第一篇:大型商场节能技术分析
大型商场照明节能技术分析
黄秀敏 杨玉龙 孙晓光
(吉林油田勘察设计院)摘要:随着现代经济的日益发展,节能已经是当今社会一个不可忽视的主要问题,本文关于大型商场照明节能方面的一些问题,采取的有效措施及取得的经济效益。
关键词 大型商场 照明电路 节能
近几十年,我国的经济有了迅猛的发展,随之带来的结果就是能源开始越来越缺乏,对一些用电时间较长、较多的机构, 比如大型商场,据测算, 其照明耗电占大型商场所有耗电的40%左右,中央空调用电约占30%,其他用电设备用电约占35%。通过对商场的基本用电设备的分析,目前的大型商场中存在着非常大的节能空间。本文主要探讨大型商场照明节能需要采取的有效措施。
近年来,照明产品有了显著的改进,朝着高光效,高显色性,长寿命,低价格发展。选用这些产品,可以大大提高照明电路的节能效果。为了提高照明电路的节能效果,可以从输电线路、开关、照明器、镇流器等环节考虑。
1.选用线损比较小的传输导线,合理优化配电方式,可以把单相的改为三相或三相四线制,线损可以比原来下降75%~80%。
2.正确、合理选用光源,是实施节能照明工程的重要因素。选用光源要考虑以下两个方面;(1)根据场所使用情况的特点、建筑面积,选用合适的光源类型。
(2)根据使用要求选择光源的显色性和色表。
荧光灯的光效、显色性、寿命等不断改进,品种不断发展,这一系列的改进,使荧光灯的光效从早期的28Lm/W提高到104Lm/W,寿命从1000h提高到24000h,显色指数Ra提高到85以上,专用于需要高显色性场所的荧光灯,Ra已达到95~98,光效为65Lm/W,作为特殊用途的荧光灯,Ra最高可达到99,光效为59Lm/W。金属卤化灯更以其光效高、寿命长为见长,日益受到人们所重视。我们在商场照明设计中,当空间高度较低时,以荧光灯作为主光源,再配以小功率金卤灯作为副光源。当空间高度较高时,则采用250W以上的金卤灯作为主光源。
3、照明自动控制系统的应用天气较亮的时候人们经常忘记关灯,有时为了局部需要又往往不得不大面积的开灯,因此致使大量电能被浪费。解决这一问题较好的办法通常是采用照明自动控制系统。如采用超声波开关系统或微机自动控制系统及优化开关控制路数,以满足灯开、关的数量和事先设定的照度要求,以期合理用电。
4、优质电子镇流器的应用。我们通常使用的镇流器都是电感镇流器,因为它价格便宜且不易损坏。电感镇流器虽然可起到镇流作用,但其消耗的电能相当于匹配的荧光灯功率的20%,且功率因数低.噪音大、频闪严重。而电子镇流器则可使照明系统的光效提高15%,节电率通常在20%以上,每只电子镇流器的功耗只有大约2.5W,功率因数可达0.9以上,同时线路的损耗也会相应减少。由于利用高频点火,因而其兼有启动速度快、无噪音、无频闪的优点。
5、照明节电器的使用.照明节电器是通过提高灯光电路系统的功率因数,调节电路电压电流的幅度,降低灯具和线路的工作温度,从而最大限度地降低灯光照明电路的电能损耗。其特别加强的磁场能量补偿技术,可保证灯光系统的启动正常运行稳定,达到节电的目的。节电效果显著,不产生任何高次谐波,不会对电网产生任何影响;降低灯具、镇流器、开关和线路的工作温度从而延长其使用寿命,降低了维护成本;投资成本低廉,应用范围广;安装改造简单,不改变原有线路的控制状态,不改变用户的用电习惯和使用方式,不影响正常生产生活。
以上照明节能措施的实施,不仅对节约电能,保护全球环境具有十分重要的意义,而用经济效益也是十分可观的。照明节电设备的节电率为25~35%,照明节能改造后的综合节电率在30%以上。一个大型商场每月的用电量约为30万元,其中照明用电约为10万元,如果进行照明系统的节电工程改造每月将给商场节约电费3万元以上,每年可节约40万元左右的电费开支。从而可快速收回投资成本,高效的节电和可靠的运行。
作者简介:黄秀敏(1979--)女,2004年毕业于大庆石油学院通信工程专业,工程师,现于吉林油田勘察设计院电信室从事电气设计工作,联系电话:6259944.
第二篇:大型商场空调节能分析
对大型商场调研与空调节能可能性分析
摘要: 通过对北京市西城区华堂商场西直门店等北京市的一些大型商场进行实地调研, 找出了商场中央空调系统普遍存在的一些问题, 并对这些问题进行了具体的分析, 最后从节能的角度, 提出了相应的解决对策。
引言:近年来, 我国的经济迅速发展, 与此同时, 我国商业建筑的面 积也日趋增大。我国的大型商场已超过800 多家, 而这800 多家 大型商场中设有中央空调系统的建筑面积约为1.5 亿m2。中央 空调在改善和提高建筑内部环境质量的同时, 也带来了巨大的能 源消耗。据调查统计, 北京市商场的平均全年运行能耗大约是 188 kWh/(m2年), 而气候条件大致相同的日本的同类建筑的平均全年能耗大约是135 kWh/(m2年), 也就是说北京市商场的能 耗要比日本高出将近40%。空调能耗是商业建筑能耗的主要部分, 占总能耗的50%~ 60%, 如图1 所示。如何既能满足空调服务质量, 又能降低空调能耗, 一直是管理者们迫切希望解决的一个难题, 也必然成为从事中央空调行业工作者的一个重要课题。
1、实地调研情况
我们对位于北京市西城区的华堂商场西直门店进行了中央空调状况的实地调研。
在商场夏季营业时段内, 整个商场内部温度分布不均匀, 而且温差较大, 不同层和不同位置差别不同。地下一层温度最高,一层、五层温度次之, 二层~ 四层温度最低。地下超市之所以温度最高, 主要是由于地下室是食品超市, 人员密度最大, 人员的散热量、散湿量较大, 而且货架摆设比较密集, 并且有食品烹饪加工区, 蒸、炸、烤等散热量较大, 所以空调的冷负荷比其他各层要大,但是风口布置及风口大小与其他层相同, 因而室内温度最高, 感觉较闷热。而地上一层因为有三面外门与外界相通, 只有一扇自动门开启, 且人员流动较大, 因此空调冷负荷较高, 感觉温度较高。而对于五层, 由于受热压作用的影响, 使得热气流上升, 又由于该层有餐饮区, 火锅等散热量较大, 增大了该层的空调冷负荷。在空气品质方面, 地下一层最差, 地上一层、五层较差, 二层~四层的空气品质较好。原因是地下超市有各种食品、蔬菜和各种熟食会散发出不同气味, 而且地下超市的客流量较大, 人员密度很大, 人呼出的二氧化碳和散发出的汗液也会污染空气, 再加上送入的新风量不大, 远不能满足室内的卫生要求。而一层靠近外门, 直接和街道相连, 再加上所有进入商场的客人都要经过一楼,增加了空气被污染的程度。而五层在最高层位置, 由于热压作用, 热气流上升, 一些被污染的空气会被热气流携带到顶层, 影响空气品质, 另外, 五层有火锅和其他餐饮区, 有部分油烟会扩散到空气当中。而其他几层的人员较少, 散发气味的商品也较少, 所以空气品质略好于其他层。当我们在过渡季节(如4 月)对华堂商场西直门店进行调研时, 发现其局部比较闷热, 有的地方最高温度可达到30 以上, 而且空气品质较差, 明显不能满足人们的温湿度要求和卫生要求。
2、北京市大型商场中央空调系统存在的问题
以上我们主要针对北京市西城区的华堂商场西直门店进行 了实地调研, 其中央空调系统所暴露出来的问题是目前北京市大 型商场中央空调普遍所存在的问题, 再结合北京市其他大型商场(如家乐福、北京市西单商场等)的中央空调系统, 我们分析了其 存在的问题如下: 1)商场建筑的热湿负荷密度大, 导致商场空调 系统夏季开始运行日期相对于其他建筑空调需提前, 而且由于大 型商场内区大、室内发热量高, 冬季甚至也需要供冷。2)中央空 调系统的设计通常按建筑物所在地的极端气候条件来计算其最大负荷, 并以其最大冷(热)负荷的1.2 倍~ 1.5 倍确定空调主机 的装机容量及空调水系统的供水流量。因此, 出现了大马拉小车的现象。3)新风量设计不足, 室内未考虑机械排风。4)在过渡季节和冬季难以采用全新风形式进行室内温、湿度的控制, 不能大量利用室外新风来抵消室内热负荷。5)基本上都采用定风量空调系统, 难以适应商场内的负荷变化, 容易造成室温过高或过低。6)长期以来, 由于各种原因, 一直缺乏比较完善、简便有效的计量核算、运行管理制度。
3、北京市大型商场中央空调系统主要节能措施
1)采用变频器。在中央空调系统中, 水泵和风机流量Q, 压 力P , 电机转速n 和功率N 满足如下关系: 流量Q 与转速n 成正比的关系: Q= an。压力P 与转速n2 成正比的关系: P= bn2。
功率N 与转速n3 成正比的关系: N = cn3。
如果采用变频器, 在改变输出频率的同时, 改变输出电压就 能保障电动机稳定运行。在降低电源频率时, 即可降低水泵和风 机转速, 减少水泵和风机的流量(风量), 从而按立方关系大幅度 降低水泵电机和风机的功率消耗, 实现有效节能。
2)改善建筑的保温隔热性能。房间内冷热量的损失是通过房间的墙体、门窗等传递出去的。改善建筑的保温隔热性能可以直接有效地减少建筑物的冷热负荷。
3)选择合适的室内设计参数。在满足舒适度要求的条件下, 要尽量提高夏季的室内设计温度和相对湿度, 尽量降低冬季的室 内设计温度和相对湿度。
4)合理的利用自然冷源。由于商场的特殊性, 当室内人员、照明灯、烹饪食品等的散热量较多时, 在过渡季节和冬季即使当室外空气温度较低时, 室内空气温度仍然较高, 仍需要供冷。此时如果开启冷机供冷, 不但由于此时冷负荷较小, 冷机制冷系数较低、能耗大, 而且极端不合理。较常见而且容易利用的自然冷源主要有两种, 一种是地下水, 另一种是春秋季和冬季的室外冷空气。
5)局部热源的排除。在大型商场内部, 因为烹饪食品等原因, 会在局部位置产生较大的散热量, 因此, 在空调系统设计过程中, 应考虑在发热量比较大的局部热源附近设置局部排风, 将局部热源产生的热量很好的排到室外去。
6)加强运行管理。建立严格的运行管理制度, 引入专业管理人
员, 在管理人员上岗之前要进行专业的运行管理培训, 并进行实际操作的考核。定期对运行情况进行实际的观测和记录, 做到天天有记录, 月月做总结, 年年定计划, 并按照实际观测情况填写中央空调运行情况记录表和中央空调运行情况统计表, 对空调运行情况及时监控。
7)减少水质污垢、腐蚀及青苔影响。水质的水垢、腐蚀及青苔对制冷系统影响极大, 这也是空调系统能耗高的重要原因, 除设备生产厂家应采取措施外, 还应增设水处理装置, 提倡选用高频电磁多功能水处理装置。
4、结语
商场空调节能涉及的范围是比较广的, 建筑、空调、设计、产 品和运行管理等各方面都有许多问题可深入研究探讨, 合理的设 计方案、精心的施工安装和科学的运行管理对空调节能都是至关 重要的。
第三篇:节能技术
地源热泵中央空调:地源热泵机组利用土壤或水体温度冬季为12-22℃,温度比环境空气温度高,热泵循环的蒸发温度提高,能效比也提高;土壤或水体温度夏季为18-32℃,温度比环境空气温度低,制冷系统冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,机组效率大大提高,可以节约30--40%的供热制冷空调的运行费用,1KW的电能可以得到4KW以上的热量或5KW以上冷量。
与锅炉(电、燃料)供热系统相比,锅炉供热只能将90%以上的电能或70~90%的燃料内能为热量,供用户使用,因此地源热泵要比电锅炉加热节省三分之二以上的电能,比燃料锅炉节省约二分之一的能量;由于地源热泵的热源温度全年较为稳定,一般为10~25℃,其制冷、制热系数可达3.5~4.4,与传统的空气源热泵相比,要高出40%左右,其运行费用为普通中央空调的50~60%。因此,近十几年来,尤其是近五年来,地源热泵空调系统在北美如美国、加拿大及中、北欧如瑞士、瑞典等国家取得了较快的发展,中国的地源热泵市场也日趋活跃,可以预计,该项技术将会成为21世纪最有效的供热和供冷空调技术。能量回馈技术:
1、回馈节能基本原理
将运动中负载上的机械能(位能、动能)通过能量回馈装置变换成电能(再生电能)并回送给交流电网,供附近其它用电设
备使用,使电机拖动系统在单位时间消耗电网电能下降,从而达到节约电能的目的。
2、回馈节能解决方案
能量回馈装置的作用就是能有效的将电动机的再生电能高效回送给交流电网,供周边其它用电设备使用,节电效果十分明显,一般节电率可达15%~45%。此外,由于无电阻发热元件,机房温度下降,可以节省机房空调的耗电量,在许多场合,节约空调耗电量往往带来更优的节电效果。在通用变频器、异步电动机和机械负载所组成的变频调速传统系统中,当电动机所传动的位能负载下放时,电动机将可能处于再生发电制动状态;或当电动机从高速到低速(含停车)减速时,频率可以突减,但因电机的机械惯性,电机可能处于再生发电状态,传动系统中所储存的机械能经电动机转换成电能,通过逆变器的六个续流二极管回送到变频器的直流回路中。此时的逆变器处于整流状态。这时,如果变频器中没采取消耗能量的措施,这部分能量将导致中间回路的储能电容器的电压上升。如果当制动过快或机械负载为提升机类时,这部分能量就可能对变频器带来损坏,所以这部分能量我们就应该考虑考虑了。
在通用变频器中,对再生能量最常用的处理方式有两种:(1)、耗散到直流回路中人为设置的与电容器并联的“制动电阻”中,称之为动力制动状态;(2)、使之回馈到电网,则称之为回馈制动状态(又称再生制动状态)。还有一种制动方式,即直流制动,可以用于要求准确停车的情况或起动前制动电机由于外界因素引起的不规则旋转。
有许多专家谈论过有关变频器制动方面的设计与应用,尤其是近些时间有过许多关于“能量回馈制动”方面的文章。今天,提供一种新型的制动方法,它具有“回馈制动”的四象限运转、运行效率高等优点,也具有“能耗制动”对电网无污染、可靠性高等好处。
功率因数补偿技术:功率因数是交流电路的重要技术数据之一。功率因数的高低,对于电气设备的利用率和分析、研究电能消耗等问题都有十分重要的意义。
所谓功率因数,是指任意二端网络(与外界有二个接点的电路)两端电压U与其中电流I之间的相位差的余弦。在二端网络中消耗的功率是指平均功率,也称为有功功率,它等于电压×电流×电压电流间相位差的余弦。
由此可以看出,电路中消耗的功率P,不仅取决于电压V与电流I的大小,还与功率因数有关。而功率因数的大小,取决于电路中负载的性质。对于电阻性负载,其电压与电流的位相差为0,因此,电路的功率因数最大();而纯电感电路,电压与电流的位相差为π/2,并且是电压超前电流;在纯电容电路中,电压与电流的位相差则为-(π/2),即电流超前电压。在后两种电路中,功率因数都为0。对于一般性负载的电路,功率因数就介于0与1之间。
一般来说,在二端网络中,提高用电器的功率因数有两方面的意义,一是可以减小输电线路上的功率损失;二是可以充分发挥电力设备(如发电机、变压器等)的潜力。因为用电器总是在一定电压U和一定有功功率P的条件下工作,由公式P=UIcosΦ
可知,功率因数过低,就要用较大的电流来保障用电器正常工作,与此同时输电线路上输电电流增大,从而导致线路上焦耳热损耗增大。另外,在输电线路的电阻上及电源的内组上的电压降,都与用电器中的电流成正比,增大电流必然增大在输电线路和电源内部的电压损失。因此,提高用电器的功率因数,可以减小输电电流,进而减小了输电线路上的功率损失。
提高功率因数,可以充分发挥电力设备的潜力,这也不难理解。因为任何电力设备,工作时总是在一定的额定电压和额定电流限度内。工作电压超过额定值,会威胁设备的绝缘性能;工作电流超过额定值,会使设备内部温度升得过高,从而降低了设备的使用寿命。对于电力设备,电压与电流额定值的乘积,称为这台设备的额定视在功率S额即也称它为设备的容量,对于发电机来说,这个容量就是发电机可能输出的最大功率,它标志着发电机的发电潜力,至于发电机实际输出多大功率,就跟用电器的功率因数有关,用电器消耗的功率为
功率因数高,表示有功功率占额定视在功率的比例大,发电机输出的电能被充分地利用了。例如,发电机的容量若为15000千伏安,当电力系统的功率因数由0.6提高到0.8时,就可以
使发电机实际发电能力提高3000千瓦,这不正是发挥了发电机的潜力吗?设备的利用也更合理。从这个角度来讲,功率因数可以表示为有功功率与机在功率的比值,即
如何提高功率因数,是电力工业中需要认真考虑的一个重要而又实际的问题。在平常遇到的电感性负载的电路中,例如日光灯电路,一般采用并联合适的电容器来提高整个电路的功率因数。闭环控制技术:闭环控制是根据控制对象输出反馈来进行校正的控制方式,它是在测量出实际与计划发生偏差时,按定额或标准来进行纠正的。闭环控制,从输出量变化取出控制信号作为比较量反馈给输入端控制输入量,一般这个取出量和输入量相位相反,所以叫负反馈控制,自动控制通常是闭环控制。比如家用空调温度的控制
在控制论中,闭环通常指输出端通过“旁链”方式回馈到输入,所谓闭环控制。输出端回馈到输入端并参与对输出端再控制,这才是闭环控制的目的,这种目的是通过反馈来实现的。正反馈和负反馈是闭环控制常见的两种基本形式。其中负反馈和正反馈从达于目的的角度讲具有相同的意义。从反馈实现的具体方式来看,正反馈和负反馈属于代数或者算术意义上的“加减”反馈方式,即输出量回馈到输入端后,与输入量进行加减的统一性整合后,作为新的控制输出,去进一步控制输出量。实际上,输出量对输入量的回馈远不止这些方式。这表现为:运算上,不止于加减运算,还包括更广域的数学运算;回馈方式上,输出量对输入
量的回馈,也不一定采取与输入量进行综合运算形成统一的控制输出,输出量可以通过控制链直接施控于输入量等等。相控调功技术:相控技术采用闭环反馈系统进行优化控制,通过实时测量电动机的电压与电流波形,由于电动机为一感性负载,其电流与电压波形通常存在相位差,该相位差的大小与其负载的大小有关。相控器将实际相位差与依据电动机特性的理想相位差进行比较,并依此来控制SCR可控硅整流桥触发角以给电动机提供优化的电流和电压,以便及时调整输入电机的功率,实现“所供即所需”。电能质量质量技术:
(1)电压质量。给出实际电压与理想电压间的偏差以反映分配的电力是是否合格。电压质量通常包括:电压偏差、电压频率偏差、电压不平衡、电压瞬变现象、电压波动与闪变、电压暂降、暂升与终端、电压谐波、电压陷波、欠电压、过电压等。
(2)电流质量。电流质量与电压质量密切相关,为了提高电能的传输效率,除了要求用户汲取的电流是单一频率正弦波形外,还应尽量保持该电流波形与供电电压同相位。电流质量包括:电流谐波、间谐波或次谐波、电流相位超前与之后、噪声等。
(3)供电质量。包括技术含义和非技术含义两部分,技术含义有电压质量和供电可靠性;非技术含义是指服务质量,包括供电部门对用户投诉与抱怨的反应速度和电力价目的透明度等。
(4)用电质量。包含电流质量和非技术含义等,如用户是否按时、如数缴纳电费等。
治理方法:
一、瞬变现象 在电力系统运行分析里。它表示电力系统运行中一种并不希望而又事实上出现的瞬时事件。由于RLC电路的存在,大多数人的概念里瞬变现象自然是指阻尼振荡现象。关于此,IEEE里有一个含义更宽,描述也更简单的定义:变化量的部分变化,且从一种稳态过渡到另一种稳态过程中,该变化逐渐消失的现象。但这样描述在电能质量领域里会存在潜在的许多分歧。下面对瞬变的两种普遍类型做一下介绍:
1、冲击性瞬变现象是在稳态条件下,电压、电流的非工频、单极性的突然变化现象。通常用上升和衰减时间来表现冲击性瞬变的特性,也可以通过其频谱特性成分表示。
2、振荡瞬变现象是一种电压、电流的非工频、有正负极性的突然变化现象。对于迅速改变瞬时值极性的电压和电流振荡问题,常用其频谱成分(主频率)、持续时间和幅值大小来描述其特性。
二、短时电压变动
这一类型包括电压暂降(也称为骤降或凹陷)和短时间电压中断等现象。若按照持续时间长短来划分,进一步还可将其分成瞬时、暂时和短时三种类型。顺便指出:如此细分的目的是用于电能质量监测中队电压干扰分类统计。
1、电压中断,当供电电压降低到0.1p.u以下,且持续时间不超过1min时,我们就认为出现的电压中断现象。出现原因可能是系统故障、用电设备故障或控制失灵等。
2、电压暂降是指工频条件下电压方均根值减小到0.1~0.9p.u之间、持续时间为0.5~50周波的短时电压变动现象。电能质量领域使用暂降(sag)来描述短时电压降低已经很多年了,IEC把这一现象成为骤降(dips)在国内外行业内这两个词可以相互替换,是同意词。
3、电压暂升的涵义是指在工频条件下,电压均方根值上升到1.1~1.8p.u之间、持续时间为半个到50个周波的电压变动现象。与暂降的起因一样,暂升现象也是同系统故障相联系的。我们可以用幅值大小和持续时间来表征这一现象。由于分类的方法不同,在许多资料中也使用“瞬态过电压”作为“电压暂升”的同义词。电压暂升现象远没有电压暂降现象那样常见。
三、长时电压变动
长时间电压变动是指,在工频条件下电压均方根值偏离额定值,并且持续时间超过1分钟的电压变动现象。分两种情况,即过电压和欠电压。通常,过电压和欠电压并非由于系统故障造成,而是由于负荷变动或系统开关操作引起的。
1、过电压过电压是指在工频条件下交流电压方均根值升高,超过额定值10%,并且持续时间大于1分钟的电压上升现象。过电压的出现通常是负荷投切的结果。
2、欠电压是指在工频条件下交流电压方均根值降低,低至额定值的90%且持续时间超过1分钟的电压变动现象。与过电压的出现原因正好相反。某一负荷的投入或某一电容器的切除都可能引起系统欠电压。
3、持续中断是指系统电压迅速降到0且持续时间大于1min。这种长时间电压中断往往是持久的。当系统事故发生后,往往需要人工应急处理以恢复正常供电,通常需数分钟或数小时。持续电压中断是特有的电力系统现象。但如果是电气设备检修或线路更改导致停电,或由于工程设计不当或电力供应不足引起的持续中断,则不属于电能质量问题。
四、电压不平衡
电压不平衡,时常被定义为与三相电压或电流的平均值的最大偏差,并且用该偏差与平均值的百分比表示。电压不平衡也可以用对称分量发来定义即用负序或零序分量的百分比加以衡量。电压不平衡的起因主要是负荷不平衡(如单相运行)所致,或者是三相电容器组的某一相熔断器熔断造成的。大于5%的电压不平衡属于电压严重不平衡,它的起因很可能是由于单相负荷过重引起的。
五、波形畸变
波形畸变是指电压或电流波形偏离稳态工频正弦波形的现象,可以用偏移频谱描述其特征。波形畸变有五种重要类型,即直流偏置、谐波、间谐波陷波和噪声。
1、直流偏置,在交流系统中出现直流电压或电流称为直流偏置。这可能是由于地磁干扰或半波整流引起的。例如为延长灯管的寿命在照明系统中采用的半波整流器电流,会是交流变压器偏磁以至于发生磁饱和,引起铁芯发热缩短寿命直流分量还会引起接地极和其它电气设备连接的电解腐蚀。
2、谐波,把含有供电系统设计运行频率整数倍频率的电压或电流定义为谐波。可以把畸变波分解成工频和各次谐波分量的综合。电力系统中的非线性负荷是造成波形畸变的源头。
3、间谐波,与谐波定义方法类似,只是将整数倍于工频的条件换成非整数倍。
4、陷波是电力电子器件在正常工作情况下,交流输入电流从一相切换到另一相时产生的周期性电压扰动。由于陷波的连续出现,可以用受影响电压的波形频谱来表征该量。但由于陷波的相关频率相当高,很难用谐波分析中习惯采用的测量手段来反映它的特征量,通常把它作为特殊问题处理。例如,一种评价指标规定,出现的陷波以其下陷深度和宽度来衡量。
5、噪声是指带有低于200kHz宽带频谱,混叠在电力系统的相线、中性线或信号线中的有害干扰信号。电力电子装置、控制器、电弧设备、整流负荷以及供电电源投切等都可能产生噪声。由于接地线配置不当,未能把噪声产地至远离电力系统,常常会加重对系统的噪声干扰和影响。噪声可以对点射设备的正常工作造成危害。采用滤波器、隔离变和电力线调节器等措施能减缓噪声的影响
第四篇:压缩机节能技术分析论文
摘要:文章研究了压缩机节能技术,分析了压缩机节能运行中存在的问题和运行能耗机理以及变频节能基本原理,并介绍了变频技术、集中控制技术、结构优化和工艺参数调整等效果显著的压缩机节能技术措施。
关键词:压缩机;节能技术;变频技术;集中控制技术;结构优化;工艺参数调整
压缩机是一种重要的工业设备,广泛应用于生产生活的各个方面,空调、冷库、石油工业、化工工业都离不开压缩机。但是压缩机同样也是耗电大户,其在生产生活中的运行会造成大量的电力消耗,研究压缩机节能技术十分必要。
1压缩机运行节能
1.1压缩机运行中存在的问题
1.1.1出力低,能耗高。很多工业用压缩机出于节能考虑,限制压缩机功率,导致压缩机压缩能力低于设计值,尤其是夏季载荷升高时输送量将明显下降,由于散热能力有限,使得生产线其他设备不能满荷运行,降低了生产效率。压缩机双机并联的运行模式运行效率不高,稳定性欠佳,两台压缩机并联工作,虽然能够明显增加总流量,但是单台压缩机的工作流量要比单机工作时低,因此每台压缩机的工作效率都下降了,双机并联的总压缩流量要比独立工作的流量小,而且并联之后流量增加,管道阻力损失将随之增大,机组的安全性也受到影响。
1.1.2机组运行状态不佳。这个问题主要表现在压缩机运行周期难以满足设计要求、夏季运行不稳定、故障多发等方面,一些压缩机设备长期运行,机械、电气和仪表等构件故障多发,采用事后维修的方式难以实现机组长时间无故障稳定运行,容易出现故障,导致压缩机停车,影响生产安全。
1.1.3运行维护费用偏高。旧压缩机维护费用很高,两机并行时,两组压缩机都要备用一套故障多发件,双备份成本,同时也造成了一些备用件的冗余和浪费。
1.2压缩机能量调节与能耗
压缩机一般根据设计工况冷量实际需求选型,一般情况下压缩机都是全年工作,横跨冬夏极端天气,所以面临着相对复杂的外部环境,而且实际工况和设计方案之间难免存在一定偏差,所以压缩机功率要有适当富余。现阶段,压缩机能量调节主要有间歇控制运行、吸气调节、气缸卸载、旁通调节和无极变速调节等类型,其中压缩机间歇运行是比较常见的运行方式,环境温度高于设定温度,压缩机将启动运行,环境温度下降到设定温度以下,压缩机将停止工作。这样的工作方式适用于环境温度比较稳定、负载不大的情况,但是实际使用过程中,并非任何时刻环境温度都趋于稳定,极端天气和复杂工作环境下,各种生产活动都会造成冷量负载变化,温度变化频繁,发动机频繁启停,会造成较大的能量浪费,而发电机瞬时电流会污染电网,增加电网波动,压缩机的寿命也会受到影响,因此变频技术在压缩机中也得到了更多的应用。
1.3压缩机变频节能
工况一定的情况下,压缩机制冷量和质量流量成正比,变频调节的基本思路就是通过改变压缩机电机转速来调整质量流量,从而改变总机组制冷量。
2压缩机节能技术
2.1压缩机控制工艺参数优化
2.1.1吸入压力调整。选择合适的吸入压力能够有效降低压缩机功耗,一般情况下,吸入压力越低,能耗将越大,特别是压缩机一段的吸入压力,因此可适当提高压缩机的吸入压力,在一段吸入中增加高效旋风入口分离器,进一步消除进气管网的阻力,在保证充足处理气量的同时获得更高的吸入压力。
2.1.2压缩机段间压降降低。压缩机段间压降同样也是压缩机功耗的重要原因,为了降低段间压降,可用高效换热器代替级间冷却器,减少不必要的管路设备和弯头,同时改善操作条件,降低冷却器结垢程度。
2.2压缩机结构设计优化
2.2.1三元流叶轮。三元流叶轮是专为气体流动设计的叶轮结构形式,大型压缩机一般采用这种结构形式,现有叶轮也可以通过适当的改造使之具有三元流叶轮的特点,显著改善叶轮的性能。相关理论研究和试运行证明三元流叶轮的使用能够提高叶轮运行效率最高10%左右,对原有压缩机叶轮的改造成本较低,但是能够明显提高设备生产能力,改善经济效益,压缩机的节能性能也将明显提高。
2.2.2叶轮抛光。叶轮的表面粗糙度和轮组损失之间有着直接关系,可通过精铸、精车和打磨抛光的方式提高叶轮表面的光洁度。叶轮抛光的方法有很多,包括喷砂、抛光轮、液体抛光、砂带研抛等,一般根据叶轮实际结构形式和材质选择合适的抛光方案。对于表面积比较大的叶轮可进行砂带振动研抛,而结构复杂、多凹穴、凸台的叶轮可进行液体抛光。
2.2.3压缩机回流量控制。为了避免压缩机在工作中出现喘振问题,压缩机都设置有防喘振控制机构,正常工艺参数下,通过对机组运行参数的监测绘制状态曲线,并根据喘振线计算喘振控制线,从而获得喘振流量控制点,通过和入口流量的比对,控制压缩机回流量,保证压缩机能够获得充足的工作气体。可改造压缩机回流手动控制为自动控制,应用更加精确的防喘振控制系统,降低机组能耗。
2.2.4管路布局的综合优化。为了进一步降低管路内压降,需要对管路布局进行调整,提高线路布局的合理性,可使用压损来评定管路布局方案是否合理,如果入口压力和出口压力之间压差不超过5%,表示压缩机系统管路布局规划比较科学。在管路中,能够造成压损的设备结构件主要有干燥剂、冷却器、控制阀、弯头等,干燥剂、控制阀和冷却器压损可依据压损标准计量,弯头压损近似于8~10倍等径管长压损,通过对压损设备总压损的精确计算,降低管路总压损。除了优化设计,压缩机日常使用和维护保养工作对压缩机节能效果也有着很大影响,日常工作中,要采用科学的控制方式进行压缩机调整,配合预防性维护策略,降低压缩机的故障率,维持压缩机的正常性能,从而将压缩机的节能优势充分发挥出来。
2.3变频调节技术
传统压缩机一般通过控制流量和压力工艺来降低压缩机能耗,达到节能的目的,一般通过阀门节流、旁通回流和排空等方式进行控制,这些调节方式效果显著、操作简单,但是会增加管网损耗和能源浪费,而变频调速技术应用变频器控制压缩机电机转速,改变流量质量,不存在阀门节流损失,从而提高了能源的利用效率。变频调速在压缩机中的应用大幅度提高了压缩机的节能性能,依据流量传感器输出信号来调节压缩机转速,使压缩机能够准确输出现阶段需要的回流量,实现高精度的流量调节,保证压缩机能够安全、高效率的运行,在节约能源的同时还强化了压缩机的卸载能力,降低了运行噪音,设备磨损更缓慢,而功率因数则得到了明显提高。
2.4集中控制与热回收
很多情况下压缩机都不是单机工作模式,而是很多台同时工作,因此在节能改造中,应用集中控制技术实现多台压缩机的集中控制,成为降低能耗节约能源的有效措施。压缩机开启的台数一般都是固定的,当用气量下降到一定程度,就可以通过集中控制来降低压缩机的工作时间或者转速,用气量继续下降,性能好,功率大的压缩机将停止工作,通过彻底停机来消除卸载状态下的能耗,集中控制来集中调整压缩机的工作状态,从而扩大压缩机的功率范围,同时减少运行压缩机数量,降低能耗。热回收技术的基本思路是,压缩机高温油通过热能回收交换器,将热量传递给冷却水,冷却水加热之后进入保温水桶储存起来,回收压缩机工作热量。热回收技术解决了压缩机自身的散热问题,省却了压缩机的冷却风机设备投入和能耗。在工作中监测压缩机主机排气口温度,超过80℃热回收装置开始工作,保证压缩机不会过热,而余热被转换为了热水,可以用作供暖等其他用途。
3结语
节能是工业生产和日常生活中永恒的主题,压缩机节能技术就是以降低压缩机工作能耗为目的的节能技术,通过压缩机结构设计优化和运行参数调整,配合新节能技术的应用,能够显著提高压缩机的节能性能,降低压缩机工作能耗。
参考文献:
[1]梁政,李双双,田家林,朱小华,梅庆刚,张力文.CNG压缩机节能技术与试验分析[J].天然气工业,2013,(2).
[2]梁政,李双双,田家林,梅庆钢,张力文.L-12/5-250型压缩机节能改造与效果分析[J].石油矿场机械,2013,(3).
[3]杨昭,谭晶莹,李喜宏,徐晓丽.冷库压缩机变频技术节能原理与经济效益分析[J].压缩机技术,2014,(5).
[4]苏勇.陕汽压缩空气系统节能技术研究[D].西安石油大学,2014.
第五篇:中央空调节能技术分析论文
摘要:本次研究以机场作为主题,探讨与其相关的中央空调节能技术及实践问题。首先对中央空调的系统设计优化措施进行了简要说明;通过分阶段水温运行、节能调整、节能技改、设备养护,以及增加人力资源管理培训提高管理素质,分析了实践节能技术的具体措施。希望能够为中央空调节能实践水平提高提供一些有益建议。
关键词:机场;中央空调;节能技术;实践
现阶段我国机场因其扩建、改建、新建在各个方面的供热、降温均需要通过中央空调来实现。目前,随着运行实践发现中央空调因其系统复杂、耗电量大,也带来了极大的资源浪费。为了更好的解决机场中央空调耗能问题(约占总机场耗电量45%左右),必要采取一些有效的节能措施,从而达到降耗目的。以下就结合工作经验,对主题展开具体论述。
1优化系统设计
在中央空调节能措施中,系统优化需要注重水系统设计。由于它属于系统工程,应该在方案设计中运用系统思维,在安装过程中,将建筑、施工、营运进行统一安排。以水系统为例,就需要抓住水力平衡、空调变水量、空调冷冻水系统大温差,以环节切入,实施具体节能设计、优化。比如,可以从平衡阀设置、设计、使用方面,按照科学、规范方法实施安装使用。再如,应用动态流量平衡阀,确保末端设备的流量正常;当风机盘管、新风机组改变流量时,就可以应用它解决流量不平衡造成的管网压力改变问题。建议在设计值选取时,使它与应用流量保持一致。另外,实施节能改造时,可以选择一次泵变流量系统,与二次泵变水量相比,应用它可以降低6%到12%的运行费用,节约流量达到原来的20%到30%。至于大流量、小温差,可以采用“大温差小流量”技术减少冷冻水循环量,从而达到设计管径减少、投资降低的目的。
2加强运行管理
2.1分阶段变水温运行,提高节能调节
机场的地理条件选择对气候气象均有一定的要求;而且,在不同的区域也会因自然条件而产生巨大差异。因此,建议在实际节能措施应用中,实施分阶段、分季节的变水温运行;通过人为主体的科学操作管理,达到节能目的。同时,应该借助气象基本资料分析,根据人流量、气流量,早晚温差,对空调的使用进行可能性的日常节能调节。再如,借助机场的候机室、购票室等不同区域进行按空间、按需求进行暖风或冷风流量供给。另外,也可以通过门窗、顶棚、幕墙玻璃等匹配设置,进行吸热数据分析,检测不同季节、温度条件下的室内温差变化。实施多元路径的节能调节,将中央空调的节能调节融入到机场整体的节能体系之中,从而提高节能效果。
2.2运用节能技改促进系统效能,增加养护
运用节能技术改造可以提升机场中央空调系统效能。具体实践中,可以通过对冷却塔冷却效果的改善来达到。比如,以风机为例,就可以实施多级维护、保养;通过对配件进行更换提高节能效果;或利用新型连续式填料措施实施整改,达到冷却水温度的有效降低。同时,建议对停止工作的冷却塔水管实施关闭,从而达到冷却效果的提升。这种改善既能够提高部分效能,也能够减少主机总体耗能。再如,可以借助当前应用较广的变频技术,采用高效能泵达到节能目的;具体通过对冷冻泵实施变频控制,使水泵、扬程的轴功率得到科学降低;令水泵运行中的振动减少,从而提高水泵的使用寿命,并达到节能降耗目标。另一方面,需要在日常的运行管理中,设置细致的养护方案,按照日、周、月、年的分期实施按时、按期的养护保养。及时排除故障;在检修的基础上,实施更换期的节能技改,逐渐完成系统效能提升。
2.3做好养护,强化培训
在中央空调节能实践中,要求按照养护标准实施及时的清洗维护工作。除了上文提到的一般设备维护之外,重点需要对系统水质进行定期处理。比如,以冷却水为例,它属于开式系统,因此,易受到各种细菌、水分、尘埃、气体的损害,从而影响运行系统的水质,并降低运行效率,造成管材腐蚀等;尤其是在微生物繁殖中会使制冷量下降。比如,冷凝器中的污垢增加0.1毫米,就会减少近30%的热交换效率,从耗电量方面计算,相应增加量会达到5%到8%。所以,需要进行及时的清洗养护。另一方面,由于机场中央空调设备的维护保养、节能需要一定的技术支持;因此,应该按照实际需求,对管理人员、技术操作人员进行相应培训;并通过发放培训资格证书的方式,实施按岗培训,提高操作技能及应用水平。另外,透过培训管理打造一支以中央空调节能技术实践操作为基础的技术团队,选拔培训中优秀的人才,组织半自主小组,实施工作外的研发工作;进一步提高技术支持与实践经验提炼之间的关联,形成一个节能应用-节能经验提炼-成果再应用的良性循环,以此促进机场中央空调节能技术实践的可持续性。
3结束语
通过上文初步论述可以看到,机场中央空调节能技术可通过整体设计时的全面节能,也能够选取改造方法加以实践。根据现阶段实践经验,建议双管齐下,结合机场实际的中央空调节能需求实施系统设计优化;另一方面,可以通过实际节能技术改造与应用、增加日常养护,提高对中央空调系统运行的管理效率;匹配设置相应的技术人员培训,提高操作水平;最终达到节能降耗目的,节约营运成本。
参考文献:
[1]王蓓蓓等.中央空调降负荷潜力建模及影响因素分析[J].电力系统自动化,2016(19).[2]辛洁晴,吴亮.商务楼中央空调周期性暂停分档控制策略[J].电力系统自动化,2013(05).[3]朱振宇,朱广宇.模糊控制技术在电厂高压开关室中央空调监控系统中的应用[J].石油大学学报,2015(06).