第一篇:简析变频恒压供水系统在水厂的实际应用(精选)
简析变频恒压供水系统在水厂的实际应用
摘 要 作者经过多年的实际工作经验,阐述了变频恒压供水系统在水厂的实际应用。
【关键词】变频恒压供水系统 水厂 应用
当今社会科技与经济越来越发展水资源的重要性也日益变得很重要。而且城市化建设的不断深入,各类高层建筑的拔地而起,对水的需求愈来愈多,尤其对供水品质、供水质量和供水安全要求越来越高。因此,提高水厂生产的可靠性和安全性,实现优质、低耗和高效供水,成为了整个行业共同追求的目标。
如何更好地利用先进科技在水厂建设和水厂应用中发挥作用,成为国家的重要问题。尤其是将自动化技术在水厂中应用更是一个很大的课题,这样可以极大地提高供水品质和供水治疗以及可以节约人力成本。水厂自动化
所谓水厂自动化,就是将水质检测技术、水处理控制技术、变频节能技术、综合自动化系统、计算机网络技术与水厂生产过程相结合,实现滤池自动化、投加自动化、泵站自动化、水质检测自动化等全过程的自动控制及现场数据的信息采集,并通过网络与水厂监控中心连接,实现“集中监控和管理、分散控制、数据共享”,以保证整个水厂的运行协调、一致。其系统框图如下:
其中自动化水厂包括三个主要的层面:
第一个层面是设备层,主要为自动化水厂的受控对象,由现场的在线水质监测仪表、鼓风机、搅拌机、泵、流量计、压力计、阀、液位计、加氯机等受控设备构成。
第二个层面是采集控制层:其主要负责在线水质各种参数采集并且将采集到的参数进行上传到水厂采集中心进行数据分析和数据整合,该层由水厂自动控制中心和采集中心的分控柜构成。
第三个层面是监控层:其主要负责接收各个水厂采集控制中心设备的运行状态、以及警告记录信息,保证水厂工艺流程状态实时显示,对设备可进行远程控制,同时建立水质特征污染物数据库,对原水处的实时光谱进行运算,实现水质预警。该层面主要由服务器、工程师站、以太网交换机、数据库、操作员站等构成。
在自动化水厂设计工程中,我们要保证以下几个方面(1)可靠性;(2)开放性;(3)先进性;(4)经济性;(5)实用性。通过以上五个方面我们能够满足的水厂技术生产管理和水处理的自动化控制技术的要求。水厂的生产过程自动化可以实现水厂的生产调度,管理事务部门的协调,物流管理一体化,生产环境监测网络可视化,通过以上的实现能够符合目前我国企事业单位的电子政务和电子商务的改革需求。最终可以实现把水厂建设成具备现代化、信息化和自动化的新型水厂,保证建设水厂和运营水厂的低成本和管理方便。变频恒压供水
长期以来在市政供水、高层建筑供水、工业生产循环供水、消防供水等方面技术一直比较落后,自动化程度较低。传统的供水方式有:恒速泵加压供水、气压罐供水、水塔高位水箱供水、液力耦合器和电池滑差离合器调速供水等方式。分析研究发现,传统的供水方式普遍不同程度的存在浪费水力、电力资源;效率低;可靠性差;自动化程度不高等缺点,严重影响了居民的用水和工业系统中的用水以及消防用水安全。
随着自动化技术的广泛应用和老百姓对日常饮用水和其他生活用水的水质品质的提高,采用变频恒压供水系统以其环保、节能和高品质的供水质量等特点,广泛应用于多层住宅小区及高层建筑的生活、消防供水中。
变频恒压供水系统控制流程图如下:
变频恒压供水的调速系统可以产生一定压力电动泵的无级速度控制,用来实现水量的变化。伴随着自动控制系统运行参数的改变,水压力随之进行相应的变化,以满足水厂的用水需求,省能源、水供给系统,是最先进的、合理。旧的供水塔和水槽和高压水供给的比较周波数量可变恒压供水方式,具有设备投资费用经济等优点,以及系统的可靠性、稳定性,自动化程度等高的特点。
变频恒压供水系统的另一大优势就是节能。下面我们以水泵的扬程特性通过调节流量方法方式做一对比分析。
如图 3所示,设用户所需流量QX为额定流量的60%(即QX=60%QN)。当通过关小阀门来实现时,管阻特性将改变为曲线③,而扬程特性则仍为曲线①,故供水系统的工作点移至E点,这时,流量减小为QE(=Qx);扬程增加为HE;供水功率PC与面积ODEJ成正比。
当通过降低转速使得Qx=60%Qn时,扬程特性仍为曲线②,故工作点移向C点。这时流量减小为QE(=Qx),扬程减小为Hc,供水功率PC与面积0DCK成正比。由此可见,其节能效果非常显著。
因此,变频恒压技术与PLC控制技术相结合,使供水系统正向着高可靠性、全数字化微机控制、高度智能化、系列化、标准化的方向发展。是未来供水设备适应城镇建设中成片开发、智能楼宇、网络供水调度和整体规划要求的必然趋势。总结
系统使用先进的变频恒压供水方式实现自动化水厂的控制,可以减少设计的成本和其它人力的成本。同时提高了自来水公司的科技含量,推动了企业的发展,提高了公司的竞争力,最后能确保优质、足量、安全供水,更好地为用户提供优质服务。变频恒压供水方式适用于工业现场的持点,满足大型自来水厂自动控制的要求。整个方案安全可靠、经济实用,易于编程、操作及维修,在全国多个水厂得到良好的应用。
作者单位
唐山市曹妃甸供水有限责任公司 河北省唐山市 063000
第二篇:基于PLC的变频调速恒压供水系统的应用
基于PLC的变频调速恒压供水系统的应用
张雷雷
南山纺织服饰有限公司
摘要:随着社会主义市场的经济发展,人们对供水质量和供水系统可靠性的要求不断提高;再加上目前能源紧缺,利用先进的自动化技术·控制技术以及通讯技术,设计高性能·高节能·能适应不同领域的恒压供水系统成为必然的趋势。
本论文采用变频器和PLC实现恒压供水和数据传输。本论文的变频恒压供水系统以再国内许多实际的供水控制系统中得到应用,并取得稳定可靠的运行效果和良好的节能效果。经实践证明该系统具有高度的可靠性和实时行,极大地提高了供水的质量,并且节省了人力,具有明显的经济效益和社会效益。
关键字:恒压供水:变频调速:PLC:泵切换
随着电力技术的发展,以变频调速为核心的智能供水系统取代了以往高位水箱和压力罐等供水设备,启动平稳,启动电流可限制在额定电流以内,从而避免了启动时对电网的冲击;由于泵的平均转速降低了,从而可以延长泵和阀门等东西的使用寿命;可以消除启动和挺及时的水锤效应。其稳定安全的运行性能、简单方便的操作方式、以及齐全周到的功能,将供水实现节水、节电、节省人力,最终达到高效率的运行目的。
PLC变频恒压供水系统是以PLC为控制核心,由PLC控制器、变频调速器、压力传感器等其他电控设备以及4台水泵组成,如图1.1所示
图1.1 变频调速恒压供水控制系统的原理图
其工作过程:设定一个水压值后,根据变频恒压供水原理,利用安装在供水管网上的压力传感器,连续采集供水管网中的水压及水压变化率信号,并将水压信号转换为电信号送入PLC,PLC根据实际水压值与设定水压值进行比较和经PID运算,并将运算结果转换为电信号,输出送到变频器的信号给定端,变频器根据给定信号,调节水泵的电源频率,从而调整水泵的转速,以维持供水管网中水压值在设定的水压范围内。当变频器频率到达最或大最小时,由PLC控制加泵或减泵实现恒压供水,从而达到恒压供水的目的。我公司在2009年11月份正式启用了该系统,并从中受益。本文介绍基于PLC变频调速恒压供水的设计
我公司水处理车间担负了南山纺织服饰有限公司下属单位和附属单位的工业及生活消防用水的任务。包括4台22KW的工业用水水泵和2台11KW的应急不压水泵。1.控制要求
1).水泵能自动变频软启动,四台水泵自动变频软启动,并根据用水量的大小自动调节水泵的台数。四台水泵自动轮换变频运行,工作泵故障时备用泵自动投入,可转换自动或人工手动开·停机。2).设备具有缺相、欠压、过压、短路、过载等多种电气保护功能,具有相许保护防止水泵反转抽空,并具有缺水保护及水位恢复开机功能。且有设备工作、停机、报警指示。2.PLC及变频器控制电路 2.1).供水系统主电路
该系统有四台水泵,如图2.1所示,合上空气开关(QS)后,当交流接触器KM1、KM3、KM5、KM7主触点闭合时,水泵为工频运行;当KM2、KM4、KM6、KM8主触点闭合时,水泵为变频运行。四个热继电器FR1、FR2、FR3、FR4分别对四台电动机进行保护,避免电动机在过载时可能产生的过热损坏。
图2.1恒压供水的主电路
2.2).供水系统的控制电路
如图2.2所示,Y0、Y7为PLC输出软继电器触点,其中Y0、Y2、Y4、Y6控制变频运行电路;Y1、Y3、Y5、Y7控制工频电路。SAC为转换开关,实现手动、自动控制切换。当SAC切在手动位时,通过1#SB24#SB2按钮分别启动四台水泵工频运行;当SAC在自动位时,由PLC控制水泵进行变频或工频状态的启动、切换、停止运行。
图2.2恒压供水系统的控制电路
1KA为缺水保护电路的中间继电器触点,当水池缺水或水位不足时,配合缺水保护装置断开控制电路,切断主电路,实现缺水保护作用。2.3).缺水保护电路
当水池缺水或水位不足时,若不及时切断电源就会损坏水泵,甚至发生事故。如图2.3所示。利用液位继电器等装置时刻检测水池里的水位,经电路转换及处理后对控制回路电源进行控制。水池水位正常时,控制回路电源接通,系统正常工作。水池缺水或水位不足时,液位继电器1K释放,系统报警、指示灯亮并通过1KA切断系统控制电路和主电路,水泵停止。水位正常后,液位继电器1K吸合,重新启动系统。
图2.3缺水保护电路 2.4).缺相相序保护电路
图2.4缺相相序保护电路
水泵工作在三相交流电,电源发生缺相时,电动机中某一相无电流,而另外两相电流会增大,容易烧坏电动机;另外,为了避免电源相序相反,电动机反转水泵抽空的现象,设置了缺相相序保护电路,如图2.4所示。采用缺相相序保护电路继电器KP接在主电路电源进线空气开关之后,三项正常时,KP得电吸合,控制电路中KP的1-2触点吸合,接通PLC控制电路。反之,缺相或反相时,KP的1-2触点断开,会切断PLC控制电路,系统停止工作,缺相相序保护指示灯亮。
2.5).硬件接线图
图2.5 硬件原理图
该系统的硬件连接图即PLC和系统的各个硬件的接线。由于PLC所输出的信号是数字信号,不能被变频器所识别,所以我们在他们之间加了个模拟量输入输出模块FXON-3A。其功能:该模块具有2路模拟量输入(0-10V直流或4-20mA直流)通道和1路模拟量输出通道。其输入通道数字分辨率为8位,A/D的转换时间为100us,在模拟与数字信号之间采用光电隔离,占用8个I/O点。2.6).变频器频率(速度)的设定及PID 1.最高频率:水泵属于平方率负载,当转速超过额定转速时,转速将按平方规律增加,导致电动机严重过载。因此,变频器的工作频率是不允许超过额定频率的,其最高频率只能与额定频率相等,即Fmax=Fn=50HZ。
2.上限频率:一般来说,上限频率以等于额定频率为宜。但有时也可以预置得略低一些,变频器内部有转差补偿功能,同在50HZ的情况下,水泵在变频运行时的实际转速要高于工频运行时的转速,从而增大了水泵和电机的负载;变频调速系统在50HZ下运行时,还不如直接在工频下运行,可以减少变频器本身的损失。因此,将上限频率预置为49HZ或49.5HZ是适宜的。
3.下限频率:在供水系统中,转速降低,会出现水泵的全扬程小于实际扬程,形成水泵“空转”的现象。所以,下限频率预置为25-30HZ 4.启动频率:水泵在启动时,如果从0HZ开始启动,水泵基本没有压力输出,为调节时间,应预置启动频率值为15-20HZ,及设置变频器PID输出值的下限为最大值的30%-40%。
变频器利用PID控制器将被控对象的传感等检测到控制量(反馈信号),将其与目标值(流量、压力等设定值)进行比较,再有PLC控制变频器输出。如图2.60若有偏差,则通过此功能的控制动作是偏差为零,也就是是反馈量与目标值保持一致,从而达到好好的调速作用。
图2.6 PID控制器接线图 2.7 PLC在系统中的控制
根据变频恒压供水原理,利用安装在供水管网上的压力传感器,连续采集供水管网中的水压及水压变化率信号,并将水压信号转换为电信号送入PLC,PLC根据实际水压值与设定水压值进行比较和经PID运算,并将运算结果转换为电信号,输出送到变频器的信号给定端,变频器根据给定信号,调节水泵的电源频率,从而调整水泵的转速,以维持供水管网中水压值在设定的水压范围内。当变频器频率到达最或大最小时,由PLC控制加泵或减泵实现恒压供水,PLC在系统中起主导作用是控制交流接触器组近进行工频-交频的切换和水泵工作数量的调整。如图2.7
系统运行之后,在自动运行方式下开始启动运行时,首先检测水池水位,若水池水位符合设定水位要求,1#变频交流接触器吸合,电机与变频器连通,变频器输出频率从0HZ开始上升,此时压力传感器检测压力信号反馈到PLC,由PLC经PID运算后控制变频器的频率输出;如压力不够,则频率上升至50HZ,延时一定时间后,将1#水泵切换为工频,2#水泵变频交流接触器吸合,变频启动#水泵,频率逐渐上升,直至出水压力达到设定压力,以此类推增加水泵。
如用水量减少,出水压力超过设定压力,则PLC控制变频器降低输出频率,减少出水量来稳定出水压力。若变频器输出频率低于某一设定值,而出水压力仍高于设定压力值时,PLC开始计时,若在一定时间内,出水压力降低到设定压力,PLC放弃计时,继续变频调速运行;若子一定时间,内压力仍高于设定值,根据先停机的原则,PLC将停止正在运行的水泵中运行时间最长的工频泵,直至出水压力达到设定值。若系统中只有一台水泵变频运行且连续一段时间频率低于设定出水频率,则切除变频运行主泵,投入小流量泵,既保护主泵电动机,又节约能源。当外来管网压力达到设定压力时,则控制其完全停止各泵的工作。
在变频器发生故障时也要不间断供水。当变频器发生故障时蜂鸣器报警,则PLC发出指令使全部水泵停止工作,然后1#水泵工频运行,经一定演示后根据压力变化情况在使2#泵工频运行。此时,PLC切换泵则根据实际水压的变化在工频泵之间切换。当出现水池无水停机、电动机欠压、过压、错相、电机故障等情况时,均能有蜂鸣器发出报警声。3.结束语
由于变频恒压供水系统的应用,它取代了传统的水塔、高位水箱或气压罐,不但大大的提高和改善了厂区工业及生活消防供水系统的性能,而且节能环保,具有良好的经济和技术效益。我公司自2009年11月投入使用以来,未出现过大的技术问题,保障了了公司下属和附属单位的正常可靠的工业用水,为企业的发展提供了强有力的保障。
参考文献:
1.张还.《控制其原理及控制过程》,北京:中国电力出版社,2008-10 2.岳大为.《变频器应用技术》,北京:化学工业出版社,2009-6 3.周志敏.《变频器调速系统》,北京:电子工业出版社,2008-5 4.宫淑贞.《可编程序制器原理与应用》,北京:人民店有出版社,2004
第三篇:PLC在恒压供水变频调速控制系统中的应用
PLC在恒压供水变频调速控制系统中的应用
引言
恒压供水系统对于某些工业或特殊用户是非常重要的,例如在某些生产过程中,若自来水供水因故压力不足或短时断水,可能影响产品质量,严重时使产品报废和设备损坏。又如当发生火警时,若供水压力不足或无水供应,不能迅速灭火,可能引起重大经济损失和人员伤亡。所以,某些用水区采用恒压供水系统,具有较大的经济和社会意义。
基于上述情况对某生活区供水系统进行了改造,采用plc作为中心控制单元,利用变频器与pid相结合,根据系统状态可快速调整供水系统的工作压力,达到恒压供水的目的,提高了系统的工作稳定性,得到了良好的控制效果。2 系统结构与工作原理
供水系统由主供水回路、备用回路、储水池及泵房组成,其中泵房装有1#~3#共3台150kw泵机。另外,还有多个电动闸阀或电动蝶阀控制各供水回路和水流量。由于该供水网较大,系统需要供水量每小时开2台泵向管网充压,供水量大时开3台泵同时向管网充压。要想维持供水网的压力不变,在管网系统的管道上安装了压力变送器作为反馈元件为控制系统提供反馈信号,由于供水系统管道长、管径大,管网的充压比较慢,故系统是一个大滞后系统,不宜直接采用pid调节器进行控制,而应采用plc参与控制的方式来实现对控制系统起调节作用。选择frn160g7p-4变频器实现电动机的调速运行,可编程序控制器选择日本松下fp1-c40型,且配有a/d和d/a模块,其原理框图如图1所示。
图1 恒压供水系统原理图
控制系统主要由plc、变频器、切换继电器、压力传感器等部分组成。控制核心单元plc根据手动设定压力信号与现场压力传感器的反馈信号经plc的分析和计算,得到压力偏差和压力偏差的变化率,经过pid运算后,plc将0~5v的模拟信号输出到变频器,用以调节电机的转速以及进行电机的软启动;plc通过比较模拟量输出与压力偏差的值,通过i/o端口开关量的输出驱动切换继电器组,以此来协调投入工作的水泵电机台数,并完成电机的启停、变频与工频的切换。通过调整电机组中投入工作的电机台数和控制电机组中一台电机的变频转速,使动力系统的工作压力稳定,进而达到恒压供水的目的。3 系统程序设计和plc的i/o分配
系统程序包括启动子程序和运行子程序,其流程图如图2所示。运行子程序又包括模拟调节子程序(其流程图如图3所示)和电机切换子程序(流程图略),电机切换子程序又包括加电机子程序和减电机子程序(程序设计略)。plc的输入、输出端子分配情况如附表所示。
图2 启动程序流程图
图3 模拟调节流程图 系统工作过程
加上启动信号(x4)后,此信号被保持,当条件满足时,(即x2为“1”)时,开始启动程序,此时由plc控制1#电机变频运行(此时y0、y6、y7亮),同时定时器t0开始计时(10s),若计时完毕x2仍亮,则关闭y0、y6,(y7仍亮,)t2延时1s。延时有两方面的原因: 一是使开关充分熄弧,防止电网倒送电给变频器,烧毁变频器;二是让变频器减速为0,以重新启动另一台电机。延时完毕,则有1#机投入工频运行,2#机投入变频运行,此时y1、y2、y6、y7亮,同时定时器t1开始计时(10s),若计时完毕x2仍未灭,则关闭y2、y6,(y1、y7仍亮,)t3延时1s,延时完毕,将2#机投入工频运行,3#机投入变频运行,(此时y1、y3、y4、y6、y7亮,)再次等待y7灭掉后,则整个启动程序执行完毕,转入正常运行调节程序,此后启动程序不再发生作用,直到下一次重新启动。在启动过程中,无论几台电机处于运行状态,x2一旦灭掉,则应视为启动结束(y7灭掉),转入相应程序。综合整个启动过程,完成三台电机的启动最多需要22s的时间。
运行过程中,若模拟调节器节上、下限值均未达到(即x1、x2灭),则此时变频器处于模拟调节状态(此时相应电机运行信号和y6亮)。
若达到模拟调节上限值(x1亮),则定时器t4马上开始定时(5s),定时过程中监控x1,若x1又灭掉,则关闭定时器,继续摸拟调节;若t4定时完毕,x1仍亮,则启动一低速(y8亮),进行多段速调节,同时定时器t5开始定时(3s)。定时完毕,若x1仍亮,则关闭此多段速,启动一更低速(y9),同时定时器t6定时(10s)。定时完毕,若x1仍亮,则关掉y9,此后x0很快会通,转入切换动作程序。在此两级多段速调节过程中,无论何时,若x0亮,则会关闭相应多段速和定时器,同时进行切换动作,即转入切换程序,同样,若无论何时,x1灭掉,则关闭运行多段速和定时器,转入模拟调节。
若达到模拟调节下限值(x2亮),则定时器t7马上开始定时(5s),定时过程中监控x2,若x2又灭掉,则关闭定时器,继续摸拟调节,若t7定时完毕,x2仍亮,则启动一高速(y7、y2),进行多段速调节,同时定时器t8开始定时(3s),定时完毕。若x2仍亮,则关闭此多段速,启动一更高速(y8、y9),同时定时器t9定时(10s),定时完毕。若x2仍亮,则关掉y8、y9,此后x3很快会通,转入加电机动作程序。在此两级多段速调节过程中,无论何时,若x3亮,则会关闭相应多段速和定时器,同时进行加电机动作,即转入加电机程序。同样,若无论何时,x2灭掉,则关闭运行多段速和定时器,转入模拟调节。
电机切换程序分为电机切除程序和加电机程序两部分。此程序动作的条件是:启动结束后无论何时x0亮,一旦条件满足,即由plc根据电动机的运行状态来决定相应切换哪台电机,切换时只能切换工频运行电机。
若工作状态是一台变频一台工频,则立即切除工频电机,然后计数值减1,即完成此过程,再由调节程序运行,调节至满足要求为止。
若3台电机同时工作,则应由plc来决定切除哪台工频运行电机。切除依据是3台电机对应计数器的大小,谁大切谁,切除掉一台后,要由定时器定时(5s)等待,以便变频器调节一段时间,防止连续切除动作。这主要是考虑到本系统的非线性和大小惯性因素而采取的措施。
加电机程序, 其动作程序是:启动结束后无论何时x2亮, 一旦条件满足, 立即关掉变频运行电机和变频器,延时一段时间后(原因同上), 将原变频运行电机投入工频运行,同时打开变频器和将要启动电机的变频开关, 完成加电机。
同样,若原有2台电机工频工作,则x2一亮,立即开始加另一台电机(无延时),(加电机依据是判断计数值,谁小加谁)。但加电机完成以后,定时器要开始定时(5s)等待,让变频器调节一段时间,防止连续加电机动作。其过程分为:结束语
用变频器来实现恒压供水,与用调节阀门来实现恒压供水相比较,节能效果十分显著。其优点是: 起动平稳,起动电流可限制在额定电流以内,从而避免了起动时对电网的冲击;由于泵的平均转速降低了,从而可延长泵和阀门等的使用寿命;可以消除起动和停机时的水锤效应;在锅炉和其他燃烧重油的场合,恒压供油可使油的燃烧更加充分,大大地减轻了对环境的污染。参考文献
[1] 常斗南.电气控制与plc应用.北京:机械工业出版社,2003 [2] fp1型可编程控制器c24/c40/c60操作手册 [3] 变频器说明手册.富士电机有限公司
[4] 曾 毅.变频调速控制系统.济南:山东科学技术出版社,2002 作者简介
张全庄(1963-)男 讲师/硕士 主要研究方向:工业电气自动控制与plc应用。
第四篇:PLC在恒压供水变频调速控制系统中的应用
引言
恒压供水系统对于某些工业或特殊用户是非常重要的,例如在某些生产过程中,若自来水供水压力不足或短时断水,可能会影响产品质量,严重时使产品报废和设备损坏。又如当发生火警时,若供水压力不足或无水供应,不能迅速灭火,可能引起重大经济损失和人员伤亡。所以,某些用水区采用恒压供水系统,具有较大的经济和社会意义。
基于上述情况对某生活区供水系统进行了改造,采用PLC作为中心控制单元,利用变频器与PID相结合,根据系统状态可快速调整供水系统的工作压力,达到恒压供水的目的,提高了系统的工作稳定性,得到了良好的控制效果。系统结构与工作原理
供水系统由主供水回路、备用回路、储水池及泵房组成,其中泵房装有1#~3#共3台150kW泵机。另外,还有多个电动闸阀或电动蝶阀控制各供水回路和水流量。由于该供水网较大,系统需要供水量每小时开2台泵机向管网充压,供水量大时,开3台泵机同时向管网充压。要想维持供水网的压力不变,在管网系统的管道上安装了压力变送器作为反馈元件,为控制系统提供反馈信号,由于供水系统管道长、管径大,管网的充压比较慢,故系统是一个大滞后系统,不宜直接采用PID调节器进行控制,而应采用PLC参与控制的方式来实现对控制系统调节作用。可编程序控制器选择日本松下FP1-C40型,且配有A/D和D/A模块,其原理框图如图1所示。变频器选择FRN1 60G7P-4实现电动机的调速运行。
控制系统主要由PLC、变频器、切换继电器、压力传感器等部分组成。控制核心单元PLC根据手动设定压力信号与现场压力传感器的反馈信号经PLC的分析和计算,得到压力偏差和压力偏差的变化率,经过PID运算后,PLC将0~5V的模拟信号输出到变频器,用以调节电机的转速以及进行电机的软起动;PLC通过比较模拟量输出与压力偏差的值,通过I/O端口开关量的输出驱动切换继电器组,以此来协调投入工作的电机台数,并完成电机的起停、变频与工频的切换。通过调整电机组中投入工作的电机台数和控制电机组中一台电机的变频转速,使动力系统的工作压力稳定,进而达到恒压供水的目的。
图1 恒压供水系统原理图 系统程序设计和PLC的I/O分配
系统程序包括起动子程序和运行子程序,其流程图如图2所示。运行子程序又包括模拟调节子程序(其流程图如图3所示)和电机切换子程序(流程图略),电机切换子程序又包括加电机子程序和减电机子程序(程序设计略)。PLC的输入、输出端子分配情况如附表所示。系统工作过程
加上起动信号(X4)后,此信号被保持,当条件满足(即X2为“1”)时,开始起动程序,此时由PLC控制1# 电机变频运行(此时Y0、Y6、Y7亮),同时定时器T0开始计时(10s),若计时完毕X2仍亮,则关闭Y0、Y6(Y7仍亮),T2延时1s(延时是为了两方面的原因:一是使开关充分熄弧,防止电网倒送电给变频器,烧毁变频器;二是让变频带器减速为零,以重新起动另一台电机)。延时完毕,则有1#机投入工频运行,2#机投入变频运行,此时Y1、Y2、Y6、Y7亮,同时定时器T1开始计时(10s),若计时完毕X2仍未灭,则关闭Y2、Y6,(Y1、Y7仍亮,)T3延时1s,延时完毕,将2#机投入工频运行,3#机投入变频运行,(此时Y1、Y3、Y4、Y6、Y7亮,)再次等待Y7灭掉后,则整个起动程序执行完毕,转入正常运行调节程序,此后起动程序不再发生作用,直到下一次重新起动。在起动过程中,无论几台电机处于运行状态,X2一旦灭掉,则应视为起动结束(Y7灭掉),转入相应程序。综合整个起动过程,完成3台电机的起动最多需要22s的时间。
运行过程中,若模拟调节器节上、下限值均未达到(即X1、X2灭),则此时变频器处于模拟调节状态(此时相应电机运行信号和Y6亮)。若达到模拟调节上限值(X1亮),则定时器T4马上开始定时(5s)。定时过程中监控X1,若X1又灭掉,则关闭定时器,继续摸拟调节;若T4定时完毕,X1仍亮,则起动一低速(Y8亮),进行多段速调节,同时定时器T5开始定时(3s),定时完毕。若X1仍亮,则关闭此多段速,起动一更低速(Y9),同时定时器T6定时(10s)。定时完毕,若X1仍亮,则关掉Y9,此后X0很快会通,转入切换动作程序。在此两级多段速调节过程中,无论何时,若X0亮,则会关闭相应多段速和定时器,同时进行切换动作,即转入切换程序。同样,若无论何时,X1灭掉,则关闭运行多段速和定时器,转入模拟调节。
若达到模拟调节下限值(X2亮),则定时器T7马上开始定时(5s),定时过程中监控X2,若X2又灭掉,则关闭定时器,继续摸拟调节,若T7定时完毕,X2仍亮,则起动一高速(Y7、Y2),进行多段速调节,同时定时器T8开始定时(3s),定时完毕。若X2仍亮,则关闭此多段速,起动一更高速(Y8、Y9),同时定时器T9定时(10s),定时完毕。若X2仍亮,则关掉Y8、Y9,此后X3很快会通,转入加电机动作程序。在此两级多段速调节过程中,无论何时,若X3亮,则会关闭相应多段速和定时器,同时进行加电机动作,即转入加电机程序。同样,若无论何时,X2灭掉,则关闭运行多段速和定时器,转入模拟调节。
电机切换程序分为电机切除程序和加电机程序两部分。此程序动作的条件是:起动结束后无论何时X0亮,一旦条件满足,即由PLC根据电动机的运行状态来决定相应切换哪台电机,切换时只能切换工频运行电机。
若工作状态是1台变频1台工频,则立即切除工频电机,然后计数值减1,即完成此过程,再由调节程序运行,调节至满足要求为止。
若3台电机同时工作,则应由PLC来决定切除哪台工频运行电机。切除依据是3台电机对应计数器的大小,谁大切谁,切除掉一台后,要由定时器定时(5s)等待,以便变频器调节一段时间,防止连续切除动作。这主要是考虑到本系统的非线性和大小惯性因素而采取的措施。图3运行时模拟调节子程序流程图加电机程序,其动作程序是:起动结束后无论何时X2亮,一旦条件满足,立即关掉变频运行电机和变频器,延时一段时间后(原因同上),将原变频运行电机投入工频运行,同时打开变频器和将要起动电机的变频开关,完成加电机。
同样,若原有2台电机工频工作,则X2一亮,立即开始加另一台电机(无延时),(加电机依据是判断计数值,谁小加谁)但加电机完成以后,定时器要开始定时(5s)等待,让变频器调节一段时间,防止连续加电机动作。其过程分为:1# → 2#、1# → 3#、2# → 3#、2# → 1#、3# → 2#、3# → 1#。结束语
用变频调速来实现恒压供水,与用调节阀门来实现恒压供水相比较,节能效果十分显著。其优点是:起动平稳,起动电流可限制在额定电流以内,从而避免了起动时对电网的冲击;由于泵的平均转速降低了,从而可延长泵和阀门等的使用寿命;可以消除起动和停机时的水锤效应;在锅炉和其他燃烧重油的场合,恒压供油可使油的燃烧更加充分,大大地减轻了对环境的污染。
参考文献
[1] FP1型可编程控制器C24/C40/C60操作手册[Z].[2] 变频器说明手册[Z].富士电机有限公司.[3] 曾毅等.变频调速控制系统的设计与维护[M].济南:山东科学技术出版社,2000.[4] 陈国呈.PWM变频调速技术[M].北京:机械工业出版社,2001。
作者简介
张全庄(1963-)讲师 现为陕西科技大学在读硕士,主要研究方向:工业电气自动控制与PLC应用。
第五篇:PLC 变频调速技术在泵站恒压供水中应用
PLC 变频调速技术在泵站恒压供水中应用
0 引言
供水系统是国民生产生活中不可缺少的重要一环。传统供水方式占地面积大,水质易污染,基建投资多,而最主要的缺点是水压不能保持恒定,导致部分设备不能正常工作。变频调速技术是一种新型成熟的交流电机无极调速技术,它以其独特优良的控制性能被广泛应用于速度控制领域,特别是供水行业中。由于安全生产和供水质量的特殊需要,对恒压供水压力有着严格的要求,因而变频调速技术得到了更加深入的应用。恒压供水方式技术先进、水压恒定、操作方便、运行可靠、节约电能、自动化程度高,在泵站供水中可完成以下功能:(1)维持水压恒定;(2)控制系统可手动/自动运行;(3)多台泵自动切换运行;(4)系统睡眠与唤醒。当外界停止用水时,系统处于睡眠状态,直至有用水需求时自动唤醒;(5)在线调整PID参数;(6)泵组及线路保护检测报警,信号显示等。
将管网的实际压力经反馈后与给定压力进行比较,当管网压力不足时,变频器增大输出频率,水泵 转速加快,供水量增加,迫使管网压力上升。反之水泵转速减慢,供水量减小,管网压力下降,保持恒压供水。系统硬件构成系统采用压力传感器、PLC和变频器作为中心控制装置,实现所需功能。
安装在管网干线上的压力传感器,用于检测管网的水压,将压力转化为4~20 mA的电流信号,提供给PLC与变频器。
变频器是水泵电机的控制设备,能按照水压恒定需要将0~50 Hz的频率信号供给水泵电机,调整其转速。ACS变频器功能强大,预置了多种应用宏,即预先编置好的参数集,应用宏将使用过程中所需设定的参数数量减小到最小,参数的缺省值依应用宏的选择而不同。系统采用PID控制的应用宏,进行闭环控制。该宏提供了6个输入信号:启动/停止(DI1、DI5)、模拟量给定(AI1)、实际值(AI2)、控制方式选择(DI2)、恒速(DI3)、允许运行(DI4);3个输出信号:模拟输出(频率)、继电器输出1(故障)、继电器输出2(运行);DIP开关选择输入0~10 V电压值或0~20 mA电流值(系统采用电流值)。变频器根据给定值AI1和实际值AI2,即根据恒压时对应的电压设定值与从压力传感器获得的反馈电流信号,利用PID控制宏自动调节,改变频率输出值来调节所控制的水泵电机转速,以保证管网压力恒定要求。
根据泵站供水实际情况与需求,利用一台变频器控制3台水泵,因此除改变水泵电机转速外,还要通过增减运行泵的台数来维持水压恒定,当运行泵满工频抽水仍达不到恒压要求时,要投入下一台泵运行。反之,当变频器输出频率降至最小,压力仍过高时,要切除一台运行泵。所以不仅需要开关量控制,还需数据处理能力,采用FX-4AD(4模拟量入)获得模拟量信号。它在应用上的一个重要特征就是由PLC自动采样,随时将模拟量转换为数字量,放在数据寄存器中,由数据处理指令调用,并将计算结果随时放在指定的数据接触器中。通过其可将压力传感器电流信号和变频器输出频率信号转换为数字量,提供给PLC[1>,与恒压对应电流值、频率上限、频率下限(考虑到水泵电机在低速运行时危险,必须保证其频率不低于20Hz,因此频率上限设为工频50Hz,下限设为20Hz)进行比较,实现泵的切换与转速的变化。
系统在设计时应使水泵在变频器和工频电网之间的切换过程尽可能快,以保证供水的连续性,水压波动尽可能小,从而提高供水质量。但元件动作过程太快,会有回流损坏变频器。为了防止故障的发生,硬件上必须设置闭锁保护,即1Q与4Q,2Q与5Q,3Q与6Q不能同时闭合。系统软件设计
控制系统软件是指用梯形图语言编制的对3台泵进行控制的程序。它对3台泵的控制,主要解决 系统的手动及自动切换、各元件和参数的初始化、信号及通讯数据的预处理、3台泵的启动、切换及停止的条件、顺序、过程等问题。
当变频器输出频率达到频率上限,供水压力未达到预设值时,发出加泵信号,投入下1台泵供水。当供水压力达到预设值,变频器输出频率降到频率下限时,发出减泵信号,切除在工频运行方式中的1台泵。系统刚启动时,情况简单,首先启动一号泵即可。但考虑3台泵联合运行时情况复杂,任1台或2台泵可能正在工频自动方式下运行,而其他泵则可能在变频器控制下运行,因此必须预先设定增减水泵的顺序。即获得加泵信号后,按照1号泵、2号泵、3号泵的顺序优先考虑。获得减泵信号后,按照3号泵、2号泵、1号泵的顺序优先考虑。
为了防止故障的发生,软件上也必须设置保护程序,保证1Q与4Q、2Q与5Q、3Q与6Q不能同时闭合。在加减泵时必须设置元件动作顺序及延时,防止误动作发生。
考虑到系统工作环境对运行状态的影响,在设计中采用硬件、软件上的双重滤波来消除干扰的影响。硬件上变频器提供了滤波时间常数,当模拟输入信号变化时,63%的变化发生在所定义的时间常数中;软件上采用数字滤波的方式,系统采用平均值的方法[2>。
计算最近10次采样的平均值,其计算公式如下:系统参数的确定
系统变频运行主要靠变频器来实现。变频器有一数量很大的参数群,初始情况下,只有所谓的基本参数可以看到。只需设定简单的几个参数,变频器就可以工作。
除基本参数外,还必须对完整参数进行设定。
完整参数的设定主要是PID参数的整定,它是按照工艺对控制性能的要求,决定调节器的参数Kp,TI,TD。控制表达式为:
变频器根据偏差调节PID的参数,当运行参数远离目标参数时,调节幅度加快,随着偏差的逐步接近,跟踪的幅度逐渐减小,近似相等时,系统达到一个动态平衡,维持系统的恒压稳定状态[
3、4>。试验结果
由于系统的显示和通讯功能,可以对系统工作情况进行监测。考虑到管网覆盖面积大,泵站海拔高度相对低,远端供水压力需维持3kg,因此泵站出水口压力必须维持5kg。试验条件为管网初始无压 力,电磁阀控制一定量相同用水情况下启动系统。获得的数据经MATLAB进行插值拟合可得系统在不同条件下跟踪压力变化的曲线[5>。
试验记录的数据显示,系统在未进行滤波和PID控制时,响应速度特别慢、误差大、振荡严重,见图5。在未进行滤波而引入数字PID控制时,响应速度明显加快,但振荡问题未能得到解决,这是由于喘振现象的存在;当管道压力与设定值近似相当时,水锤效应影响明显,压力波动异常,PID的参数跟踪整定,形成恶性循环,管道中空气的存在也会导致振荡问题。
该系统是按照工业生产需求设计的,实现了预定的一系列功能,保证了系统的稳定和安全性,在长时间运行中取得了良好的效果。只需作相应修改就可推广到相关供水系统中。