第一篇:青岛版八年级数学上册三角形内角和定理说课稿
《三角形内角和定理》
尊敬的各位老师:
大家好!我是()号考生。我说课的题目是《三角形内角和定理》。下面我将从教材分析、教法学法、教学过程和设计理念四个方面展开说课。
一、首先我来分析一下教材
《三角形内角和定理》是青岛版教材八年级上册第(5)章第(5)节的内容。本节课是在学习了(角、平行线、全等三角形)的基础上进行教学的,为以后学习(平行四边形、相似三角形和解直角三角形)奠定了重要的基础。因此本节课在整个学习过程中起着非常重要的作用。
之前学生已经学习了(角、平行线、全等三角形),而且初二学生的智力得到了很好的开发。因此,学生具备了学习这节课的知识和智力准备。
基于以上分析,确定了如下教学目标
1、知识与技能目标:结合具体情境,掌握三角形内角和定理及推论,并掌握他们的证明过程,并能进行简单的应用。
2、过程与方法目标:经历探索(三角形内角和和推论)的研究过程,培养学生推理判断的思维能力。
3、情感态度与价值观目标:结合情境进行新知识的学习,增强学生对数学学习的信心和兴趣,培养合作意识、团队精神和克服困难的坚强意志。教学重点、难点:
其中(掌握三角形内角和定理及推论,并掌握他们的证明过程,并能进行简单的应用)是本节课的教学重点。突出重点的方法是引导学生通过例题和训练巩固。(培养学生推理判断的思维能力)是本节课的教学难点。为了突破难点,我会通过学生小组合作交流,探究等方式。
二、教法学法
本着教师为主导、学生为主体的原则,我准备采用启发诱导式的教学方法,通过以问题为先导,引导学生经历知识的形成过程,构建学生自主探究型的教学模式。
在学法上,我准备让学生通过认真观察、动手操作、独立思考、大胆交流、总结归纳等一系列学习活动,培养学生学习的积极性和主动性。
本节课需要准备自制的多媒体课件,需要的教具、学具有:(三角板)
三、下面我重点阐述一下我的教学过程
第一个环节:创设情境,引入课题
一上课,我利用多媒体出示情境图上面的一段话,引导学生认真阅读,并思考上面的问题,实验发现用度量或剪拼的方法可以发现一个或几个三角形的三个内角的和都等于180度,如果测得更多三角形的三个内角的和都等于180度,是否就能说明一切三角形三个内角的和都等于180度呢?学生思考后,我指出这个问题就要用到我们这一节 课所学的知识(三角形内角和定理),这时我会写出板书(三角形内角和定理)。
这样设计的目的是通过创设生动有趣的情境将原本枯燥的数学内容变得富有吸引力,激发学生的热情,从而引出了本节课的课题。第二个环节:合作交流、探究新知
在这个环节中,我有意识的创设让学生小组合作、动手、动脑的活动,让学生在有趣的数学活动中体验到成功的乐趣。为了完成情境图中的问题,我会出示一个证明题。已知:
首先,我会让学生小组交流讨论如何才能使三角形内角和等于180度,引导学生回忆起之前曾经用把三角形纸片的三个内角撕下来,拼成一个平角,进而引出证明三角形内角和等于180度的思路,就是将三个角拼成一个平角就会等于180度。然后让学生小组交流探索如何将三角形的三个角构成平角呢?由于这是本节课的教学难点,所以我会参与到学生小组内和学生交流。当学生交流后,由学生展示采用添加平行线的的方法。并引导学生尝试独立进行证明,时我会巡视指导,对有困难的学生给予帮助,并指明学生上台板演,之后对于出现的问题我会进行针对性的讲解。在这里我会告诉学生,在原来图形上添加的线叫做辅助线,辅助线通常画成虚线。最后得出三角形内角和定理,即三角形的三个内角的和等于180度。
接着我会让学生小组继续交流探索,能否用另外两种添加辅助线的方法来证明三角形内角和定理,并引导学生独立完成,由学生展示,不完整的地方其他同学给予补充,我再进行针对性的讲解。然后让学生思考,角ACD与角A角B有什么联系?在这里我会让学生回忆外角的概念,并指明什么是不相邻,让学生交流探索,这里也是本节课的教学难点,所以我会在巡视过程中参与到学生的交流中,之后由同学展示,最后得出三角形内角和定理的推论1和推论2。并告诉学生推论的定义。
这样学生在观察、比较、探讨的过程中,轻松的突破了本节课的重难点。这时,教学进入到第三个环节。第三个环节:巩固应用、内化提高
在习题的设计上,我会体现开放性、思考性、层次性、趣味性这几个特点,首先,我会把学生分成A、B两组,以竞赛的形式让学生完成练习题1、2,这样让学生巩固了(三角形内角和定理及推论)及应用其解决问题,从而突出了本节课的重点。
然后我会出示下一个题,让学生利用今天所学知识解决生活中的实际问题,使学生感受到数学来源于生活,又服务于生活,生活中处处有数学。这时,教学进入第四个环节。第四个环节:课堂评价、拓展延伸
新授结束时,我会问同学们这节课有什么收获,引导学生对本节课的知识进行梳理和总结,培养学生归纳和语言表达的能力,使学生对所学知识有更全面更系统的认识。
然后,我会让学生下课寻找,生活中哪些地方用到了今天所学的知识,体现数学的生活化。
四、最后,我再说一下我的设计理念;
在设计本课时,我力求将知识与技能、过程与方法、情感态度与价值观三者有机结合起来,密切联系实际生活,让学生在生活中发现数学问题、提出数学问题并解决数学问题。
以上仅是我对本节课的教学预设,在实际的教学过程中,我将以学定教、顺学而导,最大限度的发挥学生的主动性、积极性和创造性,以求达到更好地教学效果。
以上是我说课的全部内容,谢谢各位老师。
第二篇:八年级数学三角形内角和定理
11.4《三角形内角和定理》导学案(1)
主备:崔友丽 王维玉 审核:崔兴泉
课本内容:p126—p127
课前准备:
刻度尺、三角板 学习目标:
(1)知识与技能 :
掌握“三角形内角和定理”的证明过程,并能根据这个定理解决实际问题。(2)过程与方法 :
通过学生猜想动手实验,互相交流,师生合作等活动探索三角形内角和为180度,发展学生的推理能力和语言表达能力。对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。逐渐由实验过渡到论证。
通过一题多解、一题多变等,初步体会思维的多向性,引导学生的个性化发展。(3)情感态度与价值观:
通过猜想、推理等数学活动,感受数学活动充满着探索以及数学结论的确定性,提高学生的学习数学的兴趣。使学生主动探索,敢于实验,勇于发现,合作交流。
一.自主预习课本p126—p127内容,独立完成课后练习1、2后,与小组同学交流(课前完成)
二. 回顾课本p126—p127思考下列问题:
1、三角形的内角和是多少度?你是怎样知道的?
2、那么如何证明此命题是真命题呢?你能用学过的知识说一说这一结论的证明思路吗?你能用比较简洁的语言写出这一证明过程吗?与同伴进行交流。
3、回忆证明一个命题的步骤 ①画图
②分析命题的题设和结论,写出已知求证,把文字语言转化为几何语言。③分析、探究证明方法。
4、要证三角形三个内角和是180°,观察图形,三个角间没什么关系,能不能象前面那样,把这三个角拼在一起呢?拼成什么样的角呢?
①平角,②两平行线间的同旁内角。
5、要把三角形三个内角转化为上述两种角,就要在原图形上添加一些线,这些线叫做辅助线,在平面几何里,辅助线常画成虚线,添辅助线是解决问题的重要思想方法。如何把三个角转化为平角或两平行线间的同旁内角呢?
① 如图1,延长BC得到一平角∠BCD,然后以CA为一边,在△ABC的外部画∠1=∠A。
② 如图1,延长BC,过C作CE∥AB③ 如图2,过A作DE∥AB
④ 如图3,在BC边上任取一点P,作PR∥AB,PQ∥AC。
三、巩固练习
四、学习小结:(回顾一下这一节所学的,看看你学会了吗?)
五、达标检测: 1.、2、六、布置作业
三角形内角和定理导学案(第二课时)
课本内容:P127-P65例
1、例2 课前准备:三角板 学习目标
1、三角形的外角的概念和三角形的内角和定理的两个推论。
2、.经历探索三角形内角和定理的推论的过程,进一步培养学生的推理能力,理解掌握三角形内角和定理的推论及其应用。
3、通过探索三角形内角和定理的推论的活动,来培养学生的论证能力,拓宽他们的解题思路,从而使他们灵活应用所学知识。学习重点:三角形内角和定理的推论。
学习难点:三角形的外角、三角形内角和定理的推论的应用。
一:自主预习课本P127-P65例
1、例2,完成课后练习题后,与小组同学交流(课前完成)
二、回顾课本思考下列问题:
1、复习旧知
上节课我们证明了三角形内角和定理,大家来回忆一下:它的证明思路是什么?
2、尝试发现、探索新知 那什么叫三角形的外角呢?
三角形的一边与()组成的角,叫做三角形的外角。
3、动手操作,合作探究,发现新知:
教师活动:∠1是△ABC的一个外角,∠1与图中的其他角有什么关系呢?能证明你的结论吗?
引导学生通过三角形内角和定理直接推导出两个新定理: 三角形的外角的性质
三角形的一个外角等于()。三角形的一个外角大于任何一个()。
在这里,我们通过三角形内角和定理直接推导出两个新定理,像这样,由一个公理或定理直接推导出的定理叫做这个公理或定理的推论(corollary)。
因此这两个结论称为三角形内角和定理的推论.它可以当做定理直接使用。注意:应用三角形内角和定理的推论时,一定要理解其意思.即:“和它不相邻”的意义。
4、练习
B
已知:如图,求∠C的度数。
C 75A
E5、例题分析,拓展思维
D例1:已知,如图,在△ABC中,AD平分外角∠EAC,∠B=∠C,求证: AAD∥BC
CB2、证明:三角形的三个外角和360。
三、巩固练习:
四边形的四个外角和是(),并说明理由。
1、已知:如图,五角星形的顶角分别是,,C
求证:∠A+∠B+∠C+∠D+∠E=180
DB
EA
议一议:
有的 同学想连结CD,把五个角“凑”到内,他的想法可行吗? 小组讨论,尝试证明
2、如图:已知,在⊿ABC中,1是它的一个外角,E为边 AC上的一点,延长BC到点D,连接DE,证明: 1﹥ 2
点拨:看到要证两个角的不等关系,会让我们想到三角形内角和定理的推论2,但此题中的∠1和∠2却不是一个三角形的内角和外角,所以我们应找到一个间接量来牵线搭桥,那么可以找谁呢?
A1BD⌒⌒2EC
四、学习小结:(回顾一下这一节所学的,看看你学会了吗?)
五、达标检测
1、课本P94 随堂练习1
2、三角形的三个外角中最多有_______个锐角。
3、如图:求 A+ B+ C+ D+ E+ F?
4、△ ABC中,BE为∠ABC的平分线,CE为∠ACD的平分线,两线交BA于E点。你能找出∠E与∠A有什么关系吗?
六、布置作业
CDE
第三篇:三角形内角和定理 说课稿
《三角形内角和定理》说课稿
内丘县内丘镇中学 乔素霞
尊敬的各位评委、各位老师,大家好:
我是内丘县内丘镇中学的教师乔素霞,今天我说课的内容是《三角形内角和定理》。下面我将围绕本节课“教什么?”“怎么教?”“为什么这么教?”三个问题从教材分析、学情分析、教学设计、教学过程、教学反思等几个方面逐一分析说明。
一.教材分析
1.本节课所处的地位和作用
本节课是冀教版数学八年级下册第二十四章第五节《三角形内角和定理》的第一课时。其教学内容为三角形内角和定理的证明和简单运用。它是在学生对一些几何结论有了直观认识,并会简单说理的基础上,进一步认识几何图形以及规范证明过程的重要内容之一。三角形的内角和定理揭示了组成三角形的三个内角之间的数量关系,是求角的度数的有力工具,在实际生产生活中有着广泛的应用。此外,它的证明中引入了辅助线,这些都为后继学习奠定了基础。因此,本节课起着承上启下的作用。
2.教学目标
本着教学目标应科学简明,体现全面性、综合性和发展性的原则,制定目标如下:
(1)知识与技能
掌握三角形内角和定理的证明和简单运用;初步体会辅助线在证明中的作用。
(2)过程与方法
经历利用剪拼三角形验证三角形内角和定理,探索其证明思路的过程,使学生掌握一定的探索方法;通过渗透“化归”的数学思想,使学生体会解决数学问题的基本思路。(3)情感态度与价值观
培养学生合作交流意识和探索精神;培养学生有条理的思考问题和合乎情理的表达问题的能力。3.教学重点和难点
教学重点:三角形内角和定理的证明与简单运用。
教学难点:引导学生添加辅助线解决问题,并进行有条理的表达。二.学情分析
初二学生已具备了一定的学习能力,操作、归纳、推理能力。他们思维活跃,对新知识有较强的探求欲望,但是对于严密的推理论证,在知识结构和能力上都有所欠缺。
三. 教学设计 1.教法
本节课主要采用“情境创设”、“设疑诱导”等教学方法,同时利用多媒体课件作为辅助教学手段。
2.学法(1)动手操作(2)合作交流(3)自主学习3.设计思路
《新课标》指出:“教师要成为学生数学活动的组织者、引导者、合作者;要善于激发学生的学习潜能,鼓励学生大胆创新与实践。”因此我设计了以学生活动为主线,以突出重点、突破难点,发展学生素养为目的教学过程。采用创设情境、启发诱导、动手操作、合作交流等方法,在教师的引导下,通过同学间的互相探讨、启发,在自主探索中发现新知、发展能力。
四.教学过程
情境引入→活动探究→实践运用→小结反思 1.创设情境,引入新课
新课标下的数学课程倡导从学生实际出发,发挥学科自身优势,激发学生的学习兴趣,促使学生主动地学习。因此我通过一段动画引入课题,由动画中三个小动物的争论引出三角形内角和大小的问题,让学生作出评判:到底谁的内角和大?在学生评理说理中自然导入三角形内角和的学习探究。由此引入新课,既提出了数学问题,又激发了学生学习数学的兴趣。
2.活动探究,获取新知
要求学生把事先准备好的三角形纸板的三个内角剪下,然后将剪下的三个内角随意的拼接在一起,使三者顶点重合,问能发现怎样的现象。学生分组动手操作,在探讨各种拼图的方法后派代表展示拼接的图形,教师借助多媒体展示其中的具有代表性的拼接方法。通过学生的观察、猜想、度量得到结论:三角形三个内角的和是180°。但是有的学生提出质疑:有时候量出三角形三个内角的度数和要高于或低于180°。此时,教师适时说明:通过观察剪拼得到的结论虽然有一定的合理性,但是会存在误差,命题的正确性必须经过严密的推理来验证。通过实际操作让学生体会到证明的必要性。
由剪拼三角形得到三角形内角和为180°,到添加辅助线证明这个定理,对学生来说有一定的难度,因此在教学时,我对教材做了铺设台阶,化解难点的处理。先让学生指出这个命题的条件和结论,并画出图形,结合图形写出已知、求证。目的是让学生逐步学会用符号表示命题,发展他们的数学符号表达能力。然后对照刚才的拼图过程,尝试用几何图形来表示出所拼接的实物图。此环节应留给学生充分的思考、讨论、体验的时间,让学生在交流中互取所长。
几何图形描绘出来之后,师生一起探究证明思路,先引导学生观察在刚才的拼接过程中∠1和哪个角相等?这两个角具有怎样的位置关系?由它们的位置关系与等量关系我们可以得到射线CE与线段AB具有怎样的位置关系?通过学生的思考、交流引导他们说出探究1中添加辅助线的方法:延长BC到点D,过点C作射线CE∥AB.这样就可以借助平行线的性质将∠A移到∠1的位置,将∠B移到∠2的位置。(此时,教师即可给出学生辅助线的定义、作用,以及作辅助线的注意事项),然后由学生尝试写出证明过程,教师巡回指导。有一部分学生写证明过程有困难,可给予有针对性的帮助。完成之后让多名学生口答自己的证明过程,培养他们说理有据,有条理的表达自己想法的良好意识。师生共同评议,订正,在交流中发现问题、解决问题,共同提高。(学生的证明过程出现了两种不同的方法:有的学生把三个内角凑成一个平角来证明,而有的学生则借助“两直线平行,同旁内角互补”来证明)。对学生的独到的见解,不同的证题方式,我及时进行肯定与鼓励,3 使学生感受成功的喜悦。最后教师规范证明过程,给出证明的书写格式,使学生学习有章可依。
探究2的思路分析和添加辅助线的方法,由学生类比于探究1的步骤合作交流后独立完成证明过程。通过教师的正确引导,使学生掌握三角形内角和定理的证明方法,从而突出本节课的重点。对证明的格式、方法和步骤,要在学生亲身经历、体验的过程中去逐步理解和掌握。
对于探究3,引导学生观察拼接的图形,说出添加辅助线的方法,证明过程让学生课下独立完成。
探究完成之后,师生共同进行归纳得到三角形内角和定理:三角形三个内角的和等于180°。然后教师引导学生总结辅助线的添加方法,即通过添加平行线,把三角形的三个内角转化成一个平角或者转化为一组同旁内角来证明。让学生交流自己发现的其他证题思路,并进行适当的比较和讨论,努力给他们创造一个“海阔凭鱼跃,天高任鸟飞”的课堂氛围,使学生的求异思维和创新意识得到及时的表现。
通过学生的思考、争论达到思想上的碰撞,激发新思维。本节课的难点也会趁此而突破。
3.实践运用,巩固新知
新课标提倡发展应用数学知识的意识与能力。因此在推理证明完成之后,我设计了一组题目来巩固所学定理。首先是例题1的学习,教师进行适当的引导和点拨后,由学生独立完成。然后师生一起理顺思路,规范格式。
其次是基础练习。通过试一试、练一练、做一做,让学生经历运用所学知识解决问题的过程,使学生对初步感知的结论有更加深刻的认识,进一步发展他们的推理论证能力。
为了提升学生的应用能力,我还设计了两个实际问题。通过解决问题让学生体会到数学来源于生活,又服务于生活,从而激发他们学习数学的积极性,建立学好数学的自信心。4.小结反思,提高认识
回顾本节知识脉络,请学生谈谈自己学习过程中的收获,并整理自己参与数学活动的经验,回味成功的喜悦,形成良好的学习习惯,同时也是给我 4 们教者本身一个反思提高的机会。
5.布置作业
分层次留作业,尊重学生的个性差异,让不同的学生在数学学习上都有收获和进步。
6.板书设计
采用提纲式板书,突出重点,一目了然。五.教学反思
本节课教师主导作用的发挥是比较好的,主要体现在让学生的主体地位得到充分展示。例如:证明方法的发现和小结等。同时使学生感受到了学习的快乐,体会到了探究与发现带来的乐趣。教学中,我遵循的基本教学原则是激励学生展开积极的思维活动,不断的表扬学生,使学生感到自身的价值存在,给学生一个展示个性、尝试成功的机会。
总之,本节课力求从学生实际出发,通过他们的实践、思考、探索、交流获得知识,形成技能,发展思维。存在的不足之处还恳请各位评委老师批评指正。
第四篇:八年级数学上册《11.2三角形内角和》说课稿
大家好!
今天我说课的题目是《三角形的内角》,我将从如下方面作出说明。
一、教材分析
(一)教学内容的地位
本节课是在研究了三角形的有关概念和学生在对 “三角形的内角和等于1800 ”有感性认识的基础上,对该定理进行推理论证。它是进一步研究三角形及其它图形的重要基础,更是研究 多边形问题转化的关键点;此外,在它的证明中第一次引入了辅助线,而辅助线又是解决几何问题的一种重要工具,因此本节是本章的一个重点。
(二)教学重点、难点:
三角形内角和等于180度,是三角形的一条重要性质,有着广泛的应用。虽然学生在小学已经知道这一结论,但没有从理论的角度进行推理论证,因此三角形内角和等于180度的证明及应用是本节课的重点。
另外,由于学生还没有正 式学习几何证明,而三角形内角和等于180度的证明难度又较大,因此证明三角形内角和等于180度也是本节课的难点。
突破难点的关键:让学生通过动手实践获得感性认识,将实物图形抽象转化为几何图形得出所需辅助线。
二.教学目标
基于以上分析和数学课程标准的要求,我制定了本节课的教学目标,下面我从以下三个方面进行说明。
(一)知识与技能目标:
会用平行线的性质与平角的定义证明三角形的内角和等于1800,能用三角形内角和等于180度进行角度计算和简单推理,并初步学会利用辅助线解决问题,体会转化思想在解决问题中的应用。
(二)过程与方法目标:
经历拼图试验、合作交流、推理论证的过程,体现在“做中学”,发展学生的合 情推理能力和逻辑思维能力。
(三)情感、态度价值观目标:
通过操作、交流、探究、表述、推理等活动培养学生的合作精神,体会数学知识内在的联系与严谨性,鼓励学生大胆质疑,敢于提出不同见解,培养学生良好的学习习惯。
三、学情分析
七年级学生的特点是模仿力强,喜欢动手,思维活跃,但思维往往依赖于直观具体的形象,而学生在小学已通过量、拼、折等实验的方法得出了三角形内角和等于180度这一结论,只是没有从理论的角度去研究它,学生现在已具备了简单说理的能力,同时已学习了平行线的性质和判定及平角的定义,这就为学生自主探究,动手实验,讨论交流、尝试证明做好了准备。
四、教学方法与学法指导:
根据新课程标准的要求,学习活动应体现学生身心发展特点,应有利于引导学生主动探索和发现,因此,我采用了动手操作— 观察实验—猜想论证的探究式教学方法,整个探究学习的过程充满了师生之间,生生之间的交流和互动,体 现了教师是教学活动的组织者、引导者、合作 者,学生才是学习的主体。并教给学生通过动手实验、观察思考、抽象概括从而获得知识的学习方法,培养他们利用旧知识获取新知识的能力。
五.教学活动程序:(设计为六个环节:)
我结合七年级学生的年龄特点,采用了“1.情景激趣 引出课题”的环节引入课题,这样可以激发学生学习兴趣和求知欲,为探索新知识创造一个最佳的心理和认知环境。让学生说明三角形内角和是180度,是本节课的重点、难点,为此我设计了“2.自主探索 动手实验 ”“3.讨论交流 尝试证明”以下两个环节。定理的掌握必须要有训练作为依托,因此我设计了“4.应用新知 巩固提高。为了培养学生学习数学的兴趣,在竞争中体验成功的快乐。我设计了“5.‘渔技’大比拼”这4道习题既含盖了方程的思想又包括了整体的思想,还让学生提前感受到了反证法的方法,有利于学生掌握重要的数学思想方法。回顾使人记忆深刻,反思促人进步。在“6.畅谈体会 课外延伸 ”这一环节我选择从三个方面,让学生进行 回顾反思和作业补充。我认为学生要从一堂课中得到收获不仅仅是知识上的,更重要的是让他们通过这种方式,获取比知 识本身更重要的东西,那就是数学方法,数学能力以及对数学的积极情感。
六.设计说明与教学反思
本节课的设计从学生已有的知识经验出发,遵循学生的认知规律,将实物拼图与说理论证有机结合,在动手操作,合情推理的基础上进行严密的推理论证,使学生对知识的认识从感性逐步上升到理性。以问题为载体,在探究解决问题策略的过程中学会知识、感悟方法、训练思维、发展能力,练习的设计起点低、范围广、有梯度,以满足不同程度学生的需要。树立大数学观,把课堂探究 活动延伸到课外,在课与课之间,新旧知识之间,数学与生活之间搭建桥梁,为学生长远的发展奠基。
本节课的教学在一种轻松愉快的氛围中完成,大部分学生能参与活动中,突出了重点,突破了难点。完成了教学任务。取得了较好的教学效果。练习除注重基础外 并进行了延伸。拓宽了学生思维的空间。美中不足的是,还有少部分学习基础较差的学生可能没有在参与活动中去思考,收获不大。
新课程的教学评价对老师和学生都提出了新的要求 :因此整个教学过程中我对学生的如下方面作出了多元化的关注:
1、关注学生探索结论、分析思路和方法的过程。
2、关注学生说理的能力和水平。
3、关注学生参与教学活动的程度。以期待人人都能学有 所得,不同的学生在课堂上得到不同的发展。
以上是我对这节课的初浅认识,希望得能到各位专家、各位老师的指导,谢谢大家!
第五篇:三角形内角和定理的证明说课稿
三角形内角和定理的证明说课稿
马建禄
一、说教材:
(一)、教材的地位及作用:
本节课是北师大版实验教科书八年级下册第六章第五节的内容。是在学习了平角、同位角、内错角、同旁内角、探索两直线平行的条件及三角形内角和定理的基础上,进一步探索三角形内角和定理的证明.为今后学习多边形内角和、外角和,圆等知识打下良好的基础,具有承上启下的作用。且三角形内角和定理在日常生活中,如机械制造、工程设计、国防等领域具有广泛应用。
(二)、教学目标设计:
1、知识与技能:
(1)掌握“三角形内角和定理”的证明及其简单应用。(2)对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。
(3)通过一题多解,初步体会思维的多向性,引导学生的个性化发展。
2、过程与方法:通过动手操作、探索、观察、分析、归纳培养学生获得数学结论的能力。
3、情感与价值观:培养学生创造性,弘扬个性发展,体验解决
用为主线来展开。采用了教具演示的教学手段,使图形直观、形象地便于学生理解。以学生发展为本的原则,我运用启发式教学方法,引导学生动手操作、探索、讨论、归纳。在教学过程中,引导学生去探索,使学生感受到添加辅助线的数学思想,更好地掌握三角形内角和定理的证明及简单的应用,从而实现教师是引导者和学生是主体者的课堂教学理念。
(二)说学法
根据本节课特点和学生的实际,八年级学生基本具备动手操作、探索讨论、猜想、说理的能力,主要采用“操作—观察—讨论—证明—应用 ”的探究式的学习方式,教会学生“ 动手做,动脑想,大胆猜、会说理,学致用”的学习方法。增加学生参与的机会,使学生在掌握知识、形成技能的同时,培养科学的学习方法和自信心。
四、说教学过程设计
教学过程的设计应根据学生的实际情况,教法、学法的确定,以完成教学目标为目的。
(一)、创设问题情境,引入新课:
1.提出疑问:前面的课程学习了三角形三条边的关系,那么三角形的三个内角又存在怎样的关系呢?
2.动手实践:我们知道三角形三个内角的和等于180°.你还记得这个结论的探索过程吗?