产工艺的节能;严格控制合成氨过程中的烟气氧含量,并尽可能的减少其波动,将其控制在较低的数值;在生产过程中除满足氢气与氮气比、二段炉出口的甲烷含量以及温度的条件外,应尽可能降低一段炉负荷;对于类似于Kelogg型的合成氨生产转化炉,应该尽可能地均衡控制各个支路间温度,并减少各炉管间温度偏差,进而大幅提高加热效率,这样不仅延长设备使用寿命,同时实现能耗的降低。
对于采用重油以及煤粉气化炉的合成氨生产工艺,实现节能技术改造可以采取以下措施:根据原料的基本属性如密度、热值等探寻反应的最佳配比,及时调整氧气量、蒸汽量,减少能耗;根据炉型及工艺设计不同控制方案,通过平稳操作和优化参数,提高转化率,降低能耗;由于这类气化控制的特殊性,如原料性质难以定性、监测点少、自动化程度低等,尚无开发出理想的优化控制系统。
3.从驰放气中回收氢
从驰放气体中回收含氢气体。从驰放气体中回收有氢气体主要有以下几种方式:第一,将驰放气体低温液化,进而通过蒸馏进行进一步的分离,通过这种方式不仅可以回收有氢气体,同时可以回收部分稀有气体。第二,采取分子筛在高压条件下吸附的方式,进而在减压下进行解吸的方法分离得到有氢气体。第三,采用多极膜分离方法,由于氢气透过膜的速率相比其他气体较高,并通过多极膜进行分离而获得纯度较高的氢气。
四、结语
随着资源的不断匮乏以及能源危机的制约,在合成氨生产工艺中采取各种节能措施,并进行技术改造以便于降低能源消耗,提高合成氨的生产效益已经成为合成氨生产技术改造的重点,这对于提高合成氨装置的设备可靠性,改善合成氨的技术经济指标也具有重要的意义。
第三篇:我国合成氨工业的现状及发展趋势
合成氨工业的现状及发展趋势
一、我国合成氨工业已走过了五十多年的路程,从小到大从弱到强,从3000吨/年——5000吨/年到45万吨/年,从碳铵到尿素。根据中国氮肥协会统计2011年合成氨产量5864.1万吨/年,位居世界第一,其中88%用来生产化肥;30万吨/年工厂有74家约占49.4%,8万吨/年上以工厂有223家占82.4%,合成氨工业由3000吨/年发展到今天40万吨/年(单系列),全国从1000个厂到今只有300个厂,然而总产量不但没有下降,反而有所增加,尿素2011年出口355.95万吨,从而保证了粮食生产连年丰收。(据农业部门反映一吨尿素可增产粮食几吨),我国粮食为什么连年丰收增产,一是靠国家支农、惠农、护农政策,二是靠优良品种,三是靠化肥支撑。因此对于我们这样一个有13.4亿人的大国,如果粮食生产不能稳定,那是不堪设想的。因此合成氨工业是国家发展的需要,也是人民生活的需要。
二、我国合成氨工业发展趋势
由于我国人多地少,粮食需求量大,因此合成氨工业必须由小变大,向大型化、现代化发展,过去小规模用块煤的技术已远远不能满足国民经济发展需要,发展趋势主要是: 1.由小变大,扶大压小; 2.由块煤变粉煤;
3.由低压向中压、高压气化发展; 具体有以下几点: 1.中压、高压造气
不管用水煤浆气化炉、干粉煤气化炉,还是块煤炉,流化床气化炉都要向中压、高压发展,现在有的气化炉已做到8.7Map,一般都在4.0Map左右。透平压缩这样可以省电3%左右。2.低压合成氨。
过去为了追求产量合成氨压力由低压向高压发展,现在从降低能耗的角度又能向低压,目前已成功运用15Map,10Map即正在试验中,这样可以做到电耗最低。
3.高度净化,为了保证催化剂长周期运行气体净化已达到PPM级,甚至PPb级。4.消灭三废,最少做到达标排放,最终做到零排放。
三、合成氨工业发展对空分的要求,由于合成氨工业向大型化发展,因此对空分也提出了由小向大型发展的要求,从几千米3/时到几万米3/时,同时O2纯度N2纯度也提出了更高的要求。
第四篇:关于合成氨工业技术现状及节能技术研究论文
随着科学技术的不断进步以及市场对于化工产品需求量的不断增加,化工行业正处于迅猛发展阶段。氨合成产品作为重要的化工产品,可以用于氮肥、硝酸以及铵态化肥的生产加工制造。随着市场对于合成氨产品要求的不断提高以及国家对于化工行业节能减排的要求,改善合成氨生产技术,加大节能技术开发,应经成为合成氨等相关化工行业迫切需要解决的主要问题。
一、现阶段合成氨工业主要生产原料
合成氨的反应公式为3H2+N2=2NH3+Q,合成氨的反应特点主要为:可逆反应,氢气与氮气反应生成氨,同时氨在一定条件下也可以分解成氢气和氮气;此外,合成氨的反应为放热过程,反应过程中反应热与温度以及压力有关;而且需要催化剂的催化方能迅速进行合成氨反应。现阶段用硬合成氨生产的原料主要有天然气、重质油以及煤或焦炭,具体生产工艺如下所示:
1.天然气
采用天然气生产合成氨主要工序为脱硫、二次转换、一氧化碳转换以及去除二氧化碳等工序,在上述工序完成后即可得到氮氢混合气,再利用甲烷化技术去除少量残余的一氧化碳以及二氧化碳,并经压缩机进行压缩处理,即可得到合成氨产品。
2.重质油
重质油主要是指常压或者减压蒸馏后的渣油以及利用原油深度加工后的燃料油。利用重质油生产合成氨的工艺为首先重油与水蒸气反应值得含氢气体。通过将部分重油燃烧以为反应转化吸热提供足够的热量以及足够的反应温度,进而通过重油制氢为合成氨的生产提供基础原料。
3.煤
以煤作为原料制取氢气的工艺流程主要包括煤的高温干馏焦化以及煤的气化两种,煤的焦化主要是将煤处于空气隔绝的高温条件下制取焦炉煤气,通常情况下焦炉煤气中含有60%左右的氢气,作为合成氨生产的原料。而煤的气化,将煤在高温条件下,通过常压或者加压的方式与水蒸气或者氧气反应,得到含氢的气体产物,以此为制作合成氨的原料。
二、合成氨生产工艺指标
1.合成氨生产压力
通常情况下将压力控制在3~4MPa左右,这主要是由于采取加压的条件可以降低能耗,保证能量的合理利用,而且采取加压的方式还可以提高反应余热的利用。
2.生产温度
对于一段炉的温度,一般控制在760~800℃左右,这主要是由于一段炉设备价值高,而且主要为合金钢管,合金钢管的特点在于温度过高容易造成使用寿命大幅度降低。对于二段炉温度,主要根据甲烷控制指标来确定。在合成氨的生产压力以及水碳比得出后,应该根据平衡甲烷的浓度来确定合成氨的生产温度。通常情况下要求yCH4<0.005,出口温度应为1000°C左右。实际生产中,转化炉出口温度比达到出口气体浓度指标对应的平衡温度高
3.水碳比
由于水碳比高的条件下,残余甲烷含量降低,且可防止析碳。因此一般采用较高的水碳比,约3.5~4.0。
三、合成氨生产节能措施研究
合成氨的生产作为需要大量能好的工业,对于合成氨生产工艺进行节能技术改造已经成为合成氨工业提高经济效益,实现健康可持续发展的关键。降低合成氨生产过程中的能耗,可以采取以下措施:
1.实现合成氨生产规模的大型化
生产规模的大型化在于可以综合利用能量,并且可以采用离心压缩机,在降低成本投入的同时,实现生产过程的节能。大型化的合成氨生产可以建立完善的热回收系统,进而降低能量的消耗,提高技术经济指标。此外,大型化的合成氨生产工艺由于采用了高速离心压缩机,减少了合成氨的设备,并实现了合成氨生产工艺的优化。
2.实现制气系统的节能优化
合成氨的生产主要集中在制气环节,制气环节的能耗达到成产工艺的70%以上,因此实现合成氨的节能,必须提高转化率降低燃料消耗。
对于利用天然气生产合成氨的工艺,可以采取以下几种措施:结合用于生产合成氨的天然气的密度以及其他信息,判断天然气碳含量,并及时调整蒸汽,并通过适当降低水碳比来实现生产工艺的节能;严格控制合成氨过程中的烟气氧含量,并尽可能的减少其波动,将其控制在较低的数值;在生产过程中除满足氢气与氮气比、二段炉出口的甲烷含量以及温度的条件外,应尽可能降低一段炉负荷;对于类似于Kelogg型的合成氨生产转化炉,应该尽可能地均衡控制各个支路间温度,并减少各炉管间温度偏差,进而大幅提高加热效率,这样不仅延长设备使用寿命,同时实现能耗的降低。
对于采用重油以及煤粉气化炉的合成氨生产工艺,实现节能技术改造可以采取以下措施:根据原料的基本属性如密度、热值等探寻反应的最佳配比,及时调整氧气量、蒸汽量,减少能耗;根据炉型及工艺设计不同控制方案,通过平稳操作和优化参数,提高转化率,降低能耗;由于这类气化控制的特殊性,如原料性质难以定性、监测点少、自动化程度低等,尚无开发出理想的优化控制系统。
3.从驰放气中回收氢
从驰放气体中回收含氢气体。从驰放气体中回收有氢气体主要有以下几种方式:第一,将驰放气体低温液化,进而通过蒸馏进行进一步的分离,通过这种方式不仅可以回收有氢气体,同时可以回收部分稀有气体。第二,采取分子筛在高压条件下吸附的方式,进而在减压下进行解吸的方法分离得到有氢气体。第三,采用多极膜分离方法,由于氢气透过膜的速率相比其他气体较高,并通过多极膜进行分离而获得纯度较高的氢气。
四、结语
随着资源的不断匮乏以及能源危机的制约,在合成氨生产工艺中采取各种节能措施,并进行技术改造以便于降低能源消耗,提高合成氨的生产效益已经成为合成氨生产技术改造的重点,这对于提高合成氨装置的设备可靠性,改善合成氨的技术经济指标也具有重要的意义。
参考文献
[1]何欢.方巨生.胡洪英.陈志方.胡振军.张新岭热联合在塔西南化肥厂节能降耗的应用[期刊论文]-油气田环境保护2011(5).[2]余云松.朱建立.李青.李云.莫沅.张早校变负荷条件下的大型合成氨装置特性研究[期刊论文]-西安交通大学学报2009(10).[3]胡子曼.张莹.毛雪峰.唐猷成.张伟东.杨景昌低温余热驱动的合成氨吸附分离流程的模拟及比较[期刊论文]-现代化工2010(4).
第五篇:工业节能材料
耐高温隔热保温涂料科技创新,节能率可达到60% 在经济全球化是当今世界发展的客观进程,是在现代高科技的条件下经济社会化和国际化的历史创新阶段,全球化带来新的机遇和严峻挑战,当今精细化涂料与高塑料、高温黏合剂、合成橡胶、合成纤维成为五大合成材料。涂料工业属于高新技术产业,其发展水平是一个国家化学工业发达水平的标志之一,在我国耐高温涂料行业,将产生何种影响,如何带动先关产业的升级,配套的设备制造性能改进,这是我们关心的问题。看来不管怎样,这里的竞争激烈程序,绝对不容我们小视,在这样的新情况下,预料未来五至十年,我国耐高温涂料行业,将要发生巨大的变化。其中耐高温隔热保温涂料作为耐高温涂料代表,他的技术性和应用性指标如何,将会影响相关产业的革命性升级创新。在全球公开的残酷涂料工业竞争中,有远见的企业家必须使自己的企业尽快向世界涂料先进水平靠拢,必须提高耐高温涂料的质量意识,在技术进步和技术创新上,跨出更大的步伐,以保证自己涂料工业处于不败的地位。
随着航空航天、汽车、军工、石油石化、冶金、电力、建筑等系统技术革新,用于烟囱烟道、高温蒸汽管道、热交换器、高温炉、高温脱硫设备、石油石化裂解装备、发动机部件、排气管、建筑、高温工具和高温设备的隔热保温越来越要求严格,于是对于金属材料的使用性能要求越来越高,不仅需要在更高的使用温度以及更为苛刻的腐蚀环境下作业,同时还要具有薄层、抗震动、抗疲劳、抗温度骤变以及耐冲刷等性能,传统的隔热保温材料已很难满足使用要求,随着工业技术的不断发展,耐高温隔热保温涂料应运而生。经测试:
①、在高温模具、注塑机外表面涂刷一定厚度的耐高温隔热保温涂料,可以有效减少热能损失,提高模具机械的工作效率;
②、在高温烟道、排烟管道涂刷3毫米厚的耐高温隔热保温涂料,管道外表面温度一般从500℃降低到150℃左右,有利于烟气排放,减少冷凝的发生,避免不必要的管道腐蚀;
③、在建筑墙体上隔热保温节能,涂刷耐高温隔热保温涂料,隔热保温效果好,节能率可以达到60%以上,可以保持建筑内的80%热量不流失,志盛威华涂料防水防潮,防火阻燃等级可以达到A级,高温下无任何危害气体产生,无机环保材质,使用寿命长;
④、在钢水包上涂刷,减少钢水的热量损耗,耐高温、隔热保温效果好,减少钢水包用传统隔热保温材料的重量,有利于钢水包的移动;
⑤、在工业窑炉外表面仅涂6mm厚的耐高温隔热保温涂料就可以减少热量损失30%以上,1100℃的物体表面涂上8mm高温隔热保温涂料物体涂料表面温度就能降低到100℃以内。在高温管道、设备、容器的外表面喷涂,可以有效抑制热辐射和热量的损失,节能率在10%以上;
⑥、在零下30℃的箱体涂10mm厚的耐高温隔热保温涂料,24小时箱体里的温度不低于0℃;
⑦、热水罐、染缸保温,在热水罐、染缸外表涂刷耐高温隔热保温涂料,降低外表面温度,减少热量散失,减少企业生产成本,提高能源利用率;
⑧、蒸汽管道上涂刷耐高温隔热保温涂料,减少蒸汽热能的损失,保护人身安全; ⑨、志盛威华耐高温隔热保温涂料,在高温环境中涂刷在耐温低的金属板上,保护金属板不受高温,不要超过金属板的高温相界,充分发挥金属板的各项性能指标,减少高温设备制作成本;
⑩、涂刷在炉膛、灶具上,减少热量损失,提高热能利用率,节能率可以达到60%以上;
国家宏观经济朝着可持续发展的方向前进时,对资源的有效利用和环境保护已提到重要的地位,目前我国工业能源消费约占全部能源消费的70%,工业节能减排意义重大,目前我国淘汰落后产能是工业节能的重要方式,但是可以预计未来将越来越依靠节能技术和节能设备大量的推广。随着工业发展技术水平的提高,必须通过自己加大研发投入来获得具有自主知识产权的技术,然后依托技术形成一些新的投资热点和经济增长点,转变经济增长方式必须把自主创新作为一个中心环节,提高节能技术和节能设备升级。十七大报告把提高自主创新能力、建设创新型国家提到一个“国家发展战略核心”的新高度,是基于技术对发展的瓶颈制约这个现实提出来的,促进创新要素向企业集聚,形成以企业为主体产学研结合的体系。愿意投入,相信一定能够使长期困扰我们经济增长方式转变不成功的问题得以解决。北京志盛威华化工有限公司作为国内专业研发生产高科技涂料的大型企业,高科技人员聚集,高额研发费用的投入,相信公司一定能为国家的产业升级,设备技术革新,节能减排做出巨大的贡献。