第一篇:数控技术的应用论文
数控技术的应用与发展 绪论
数控加工技术是20世纪40年代后期为适应加工复杂外形零件而发展起来的一种自动化加工技术。其研究起源于飞机制造业,1947年,美国帕森斯公司为了精确地制作直升机机翼、桨叶和飞机框架,提出了用数字信息来控制机床自动加工外形复杂零件的设想。他们利用电子计算机对机翼加工路径进行数据处理,并考虑到刀具直径对加工路径的影响,使得加工精度达到0.0381mm,这在当时的水平来看是相当高的。1949年,美国空军为了能在短时间内制造出经常变更设计的火箭零件,与帕森斯公司和麻省理工学院伺服机构研究所合作,于1952年研制成功世界上第一台数控机床—三坐标立式铣床。可控制铣刀进行连续空间曲面的加工,揭开了数控加工技术的序幕。
第一章 数控技术的应用
1.1 数控技术的应用领域
一 制造行业
机械制造行业是最早应用数控技术的行业,它担负着为国民经济各行业提供先进装备的重任。应该重点研制开发与生产现代化军事装备用的高性能三轴和五轴高速立式加工中心。五坐标加工中心、大型五坐标龙门铣、汽车发动机、变速箱、曲轴柔性加工生产线上用的数控机床和高速加工中心,以及焊接、装配、喷漆机器人、板件激光焊接机和激光切割机、航空、船舶、发电行业加工螺旋桨和水轮机叶片零件用的高速五坐标加工中心、重型车铣复合加工心等。二 信息行业
在信息产业中,从计算机到网络、移动通信、遥控等设备,都需要采用基于超精技术、纳米技术的制造装备,如芯片制造的引线键合机、晶片键合机和光刻机等,这些装备的控制都需要采用数控技术。三 医疗设备行业
在医疗行业中,许多现代化的医疗诊断、治疗设备都采用了数控技术,如CT诊断仪、全身刀治疗机以及基于视觉引导的微创手术机器人等。四 军事装备
现代的许多军事装备,都大量采用伺服运动数控技术,如火炮的自动瞄准控制,雷达的跟踪控制和导弹的自动跟踪控制等。五 其他行业
在轻工行业,采用多轴伺服控制(最多可达50个运动轴)的印刷机械、纺织机械、包装机械以及木工机械等。在建材行业,用于石材加工的数控水刀切割机,用于玻璃加工的数控玻璃雕花机,用于服装加工的数控绣花机等。
1.2 数控技术的应用不但给传统制造业带来了革命性的变化,使制造业成为工业化的象征,而且随着数控技术的不断发展和应用领域的扩大,他对国计民生的一些重要行业(IT、汽车、轻工、医疗等)的发展起着越来越重要的作用,因为这些行业所需装备的数字化已是现代发展的大趋势。
效率、质量是先进制造技术的主体。高速、高精加工技术可极大地提高效率,提高产品的质量和档次,缩短生产周期和提高市场竞争能力。为此日本先端技术研究会将其列为5大现代制造技术之
在加工精度方面,近10年来,普通级数控机床的加工精度已由10μm提高到5μm,精密级加工中心则从3~5μm,提高到1~1.5μm,并且超精密加工精度已开始进入纳米级(0.01μm)。
在可靠性方面,国外数控装置的MTBF值已达6 000h以上,伺服系统的MTBF值达到30000h以上,表现出非常高的可靠性。
为了实现高速、高精加工,与之配套的功能部件如电主轴、直线电机得到了快速的发展,应用领域进一步扩大 1.3 数控技术的应用分类
按工艺用途分类
金属切削类数控机床,包括数控车床、数控钻床、数控铣床、数控磨床、数控镗床发及加工中心.这些机床都有适用于单件、小批量和多品种和零件加工,具有很好的加工尺寸的一致性、很高的生产率和自动化程度,以及很高的设备柔性。金属成型类数控机床;这类机床包括数控折弯机、数控组合冲床、数控弯管机、数控回转头压力机等。数控特种加工机床;这类机床包括数控线(电极)切割机床、数控电火花加工机床、数控火焰切割机、数控激光切割机床、专用组合机床等。其他类型的数控设备;非加工设备采用数控技术,如自动装配机、多坐标测量机、自动绘图机和工业机器人等。
按运动方式分类
点位控制;点位控制数控机床的特点是机床的运动部件只能够实现从一个位置到另一个位置的精确运动,在运动和定位过程中不进行任何加工工序。如数控钻床、数按坐标镗床、数控焊机和数控弯管机等。直线控制;点位直线控制的特点是机床的运动部件不仅要实现一个坐标位置到另一个位置的精确移动和定位,而且能实现平行于坐标轴的直线进给运动或控制两个坐标轴实现斜线进给运动。轮廓控制;轮廓控制数控机床的特点是机床的运动部件能够实现两个坐标轴同时进行联动控制。它不仅要求控制机床运动部件的起点与终点坐标位置,而且要求控制整个加工过程每一点的速度和位移量,即要求控制运动轨迹,将零件加工成在平面内的直线、曲线或在空间的曲面。
按控制方式分类
开环控制;即不带位置反馈装置的控制方式。半闭环控制;指在开环控制伺服电动机轴上装有角位移检测装置,通过检测伺服电动机的转角间接地检测出运动部件的位移反馈给数控装置的比较器,与输入的指令进行比较,用差值控制运动部件。闭环控制;是在机床的最终的运动部件的相应位置直接直线或回转式检测装置,将直接测量到的位移或角位移值反馈到数控装置的比较器中与输入指令移量进行比较,用差值控制运动部件,使运动部件严格按实际需要的位移量运动。
按数控制机床的性能分类
经济型数控机床、中档数控机床、高档数控机床;
按所用数控装置的构成方式分数
硬线数控系统、软线数控系统
第二章 数控技术的发展
2.1 高速、精密、复合、智能和绿色是数控机床技术发展的总趋势,近几年来,在实用化和产业化等方面取得可喜成绩。主要表现在:
1.机床复合技术进一步扩展随着数控机床技术进步,复合加工技术日趋成熟,包括铣-车复合、车铣复合、车-镗-钻-齿轮加工等复合,车磨复合,成形复合加工、特种复合加工等,复合加工的精度和效率大大提高。“一台机床就是一个加工厂”、“一次装卡,完全加工”等理念正在被更多人接受,复合加工机床发展正呈现多样化的态势。
2.智能化技术有新突破数控机床的智能化技术有新的突破,在数控系统的性能上得到了较多体现。如:自动调整干涉防碰撞功能、断电后工件自动退出安全区断电保护功能、加工零件检测和自动补偿学习功能、高精度加工零件智能化参数选用功能、加工过程自动消除机床震动等功能进入了实用化阶段,智能化提升了机床的功能和品质。
3.机器人使柔性化组合效率更高机器人与主机的柔性化组合得到广泛应用,使得柔性线更加灵活、功能进一步扩展、柔性线进一步缩短、效率更高。机器人与加工中心、车铣复合机床、磨床、齿轮加工机床、工具磨床、电加工机床、锯床、冲压机床、激光加工机床、水切割机床等组成多种形式的柔性单元和柔性生产线已经开始应用。
4.精密加工技术有了新进展数控金切机床的加工精度已从原来的丝级(0.01mm)提升到目前的微米级(0.001mm),有些品种已达到0.05μm左右。超精密数控机床的微细切削和磨削加工,精度可稳定达到0.05μm左右,形状精度可达0.01μm左右。采用光、电、化学等能源的特种加工精度可达到纳米级(0.001μm)。通过机床结构设计优化、机床零部件的超精加工和精密装配、采用高精度的全闭环控制及温度、振动等动态误差补偿技术,提高机床加工的几何精度,降低形位误差、表面粗糙度等,从而进入亚微米、纳米级超精加工时代。
5.功能部件性能不断提高功能部件不断向高速度、高精度、大功率和智能化方向发展,并取得成熟的应用。全数字交流伺服电机和驱动装置,高技术含量的电主轴、力矩电机、直线电机,高性能的直线滚动组件,高精度主轴单元等功能部件推广应用,极大的提高数控机床的技术水平。
2.2 数控技术的发展
从1952年第一台数控机床问世后,数控系统已经先后经历了两个阶段和六代的发展,其六代是指电子管、晶体管、集成电路、小型计算机、微处理器和基于工控PC机的通用CNC系统。其中前三代为第一阶段,称作为硬件连接数控,简称NC系统;后三代为第二阶段,乘坐计算机软件数控,简称CNC系统。2.3 机床的发展趋势
数控机床总的发展趋势是工序集中、高速、高效、高精度以及方便使用、提高可靠性等。(1)工序集中20世纪50年代末期,在一般数控机床的基础上开发了数控加工中心,即自备刀具库的自动换刀数控机床。在加工中心机床上工件一次装夹后,机床的机械手可以自动更换刀具,连续的对工件进行多种工序加工。目前,加工中心机床的刀具库容量可达到100多把刀具,自动换刀装置的换刀时间仅需0.5~2秒。加工中心机床使工序集中在一台机床上完成,减少了由于工序分散,工件多次安装引起的定位误差,提高了加工精度,同时也减少了机床的台数与占地面积,压缩了半成品的库存量,减少了工序间的辅助时间,有效的提高了数控机床的生产效率和数控加工的经济效益。(2)高速、高效、高精度高速、高效、高精度是机械加工的目标,数控机床因其价格昂贵,在上述三方面的发展也就更为突出。(3)方便使用数控机床制造厂把建立友好的人机界面、提高数控机床的可靠性作为提高竞争能力的主要方面。
1)加工编程方便
手工编程和自动编程已经使用了几十年,有了长足的发展,在手工编程方面,开发了多种加工循环、参数编程和除直线、圆弧以外的各种插补功能,CAD/CAM的研究发展,从技术上来讲可以替代手工编程。但是一套适用的CAD/CAM软件加上计算机硬件,投资较大,学习、掌握时间较长,对大多数的简单工件很不经济。
近年来,发展起来的图形交互式编程系统(WOP,又称面向车间编程),很受用户欢迎。这种编程方式不使用G、M代码,而是借助图形菜单,输入整个图形块以及相应参数作为加工指令,形成加工程序,与传统加工时的思维方式类似。图形交互编程方法在制定标准后,有可能成为各种型号的数控机床统一的编程方法。2)使用方法
数控机床普遍采用彩色CRT进行人机对话、图形显示和图形模拟的。有的数控机床将采用说明书、编程指南等存入系统供使用者调阅。
第三章
数控技术的分类及关键技术
3.1 数控系统的控制原理
计算机数控系统一 CNC系统的组成与特点
二 CNC系统由硬件和软件组成,其组成框图如图2-1所示。
根据上述组成框图,CNC系统有如下特点:灵活性
对于NC系统,一旦提供了某些控制功能,就不能被改变,除非改变硬件。而CNC 系统,只要改变相应的软件即可,而不要改变硬件。通用性
在CNC系统中,硬件采用通用的模块化结构,而且易于扩展,并结合软件变化来满足数控机床的各种不同要求。接口电路由标准电路组成,给机床厂和用户带来了很大方便。这样用一种CNC系统就能满足多种数控机床的要求,当用户要求某些特殊功能时,仅仅改变某些软件即可。可靠性
CNC系统中,零件数控加工程序在加工前一次性全部输入存储器,并经过模拟后才被调用加工,这就避免了在加工过程中由于纸带输入机的故障产生的停机现象。许多功能都由软件
完成,硬件结构大大简化,特别是大规模和超大规模集成电路的采用,可靠性得到很大的提高。
数控功能多样化
CNC系统利用计算机的快速处理能力,可以实现许多复杂的数控功能,如多种插补功能、动静态图形显示、数字伺服控制等。使用维护方便
有的CNC系统含有对话编程、图形编程、自动在线编程等功能,使编程工作简单方便。编好的程序通过模拟运行,很容易检查程序是否正确。CNC系统中还含有诊断程序,使得维修十分方便。
3.2 CNC系统的硬件结构
数控系统的硬件由数控装置、输入/输出装置、驱动装置和机床电器逻辑控制装置等组成,这四部分之间通过I/O接口互连。数控装置是数控系统的核心,其软件和硬件来控制各种数控功能的实现。输入/输出装置主要有键盘、纸带阅读机、软盘驱动器、通信装置、显示器等,用以控制数据的输入/输出,监控数控系统的运行,进行机床操作面板及机床机电控制 /监测机构的逻辑处理和监控,并为数控装置提供机床状态和有关应答信号。机床电器逻辑控制装置接受数控装置发出的数控辅助功能控制命令,实现数控机床的顺序控制。在现代数控系统中机床电器逻辑控制装置已经被可编程序控制器(PLC)取代。驱动装置一般是以轴为单位的独立体,用以控制各轴的运动。数控装置的硬件结构按CNC装置中的印制电路板的插接方式可以分为大板结构和功能模块(小板)结构;按CNC装置硬件的制造方式,可以分为专用型结构和个人计算机式结构;按CNC装置中微处理器的个数可以分为单微处理器结构和多微处理器结构。
一、大板结构和功能模板结构 1 大板结构
大板结构CNC系统的CNC装置由主电路板、位置控制板、PC板、图形控制板、附加I/O板和电源单元等组成。主电路板是大印制电路版,其它电路板是小板,插在大印制电路板上的插槽内。这种结构类似于微型计算机的结构。2.功能模块结构
在这种结构中,整个CNC装置按功能模块化分为若干个模块,硬件和软件的设计都采用模块化设计,每一个功能模块做成尺寸相同的印制电路板,相应功能模块的控制软件也模块化。用户根据需要选用各种控制单元母板及所需功能模板,将各功能模板插入控制单元母板的槽内,就组成了自己需要的CNC系统的控制装置。常用的功能模板有CNC控制板、位置控制板、PC板、存储器板、图形板和通信板等。FANUC系统15系列就采用了功能模块式结构。
二 单微处理器结构和多微处理器结构
单微处理器结构在单微处理器结构中,只有一个微处理器,以集中控制、分时处理数控装置的各个任务。其它功能部件,如存储器、各种接口、位置控制器等都需要通过总线与微处理器相连。
多微处理器结构随着数控系统功能的增加、数控机床的加工速度的提高,单微处理器数控系统已不能满足要求,因此,许多数控系统采用了多微处理器的结构。若在一个数控系统中有两个或两个以上的微处理器,每个微处理器通过数据总线或通信方式进行连接,共享系统的公用存储器与I/O接口,每个微处理器分担系统的一部分工作,这就是多微处理器系统。3.3 数控技术的关键技术
数控装备的高速度、高精度、高柔性和高自动化程度,向数控系统和伺服驱动系统提出了新的要求,下面主要从数控系统与伺服驱动系统方面介绍其关键技术。要实现数控设备高速化,首先要求数控系统能对由微小程序段构成的加工程序进行高速处理,以计算出伺服电机的移动量,同时要求伺服电机能高速度地作出反应。采用32位微处理器是提高数控系统高速处理能力的有效手段。在数控设备高速化中,提高主轴转速占有重要地位。主轴高速化的手段是直接把电机与主轴连接成一体,从而可将主轴转速大大提高。采用直线电机技术来替代目前机床传动中常用的滚珠丝杠技术,在提高轮廓加工速率的同时,提高了加速度。
一、除不断采用新型功能部件外,还需在以下几个方面进行深入研究:
高速加工动力学建模及控制高速运动下的对象已经不能用纯静态的方法处理,数控问题也不再能归结为几何问题或静力学问题。作为一个动态对象,它并不是“亦步亦趋”地跟随所施加的控制,而力图表现出它的“个性”;另一方面,所施加的控制必须充分顾及被控制对象的动态特性,才能得到预期的控制效果。控制系统与被控制对象分开来研究和制造,而必须作为一个整体来处理,研究其在高速状态下的动力学问题,以及超高速运动控制条件下光、电信号的时滞影响及其消除的问题。在高速情况下,必须研究集数控系统与控制对象为一体的整体动力学建模、基于整体动力学模型的非线性控制策略、智能化控制方法等。2 机电特性参数的辨识、分析与控制优化高速控制的核心在于实现高加速度,为此需要使伺服机构处于最佳工作状态,从而获得系统最大运动加速度。因此,基于系统整体建模的加速度控制曲线选择、伺服机电参数的辨识优化、多轴增益的协调控制等是当前研究的热点。3 高速、高精插补运算和控制算法高速、高精插补是将复杂轨迹按控制规律分解成伺服控制指令。轮廓加工时,加工程序由巨量微小线段构成,高速加工除需保证微段程序连续执行外,还需根据轨迹变化及时预测各轴状态,实现高加速度运行要求。这就要求对微段程序的高速、高精插补、高速预处理,微段程序的加减速控制,超前G代码预测(Look ahead),复杂轨
迹的直接插补以及高速数据传输等进行深入的研究。4 面向高速高精加工的数控编程原理及方法传统的数控编程解决了中低速加工中的刀位轨迹生成问题,但是高速加工却对数控编程从原理与方法上提出了更高的要求。为此, 必须在研究高速加工工艺机理的基础上,研究适用于高速高精加工的数控编程原理及方法。在这方面,高速加工工艺机理、高速加工工艺参数知识库、基于高速加工非线性运动误差补偿的刀位轨迹规划、加工程序平滑过渡、高速加工中进给速度优化、基于STEP标准、面向加工特征的高级NC代码语言等都是需要研究的内容。二 高精度化技术
提高数控机床的加工精度,一般可通过减少数控系统的误差和采用机床误差补偿 技术来实现。
在减少CNC系统控制误差方面,通常采取提高数控系统的分辨率,提高位置检测精度的方法。然而在高速、高精加工的情况下,在线动态测量和补偿存在着高精度与大量程几何量之间的矛盾,是传统检测方法难以完成的。因此,需要研究新的测量和补偿机理,即进行高精度、大量程几何量的在线动态检测原理研究,以及控制误差的在线和实时检测、预报和补偿方法等研究,在位置伺服系统中采用前馈控制与非线性控制等方法。为解决在高速、高精加工中的小步长与大行程之间的矛盾,需要研究新的高速驱动原理及机构。在机床误差补偿技术方面,除采用齿隙补偿、丝杠螺距误差补偿和刀具补偿等技术外,近年来对设备热变形误差补偿和空间误差综合补偿技术的研究已成为世界范围的研究课题。故障自诊断技术
故障诊断专家系统是诊断装置发展的最新动向,它为数控设备提供了一个包括二次监测、故障诊断、安全保障和经济策略等方面在内的智能诊断及维护决策信息集成系统。智能化交流伺服驱动技术
目前已开始研究能自动识别负载,并自动调整参数的智能化伺服系统,包括智能主轴交流驱动装置和智能化进给伺服装置,使驱动系统获得最佳运行参数。
四 网络化技术
数控设备的网络化技术是指能支持远程监视、诊断和控制,支持网络制造资源共享、支持装备参与网络化环境下制造系统集成的技术。其主要技术内容有:
网络环境下的数控装备的集成技术研究网络环境下的数控装备网络互连技术(包括装备间的互连技术和装备内部的互连技术),网络环境下的数字化制造装备分布式协同处理技术和异构设备网络集成技术等。
远程操作、监控与远程诊断技术研究实时监测数据的特征提取、识别和融合,诊断知识的组织以及推理算法,实时可靠的通信协议及数据的共享标准等;网络环境下数控装备运行状态的智能检测、监控和诊断技术、数控装备的网络全局调度技术、远程设计编程技术及远程操作技术等。
网络管理技术的研究在网络制造环境下,网络除了用于传输加工程序、实现网络操作和控制和远程诊断外,更为重要的是进一步提高机床的生产率。为此需要研究网络管理技术,即网络生产管理系统,网络CAD/CAM系统,面向网络化制造环境的数控装备的网络安全机制与防范技术等
结论
衡量一个国家的国力水平并不单单指军事上的水平,如今,制造业的水平已是一个大国的重要指标。数控技术自20世纪40年代发展至今,已成为制造业的支柱性技术。21世纪是信息时代,数控技术与信息的完美结合,极大的提高了制造能力,向产品更精、速度更快、质量越好的方向发展。中国应大力加大研发数控技术,提高国内制造业对数控技术的应用。
第二篇:数控技术论文
本科毕业论文(设计)
论文(设计)题目: “贵大校徽”CAD/CAM实践 学 院: 专 业: 班 级: 学 号: 学生姓名: 指导教师:
2008 年 6 月 1 日
贵州大学本科毕业论文(设计)诚信责任书
本人郑重声明:本人所呈交的毕业论文(设计),是在导师的指导下独立进行研究所完成。毕业论文(设计)中凡引用他人已经发表或未发表的成果、数据、观点等,均已明确注明出处。
特此声明。
论文(设计)作者签名:
日 期:
目 录
摘 要 IV
Abstract V 编辑本段目 录
第一章:数控技术和PRO/E软件技术 3
1.1数控技术 3 1.1.1 数控技术的发展趋势 3 1.2 FANUC数控系统数控加工中心机床基础知识 5 1.2.1坐标系/对刀点/换刀点 5 1.2.2常用基本指令 5 1.2.3编程方式 6 1.2.4对刀 7 1.2.5刀具长度补偿设置 7 1.2.6刀具半径补偿设置 8 1.2.7机床操作面板的简单介绍 8 1.3 PRO/E软件技术 10 1.3.1PRO/E3.0软件的介绍及其安装 10 1.3.2 在PRO/E中校徽的特征建模 11 1.4 PRO/NC模块简介 13
1.5 数控自动加工的加工流程 14
1.6校徽在 Pro/NC中的编程实例 14 第二章:加工中心工艺方案的制定 23
2.1零件的工艺分析 23 2.1.1分析图样 23 2.2加工设备的选用 23 2.3零件的工艺设计和夹具的选择 24 2.3.1加工方法的选择以下是几种常见的平面加工方法 24 2.3.2确定加工顺序和工序 25
2.3.3确定装夹方案和选用夹具 26
2.4选择刀具 26
2.5切削用量的确定 27 第三章:零件的加工 28
3.1零件加工前机床的基本操作 28 3.1.1开机 28 3.1.2回机床原点 28 3.1.3机床的调试 28 3.2 CIMCO EDIT V5简体中文版介绍 29 3.3程序DNC传输/模拟NC刀具 29 3.4加工程序的执行方式 31 3.5加工程序试运行 31 3.6工件试切 32 3.7测量 32 设计总结 33 参考文献 34 致谢 35 “贵大校徽”CAD/CAM实践
编辑本段摘 要
随着中国经济的快速发展,“中国制造”开始行销全球。2006年,中国制造业的GDP增加值达到10956亿美元,首次在总量上超过日本,成为世界排名第二的制造大国;2007年,中国制造业的GDP增加值达到13000亿美元。陕西渭河工模具总厂是机械电子行业工模具专业生产企业。从最初的研发试制到现在CAD/CAM的应用,设计和制造了许多典型的冷冲模具,在国内赢得了良好的声誉。近年来,随着CAD/CAM的不断应用,我厂生产
了大批的精密冲压模具,特别是多工位级进模和多工位传递模具,不论从设计上还是制造方面均可与进口模具相媲美。我厂应用CAD/CAM技术起步较早,不但是在设计和加工上应用了CAD技术,同时在工艺参数上,特别是复杂零件的几何参数上也应用了CAD技术,被陕西省科技厅、国家科技部授予“CAD示范企业“称号。近10年来,在模具设计上已经全部采用了CAD技术,部分加工上也应用了CAM技术。我厂模具设计应用平台硬件是美国SGI工作站,软件是美国EDS公司的UG软件,近年来又购进了”电子图板“设计软件。同时,针对本厂所设计的范围我们做了许多标准件的图库,此项工作大大地提高了设计速度。CAD/CAM技术在该厂应用面比较广,但存在的不足主要有三点:一是由于软件引进较早,且一直没有升级,与现在的UG版本差11个版本。
关键词: CAD/CAM,发展,制造
“Guizhou University school insignia” CAD/CAM practice
Abstract
Along with the Chinese economy fast development, “China makes” starts to sell the whole world In 2006, the Chinese manufacturing industry GDP increase in value achieved 1,095,600,000,000 US dollars, for the first time surpass Japan in the total quantity, becomes the world to be listed the second manufacture great nation;In 2007, the Chinese manufacturing industry GDP increase in value amounts to 1,300,000,000,000 US dollars..The Shaanxi Weihe River jig has the main plant is the mechanical electronic profession labor mold specialized production enterprise.Trial produces from the initial research and development to the present CAD/CAM application, designed and makes many models to flush the mold coldly, in domestic has won the good prestige.In recent years, along with the CAD/CAM unceasing application, my factory has produced large quantities of precise ramming mold, specially the multi-location level enters the mold and the multi-location transmission mold, no matter makes the aspect from the design to be possible to compare favorably with with the import mold.My factory applies the CAD/CAM technology start early, not only has applied the CAD technology in the design and the processing, simultaneously in the craft parameter, specially in the complex components geometry parameter also has applied the CAD technology, by the Shanxi Province science and technology hall, National Technical department is awarded “CAD the demonstration enterprise ” title.In the recent 10 years, already completely used the CAD technology in the mold design, in the part processing have
also applied the CAM technology.My factory mold design applies the platform hardware is American SGI Workstation, the software is American EDS Corporation's UG software, in recent years has purchased “ the electronic chart board ” design software.At the same time, we has made many standard letter map storages in view of this factory design scope, this work enhanced the design speed greatly.The CAD/CAM technology quite is broad in my factory application surface, but exists the insufficiency mainly has three points: One is as a result of the software introduction early, also has not promoted, misses 11 editions with the present UG edition.Key word: CAD/CAM, development, manufacture 编辑本段前 言
随着计算机技术的发展,计算机辅助设计/计算机辅助制造(CAD/CAM)技术在工程设计、制造等领域中具有重要影响的高新技术。CAD/CAM技术自动加工的实现对社会产生了巨大的经济效益。
在20世纪60年代初,麻省理工学院研究生发表了《人机对话图形通信》,推出了二维SKETCHPAD系统,系统允许设计者在图形显示器前操作光笔和键盘,同时可以在显示器上显示图形,由此为CAD/CAM技术提供了理论基础。20世纪60年代到20世纪70年代中期是CAD/CAM技术走向成熟的阶段,随着计算机硬件的发展,三维几何软件也相应发展起来。到了20世界90年代,CAD/CAM技术从单一的模式、单一的功能走向集成化和智能化。使用CAD/CAM各子系统之间进行数据交换,从而出现了面向对象的技术、并行工程的思想、人工智能技术等。我国CAD/CAM技术从20世纪70年代开始以来,经过不断的发展和推广使用,取得了良好的经济效益和社会效益,以Pro/Engineer、Unigraphics、Solidworks为代表的CAD/CAM软件技术是目前最完善的CAD/CAM技术。
我国CAD/CAM技术的应用大多以绘图设计为突破口,在硬件和软件升级方面不够到位。在设计中,是基于Pro/Engineer这个软件来写的。机械专业的学生,只有掌好相关软件握的技术,才能更好地做好产品设计、加工的一体化,最终达到机械理论知识和实际操作的有机结合。在Pro/Engineer这个软件中,尤其是Pro/Engineer Wildfire的PRO/NC模块的应用,把自动编程技术表现的淋漓尽致。在校徽的加工中,对PRO/NC模块进行了详细的介绍。在NC制造设置(包括NC机床定义、夹具设置、刀具设定等)、NC加工方法、NC序列设置、加工轨迹的演示、后置处理等都做了描述。
软件支撑是远远不能搞好加工的,先进的硬件设备对生产加工的效率是很重要的。现代加工设备各式各样,品种繁多。像车床、铣床、磨床、钻床、加工中心机床等。为了减少人的体力劳动和自动化的生产,数控加工走向了我们,目前的数控机床广泛应用于加工行业当中。数控设备的出现,使CAD/CAM技术得到了前所未有的发展,软/硬件得到了有机的结合。在本设计中用的选用的是数控加工中心,它有许多的优点:减少了装夹的次数;减少了机床的数量,从而减少了生产空间;缩短了生产周期等等。在校徽的加工过程中,本书用了较大篇幅对加工过程做了详细的描述。尤其在加工的工艺性设计方面做了大量的分析,使整个加工过程清晰可见,在自动加工编程中实现了零件的最终形成。在本设计中,我们同时看到了自动编程优于手工编程,尤其是在现代加工技术中,对复杂零件的加工更体现出它的优点。本设计在第一章对数控技术和PRO/E软件技术做了简单概述,对FANUC数控系统VMC1100B数控加工中心机床的编程知识做了详细的介绍,PRO/ENC模块中的加工操作过程也用了大量的图来说明,更具直观。在第一章,加工中心工艺方案的制定。得到了校徽生产的工艺要求。为第一章的PRO/ENC模块得到参数。从而得到第三章要加工的最终产品。在这里我要感谢周峥嵘等老师的指导,为我的毕业设计提供了良好的条件。编辑本段第一章:数控技术和PRO/E软件技术 1.1数控技术
1.1.1 数控技术的发展趋势
数控技术的应用不但给传统制造业带来了革命性的变化,使制造业成为工业化的象征,而且随着数控技术的不断发展和应用领域的扩大,他对国计民生的一些重要行业(it、汽车、轻工、医疗等)的发展起着越来越重要的作用,因为这些行业所需装备的数字化已是现代发展的大趋势。从目前世界上数控技术及其装备发展的趋势来看,其主要研究热点有以下几个方面。
(一)、高速、高精加工技术及装备的新趋势
效率、质量是先进制造技术的主体。高速、高精加工技术可极大地提高效率,提高产品的质量和档次,缩短生产周期和提高市场竞争能力。为此日本先端技术研究会将其列为5大现代制造技术之一,国际生产工程学会(cirp)将其确定为21世纪的中心研究方向之一。在轿车工业领域,年产30万辆的生产节拍是40秒/辆,而且多品种加工是轿车装备必须解决的重点问题之一;在航空和宇航工业领域,其加工的零部件多为薄壁和薄筋,刚度很差,材料为铝或铝合金,只有在高切削速度和切削力很小的情况下,才能对这些筋、壁进行加工。近来采用大型整体铝合金坯料“掏空”的方法来制造机翼、机身等大型零件来替代多个零件通过众多的铆钉、螺钉和其他联结方式拼装,使构件的强度、刚度和可靠性得到提高。这些都对加工装备提出了高速、高精和高柔性的要求。从emo2001展会情况来看,高速加工中心进给速度可达80m/min,甚至更高,空运行速度可达100m/min左右。目前世界上许多汽车厂,包括我国的上海通用汽车公司,已经采用以高速加工中心组成的生产线部分替代组合机床。美国cincinnati公司的hypermach机床进给速度最大达60m/min,快速为100m/min,加速度达2g,主轴转速已达60 000r/min。加工一薄壁飞机零件,只用30min,而同样的零件在一般高速铣床加工需3h,在普通铣床加工需8h;德国dmg公司的双主轴车床的主轴速度及加速度分别达12*!000r/mm和1g。在加工精度方面,近10年来,普通级数控机床的加工精度已由10μm提高到5μm,精密级加工中心则从3~5μm,提高到1~1.5μm,并且超精密加工精度已开始进入纳米级(0.01μm)。在可靠性方面,国外数控装置的mtbf值已达6 000h以上,伺服系统的mtbf值达到30000h以上,表现出非常高的可靠性。为了实现高速、高精加工,与之配套的功能部件如电主轴、直线电机得到了快速的发展,应用领域进一步扩大。
(二)、5轴联动加工和复合加工机床快速发展
采用5轴联动对三维曲面零件的加工,可用刀具最佳几何形状进行切削,不仅光洁度高,而且效率也大幅度提高。一般认为,1台5轴联动机床的效率可以等于2台3轴联动机床,特别是使用立方氮化硼等超硬材料铣刀进行高速铣削淬硬钢零件时,5轴联动加工可比3轴联动加工发挥更高的效益。但过去因5轴联动数控系统、主机结构复杂等原因,其价格要比3轴联动数控机床高出数倍,加之编程技术难度较大,制约了5轴联动机床的发展。当前由于电主轴的出现,使得实现5轴联动加工的复合主轴头结构大为简化,其制造难度和成本大幅度降低,数控系统的价格差距缩小。因此促进了复合主轴头类型5轴联动机床和复合加工机床(含5面加工机床)的发展。在emo2001展会上,新日本工机的5面加工机床采用复合主轴头,可实现4个垂直平面的加工和任意角度的加工,使得5面加工和5轴加工可在同一台机床上实现,还可实现倾斜面和倒锥孔的加工。德国dmg公司展出dmuvoution系列加工中心,可在一次装夹下5面加工和5轴联动加工,可由cnc系统控制或cad/cam直接或间接控制。
(三)、智能化、开放式、网络化成为当代数控系统发展的主要趋势
21世纪的数控装备将是具有一定智能化的系统,智能化的内容包括在数控系统中的各个方面:为追求加工效率和加工质量方面的智能化,如加工过程的自适应控制,工艺参数自动生成;为提高驱动性能及使用连接方便的智能化,如前馈控制、电机参数的自适应运算、自动识别负载自动选定模型、自整定等;简化编程、简化操作方面的智能化,如智能化的自动编程、智能化的人机界面等;还有智能诊断、智能监控方面的内容、方便系统的诊断及维修等。
为解决传统的数控系统封闭性和数控应用软件的产业化生产存在的问题。目前许多国家对开放式数控系统进行研究,如美国的ngc(the next
generation work-station/machine control)、欧共体的osaca(open system architecture for control within automation systems)、日本的osec(open system environment for controller),中国的onc(open numerical control system)等。数控系统开放化已经成为数控系统的未来之路。所谓开放式数控系统就是数控系统的开发可以在统一的运行平台上,面向机床厂家和最终用户,通过改变、增加或剪裁结构对象(数控功能),形成系列化,并可方便地将用户的特殊应用和技术诀窍集成到控制系统中,快速实现不同品种、不同档次的开放式数控系统,形成具有鲜明个性的名牌产品。目前开放式数控系统的体系结构规范、通信规范、配置规范、运行平台、数控系统功能库以及数控系统功能软件开发工具等是当前研究的核心。网络化数控装备是近两年国际著名机床博览会的一个新亮点。数控装备的网络化将极大地满足生产线、制造系统、制造企业对信息集成的需求,也是实现新的制造模式如敏捷制造、虚拟企业、全球制造的基础单元。国内外一些著名数控机床和数控系统制造公司都在近两年推出了相关的新概念和样机,如在emo2001展中,日本山崎马扎克(mazak)公司展出的“cyberproduction center”(智能生产控制中心,简称cpc);日本大隈(okuma)机床公司展出“it plaza”(信息技术广场,简称it广场);德国西门子(siemens)公司展出的open manufacturing environment(开放制造环境,简称ome)等,反映了数控机床加工向网络化方向发展的趋势。1.2 FANUC数控加工基础知识
在这一节中我们了解FANUC数控加工中心作的一些基础知识。由于内容的要求,我们只作简要的讲解。
1.2.1坐标系/对刀点/换刀点
坐标系:主要坐标系分为机床坐标系和工件坐标系,前者由厂家设定,工件坐标系:又叫编程坐标系,用来确定工件各要素的位置。
刀点:主要分为对刀点和换刀点,前者刀具相对工件运动的起点(又叫程序起点或起刀点)。后者是换刀的位置点,在加工中心有换刀的程序,在加工零件的时候,我们只要调刀就可以执行。
1.2.2常用基本指令
在校徽的加工过程中,我们要用到这些基本指令:进给功能字F用于指定切削的进给速度。主轴转速功能字S用于指定主轴转速。刀具功能字T用于指定加工时所用刀具的编号。辅助功能字M用于指定数控机床辅助装置的开关动作。准备功能G指令,用于刀具的运动路线。如下表1.1是G代码表。
表1.1
G功能字含义表(FANUC—OM系统)
G00 快速移动点定位 G70 粗加工循环
G01 直线插补 G71 外圆粗切循环
G02 顺时针圆弧插补 G72 端面粗切循环 G03 逆时针圆弧插补 G73 封闭切削循环 G04 暂停 G74 深孔钻循环
G17 XY平面选择 G75 外径切槽循环
G18 ZX平面选择 G76 复合螺纹切削循环 G19 YZ平面选择 G80 撤消固定循环 G32 螺纹切削 G81 定点钻孔循环 G40 刀具补偿注销 G90 绝对值编程
G41 刀具半径补偿—左 G91 增量值编程 G42 刀具半径补偿—右 G92 螺纹切削循环
G43 刀具长度补偿—正 G94 每分钟进给量
G44 刀具长度补偿—负 G95 每转进给量
G49 刀具长度补偿注销 G96 恒线速控制
G50 主轴最高转速限制 G97 恒线速取消
G54~G59 加工坐标系设定 G98 返回起始平面
GG65 用户宏指令 G99 返回R平面
1.2.3编程方式
在编程的过程中,有两种编程方式:一种是手工编程;另一种是数控自动编程,自动数控编程又分为:图形数控自动变成、语言数控自动编程和语音数控自动编程三种。手工编程的特点是耗费时间长,容易出现错误,无法胜任复杂形状零件的编程。国外资料统计,手工编程时间与机床实际加工时间平均比是30/1。20%─30%机床不能开动的原因是由于手工编程的时间较长引起的。在这节我们以FANUC系统的编程知识来讲解,在这个设计中,我们是以图形数控自动编程来展开的。
手工编程过程总结:程序的输入:打开程序保护锁,按下PROG键,方式开关选择到编辑状态,DIR检查内存占用情况,输入OXXXX,按INSERT键(报警的话,说明该文件名存),按RESET复位,重新输入文件名。当我们建立了文件名后,文件名要单独占一行,每行的结束要用“;”(按EOB,在按INSERT插入),如果顺序号没有出来,我们可以把顺序号的功能打开(按OFFSET SETTING键,选择SETTING,移动光标键,下面有个顺序号,参数是“0”,说明没有顺序号,所以我们将它改为“1”,打如INPUT,注意只有在MDI方式下才能改参数,否则要报警),进行程序的输入。程序比较长的时候,我们可以将程序号的间隔调小,操作如下:MDI方式下按OFFSET SETTING键,按PAGE,找到“10”所在的参数号,将“10”改为“5”,按INPUT键。程序输入完后,我们可以进行程序的修改:替换(在键盘缓冲区输入要替换的字符,按下ALTER键),删除(删除单个字符,光标移动到要删除的字符按DELETE;删除一段,将光标移动到要删除的那
一段上),程序输入完了后锁上。程序的检索,例如检索O313按下面步骤进行操作方式在编辑状态下—按PRGRM(进入程序画面)—输入查找的程序号O313—按箭头向下的光标键找O313程序号。程序的删除,例如删除O313按下面步骤进行:操作方式在编辑状态下—打开程序保护锁—按PRGRM(进入程序画面)—输入删除的程序号O313—按箭头向下的光标键找O313程序号—键入删除的程序号O313—按DELET—操作完毕、锁上程序保护锁—按功能软件上的LID查看O313程序是否在程序例表中。
1.2.4对刀
对刀的方法直接影响工件的加工精度。所以对于不同的加工零件,我们要选择不同的对刀方法。
X和Y向对刀,对于圆柱孔(或圆柱面)零件时:
(1)我们采用杠杆百分表(或千分表)对刀,这种对刀方法精度高,但是比较麻烦。
(2)采用寻边器对刀,对于精度不太高,比较直观。
X和Y向对刀,当对刀点为互相垂直直线的交点时:
(1)采用刀具试切对刀。(2)采用寻边器对刀,精度高。
在Z向对刀,Z向对刀数据与刀具在刀柄上的装夹长度及工件坐标系的Z向零点位置有关,它确定工件坐标系的零点在机床坐标系中的位置。加工中心采用长度补偿来做。为了损伤工件表面,在本设计中我们采用采用对刀杆对刀。移动机床将刀杆分别从X、Y慢慢靠近工件,若X方向显示的是X1,Y方向显示的是Y1。再反方向得到X2,Y2则分别记下此数据。我们采用G54坐标系,记下X、Y的值,按POS键,输入到G54坐标系中。程序原点X、Y的计算方法如下:
X=(X1-X2)/2 Y=(Y1-Y2)/2
Z轴偏值:将株洲移动到工件的上表面,并与工件有微量的切削,纪录此值。按SYSTEM→SFF/SET→偏值,把Z轴的工件坐标值输入到对应的刀号的刀偏表长度补偿中。把计算的结果输入工件偏置画面中的G54中。
1.2.5刀具长度补偿设置
加工中心上使用的刀具很多,每把刀具的长度和到 Z 坐标零点的距离都不相同,这些距离的差值就是刀具的长度补偿值,在加工时要分别进行设置,并记录在刀具明细表中,以供机床操作人员使用。一般有两种方法:
1、机内设置 这种方法不用事先测量每把刀具的长度,而是将所有刀具放入刀库中后,采用 Z 向设定器依次确定每把刀具在机床坐标系中的位置,具体设定方法又分两种。(1)第一种方法 将其中的一把刀具作为标准刀具,找出其它刀具与标准刀具的差值,作为长度补偿值。具体操作步骤如下: ①将所有刀具放入刀库,利用 Z 向设定器确定每把刀具到工件坐标系 Z 向零点的距离,如图 1.1所示的 A、B、C,并记录下来; ②选择其中一把最长(或最短)、与工件距离最小(或最大)的刀具作为基
准刀,如图 5-2 中的 T03(或 T01),将其对刀值 C(或 A)作为工件坐标系的 Z 值,此时 H03=0 ; ③确定其它刀具相对基准刀的长度补偿值,即 H01= ±│ C-A │,H02= ±│ C-B │,正负号由程序中的 G43 或 G44 来确定。④将获得的刀具长度补偿值对应刀具和刀具号输入到机床中。
图1.1
1.2.6刀具半径补偿设置
进入刀具补偿值的设定页面,移动光标至输入值的位置,根据编程指定的刀具,键入刀具半径补偿值,按 INPUT 键完成刀具半径补偿值的设定。操作如下:按SYSTEM→SFF/SET→输入刀具的半径补偿值。
1.2.7机床操作面板的简单介绍
下图1.2操作面板是FANUC—0I系统的操作面板,图1.3是操作棉板的功能键板。
图1.2
图1.3
显示现在机床坐标的位置(绝对坐标、相对坐标、相对坐标)。
程序功能键,显示编辑的程序或正在运行的程序。
刀具补偿表,设定工件坐标系,参数等。
换档键,在编辑中进行字母和数字的切换。
取消键,用于删除已输入存储器里的最后一个字符。
输入参数和补偿值。程序的删除。
程序的插入,在程序的修改过程中经常用到。替换键,程序的编辑、修改。
图形显示键,观察刀具在加工过程中的图形显示。报警信息显示按钮。
页面键有两个,用来进行页面的前/后翻。机床参数键。
1.3 PRO/E软件技术
1.3.1PRO/E3.0软件的介绍及其安装
Pro/E(Pro/Engineer操作软件)是美国参数技术公司(Parametric Technology Corporation,简称PTC)的重要产品。在目前的三维造型软件领域中占有着重要地位,并作为当今世界机械CAD/CAE/CAM领域的新标准而得到业界的认可和推广,是现今最成功的CAD/CAM软件之一。Pro/E第一个提出了参数化设计的概念,并且采用了单一数据库来解决牲的相关性问题。另外,它采用模块化方式,用户可以根据自身的需要进行选择,而不必安装所有模块。Pro/E的基于特征方式,能够将设计至生产全过程集成到
一起,实现并行工程设计。它不但可以应用于工作站,而且也可以应用到单机上。Pro/E采用了模块方式,可以分别进行草图绘制、零件制作、装配设计、钣金设计、加工处理等,保证用户可以按照自己的需要进行选择使用。2006年4月发布的Pro/ENGINEER Wildfire 3.0(野火3.0),它将Pro/E 的版本上升到了前所未有的高度。它相对与以前的版本,在功能上更加的强大,更加适应“人本”性。
Pro/E3.0安装操作如下:
1.运行虚拟光驱,再将BIN文件装入光驱,自动运行安装程序(下载版必须由虚拟光驱运行)。
2.选择国家:中国。
3.接受协议。
4.开始安装服务器。
5.填入你本机的ID(ID如上图遮盖处的PTC主机ID,区分大小写)点crack文件中的generate,得到license.dat文件,拷贝文件到你找得到的地方。
6.指定安装目录和许可证,之后点安装按钮。
7.上一步安装完成后,重新启动电脑后。查看服务器是否运行(控制面板>管理工具>服务),下图所示即为已经运行(注:到了这里,这个服务一定要成功并保持运行,否则安装好了也无法使用)。
8.再次运行安装程序,选择安装Pro/ENGINEER。
9.选择安装语种,但中文默认是已经安装的。注意:野火3.0中已经不再使用lang=chs也能显示中文(建议安装所有模块,除了帮助文件,否则很多模块无法运行)。
10.填写主机名,这一步与2.0是不同的。
11.点击下一步,一直安装到提示插入第2张光盘,第3张光盘。安装完成后。
1.3.2 在PRO/E中校徽的特征建模
贵大校徽如下图1.4所示
图1.4
(一)、在Pro/ENGINEER Widfire中单击菜单栏中的新建按钮,打开“新建文件”对话框,文件类型选择为“零件”,子类型选择“实体”,取消使用默认模板,单击“确定”按钮,在“名称”对话框中选择“mmns-part-solid”单击确定按钮后进入零件设计模式。
(二)、单击特征工具栏中的拉伸按钮,系统弹出“拉伸”特征操控板,在操控板中打开“放置”上滑面板,单击“定义”按钮,弹出“草绘”对话框,选择TOP,RIGHT分别作为“草绘”平面和参考平面。单击“确定”进入“草绘”界面。
(三)、绘制一个200 200的正方形,单击确定按钮 回到“拉伸”特征操控板,输入拉伸高度为7,单击确定按钮 得到一个正方体。
(四)、在主菜单中选择“视图(V)→颜色和外观”在外观编辑器中选择一种颜色,在“指定”按钮中选择“曲面”指定长方体的前面单击确定,然后选择外观编辑器中的“映射→贴花”在下一层菜单中的“外观放置”中选择“ ”按钮来增加“纹理”,然后双击增加的图片,单击“关闭”再单击“关闭”完成“贴花”的命令如图1.5所示:
图1.5
(五)、在菜单栏中单击拉伸按钮,系统弹出“拉伸”特征操控板,在操控板中打开“放置”上滑板,单击“定义”按钮,选择长方体的TOP和RIGHT分别作为“草绘”平面和参考
平面。单击“确定”进入“草绘”界面。
(六)、在“草绘”状态下单击样条曲线按钮,用样条曲线去逼近中间贵字图形的轮廓。进行修改,达到满意后,单击完文字按钮,选取行的第二点,确定文本高度和方向,同时出现文本框如图1.6,在输入区中输入“GUIZHOUUNIVERSITY”,选择沿曲线放置,选择曲线圆,单击完成,进行修改,达到满意后,用同样的方法输入“贵州大学”,然后单击样条曲线按钮,用样条曲线去逼近中间文字图形的轮廓,进行修改,达到满意后,如图1.7保存XIAOHUI.prt。成后单击确定按钮,回到上一级对话框输入拉伸深度为2,单击确定按钮完成建模。最后的三维图形如1.8图:
图1.6
图1.7 图1.8 1.4 PRO/NC模块简介
PRO/E是由美国参数科技公司(PTC)开发,是一个全方位的三维产品开发综合性软件,集成了零件设计、产品、装配、模具开发、数控加工、钣金设计、铸造件设计、造型设计、自动测量、机构仿真、应力分析、电路布线等功能模块与一体。广泛应用与电子、机械、模具、工艺设计、汽车、航天、服装等行业。是当今世纪最为流行的CAD/CAM软件之一。PRO/NC模块能生成驱动数控机床加工PRO/E零件所必须的数据和信息,能够生成数控加工的全过成。PRO/E系统的全相关统一数据库能将设计模型变化体现到加工信息当中去,利用它所提供的工具将设计模型处理成ASCII码刀位数据文件,这些文件经过后处理变成数据加工数据。PRO/NC生成的数控加工文件包括刀位数据文件、刀具清单、操作报告、中间模型、机床控制文件等。PRO/NC模块应用范围比较广,包括数控车、数控铣、加工中心等。下表1.2是具体的应用范围。
表1.2
模块名称 应用范围
PRO/ENC—车床 一个转塔车床及钻孔加工
二个转塔车床及钻孔加工
PRO/ENC—铣床 二轴半铣床加工
3~5轴铣床加工
PRO/ENC—铣削/车削 2~5轴车铣综合加工
PRO/ENC—Wendm 2轴或4轴线切割加工
1.5 数控自动加工的加工流程
PRO/NC进行数控加工时,先用PRO/E的造型模块将零件的几何图形绘制在计算机上,形成零件的设计模型,然后直接调用PRO/E的数控编程模块,定义操作,选择加工方法、定义刀具、加工参数和加工区域,进行刀具轨迹处理,并由计算机的自动对零件加工轨迹的各个节点进行计算和处理。从而生成刀位数据文件;经过相应的后置处理,自动生成数控加工程序,并在计算机上动态的显示其刀具的加工轨迹如图1.9流程:
设计模型 → 制造模型 ← 毛坯
夹具设置 → 制造设置数据 ← 机床数据和
刀具数据
↓
操作设置
↓
定义NC工序
↓
生成刀位数据文件 ↓
后置处理 ↓
动态仿真 ↓
→ → → ↓ ↑ ↓ ↓ ↓
修改← N ← 正确→ Y → NC机床
图1.9
1.6校徽在 Pro/NC中的编程实例
在建立好模型的基础上,利用Pro/NC进行数控加工的自动编程。下面的实例将对加工的一般过程进行说明:
1.在Pro/ENGINEER Widfire中打单击系统工具中新建按钮,打开“新建文件”对话框,选择文件类型为“制造”,子类型选择“NC组件”,取
消使用默认模板,单击“确定”按钮,在“文件选项”对话框中选择“mmns-mfg-nc”单击确定按钮后进入制造加工模式。
2.在【菜单管理器】中选择 → →,选择设计模XIAOHUI.prt。在系统弹出的【元件放置】对话框,选择,在缺省的状态下放置参考模型。
3.在【菜单管理器】中选择 → →,在消息提示区中输入工件的名称XH,单击在,在创建特征下拉菜单中单击,在实体选向中单击,在放置选向中,单击放置,再单击定义,系统弹出草绘对话框如图1.10,选择如图1.11的平面来作为参照。单击,按做CTRL,选择如图1.12所示的平面作为参照平面,单击参照对话框的关闭。单击,画210mm 210mm的矩形。单击,在框中输入10.00,单击 和,完成的图形如图1.13。
图1.10 图1.11
4.在【菜单管理器】中选择【制造设置】命令,系统弹出如图1.14所示。同时弹出操作设置对话框,如图1.15。用来对机床、刀具、机床坐标系和退刀平面的设置。
图1.11 图1.12
图1.13 图1.14
5.单击对话框中的 图标, 再单击,选择。出现刀具设置对话框,如图1.16所示。在刀具设置对话框中输入刀具的材料、长度等参数。
图1.15 图1.16
设置好后单击,单击。加工零点设置:单击加工零点处的,选择 坐标,系,拾取模型于其内创建坐标系,选择整个图形,图形出现红色线条,这时出来坐标对话框,按住CTRL选择如图1.17的三个面创建坐标,单击,根据具体的机床进行设置。设置后如下图1.18所示。
1.17 图1.18
6.退刀面设置,单击退刀曲面的,在退刀选取中单击,输入Z深度,如图1.19,图1.19
单击,在操作设置对话框中单击,则操作OP010已经成功创建。
7.参数设置,在【菜单管理器】中选择 → →,单击,序列设置如图1.20,单击刀具设置对话框的。在制造参数下拉菜单中选择,完成设置如图1.21所示。
图1.20 图1.21
单击 → → → → →,单击。在序列坐标中单击,选取 坐标系。重复对刀面的设置。
8.创建加工窗口,在定义窗口的下拉菜单中选择,在消息提示区输入窗口的名称,单击,在铣削窗口下拉菜单中选择,选取垂直曲面、边或顶点,截面将相对于它们进行尺寸标注和约束,选择要创建窗口的图形,选择如下参照,单击关闭。单击,画加工窗口,204mm 204mm的矩形。单击,单击加工窗口的。单击 →。
9.轨迹演示,单击,计算CL轨迹,单击 图1.22所示。
图1.22
图1.23
选择图1.22中的 按钮,则可以见到刀具的走刀路线。
10.数控后处理系统
Pro/ENGINEER系统所生成的ASCII格式的刀位(CL,Cutter Location)数据文件,并不是能被数控机床所识别。在特定的数控机床和刀位数据之间需要一个“翻译”,将CL数据转化为MCD文件。这个转换的过程就是后置处理。由于数控系统没有一个完全统一的标准,不同厂家采用不同的数控代码,其代码功能之间并不兼容。因此,同样一个机械零件,同样的CL数据,在不同的机床上加工,其结果是不一样的。为了使Pro/NC生成的刀位数据能够适应不同的机床,就需要建立一个文件将目前所有厂商的数控系统保存起来,这种文件就是选配文件。当用户指定了机床的数据系统后,后置处理程序就能从选配文件中调用相关数据,满足配置选项的要求。
(一)创建刀位数据文件
从菜单管理器的【制造】菜单中选择【CL数据】命令,分别选择“输出”“选取一”“NC序列”“1.粗加工,Operation OP010”选择【轨迹】菜单中的【文件】命令,设置如图1.24所示单击完成,完成“保存副本”后系统弹出对话框直接单击完成。在后置处理列表中选择第一个处理器。出现图1.25,在其中输入程序起始号,输入后系统显示处理完成后的信息窗口,单击回车,关闭信息窗口这就完成了程序的生成。
图1.24
单击 的。
图1.25
用记事本打开如下图1.26
图1.26 编辑本段第二章:加工中心工艺方案的制定 2.1零件的工艺分析
2.1.1分析图样
(1)尺寸标注方法分析
(2)零件图的完整性与正确性分析(3)零件技术要求分析(4)零件材料分析
有机玻璃属于高分子聚合物,由聚甲基丙烯酸甲酯聚合而成,英释名叫“亚克力”。代号是PMA。密度是1.19-1.20g/cm3,硬度相当于铝,没有固定熔点,在90摄氏度开始软化,在104摄氏度呈熔融状态。透明度高为92%,透过的紫外线多达73%,与普通玻璃相比,机械强度、韧性是普通玻璃的10倍以上,重量仅1/2,抗碎裂性是12—18倍,有突出的耐候性、耐老化性,溶于三氯甲烷(氯仿),用油性记号笔在上面画线不易脱落。2.2加工设备的选用
在这里我们选择的是南通VMC1100B数控加工中心机床,技术参数如下表2.1
表2.1 VMC1100B 行程 Unit 参数 X轴行程 mm 1100 Y轴行程 mm 560 Z轴行程 mm 575 主轴端面至工作台面距离 mm 200-775 工作台中心至立柱导轨面距离 mm 590 工作台面积 mm 550×1200 工作台最大承重 kg 800 T型槽槽宽 mm 4×18H8 主轴转速 rpm 8000 主轴孔锥度-BT-40(7:24)x、y轴快速位移 m/min 24 z轴快速位移 m/min 18 进给速度范围 m/min 1—15 刀具数 pcs 24 刀具最大外径/相邻无刀 mm 100/180 刀具最大长度 mm 300 换刀时间(刀-刀)sec 1.8 主轴电机 kw 11/15 X/Y/Z电机 kw 3/3/4 定位精度x mm 0.032 定位精度y、z mm 0.025 重复定位精度x mm 0.018 重复定位精度y、z mm 0.015 机床总高 mm 3162 占地面积(长×宽)mm 3340×3065
机床重量(毛重)kg 8200 2.3零件的工艺设计和夹具的选择
2.3.1加工方法的选择以下是几种常见的平面加工方法
下图2.1是平面加工的精度和所用的加工方法。(注明:Ra的数值是微米)
图2.1
由于在数控加工中心上加工零件,加工精度是很高的。所以我们根据加工的要求选择方
法省去了半精加工和精加工,粗铣直接就可以达到我们的要求了。加工工序的划分:
(1):按所用刀具进行划分
(2):按安装次数划分
(3):按粗、精加工划分
(4):按加工部位划分
在本设计中我们采用的是粗、精加工来划分,所以我们划分为一个阶段即粗加工阶段。
2.3.2确定加工顺序和工序
工艺顺序的安排原则:先加工基准面
(1)一般情况下先加工平面,后加工孔
(2)先加工主要表面,再加工次要表面
(3)先安排粗加工工序,再安排精加工工序
对于我们要加工的零件来说,由于零件的特殊性,我们加工的只有内外轮廓,所以我们在选择加工工艺顺序是就简单了,直接一道工序就完成了。
2.3.3确定装夹方案和选用夹具
(一)、定位原理
我们采用六点定位原理进行工件的定位,要使工件沿某个方向的位置确定,即要限制该方向上的自由度,当工件的六个自由度被夹具限制即确定了工件的正确位置。
(二)、装夹方式
由于加工零件的要求我们选择夹具中装夹,它是由夹具上的定位元件来确定工件的位置,由夹具上的夹紧装置进行夹紧。夹具安装在机床上,并用夹紧元件进行夹紧。这样易于保证加工精度要求,操作简单方便,效率高,应用十分广泛。由于数控加工的要求,我们对夹具的要求很多,比如精度要求、定位要求、空间要求、快速重调要求。在本设计中有现成的夹具。我们采用压板装夹工件,原因是:在加工中心上,由工艺分析得到我们的加工内容,铣出的平面平行于工作台,所以只要把基准安装得与工
作台平行和贴合,就能铣出准确度较高的平面,尤其是垂直进给时,由于工作台的“零位”准确度的影响,其精度更高,从而避免了夹具本身精度的影响。
准备材料有压板、垫铁、T形螺栓(或T形螺母)等。
使用压板时应注意:
1.压板的位置要安排得适当,要压在工件刚性最好的地方,夹紧力的大小也应该适当,不然刚性差的零件容易产生变形
2.垫铁必须正确地放在压板下,高度要与工件相同或略高于工件,否则会降低压紧效果。
3.压板螺栓必须尽量靠近工件,并且螺栓到工件的距离应小于螺栓到垫铁的距离,这样 就能增大压紧力。
4.螺栓要拧紧,否则会应压力不够而使工件运动,以免损坏工件、机床和刀具。
5.在工件的光洁表面与压板之间,必须安置垫片,这样可以避免光洁表面因受压而损伤。
6.避免出现欠定位。
2.4选择刀具
加工中心对刀具的基本要求是:
1.良好的切削性能:能承受高速切削和强力切削并且性能稳定;
2.较高的精度:刀具的精度指刀具的形状精度和刀具与装卡装置的位置精度;
3.配备完善的工具系统:满足多刀连续加工的要求。
加工中心所使用刀具的刀头部分与数控铣床所使用的刀具基本相同,数控机床上的刀具选择比较严格,有些刀具是专用的。要求:工件材质,加工轮廓类型,机床允许的切削用量以及刚性和耐用度等。编程时,要规定刀具的结构尺寸和调整尺寸。对自动换刀的数控机床,在刀具装到机床上以前,要在机外预调装置(如对刀仪对刀)中,根据编程确定的参数,调整到规定的尺寸或测出精确的尺寸。在加工前,将刀具有关尺寸输入到数控装置。在铣削的加工中,我们经常用到立铣刀。直径小的立铣刀一般制成带柄的形式,比如直柄立铣刀(2-7mm)。立铣刀直径的选择主要应考虑工件加工尺寸的要求,并保证刀具所需功率在机床额定功率范围以内。如系小直径立铣刀,则应主要考虑机床的最高转数能否达到刀具的最低切削速度(60m/min)。立铣刀半径可以按以下经验来算:R=(0.8-0.9)min, 其中R表示立铣刀半径,rmin表示零件内轮廓的最小曲率半径。铣刀齿数应该根据工件材料和加工要求选择,一般铣削脆性材料或半精加工、精加工时,选择细齿铣,粗加工则选择粗齿铣刀。由于铣削的是有机玻璃,所以采用顺铣,顺铣可以减小表面粗糙度。粗齿直柄立铣刀的选择如表2.2
表2.2
直径
(mm)总长
(mm)切削部分长度(mm)柄部直径(mm)前角(°)后角(°)螺旋角(°)齿数
2(2.5)32 6 3 15 18 40-45 3 3 36 8 3 15 18 40-45 3 4 40 10 4 15 18 40-45 3 „ „ „ „ „ „ „ „
2.5切削用量的确定
(1)主轴转速的确定:主轴转速与切削速度关系为:N=1000V/ЛD
V刀具的切削速度m/min,N主轴转速r/min,D刀具直径mm在这里可以得出我们加工刀具的直径D=mm。
(2)刀具进给速度与齿数的关系为:F=Fz*N*Z
F刀具的切削速度m/min,Fz刀具的每齿进给量mm/r,N 主轴的转速r/min,Z刀具的齿数在这里可以得出刀具进给速度F =m/min。编辑本段第三章:零件的加工 3.1零件加工前机床的基本操作
3.1.1开机
在开机前应该检查辅助装置的工作状态是否满足要求:润滑油油池的油面高度、气泵的压力、电器柜的门是否关上。然后将电源开关由OFF打到ON,按下接通键(接通数控系统的电源)接通侍服驱动电源(急停开关顺时针旋转使它复位,按下机床复位键)。
3.1.2回机床原点
方式选择开关选回零(手动选择,按回零轴的正方向,回零成功则回零指示灯亮):先Z轴回零,然后Y轴回零,最后X轴回零。按POS键,看机床坐标系是不是零。
3.13机床的调试
机床功能调试是指机床试车调整后,检查和调试机 床各项功能的过程。调试前,首先应检查机床的数控 系统及可编程控制器的设定参数是否与随机表中的数 据一致。然后试验各主要操作功能、安全措施、运行 行程及常用指令执行情况等,如手动操作方式、点动 方式、编辑方式(EDIT)、数据输入方式(MDI)、自动运行方式(MEMOTY)、行程的极限保护(软件 和硬件保护)以及主轴挂档指令和各级转速指令等是
否正确无误。最后检查机床辅助功能及附件的工作是 否正常,如机床照明灯、冷却防护罩和各种护板是否 齐全;切削液箱加满切削液后,试验喷管能否喷切削 液,在使用冷却防护罩时是否外漏;排屑器能否正常 工作;主轴箱恒温箱是否起作用及选择刀具管理功能 和接触式测头能否正常工作等。对于带刀库的数控加工中心,还应调整机械手的位 置。调整时,让机床自动运行到刀具交换位置,以手 动操作方式调整装刀机械和卸刀机械手对主轴的相对 位置,调整后紧因故中调整螺钉和刀库地脚螺钉,然 后装上几把接近允许质量的刀柄,进行多次从刀库到 主轴位置的自动交换,以动作正确、不撞击和不掉刀 为合格。3.2 CIMCO EDIT V5简体中文版介绍
我们用这CIMCO EDIT V5简体中文版这个软件,下图3.1是这个软件界面的标题栏部分。
图3.1 3.3程序DNC传输/模拟NC刀具
在数控机床的程序输入操作中,如果采用手动数据输入的方法往CNC中输入,一是操作、编辑及修改不便;二是CNC内存较小,程序比较大时就无法输入。为此,我们必须通过传输(电脑与数控CNC之间的串口联系,即DNC功能)的方法来完成。我们针对这种情况,选用这种方法。计算机→电缆→机床控制面板,具体的操作如下:
机床操作:
选择EDIT编辑模式→按PRGRM(程序键)→输入O××××(程序名)→INPUT键
计算机操作:
选择FILE →COMMUNIC →选择要传输的程序→ENTER
现在计算机数控机床已经配有软盘驱动器,这样只需将加工程序存在软盘中,然后用软盘驱动器把加工的程序读入机床内存即可,操作方便。本机床RS232通讯口与外设计算1.机连机进行程序的传输或DNC操作时必须注意以下事项:
2.外设计算机与数控机床要有同一接地点,并保证可靠接地。
3.通讯电缆两端须装有光电隔离部件,以分别保护数控系统和外设计算机。
4.通电情况下,不允许插拔通讯电缆。
5.雷雨季节须注意打雷期间应将通讯电缆拔下,尽量避免雷击,引起接口损坏。
2.FANUC系统串口线路的连接
FANUC系统数控机床的DNC采用9孔插头(与电脑的COM1或COM2相连接)及25针插头(与数控机床的通信接口相连接)用网络线连接。25针串行接口的编号见图1;9孔串口与25针串口的焊接关系见图3.5。
图3.5孔串口与25针串口的焊接关系
单击文件→打开→选择我们保存的NC生成的程序→单击打开,出现NC程序如图3.2。
单击程序模拟→在下拉菜单中选择窗口文件模拟。单击图3.3中的播放,看其加
工是否满足我们的要求。在其中,我们可以进行窗口的旋转、平移、缩放等。满意后,模拟图形如图3.4所示。
图3.3
图3.2
图3.4 3.4加工程序的执行方式
对于执行的加工程序大于机床内存空间,则要采用DNC方式,即将机床与计算机连接,计算机的内存作为存储缓冲区,加工程序由计算机一边传输,机床一边执行。
机床操作:
打开DNC→输入加工参数→选择AUTO→(自动执行模式)→按(START)启动键
计算机操作:
选择FILE→COMMUNIC→选择要传输的程序→ENTER 3.5加工程序试运行
执行加工程序,但不做切削工件。目的是检查程序是否符合数控系统的要求,在执行过程中,刀具轨迹、机床动作是否正确,使用工装是否合理。
操作如下:
1.装夹,找正工件。
2.按照程序及工艺文件的要求,将刀具对号装入刀库。3.对刀、输入工件坐标系及刀具补偿值等参数。4.沿+Z向平移工件坐标系到安全高度。5.将切削进给速度调至低档。6.启动机床。
7.逐步提高切削进给速度。
3.6工件试切
目的是:
1.检查程序数据是否正确,切削用量是否合理。2.加工精度是否能达到保证。
3.工艺是否合理,加工变形是否能得到控制。4.检查加工的工件是否满足加工要求。
3.7测量
我们用游标卡尺来测量,看看加工出来的零件是否满足我们的加工要求,如果测量结果达到设计要求目的,说明加工成功。在测量零件是应该注意:
1.机床远离工件,主轴停止运动。
2.冷却液关掉。
3.要把飞边去掉。
当我们加工完零件后,把程序存好档,保护锁锁好,以免他人改动,将机床调整平衡,以免机床自身的重量使机床变形,为下次回零做好准备。清理干净机床,最后关掉机床电源。编辑本段设计总结
在大四的最后一个学期,我过得既充实又繁忙.从选题的那天起,我就开始了我的毕业设计。在毕业设计的这段时间里,我有很多的感触,它带给我的价值是巨大的,这将对我的以后工作产生重要的影响。
给我最深的就是:一个人不可能做好一件大事,它必须是所有智慧的融合。让我最深刻的就是PRO/E的贴花。我的设计题目是“贵大校徽”CAD/CAM实践。我要求把贵大校徽的图案放到PRO/E的草绘中去,然后进行描线。但是就不知道怎么做。在网上也找过了。后来在指导老师的提示下,我终于完成了这项工作。还有个就是,我对复杂零件的编程不是很害怕了。因为PRO/E可以帮助我完成那些烦琐的过程,只要求对零件的建模熟练就差不多了。当然基础的东西是不能丢的。
在这次的设计中,老师“放手”我们去做。在这过程中我学会了独立的思考问题和发现问题。像NC程序的生成,开始的时候我去了好几次的计算机房,但是怎么也生不出程序来,后来我才发现我选择的坐标不对。经过几次的摸索,我终于找到了问题的答案。
通过这次的设计,对办公自动化、CAD2004、pro/e、HYPERSNAP6、CIMCO EDIT V5等软件的基本运用有了更深刻的了解。对我们所学习的专业知识有了更清楚的认识,是我不知不觉的喜欢上了我们的专业。现在我可以说,我完全可以单独完成一个简单产品的设计加工。在这里我也深刻的知道,我在实践方面是很不够的,这将在以后的工作中慢慢去领悟、学习。编辑本段参考文献
[1]朱天明主编 专业色彩搭配图典[M] 化学工业出版社
[2]韩鸿鸾主编 数控铣工加工中心操作[M] 机械工业出版社
[3]陈宏钧主编 典型零件机械加工生产实例[M] 机械工业出版社
[4]徐衡主编 FANUC系统数控铣床和加工中心培训教程[M] 化学工业出版社
[5]刘新佳主编 切削加工简明适用手册零点工作室[M] 化学工业出版社
[6]刘新佳主编 切削加工简明适用手册零点工作室[M] 化学工业出版社
[7]上海市金属切削技术协会主编 金属切削手册[M] 上海科学技术出版社
[8]PRO/ENGINEER Wildfire3.0[M] 机械工业出版社等
致谢
毕业设计能顺利完成,是因为在设计当中我得到了许多人的帮助。首先非常感谢我的指导教师周峥嵘。从课题的选取、研究、到总体设计的结束。他都帮助我解决了不少困难。为了我们的毕业设计,他到处给我们找资料,鼓气。在设计中我遇到的一个大问题就是没有设计电脑,周老师就把学校的设备给我们拿出来搞设计。我羡慕周老师,为了带我们毕业生搞设计,他天天都要学习。每个学生的课题不一样,但是他对每一个课题都要有独到的见解。他平易近人,鼓励我们积极的投入到设计中。随时监导我们的设计。在此,我向你表示我真诚的谢意!工程实训中心的许多老师从设计的开始到我们的毕业设计的结束,教我们的机床操作。在设计中还有帮助我的身边同学。在此,我感谢帮助我的人。当然还有我的父母。10多年的默默辛劳,我要对你们说:“你们的付出是伟大的,你们的付出没有白费,因为我很争气。”
2008年6月
第三篇:数控技术论文
浅谈数控技术的发展现状及趋势
(天津电大 理工学院 2011秋数控技术专业张春亮)
摘要:随着计算机技术的高速发展,传统的制造业开始了根本性变革,各工业发达国家投入巨资,对现代制造技术进行研究开发,提出了全新的制造模式。在现代制造系统中,数控技术是关键技术,它集微电子、计算机、信息处理、自动检测、自动控制等高新技术于一体,具有高精度、高效率、柔性自动化等特点,对制造业实现柔性自动化、集成化、智能化起着举足轻重的作用数控技术的应用不但给传统制造业带来了革命性的变化,使制造业成为工业化的象征,而且随着数控技术的不断发展和应用领域的扩大,他对国计民生的一些重要行业(IT、汽车、轻工、医疗等)的发展起着越来越重要的作用,因为这些行业所需装备的数字化已是现代发展的大趋势
一、数控技术的介绍
数控技术是用数字信息对机械运动和工作过程进行控制的技术,数控装备是以数控技术为代表的新技术对传统制造产业和新兴制造业的渗透形成的机电一体化产品,即所谓的数字化装备。数控技术是综合了计算机技术、微电子技术、自动化技术、电力电子技术及现代机械制造技术等的柔性制造自动化技术。数控技术也叫计算机数控技术(Computer Numerical Control),目前它是采用计算机实现数字程序控制的技术。这种技术用计算机按事先存贮的控制程序来执行对设备的控制功能。由于采用计算机替代原先用硬件逻辑电路组成的数控装置,使输入数据的存贮、处理、运算、逻辑判断等各种控制机能的实现,均可通过计算机软件来完成。
二、我国数控技术的发展现状及战略思考
20世纪人类社会最伟大的科技成果是计算机的发明与应用,计算机及控制技术在机械 制造设备中的应用是世纪内制造业发展的最重大的技术进步。自从1952年美国第1台数控铣床问世至今已经历了50多个年头。数控设备包括:车、铣、加工中心、镗、磨、冲压、电加工以及各类专机,形成庞大的数控制造设备家族,每年全世界的产量有10~20万台,产值上百亿美元。目前,国际上最大的数控系统生产厂是日本FANUC公司,1年生产5万套以上系统,占世界市场约40%左右,其次是德国的西门子公司约占15%以上,再次是德海德汉尔、西班牙发格、意大利菲地亚、法国的NUM、日本的三菱、安川。国产数控系统厂家主要有华中数控、北京航天机床数控集团、北京凯恩帝、北京凯奇、沈阳艺天、广州数 控、南京新方 达、成都广泰等,国产数控生产厂家规模都较小,年产都还没有超过300~400套。
长期以来,国产数控机床始终处于低档迅速膨胀,中档进展缓慢,高档依靠进口的局面,特别是国家重点工程需要的关键设备主要依靠进口,技术受制于人。究其原因,国内本土数控机床企业大多处于“粗放型”阶段,在产品设计水平、质量、精度、性能等方面与国外先进水平相比落后了5-10年;在高、精、尖技术方面的差距则达到了10-15年。同时中国在应用技术及技术集成方面的能力也还比较低,相关的技术规范和标准的研究制定相对滞后,国产的数控机床还没有形成品牌效应。同时,中国的数控机床产业目前还缺少完善的技术培训、服务网络等支撑体系,市场营销能力和经营管理水平也不高。更重要原因是缺乏自主创新能力,完全拥有自主知识产权的数控系统少之又少,制约了数控机床产业的发展。国外公司在中国数控系统销量中的80%以上是普及型数控系统。如果我们能在普及型数控系统产品快速产业化上取得突破,中国数控系统产业就有望从根本上实现战略反击。同时,还要建立起比较完备的高档数控系统的自主创新体系,提高中国的自主设计、开发和成套生产能力,创建国产自主品牌产品,提高中国高档数控系统总体技术水平。
从国际上来看,对我国数控技术水平和产业化水平估计大致如下:技术水平上,与国外先进水平大约落后10~15年,在高精尖技术方面则更大;产业化水平上,市场占有率低,品种覆盖率小,还没有形成规模生产,功能部件专业化生产水平及成套能力较低,外观质量相对差,可靠性不高,商品化程度不足,国产数控系统尚未建立自己的品牌效应,用户信心不足;可持续发展的能力上,对竞争前数控技术的研究开发、工程化能力较弱;数控技术应用领域拓展力度不强;相关标准规范的研究、制定滞后。
分析存在上述差距的主要原因有:认识方面,对国产数控产业进程艰巨性、复杂性和长期性的特点认识不足;对市场的不规范、国外的封锁加扼杀、体制等困难估计不足;对我国数控技术应用水平及能力分析不够;体系方面。从技术的角度关注数控产业化问题的时候多,从系统的、产业链的角度综合考虑数控产业化问题的时候少;没有建立完整的高质量的配套体系、完善的培训、服务网络等支撑体系;机制方面。不良机制造成人才流失,又制约了技术及技术路线创新、产品创新,且制约了规划的有效实施,往往规划理想,实施困难;技术方面。企业在技术方面自主创新能力不强,核心技术的工程化能力不强。机床标准落后,水平较低,数控系统新标准研究不够。
我国是制造大国,在世界产业转移中要尽量接受前端而不是后端的转移,即要掌握先进制造核心技术,否则在新一轮国际产业结构调整中,我国制造业将进一步“空芯”。我们以资源、环境、市场为代价,交换得到的可能仅仅是世界新经济格局中的国际“加工中心”和“组装中心”,而非掌握核心技术的制造中心的地位,这样将会严重影响我国现代制造业的发展进程。我们应站在国家安全战略的高度来重视数控技术和产业问题,首先从社会安全看,因为制造业是我国就业人口最多的行业,制造业发展不仅可提高人民的生活水平,而且还可缓解我国就业的压力,保障社会的稳定;其次从国防安全看,西方发达国家把高精尖数控产品都列为国家的战略物质,对我国实现禁运和限制,“东芝事件”和“考克斯报告”就是最好的例证。
从我国基本国情的角度出发,以国家的战略需求和国民经济的市场需求为导向,以提高我国制造装备业综合竞争能力和产业化水平为目标,用系统的方法,选择能够主导21世纪初期我国制造装备业发展升级的关键技术以及支持产业化发展的支撑技术、配套技术作为研究开发的内容,实现制造装备业的跨跃式发展。强调市场需求为导向,即以数控终端产品为主,以整机(如量大面广的数控车床、铣床、高速高精高性能数控机床、典型数字化机械、重点行业关键设备等)带动数控产业的发展。重点解决数控系统和相关功能部件(数字化伺服系统与电机、高速电主轴系统和新型装备的附件等)的可靠性和生产规模问题。没有规模就不会有高可靠性的产品;没有规模就不会有价格低廉而富有竞争力的产品;当然,没有规模中国的数控装备最终难以有出头之日。在高精尖装备研发方面,要强调产、学、研以及最终用户的紧密结合,以“做得出、用得上、卖得掉”为目标,按国家意志实施攻关,以解决国家之急需。在竞争前数控技术方面,强调创新,强调研究开发具有自主知识产权的技术和产品,为我国数控产业、装备制造业乃至整个制造业的可持续发展奠定基础。
三、数控技术的发展趋势
从目前世界上数控技术及其装备发展的趋势来看,数控系统正在向电气化、电子化、高速化、精密化等方面高速发展,其主要研究热点有以下几个方面:
1、高速、高效、高精度、高可靠性
要提高加工效率,首先必须提高切削和进给速度,同时,还要缩短加工时间;要确保加工质量,必须提高机床部件运动轨迹的精度,而可靠性则是上述目标的基本保证。效率、质量是先进制造技术的核心。高速、高精加工技术可极大地提高效率,提高产品的质量和档次,缩短生产周期和提高市场竞争能力。为了实现高速、高精加工,与之配套的功能部件如电主轴、直线电机得到了快速的发展,应用领域进一步扩大。由于采用了高速CPU芯片、RISC芯片、多CPU控制系统以及带高分辨率绝对式检测元件的交流数字伺服系统,同时采取了改善机床动态、静态特性等有效措施,机床的高速高精高效化已大大提高
2、复合加工、多轴化
多轴联动加工,以减少工序辅助时间为主要目的的复合加工,正朝着多轴、多系列控制功能方向发展。数控机床的工艺复合化是指工件在一台机床上一次装夹后,通过自动换刀、旋转主轴头或转台等各种措施,完成多工序、多表面的复合加工,采用5轴联动对三维曲面零件的加工,可用刀具最佳几何形状进行切削,不仅表面光洁度高,而且效率也大幅度提高。机床复合技术进一步扩展,随着技术进步,复合加工技术日趋成熟,包括铣-车复合、车铣复合、车-镗-钻-齿轮加工等复合,车磨复合,成形复合加工、特种复合加工等,复合加工的精度和效率大大提高。“一台机床就是一个加工厂”、“一次装卡,完全加工”等理念正在被更多人接受,复合加工的多轴机床发展正呈现多样化的态势。
3、智能化
随着工业自动化的需求,数控系统的智能化程度在不断的得到提高。智能化不仅贯穿在生产加工的全过程,还要贯穿在产品的售后服务和维修中。其内容包括以下几个方面:为追求加工效率和加工质量方面的智能化,如加工过程的自适应控制,工艺参数自动生成;为提高驱动性能及使用连接方便的智能化,如前馈控制、电机参数的自适应运算、自动识别负载自动选定模型、自整定等;简化编程、简化操作方面的智能化,如智能化的自动编程、智能化的人机界面等;还有智能诊断、智能监控方面的内容、方便系统的诊断及维修等。今后的数控系统将计算机智能技术,网络技术、多媒体技术、CAD/CAM、伺服控制、自适应控制、动态数据管理及动态刀具补偿、动态仿真等高新技术融于一体,形成严密的制造过程,即称为智能闭环控制体系,这种技术是利用传感器获得适时的信息,以增强制造者取得最佳产品的能力。智能数控系统通过对影响加工精度和效率的物理量进行检测、建模、提取特征、自动感知加工系统的内部状态及外部环境,快速做出实现最佳目标的智能决策,对进给速度、切削深度、坐标移动、主轴转速等工艺参数进行实时控制,使机床的加工过程处于最佳状态。自动调整干涉防碰撞功能、断电后工件自动退出安全区断电保护功能、加工零件检测和自动补偿学习功能、高精度加工零件智能化参数选用功能、加工过程自动消除机床震动等功能进入了实用化阶段,智能化提升了机床的功能和品质。
4、柔性化
柔性是指数控设备(如雕刻机cnc router)适应加工对象变化的能力。柔性化包含两方面:数控系统本身的柔性,数控系统采用模块化设计,功能覆盖面大,可裁剪性强,便于满足不同用户的需求;群控系统的柔性,同一群控系统能依据不同生产流程的要求,使物料流和信息流自动进行动态调整,从而最大限度地发挥群控系统的效能。柔性自动化技术重点是以提高系统的可靠性、实用化为前提,以易于联网和集成为目标。数控机床向柔性自动化系统发展的趋势是:一方面从点(数控单机等)、线(柔性制造系统等)向面(工段车间制造岛等)、体(分布式网络集成制造系统等)的方向发展,另一方面向注重应用性和经济性方向发展。
5、网络化
数控技术的网络化便于远距离操作和监控,也便于远程诊断故障和进行调整,不仅利于数控系统生产厂对其产品的监控和维修,也适于大规模现代化生产的无人化车间实行网络管
理,还适于在操作人员不宜到现场的环境(如对环境要求很高的超精密加工和对人体有害的环境)中工作。数控装备的网络化将极大地满足生产线、制造系统、制造企业对信息集成的需求,也是实现新的制造模式如敏捷制造、虚拟企业、全球制造的基础单元。通过机床联网,可在任何一台机床上对其它机床进行编程、设定、操作、运行,不同机床的画面可同时显示在每一台机床的屏幕上。
6、软硬件开放化
用户可根据自己的需要,对数控系统软件进行二次开发,用户的使用范围不再受生产商的制约。为解决传统的数控系统封闭性和数控应用软件的产业化生产存在的问题,目前许多国家对开放式数控系统进行研究。数控系统开放化已经成为数控系统的未来之路。所谓开放式数控系统就是数控系统的开发可以在统一的运行平台上,面向机床厂家和最终用户,通过改变、增加或剪裁结构对象(数控功能),形成系列化,并可方便地将用户的特殊应用和技术诀窍集成到控制系统中,快速实现不同品种、不同档次的开放式数控系统,形成具有鲜明个性的名牌产品。目前开放式数控系统的体系结构规范、通信规范、配置规范、运行平台、数控系统功能库以及数控系统功能软件开发工具等是当前研究的核心。
当今世界各国制造业广泛采用数控技术,以提高制造能力和水平,提高对动态多变市场的适应能力和竞争能力。此外世界上各工业发达国家还将数控技术及数控装备列为国家的战略物资,不仅采取重大措施来发展自己的数控技术及其产业,而且在“高精尖”数控关键技术和装备方面对我国实行封锁和限制政策。总之,大力发展以数控技术为核心的先进制造技术已成为世界各发达国家加速经济发展、提高综合国力和国家地位的重要途径。
参考文献:
[1]周德俭.使用PC的开放式计算机数控系统——CNC的发展方向.机电一体化,1997(7)
[2]黄金秋.基于开放式结构的高性能数控系统的研制.制造技术与机床,1998(8)
第四篇:数控技术的发展及应用论文
摘 要
简要介绍了当今世界数控技术及装备发展的趋势及我国数控装备技术发展和产业化的现状,在此基础上讨论了在我国加入WTO和对外开放进一步深化的新环境下,发展我国数控技术及装备、提高我国制造业信息化水平和国际竞争能力的重要性,并从战略和策略两个层面提出了发展我国数控技术及装备的几点看法。装备工业的技术水平和现代化程度决定着整个国民经济的水平和现代化程度,数控技术及装备是发展新兴高新技术产业和尖端工业(如信息技术及其产业、生物技术及其产业、航空、航天等国防工业产业)的使能技术和最基本的装备。马克思曾经说过“各种经济时代的区别,不在于生产什么,而在于怎样生产,用什么劳动资料生产”。制造技术和装备就是人类生产活动的最基本的生产资料,而数控技术又是当今先进制造技术和装备最核心的技术。当今世界各国制造业广泛采用数控技术,以提高制造能力和水平,提高对动态多变市场的适应能力和竞争能力。此外世界上各工业发达国家还将数控技术及数控装备列为国家的战略物资,不仅采取重大措施来发展自己的数控技术及其产业,而且在“高精尖”数控关键技术和装备方面对我国实行封锁和限制政策。总之,大力发展以数控技术为核心的先进制造技术已成为世界各发达国家加速经济发展、提高综合国力和国家地位的重要途径。数控技术是用数字信息对机械运动和工作过程进行控制的技术,数控装备是以数控技术为代表的新技术对传统制造产业和新兴制造业的渗透形成的机电一体化产品,即所谓的数字化装备,其技术范围覆盖很多领域:(1)机械制造技术;(2)信息处理、加工、传输技术;(3)自动控制技术;(4)伺服驱动技术;(5)传感器技术;(6)软件技术等。
关键词:数控技术
应用
发展
目录
摘 要.................................................................................................1
目 录.................................................................................................1 第1章 绪 论................................................................................2
1.1 数控技术的概述.................................................................2 1.2 数控技术简介.....................................................................2 第2章 数控技术的分类及关键技术............................................3
2.1数控系统的控制原理.........................................................3 2.1.1计算机数控系统............................3 2.2.2CNC系统的硬件结构.........................4 2.2数控技术的关键技术.........................................................5 第3章 数控机床的应用................................................................9
3.1数控机床的概述.................................................................9 3.2数控机床精度的选择.......................................................10 3.3 数控机床故障实用诊断技术及方法...............................11 3.4数控机床的维护...............................................................13 3.5数控机床分类...................................................................15 第4章 数控技术的发展趋势......................................................16 4.1数控技术发展概况...........................................................16 4.2数控技术发展趋势...........................................................17 结 论...............................................................................................19 参考文献...........................................................................................19 致 谢..............................................................错误!未定义书签。
第1章 绪 论
1.1 数控技术的概述
数控技术是一种集机、电、液、光、计算机、自动控制技术为一体的知识密集型技术,它是制造业实现现代化、柔性化、集成化生产的基础,同时也是提高产品质量,提高生产率必不可少的物质手段。在发达国家中,数控机床已经普遍大量使用,而我国数控技术的应用同发达国家相比差距很大,目前我国机床的数控化率仅为1.9%,而日本高达30%,美国超过了40%,国家规划在2010年前,使数控化率达10%以上。数控化率每增加一个百分点,需要5-6万台数控机床。这样算来,我国数年内将增加40-50万台数控机床,相应需要60-80万数控专业技术人才。
特别是我国加入WTO后,越来越多的发达国家把制造基地转入中国,我国将成为二十一世纪的“国际制造业加工中心”,全国制造企业数控化是国家制定的一项科技战略发展目标,数控及其应用技术将成为各类加工企业的主要基本技术
1.2 数控技术简介
数控技术,简称数控(Numerical Control)。它是利用数字化的信息对机床运动及加工过程进行控制的一种方法。用数控技术实施加工控制的机床,或者说装备了数控系统的机床称为数控(NC)机床。数控系统包括:数控装置、可编程控制器、主轴驱 动器及进给装置等部分。
现代数控机床是机电一体化的典型产品,是新一代生产技术、计算机集成制造系统等的技术集合。现代数控机床的发展趋向是高速化、高精度化、高可靠性、多功能、复合化、智能化和开放式结构。主要发展动向是研制开发软、硬件都具有开放式结构的智能化全功能通用数控装置。
数控技术是机械加工自动化的基础,是数控机床的核心技术,其水平高低关系到国家战略地位和体现国家综合实力的水平。它随着信息技术、微电子技术、自动化技术和检测技术的发展而发展。
数控加工中心是一种带有刀库并能自动更换刀具,对工件能够在一定的范围内进行多种加工操作数控机床。在加工中工零件的特点是:被加工零件经过一次装夹后,数控系统能控制机床按不同的工序自动选择和更换刀具;自动改变机床主轴转速、进给量和刀具相对工件的运动轨迹及其它辅助功能地对工件各加工面自动地进行钻孔、锪孔、铰孔、镗孔、攻螺纹、铣削等多工序加工。由于加工中心能集中地、自动地完成多种工序,避免了人为的操作误差、减少了工件装夹、测量和机床的调整时间及工件周转、搬运和存放时间,大大提高了加工效率和加工精度,所以具有良好的经济效益。加工中心按主轴在空间的位置可分为立式加工中心与卧式加工中心。
第2章 数控技术的分类及关键技术
2.1数控系统的控制原理
2.1.1计算机数控系统一、CNC系统的组成与特点
二、CNC系统由硬件和软件组成,其组成框图如图2-1所示。
根据上述组成框图,CNC系统有如下特点: 1.灵活性 对于NC系统,一旦提供了某些控制功能,就不能被改变,除非改变硬件。而CNC系统,只要改变相应的软件即可,而不要改变硬件。2.通用性 在CNC系统中,硬件采用通用的模块化结构,而且易于扩展,并结合软件变化来满足数控机床的各种不同要求。接口电路由标准电路组成,给机床厂和用户带来了很大方便。这样用一种CNC系统就能满足多种数控机床的要求,当用户要求某些特殊功能时,仅仅改变某些软件即可。3.可靠性 CNC系统中,零件数控加工程序在加工前一次性全部输入存储器,并经过模拟后才被调用加工,这就避免了在加工过程中由于纸带输入机的故障产生的停机现象。许多功能都由软件完成,硬件结构大大简化,特别是大规模和超大规模集成电路的采用,可靠性得到很大的提高。4.数控功能多样化 CNC系统利用计算机的快速处理能力,可以实现许多复杂的数控功能,如多种插补功能、动静态图形显示、数字伺服控制等。5.使用维护方便 有的CNC系统含有对话编程、图形编程、自动在线编程等功能,使编程工作简单方便。编好的程序通过模拟运行,很容易检查程序是否正确。CNC系统中还含有诊断程序,使得维修十分方便。
2.2.2CNC系统的硬件结构
数控系统的硬件由数控装置、输入/输出装置、驱动装置和机床电器逻辑控制装置等组成,这四部分之间通过I/O接口互连。数控装置是数控系统的核心,其软件和硬件来控制各种数控功能的实现。输入/输出装置主要有键盘、纸带阅读机、软盘驱动器、通信装置、显示器等,用以控制数据的输入/输出,监控数控系统的运行,进行机床操作面板及机床机电控制/监测机构的逻辑处理和监控,并为数控装置提供机床状态和有关应答信号。机床电器逻辑控制装置接受数控装置发出的数控辅助功能控制命令,实现数控机床的顺序控制。在现代数控系统中机床电器逻辑控制装置已经被可编程序控制器(PLC)取代。驱动装置一般是以轴为单位的独立体,用以控制各轴的运动。数控装置的硬件结构按CNC装置中的印制电路板的插接方式可以分为大板结构和功能模块(小板)结构;按CNC装置硬件的制造方式,可以分为专用型结构和个人计算机式结构;按CNC装置中微处理器的个数可以分为单微处理器结构和多微处理器结构。
一、大板结构和功能模板结构 1.大板结构
大板结构CNC系统的CNC装置由主电路板、位置控制板、PC板、图形控制板、附加I/O板和电源单元等组成。主电路板是大印制电路版,其它电路板是小板,插在大印制电路板上的插槽内。这种结构类似于微型计算机的结构。
2.功能模块结构
在这种结构中,整个CNC装置按功能模块化分为若干个模块,硬件和软件的设计都采用模块化设计,每一个功能模块做成尺寸相同的印制电路板,相应功能模块的控制软件也模块化。用户根据需要选用各种控制单元母板及所需功能模板,将各功能模板插入控制单元母板的槽内,就组成了自己需要的CNC系统的控制装置。常用的功能模板有CNC控制板、位置控制板、PC板、存储器板、图形板和通信板等。FANUC系统15系列就采用了功能模块式结构。
二、单微处理器结构和多微处理器结构 1.单微处理器结构
在单微处理器结构中,只有一个微处理器,以集中控制、分时处理数控装置的各个任务。其它功能部件,如存储器、各种接口、位置控制器等都需要通过总线与微处理器相连。
图2-2是单微处理器结构图。2.多微处理器结构
随着数控系统功能的增加、数控机床的加工速度的提高,单微处理器数控系统已不能满足要求,因此,许多数控系统采用了多微处理器的结构。若在一个数控系统中有两个或两个以上的微处理器,每个微处理器通过数据总线或通信方式进行连接,共享系统的公用存储器与I/O接口,每个微处理器分担系统的一部分工作,这就是多微处理器系统。如图2-3所示的数控系统带有4个CPU。目前使用的多微处理器系统有三种不同的结构,即主从式结构、总线式多主CPU结构和分布式结构。
2.2数控技术的关键技术
数控装备的高速度、高精度、高柔性和高自动化程度,向数控系统和伺服驱动系统提出了新的要求,下面主要从数控系统与伺服驱动系统方面介绍其关键技术。要实现数控设备高速化,首先要求数控系统能对由微小程序段构成的加工程序进行高速处理,以计算出伺服电机的移动量,同时要求伺服电机能高速度地作出反应。采用32位微处理器,是提高数控系统高速处理能力的有效手段。在数控设备高速化中,提高主轴转速占有重要地位。主轴高速化的手段是直接把电机与主轴连接成一体,从而可将主轴转速大大提高。采用直线电机技术来替代目前机床传动中常用的滚珠丝杠技术,在提高轮廓加工速率的同时,提高了加速度。
一、除不断采用新型功能部件外,还需在以下几个方面进行深入研究:
1.高速加工动力学建模及控制
高速运动下的对象已经不能用纯静态的方法处理,数控问题也不再能归结为几何问题或静力学问题。作为一个动态对象,它并不是“亦步亦趋”地跟随所施加的控制,而力图表现出它的“个性”;另一方面,所施加的控制必须充分顾及被控制对象的动态特性,才能得到预期的控制效果。因此,已经不能像传统的数控系统那样,可以将控制系统与被控制对象分开来研究和制造,而必须作为一个整体来处理,研究其在高速状态下的动力学问题,以及超高速运动控制条件下光、电信号的时滞影响及其消除的问题。在高速情况下,必须研究集数控系统与控制对象为一体的整体动力学建模、基于整体动力学模型的非线性控制策略、智能化控制方法等。
2.机电特性参数的辨识、分析与控制优化
高速控制的核心在于实现高加速度,为此需要使伺服机构处于最佳工作状态,从而获得系统最大运动加速度。因此,基于系统整体建模的加速度控制曲线选择、伺服机电参数的辨识优化、多轴增益的协调控制等是当前研究的热点。
3.高速、高精插补运算和控制算法
高速、高精插补是将复杂轨迹按控制规律分解成伺服控制指令。轮廓加工时,加工程序由巨量微小线段构成,高速加工除需保证微段程序连续执行外,还需根据轨迹变化及时预测各轴状态,实现高加速度运行要求。这就要求对微段程序的高速、高精插补、高速预处理,微段程序的加减速控制,超前G代码预测(Look ahead),复杂轨迹的直接插补以及高速数据传输等进行深入的研究。
4.面向高速高精加工的数控编程原理及方法
传统的数控编程解决了中低速加工中的刀位轨迹生成问题,但是高速加工却对数控编程从原理与方法上提出了更高的要求。为此,必须在研究高速加工工艺机理的基础上,研究适用于高速高精加工的数控编程原理及方法。在这方面,高速加工工艺机理、高速加工工艺参数知识库、基于高速加工非线性运动误差补偿的刀位轨迹规划、加工程序平滑过渡、高速加工中进给速度优化、基于STEP标准、面向加工特征的高级NC代码语言等都是需要研究的内容。
二、高精度化技术
提高数控机床的加工精度,一般可通过减少数控系统的误差和采用机床误差补偿技术来实现。
在减少CNC系统控制误差方面,通常采取提高数控系统的分辨率,提高位置检测精度的方法。然而在高速、高精加工的情况下,在线动态测量和补偿存在着高精度与 大量程几何量之间的矛盾,是传统检测方法难以完成的。因此,需要研究新的测量和补偿机理,即进行高精度、大量程几何量的在线动态检测原理研究,以及控制误差的在线和实时检测、预报和补偿方法等研究,在位置伺服系统中采用前馈控制与非线性控制等方法。为解决在高速、高精加工中的小步长与大行程之间的矛盾,需要研究新的高速驱动原理及机构。
在机床误差补偿技术方面,除采用齿隙补偿、丝杠螺距误差补偿和刀具补偿等技术外,近年来对设备热变形误差补偿和空间误差综合补偿技术的研究已成为世界范围的研究课题。
三、智能化技术
模糊数学、神经网络、数据库、知识库、以范例和模型为基础的决策系统、专家系统等理论与技术的发展及其在制造业中的成功运用,为数控设备智能化水平的提高建立了可靠的技术基础。智能化正成为数控设备研究及发展的热点,目前采取的主要技术措施包括:
1.自适应控制技术
提高加工效率是制造加工技术发展永恒追求的目标。现在的数控机床对加工过程的控制还是开环控制,即它们只能忠实地执行人们预先为它编好的加工程序,而对加工过程中工况的变化,缺乏相应的识别能力和足够的自律控制能力。因此,零件的加工质量和加工效率强烈地依赖于工艺人员的经验和知识。此外,加工状况复杂多变,工艺人员为了确保安全往往选择较保守的加工参数,使加工效率和质量的提高受到限制。同时,加工状况(如刀具状况、加工中的振动等)将直接影响设备加工的效率、质量和安全,这种情况在铣削加工大型零件(如加工大型水轮机叶片)时更是如此。因此,加工过程的自适应控制技术,对提高大型零件加工的效率,保障加工设备安全可靠运行是十分重要的。
加工过程的自适应控制技术是指数控装备能检测对自己有影响的信息,并自动连续调整系统的有关参数,达到改进系统运行状态的目的。如通过监控切削过程中的刀具磨损、破损、切屑形态、切削力及零件的加工质量等,向数控系统反馈信息,通过将过程控制、过程监控、过程优化结合在一起,实现自适应调节,以提高加工精度和降低工件表面粗糙度,并保证加工设备安全。有资料表明,应用该技术在铣削加工时其效率可以提高30%左右。
2. 专家系统技术
将专家的经验和切削加工的一般规律与特殊规律存人计算机中,以加工工艺参数数据库为支撑,建立具有人工智能的专家系统,提供经过优化的切削参数,使加工系统始终处于最优和最经济的工作状态,从而达到提高编程效率和降低对操作人员的技术要求,大大缩短生产准备时间的目的。
3. 故障自诊断技术
故障诊断专家系统是诊断装置发展的最新动向,它为数控设备提供了一个包括二次监测、故障诊断、安全保障和经济策略等方面在内的智能诊断及维护决策信息集成系统。
4. 智能化交流伺服驱动技术
目前已开始研究能自动识别负载,并自动调整参数的智能化伺服系统,包括智能主轴交流驱动装置和智能化进给伺服装置,使驱动系统获得最佳运行参数。
四、网络化技术
数控设备的网络化技术是指能支持远程监视、诊断和控制,支持网络制造资源共享、支持装备参与网络化环境下制造系统集成的技术。其主要技术内容有:
1. 网络环境下的数控装备的集成技术
研究网络环境下的数控装备网络互连技术(包括装备间的互连技术和装备内部的互连技术),网络环境下的数字化制造装备分布式协同处理技术和异构设备网络集成技术等。
2. 远程操作、监控与远程诊断技术
研究实时监测数据的特征提取、识别和融合,诊断知识的组织以及推理算法,实时可靠的通信协议及数据的共享标准等;网络环境下数控装备运行状态的智能检测、监控和诊断技术;数控装备的网络全局调度技术、远程设计编程技术及远程操作技术等。
3. 网络管理技术的研究
在网络制造环境下,网络除了用于传输加工程序、实现网络操作和控制和远程诊断外,更为重要的是进一步提高机床的生产率。为此需要研究网络管理技术,即网络生产管理系统,网络CAD/CAM系统,面向网络化制造环境的数控装备的网络安全机制与防范技术等。
第3章 数控机床的应用
3.1数控机床的概述
数控机床起源于美国。1947年,美国帕森斯(Parsons)公司为了精确地制作直升机机翼、桨叶和飞机框架,提出了用数字信息来控制机床自动加工外形复杂零件的设想,他们利用电子计算机对机翼加工路径进行数据处理,并考虑到刀具直径对加工路径的影响,使得加工精度达到±0.0015英寸(0.0381mm)。1949年,美国空军为了能在短时间内制造出经常变更设计的火箭零件,与帕森斯公司和麻省理工学院(MIT)伺服机构研究所合作,于1952年研制成功世界上第一台数控机床——三坐标立式铣床,可控制铣刀进行连续空间曲面的加工,揭开了数控加工技术的序幕。很快,数控 技术的应用从美国逐步推广到欧洲地区和日本等国。我国于1958年也开始进行数控机床的研制工作,并取得了一定的成效。在某些领域,如大型车铣复合加工中心技术水平已达到了国际当代水平。
数控机床的数控系统已先后经历了两个阶段、六个时代的发展:电子管、晶体管、集成电路、小型计算机、微处理器及基于PC机的通用CNC系统。其中前三代为第一阶段,称为硬件连接数控(NC系统),其特点是具有很多硬件电路和连接结点,电路复杂,可靠性不好;后三代为第二阶段,称为计算机软件系统(CNC系统),主要由计算机硬件和软件组成,其最突出的特点是利用存储器里的软件控制系统工作,这种系统容易扩展功能,柔性好,可靠性高。现在,开放式数控系统(ONC系统)正得到快速发展和应用。数控机床的类型,已从最初单一的铣床类数控机床,发展到如今的金属切削类、金属成型类、特种加工类和特殊用途类数控机床,其品种多达千余种。数控机床由程序介质、数控系统、伺服驱动和机床主体四大部分组成,它综合了计算机、自动控制、精密测量、机床制造及其配套技术的最新成果,成功地解决了现代产品多样化、零件形状复杂化、产品研制生产周期短、精度要求高的难题,是现代制造业的主流设备,也是关系国计民生、国防尖端建设的战略物资。
3.2数控机床精度的选择
数控机床根据用途又分为简易型、全功能型、超精密型等,其能达到的精度也是各不一样的。简易型目前还用于一部分车床和铣床,其最小运动分辩率为0.01mm,运动精度和加工精度都在(0.03~0.05)mm以上。超精密型按精度可分为普通型和精密型,一般数控机床精度检验项目都有20~30项,但其最有特征项目是:单轴定位精度、单轴重复定位精度和两轴以上联动加工出试件的圆度,如表1所示。
其他精度项目与表1内容都有一定的对应关系。定位精度和重复定位精度综合反映了该轴各运动部件的综合精度。尤其是重复定位精度,它反映了该轴在行程内任意定位点的定位稳定性,这是衡量该轴能否稳定可靠工作的基本指标。目前数控系统中软件都有丰富的误差补偿功能,能对进给传动链上各环节系统误差进行稳定的补偿。例如,传动链各环节的间隙、弹性变形和接触刚度等变化因素,它们往往随着工作台的负载大小、移动距离长短、移动定位速度的快慢等反映出不同的瞬时运动量。在一些开环和半闭环进给伺服系统中,测量元件以后的机械驱动元件,受各种偶然因素影响,也有相当大的随机误差影响,如滚珠丝杠热伸长引起的工作台实际定位位置漂移等。总之,如果能选择,那么就选重复定位精度最好的设备!
表1 数控机床精度特征项目
铣削圆柱面精度或铣削空间螺旋槽(螺纹)是综合评价该机床有关数控轴(两轴或三轴)伺服跟随运动特性和数控系统插补功能的指标,评价方法是测量加工出圆柱面的圆度。在数控机床试切件中还有铣斜方形四边加工法,也可判断两个可控轴在直线插补运动时的精度。在做这项试切时,把用于精加工的立铣刀装到机床主轴上,铣削放置在工作台上的圆形试件,对中小型机床圆形试件一般取在Ф200~Ф300,然后把切完的试件放到圆度仪上,测出其加工表面的圆度。铣出圆柱面上有明显铣刀振纹反映该机床插补速度不稳定;铣出的圆度有明显椭圆误差,反映插补运动的两个可控轴系统增益不匹配;在圆形表面上每一可控轴运动换方向的点位上有停刀点痕迹(在连续切削运动中,在某一位置停止进给运动刀具就会在加工表面上形成一小段多切去金属的痕迹)时,反映该轴正反向间隙没有调整好。单轴定位精度是指在该轴行程内任意一个点定位时的误差范围,它直接反映了机床的加工精度能力,所以是数控机床最关键技术指标。目前全世界各国对这指标的规定、定义、测量方法和数据处理等有所不同,在各类数控机床样本资料介绍中,常用的标准有美国标准(NAS)和美国机床制造商协会推荐标准、德国标准(VDI)、日本标准(JIS)、国际标准化组织(ISO)和我国国家标准(GB)。在这些标准中规定最低的是日本标准,因为它的测量方法是使用单组稳定数据为基础,然后又取出用±值把误差值压缩一半,所以用它的测量方法测出的定位精度往往比用其他标准测出的相差一倍以上。
3.3 数控机床故障实用诊断技术及方法
数控机床是机电一体化紧密结合的典范,是一个庞大的系统,涉及机、电、液、气、电子、光等各项技术,在运行使用中不可避免地要产生各种故障,关键的问题是如何迅速诊断,确定故障部位,并及时排除解决,保证正常使用,提高生产效率。
一、数控机床的故障诊断技术
1.数控系统自诊断。开机自诊断数控系统在通电开机后,都要运行开机自诊断程序,对系统中关键的硬件和控制软件进行检测,并将检测结果在CRT上显示出来。运行自诊断运行自诊断是数控系统正常工作时,运行内部诊断程序,对系统本身、PLC、位置伺服单元以及与数控装置相连的其他外部装置进行自动测试、检查,并显示有关状态信息和故障信息。2.在线诊断和离线 诊断。在线诊断是指通过数控系统的控制程序,在系统处于正常运行状态下,实时自动地对数控装置、PLC控制器、伺服系统、PLC的输入输出和其他外部装置进行自检,并显示状态信息、故障信息。脱机诊断当数控系统出现故障时,需要停机进行检查,这就是脱机诊断。脱机诊断的目的是修复系统的错误和定位故障,将故障定位在最小的范围。远程诊断实现远程诊断的数控系统,必须具备计算机网络功能。因此,远程诊断是近几年发展起来的一种新型的诊断技术。数控机床利用数控系统的网络功能通过互联网连接到机床制造厂家,数控机床出现故障后,通过机床厂家的专业人员远程诊断,快速确诊故障。
二、数控机床故障的实用诊断方法
1.诊断常用的仪器、仪表及工具万用表-可测电阻、交、直流电压、电流。相序表-可检测直流驱动装置输入电流的相序。转速表-可测量伺服电动机的转速,是检查伺服调速系统的重要依据。钳形电流表-可不断线检测电流。测振仪-是振动检测中最常用、最基本的仪器。短路追踪仪-可检测电气维修中经常碰到的短路故障现象。逻辑测试笔-可测量数字电路的脉冲、电平。IC测试仪-用于数控系统集成电路元件的检测和筛选。工具-弹头钩形扳手、拉锥度平键工具、弹性手锤、拉卸工具等。2.诊断用技术资料主要有:数控机床电气说明书,电气控制原理图,电气连接图,参数表,PLC程序,编程手册,数控系统安装与维修手册,伺服驱动系统使用说明书等。数控机床的技术资料非常重要,必须参照机床实物认真仔细地阅读。一旦机床发生故障,在进行分析的同时查阅相关资料。3.故障处理。故障软故障-由调整、参数设置或操作不当引起硬故障-由数控机床(控制、检测、驱动、液气、机械装置)的硬件失效引起。故障处理对策除非出现影响设备或人身安全的紧急情况,不要立即切断机床的电源,应保持故障现场。从机床外观、CRT显示的内容、主板或驱动装置报警灯等方面进行检查。可按系统复位键,观察系统的变化,报警是否消失。如消失,说明是随机性故障或是由操作错误引起的。如不能消失,把可能引起该故障的原因罗列出来,进行综合分析、判断,必要时进行一些检测或试验,达到确诊故障的目的。4.数控系统故障诊断方法。直观法(望闻问切):问-机床的故障现象、加工状况等看-CRT报警信息、报警指示灯、电容器等元件变形烟熏烧焦、保护器脱扣等听-异常声响闻-电气元件焦糊味及其它异味摸-发热、振动、接触不良等。参数检查法:参数通常是存放在RAM中,有时电池电压不足、系统长期不通电或外部干扰都会使参数丢失或混乱,应根据故障特征,检查和校对有关参数。隔离法:一些故障,难以区分是数控部分,还是伺服系统或机械部分造成的,常采用隔离法。同类对调法用同功能的备用板替换被怀疑有故障的模板,或将功能相同的模板或单元相互交换。功能程序测试法:将G、M、S、T、功能的全部指令编写一些小程序,在诊断故障时运行这些程序,即可判断功能的缺失。5.故障诊断应遵循的原则。第一,先外部后内 部数控机床的检修要求维修人员掌握先外部后内部的原则,由外向内逐一进行检查排除。第二,先机械后电气首先检查机械是否正常,行程开关是否灵活,气动液压部分是否正常等,在故障检修之前,首先注意排除机械的故障。第三,先静后动维修人员本身要做到先静后动。首先询问机床操作人员故障发生的过程及状态,查阅机床说明书、图纸资料,进行分析后,才可动手查找和处理故障。
数控机床是现化企业进行生产的一种重要物质基础,是完成生产过程的重要技术手段,强化管理是关键,“防”与“治”的结合是解决数控机床“使用难、维修难”的唯一
3.4数控机床的维护
数控机床的维护概述延长元器件的寿命和零部件的磨损周期,预防各种故障,提高数控机床的平均无故障工作时间和使用寿命。
一、数控机床使用中应注意的问题1.数控机床的使用环境对于数控机床最好使其置于有恒温的环境和远离震动较大的设备(如冲床)和有电磁干扰的设备。2.电源要求。3.数控机床应有操作规程进行定期的维护、保养,出现故障注意记录保护现场等。4.数控机床不宜长期封存。5.注意培训和配备操作人员、维修人员及编程人员
二、数控系统的维护1.严格遵守操作规程和日常维护制度。2.防止灰尘进入数控装置内漂浮的灰尘和金属粉末容易引起元器件间绝缘电阻下降,从而出现故障甚至损坏元器件。3.定时清扫数控柜的散热通风系统。4.经常监视数控系统的电网电压电网电压范围在额定值的85%~110%。5.定期更换存储器用电池。6.数控系统长期不用时的维护经常给数控系统通电或使数控机床运行温机程序。7.备用电路板的维护机械部件的维护机械部件的维护
三、刀库及换刀机械手的维护1.用手动方式往刀库上装刀时,要保证装到位,检查刀座上的锁紧是否可靠2.严禁把超重、超长的刀具装入刀库,防止机械手换刀时掉刀或刀具与工件、夹具等发生碰撞;3.采用顺序选刀方式须注意刀具放置在刀库上的顺序是否正确。其他选刀方式也要注意所换刀具号是否与所需刀具一致,防止换错刀具导致事故发生;4.注意保持刀具刀柄和刀套的清洁;5.经常检查刀库的回零位置是否正确,检查机床主轴回换刀点位置是否到位,并及时调整,否则不能完成换刀动作;6.开机时,应先使刀库和机械手空运行,检查各部分工作是否正常,特别是各行程开关和电磁阀能否正常动作。
四、滚珠丝杠副的维护1.定期检查、调整丝杠螺母副的轴向间隙,保证反向传动精度和轴向刚度;2.定期检查丝杠支撑与床身的连接是否松动以及支撑轴承是否损坏。13 如有以问题要及时紧固松动部位,更换支撑轴承;3.采用润滑脂的滚珠丝杠,每半年清洗一次丝杠上的旧油脂,更换新油脂。用润滑油润滑的滚珠丝杠,每天机床工作前加油一次;4.注意避免硬质灰尘或切屑进入丝杠防护罩和工作过程中碰击防护罩,防护装置一有损坏要及时更换。
五、主传动链的维护1.定期调整主轴驱动带的松紧程度; 2.防止各种杂质进入油箱。每年更换一次润滑油; 3.保持主轴与刀柄连接部位的清洁。需及时调整液压缸和活塞的位移量;4.要及时调整配重。
六、液压系统维护1.定期过滤或更换油液;2.控制液压系统中油液的温度;3.防止液压系统泄漏;4.定期检查清洗油箱和管路;5.执行日常点检查制度。
七、气动系统维护1.清除压缩空气的杂质和水分;2.检查系统中油雾器的供油量;3.保持系统的密封性;4.注意调节工作压力;5.清洗或更换气动元件、滤芯;
八、预防性维护的目的是为了降低故障率,其工作内容主要包括下列几方面的工作。1.人员安排 为每台数控机床分配专门的操作人员、工艺人员和维修人员,所有人员都要不断地努力提高自己的业务技术水平。2.建规建档 针对每台机床的具体性能和加工对象制定操作规章,建立工作与维修档案,管理者要经常检查、总结、改进。3.日常保养 对每台数控机床都应建立日常维护保养计划,包括保养内容(如坐标轴传动系统的润滑、磨损情况,主轴润滑等,油、水气路,各项温度控制,平衡系统,冷却系统,传动带的松紧,继电器、接触器触头清洁,各插头、接线端是否松动,电气柜通风状况等等)及各功能部件和元气件的保养周期(每日、每月、半年或不定期)。
九、我们懂得了数控机床的维护与保养的目的和意义后,还必须明确其基本要求。主要包括:1.在思想上要高度重视数控机床的维护与保养工作,尤其是对数控机床的操作 者更应如此,我们不能只管操作,而忽视对数控机床的日常维护与保养。2.提高操作人员的综合素质:数控机床的使用比使用普通机床的难度要大,因为数控机床是典型的机电一体化产品,它牵涉的知识面较宽,即操作者应具有机、电、液、气等更宽广的专业知识;再有,由于其电气控制系统中的CNC系统升级、更新换代比较快,如果不定期参加的专业理论培训学习,则不能熟练掌握新的CNC系统应用。因此对操作人员提出的素质要求是很高的。为此,必须对数控操作人员进行培训,使其对机床原理、性能、润滑部位及其方式,进行较系统的学习,为更好的使用机床奠定基础。同时在数控机床的使用与管理方面,制定一系列切合实际、行之有效的措施。3.要为数控机床创造一个良好的使用环境:由于数控机床中含有大量的电子元件,它们最怕阳光直接照射,也怕潮湿和粉尘、振动等,这些均可使电子元件受到腐蚀变坏或造成元件间的短路,引起机床运行不正常。为此,对数控机床的使用环境应做到保持清洁、干燥、恒温和无振动;对于电源应保持稳压,一般只允许±10%波动。4.严格遵循正确的操作规程:无论是什么类型的数控机床,它都有一套自己的操作规程,这既是保 证操作人员人身安全的重要措施之一,也是保证设备安全、使用产品质量等的重要措施。因此,使用者必须按照操作规程正确操作,如果机床在第一次使用或长期没有时,应先使其空转几分钟;并要特别注意使用中注意开机、关机的顺序和注意事项。5.在使用中,尽可能提高数控机床的开动率:在使用中,要尽可能提高数控机床的开动率。对于新购置的数控机床应尽快投入使用,设备在使用初期故障率相对来说往往大一些,用户应在保修期内充分利用机床,使其薄弱环节尽早暴露出来,在保修期内得以解决。如果在缺少生产任务时,也不能空闲不用,要定期通电,每次空运行1小时左右,利用机床运行时的发热量来去除或降低机内的湿度。6.要冷静对待机床故障,不可盲目处理:机床在使用中不可避免地会出现一些故障,此时操作者要冷静对待,不可盲目处理,以免产生更为严重的后果,要注意保留现场,待维修人员来后如实说明故障前后的情况,并参与共同分析问题,尽早排除故障。故障若属于操作原因,操作人员要及时吸取经验,避免下次犯同样的错误。7.制定并且严格执行数控机床管理的规章制度:除了对数控机床的日常维护外,还必须制定并且严格执行数控机床管理的规章制度。主要包括:定人、定岗和定责任的“三定”制度,定期检查制度,规范的交接班制度等。这也是数控机床管理、维护与保养的主要内容。
3.5数控机床分类
数控机床可以有多种分类方式,其中最主要的分类方式是:
一、按照加工方式分类
1.金属切削类数控机床 如数控车床,加工中心,数控钻床,数控磨床,数控镗床等等。
2.金属成型类数控机床 如数控折弯机,数控弯管机,数控回转头压力机等。3.数控特种加工机床 如数控线(电极)切割机床,数控电火花加工机床,数控激光切割机床等。
4.其它类型数控机床 如火焰切割机床,数控三坐标测量机等。
二、按照数控系统功能水平分类
1.高档数控机床 2.中档数控机床 3.低档数控机床
四、按照数控机床的功能分类
1.经济型数控机床(功能少,简单,价格便易)。2.全功能数控机床(标准型数控机床)。
五、数控机床的结构及各部分功能: 15 1.程序——编程员所编写的零件加工程序。
2.输入设备——将程序,指令等输入到CNC中的操作设备,主要负责录入程序及参数。(系统操作面板,纸带机,计算机)
3.输出设备——将程序,参数,指令等输出或显示,以便操作者进行控制。4.CNC——计算机数字控制系统,是整个机床的大脑,一切控制指令都是由此发出,包括插补运算,轨迹控制,位置控制,报警显示,程序显示等等。
5.可程控制器——即PLC或PC,是机床与CNC之间的接口,因为CNC所能接收和控制的信号都是弱电信号,而机床各辅助部分均为强电信号,如冷却,润滑等,必需在它们之间加信号隔离转换设备,否则不仅增加系统功耗,更重要的是干扰系统正常工作。
6.主轴伺服——对CNC发出的主轴工作指令(方向,转速等)进行功率放大,驱动主轴电机旋转。
7.主轴电机。
8.伺服放大器——对CNC发出的轴控制位移指令进行功率放大,驱动各轴伺服电机旋转。
9.伺服电机——驱动各轴丝杠旋转,带动工作台移动。
10.位置检测——直接测量或间接测量工作台的位置,反馈到CNC,经CNC内部进行比较后,输出位移指令,控制工作台作进一步的运动。
第4章 数控技术的发展趋势
4.1数控技术发展概况
随着计算机技术的高速发展,传统的制造业开始了根本性变革,各工业发达国家投入巨资,对现代制造技术进行研究开发,提出了全新的制造模式。在现代制造系统中,数控技术是关键技术,它集微电子、计算机、信息处理、自动检测、自动控制等高新技术于一体,具有高精度、高效率、柔性自动化等特点,对制造业实现柔性自动化、集成化、智能化起着举足轻重的作用。目前,数控技术正在发生根本性变革,由专用型封闭式开环控制模式向通用型开放式实时动态全闭环控制模式发展。在集成化基础上,数控系统实现了超薄型、超小型化;在智能化基础上,综合了计算机、多媒体、模糊控制、神经网络等多学科技术,数控系统实现了高速、高精、高效控制,加工过程中可以自动修正、调节与补偿各项参数,实现了在线诊断和智能化故障处理;在网络化基础上,CAD/CAM与数控系统集成为一体,机床联网,实现了中央集中控制的群控加工。
长期以来,我国的数控系统为传统的封闭式体系结构,CNC只能作为非智能的机 床运动控制器。加工过程变量根据经验以固定参数形式事先设定,加工程序在实际加工前用手工方式或通过CAD/CAM及自动编程系统进行编制。CAD/CAM和CNC之间没有反馈控制环节,整个制造过程中CNC只是一个封闭式的开环执行机构。在复杂环境以及多变条件下,加工过程中的刀具组合、工件材料、主轴转速、进给速率、刀具轨迹、切削深度、步长、加工余量等加工参数,无法在现场环境下根据外部干扰和随机因素实时动态调整,更无法通过反馈控制环节随机修正CAD/CAM中的设定量,因而影响CNC的工作效率和产品加工质量。由此可见,传统CNC系统的这种固定程序控制模式和封闭式体系结构,限制了CNC向多变量智能化控制发展,已不适应日益复杂的制造过程,因此,对数控技术实行变革势在必行。
4.2数控技术发展趋势
一、性能发展方向
1.高速高精高效化 速度、精度和效率是机械制造技术的关键性能指标。由于采用了高速CPU芯片、RISC芯片、多CPU控制系统以及带高分辨率绝对式检测元件的交流数字伺服系统,同时采取了改善机床动态、静态特性等有效措施,机床的高速高精高效化已大大提高。
2.柔性化 包含两方面:数控系统本身的柔性,数控系统采用模块化设计,功能覆盖面大,可裁剪性强,便于满足不同用户的需求;群控系统的柔性,同一群控系统能依据不同生产流程的要求,使物料流和信息流自动进行动态调整,从而最大限度地发挥群控系统的效能。
3.工艺复合性和多轴化 以减少工序、辅助时间为主要目的的复合加工,正朝着多轴、多系列控制功能方向发展。数控机床的工艺复合化是指工件在一台机床上一次装夹后,通过自动换刀、旋转主轴头或转台等各种措施,完成多工序、多表面的复合加工。数控技术轴,西门子880系统控制轴数可达24轴。
4.实时智能化 早期的实时系统通常针对相对简单的理想环境,其作用是如何调度任务,以确保任务在规定期限内完成。而人工智能则试图用计算模型实现人类的各种智能行为。科学技术发展到今天,实时系统和人工智能相互结合,人工智能正向着具有实时响应的、更现实的领域发展,而实时系统也朝着具有智能行为的、更加复杂的应用发展,由此产生了实时智能控制这一新的领域。在数控技术领域,实时智能控制的研究和应用正沿着几个主要分支发展:自适应控制、模糊控制、神经网络控制、专家控制、学习控制、前馈控制等。例如在数控系统中配备编程专家系统、故障诊断专家系统、参数自动设定和刀具自动管理及补偿等自适应调节系统,在高速加工时的综合运动控制中引入提前预测和预算功能、动态前馈功能,在压力、温度、位置、速度控 17 制等方面采用模糊控制,使数控系统的控制性能大大提高,从而达到最佳控制的目的。
二、功能发展方向
1.用户界面图形化 用户界面是数控系统与使用者之间的对话接口。由于不同用户对界面的要求不同,因而开发用户界面的工作量极大,用户界面成为计算机软件研制中最困难的部分之一。当前INTERNET、虚拟现实、科学计算可视化及多媒体等技术也对用户界面提出了更高要求。图形用户界面极大地方便了非专业用户的使用,人们可以通过窗口和菜单进行操作,便于蓝图编程和快速编程、三维彩色立体动态图形显示、图形模拟、图形动态跟踪和仿真、不同方向的视图和局部显示比例缩放功能的实现。
2.科学计算可视化 科学计算可视化可用于高效处理数据和解释数据,使信息交流不再局限于用文字和语言表达,而可以直接使用图形、图像、动画等可视信息。可视化技术与虚拟环境技术相结合,进一步拓宽了应用领域,如无图纸设计、虚拟样机技术等,这对缩短产品设计周期、提高产品质量、降低产品成本具有重要意义。在数控技术领域,可视化技术可用于CAD/CAM,如自动编程设计、参数自动设定、刀具补偿和刀具管理数据的动态处理和显示以及加工过程的可视化仿真演示等。
3.插补和补偿方式多样化 多种插补方式如直线插补、圆弧插补、圆柱插补、空间椭圆曲面插补、螺纹插补、极坐标插补、2D+2螺旋插补、NANO插补、NURBS插补(非均匀有理B样条插补)、样条插补(A、B、C样条)、多项式插补等。多种补偿功能如间隙补偿、垂直度补偿、象限误差补偿、螺距和测量系统误差补偿、与速度相关的前馈补偿、温度补偿、带平滑接近和退出以及相反点计算的刀具半径补偿等。
4.内装高性能PLC 数控系统内装高性能PLC控制模块,可直接用梯形图或高级语言编程,具有直观的在线调试和在线帮助功能。编程工具中包含用于车床铣床的标准PLC用户程序实例,用户可在标准PLC用户程序基础上进行编辑修改,从而方便地建立自己的应用程序。
5.多媒体技术应用 多媒体技术集计算机、声像和通信技术于一体,使计算机具有综合处理声音、文字、图像和视频信息的能力。在数控技术领域,应用多媒体技术可以做到信息处理综合化、智能化,在实时监控系统和生产现场设备的故障诊断、生产过程参数监测等方面有着重大的应用价值。
三、体系结构的发展
1.集成化 采用高度集成化CPU、RISC芯片和大规模可编程集成电路FPGA、EPLD、CPLD以及专用集成电路ASIC芯片,可提高数控系统的集成度和软硬件运行速度。应用FPD平板显示技术,可提高显示器性能。平板显示器具有科技含量高、重量轻、体积小、功耗低、便于携带等优点,可实现超大尺寸显示,成为和CRT抗衡的新兴显示技术,是21世纪显示技术的主流。应用先进封装和互连技术,将半导体和表面安装 技术融为一体。通过提高集成电路密度、减少互连长度和数量来降低产品价格,改进性能,减小组件尺寸,提高系统的可靠性。
2.模块化 硬件模块化易于实现数控系统的集成化和标准化。根据不同的功能需求,将基本模块,如CPU、存储器、位置伺服、PLC、输入输出接口、通讯等模块,作成标准的系列化产品,通过积木方式进行功能裁剪和模块数量的增减,构成不同档次的数控系统。
3.网络化 机床联网可进行远程控制和无人化操作。通过机床联网,可在任何一台机床上对其它机床进行编程、设定、操作、运行,不同机床的画面可同时显示在每一台机床的屏幕上。
4.通用型开放式闭环控制模式 采用通用计算机组成总线式、模块化、开放式、嵌入式体系结构,便于裁剪、扩展和升级,可组成不同档次、不同类型、不同集成程度的数控系统。闭环控制模式是针对传统的数控系统仅有的专用型单机封闭式开环控制模式提出的。由于制造过程是一个具有多变量控制和加工工艺综合作用的复杂过程,包含诸如加工尺寸、形状、振动、噪声、温度和热变形等各种变化因素,因此,要实现加工过程的多目标优化,必须采用多变量的闭环控制,在实时加工过程中动态调整加工过程变量。加工过程中采用开放式通用型实时动态全闭环控制模式,易于将计算机实时智能技术、网络技术、多媒体技术、CAD/CAM、伺服控制、自适应控制、动态数据管理及动态刀具补偿、动态仿真等高新技术融于一体,构成严密的制造过程闭环控制体系,从而实现集成化、智能化、网络化。
结
论
当今世界各国制造业广泛采用数控技术,以提高制造能力和水平,提高对动态多变市场的适应能力和竞争能力。此外世界上各工业发达国家还将数控技术及数控装备列为国家的战略物资,不仅采取重大措施来发展自己的数控技术及其产业,而且在“高精尖”数控关键技术和装备方面对我国实行封锁和限制政策。总之,大力发展以数控技术为核心的先进制造技术已成为世界各发达国家加速经济发展、提高综合力。
参考文献
[1]朱天明主编 专业色彩搭配图典[M] 化学工业出版社 [2]韩鸿鸾主编 数控铣工加工中心操作[M] 机械工业出版社 [3]陈宏钧主编 典型零件机械加工生产实例[M] 机械工业出版社
[4]徐衡主编 FANUC系统数控铣床和加工中心培训教程[M] 化学工业出版社 [5]刘新佳主编 切削加工简明适用手册零点工作室[M] 化学工业出版社 [6]刘新佳主编 切削加工简明适用手册零点工作室[M] 化学工业出版社 [7]上海市金属切削技术协会主编 金属切削手册[M] 上海科学技术出版社
[8]PRO/ENGINEER Wildfire3.0[M] 机械工业出版社等三年
第五篇:数控技术及应用填空题汇总
数控技术及应用
一、填空
1.对于工序多,需要在加工过程中多次换刀的工件,适合于在上加工。
2.段。
3.数控机床加工一定形状的工件时,只能沿坐标轴按一步步地移动。
4.细分电路就是把步进电动机的一步再分得细一些,来减少。
5.由单个码盘组成的绝对编码器所测的角位移范围为。
6.为减少伺服系统的跟随误差,应增大位置控制器的增益kp,但kp的增大受统稳定性的限制。
7.传感器的测量精度是其可以一致的、重复测出的。
8.数控机床主要运动部件沿某一坐标轴方向,向预定的目标位置运动时所达到的实际位置精度称为定位精度。
9.FANUC15系统是为适应高速,高精度和高效率加工而发展起来的位CNC数控系统。
10.一个典型CNC系统一般由三部分组成。
11.在CNC。
12.控制系统控制的是刀具相对于工件的位置,但对移动的途径原则上没有规定。
13.数控机床常用
14.脉冲发生器有两种类型:。
15.旋转变压器是根据
16.在数控机床上以某一进给速度加工圆弧时,当伺服系统两轴的增益相同时,进给速度愈大,则轮廓误差愈大
17.一般的数控机床常采用电气补偿法进行反向间隙和螺距累积误差的补偿,以提高定位精度。
18.FANUC15系统中采用反馈的方法,使电动机在负载发生变动时,以不会影响伺服系统的工作,实现了鲁棒控制。
19.数控系统按照一定的计算方法,将脉冲分配给各个坐标轴,完成规定运动轨迹过程称为插补。
20.按照ISO格式进行数控编码时,取消刀具半径补偿的代码是
21.对于经济型的开环控制中的CNC系统,一般多用作为驱动元件。
22.数控机床导轨的功用是。
23.光栅传感器主要有构成。
24.于位置传感器。
25.在车削螺纹时,必须保证主轴旋转与Z
26.27.28.载发生变化时也不会影响伺服系统的工作。
29.数控机床刀具相对于工件的位置定位,可以通过两种方式完成:一种是
坐标方式、一种是绝对坐标方式。
30.工件坐标系的原点在机床坐标系中称为大尺寸能加工出来。
31.在CNC。
32.加工中心识别所需的刀具通常采用两种方式。
33.当位移传感器以就称为数字式位移传感器。
34.。
35.光栅倍频器是对光栅输出信号进行
36.CNC装置与速度控制单元之间的联系信号有模拟量信号和开关量信号两种。
37.当数控机床沿某一坐标轴进给时,移动速度越大,则跟随误差。
38.随着电子技术和计算机技术的发展,数控系统经历了采用电子管、晶体管、集成电路直到把微型计算机引进数控系统的过程。
39.在CNC
40.加工中心自动选刀的方式分为顺序选刀和任意选刀两种。
41.数字位置测量系统的脉冲是指系统反映的最小位置变化量。
42.43.在FANUC15系统中可以进行主轴的位置控制,其方法是在数控机床的主轴上安装回转编码器。
44.数控机床主要由程序载体、输入装置、CNC装置、伺服系统和机床的机械部件构成。
45.光栅传感器的信号处理技术中,细分电路的作用是提高。
46.加速转矩等于加速度乘以。
47.在空载时,加速度转矩应等于减去。
48.数控加工的编程方法主要有和两大类。
49.CNC系统中常用的插补方法中,步进电动机作为驱动元件的数据系统;数字增量插补法(数据采样插补法)一般用于直流伺服和交流伺服电机作为驱动元件的数控系统。
50.滚珠丝杠螺母副按其中的滚珠循环方式可分为两种。
51.直流主轴电动机的控制系统可分为两部分:和制部分。
52.定位精度的高低用的大小来衡量。
53.步进电动机的频率。
54.PLC功能模块用来对内装的55.CNC。
56.CNC系统控制软件的典型结构有。
57.考虑到电缆线的固定,为保证传感器的稳定工作,一般将直线光栅的安装在机床或设备的动板(工作台)上。
58.FANUC15
59.60.单、成本低。
61.根据伺服系统反馈信息的不同,可分为:开环控制系统、闭环控制系统和半闭环控制系统。
62.63.64.驱动单元,步进电动机就相应地转过一个步距角。通过机床的传动部件,使工作台相应地得到一个位移量,这个位移量称为脉冲当量。
65.半闭环控制系统与闭环控制系统的主要区别在于前者的电动机轴上装有表示其角位移的编码器。这种系统可以控制电动机做精确的角位移,但是不能纠正机床传动部件带来的误差,所以称为半闭环控制系统。
66.开放式数控系统解决了系统通用性差,用户无法改变系统功能、无法自由选择伺服系统等问题。
67.68.69.适应控制与闭环控制的主要区别在于有一。
70.G91每分钟进给(mm/min)G94主轴每转进给(mm/r)G96恒线速度(m/min)G97 每分钟转数(主轴)(r/min)
71.G17——选择xy平面插补 G18——选择xz平面插补 G19——选择yz平面插补
72.在数控编程时,使用(刀具半径补偿)指令后,就可以按工件的轮廓尺寸进行编程,而不需按刀具的中心线运动轨迹来编程。
73.G02顺圆插补、G03逆圆插补
74.对于数控车床,以主轴上夹持的工件最远端面作为z轴的基准点。从此基准点沿床身远离工件的方向作为z轴的正向,反之负向。
75.通常CNC机床的工作加工程序是以工件轮廓轨迹来编程。而使用刀具半径补偿功能时,则其作用是把工件轮廓轨迹转换成刀具的中心轨迹。
76.M00、M01和M02分别为程序停止、可选程序停止和程序结束,G04为暂停指令。M03、M04和M05分别表示主轴的正向(顺时针)旋转、反向(逆时针)旋转和主轴停转。M06为换刀。
77.STD总线基于IEEE961标准,是一个只有56根信号数的总线标准,是当前总线标准中较好的、体积最小的一种。
78.所谓联机诊断,是指数控计算机中的自诊断能力。
79.所谓脱机诊断,是指系统运转条件的诊断。脱机诊断还可以采用远程通信方式进行,即远程诊断。
80.在实用中常常用MTBF表示产品可靠性的一项指标。显然,MTBF数值越高,该产品的可靠性越好。
81.现代高档CNC系统中的计算机硬件结构多采用多CPU、模块化结构。
82.逐点比较法插补的特点是运算直观、输出脉冲均匀且速度变化小,其插补误差小于1个脉冲当量。
83.数字增量插补法在每个插补周期输出一个数字量(或称为指令位移增量),数字增量插补是用直线逼近被插补曲线的过程。
84.对于一个维护系统,两次故障之间平均工作时间,称为。
85.在CNC系统的I/O接口电路中,电平转换。
86.ROM:read only memory RAM: random access memory
87.插补运算的任务是确定。
88.逐点比较法的工作顺序是:偏差判别、进给控制、新偏差计算、终点判别
89.90.91.通常CNC装置的工件加工程序是以工件轮廓轨迹来编程。
92.CNC系统中的任务是使电动机精确地按插补计算的结果运转。
93.机床的控制I/O部件通常由一般的I/O接口加上光电隔离和信息转换电路构成。
94.对于CNC系统或者数控机床,可靠性通常用表示。
95.CNC系统控制软件的典型结构有前后台型和中断驱动型。
96.97.98.典型的丝杆支承方式有以下四种:
(1)一端固定、一端自由:这种安装方式结构简单,但轴向刚度较小,只适于丝杆较短的场合以及垂直安装的滚珠丝杆。
(2)两端简支:两端安装的轴承均为向心球轴承。这种安装方式轴向刚度小,只适用于对刚度和位移精度要求不高的场合。同时,对丝杆的热变形较为敏感。
(3)一端固定、一端简支:一端装两个向心推力球轴承固定,另一端装有向心球轴承支承。这种结构稍微复杂,但轴向刚度大,适用于对刚度和位移精度要求较高的场合。
(4)两端固定:两端均安装两个向心推力球轴承固定,并经调整预紧,因而轴向刚度很大。丝杆热变形可转化为轴承的预紧力。它适用于对刚度和位移精度要求高的场合,但是结构复杂。
99.滚动导轨的摩擦系数是u=0.0025--0.005。
100.数控机床上的滚珠丝杠螺母的传动效率n为0.92--0.96。
101.数控机床中采用双导程蜗杆传动的目的是
102.光栅位移检测装置包括三大部分:光栅传感器、光栅倍频器、光栅数显表。103.104.莫尔条纹的特点:莫尔条纹的移动量、移动方向与光栅尺的位移量、位移方向具有对应关系;莫尔条纹的间距对光栅栅距具有放大作用;莫尔条纹对光栅栅距局部误差具有误差平均作用。
105.脉冲发生器分:增量式和绝对式
106.107.直线感应同步器定尺上是上是
108.光栅传感器安装时,油液溅落方向应向着
109.感应同步器信号处理采用鉴幅型时,滑尺上正弦绕组和余弦绕组的励磁信号分别是U1 sinwt和U2 sinwt(U1=/U2)。
110.当感应同步器采用鉴相型工作方式时,滑尺上的两相励磁信号分别为Um sinwt 和Um coswt。
111.光栅利用,使得它能测得比栅距还小的位移量。
112.光栅读书装置由(光源,聚光镜,指示光栅,光电元件)
113.长光栅主要用于;短光栅主要用于
114.磁尺位置检测装置的输出信号是
115.脉冲比较伺服系统中采用的位置反馈器件是光栅传感器。
116.二进制接触式编码盘是一个绝对式编码盘。
117.感应同步器由组成。
118.光栅位移传感器基于将位移信号转变为电信号。119.光栅传感器又可看成由
120.光栅传感器是一种将位移信号转换为相应电信号的装置。
121.采用“高压建流,低压定流”工作方式的步进电动机驱动电源是源驱动电源。
122.气隙磁场按正弦波分布的电动机
123.一般CNC装置与速度控制单元之间的联系信号有两类:一类是模拟量信号;另一类是开关量信号。所谓的模拟量控制信号就是指速度控制命令Vcmd,它是由CNC系统发往速度控制单元的。
124.在需要调速的场合,通常使用直流电动机可以在无极调速时输出足够的功率。为了将交流电转换成直流电并且获得所需的速度,使的晶闸管进行可控整流。125.带有换向器的电动机是。
126.数控机床的进给由伺服电路、伺服驱动装置、机械传动机构及执行部件组成。127.PWM是脉冲宽度调制的缩写,PWM调速单元是指大功率晶体管斩波器速度控制单元。
128.对一台确定的步进电动机而言,其步距角决定于。
129.步进电动机的静态特性主要是指
130.步进电动机是根据反应式同步电动机或励磁式同步电动机的原理制成的。131.步进电动机的最大缺点是容易更容易发生。
132.闭环系统为了测量直线进给运动,沿导轨移动方向安装直线位移传感器,直接测量工作台的位移。
133.半闭环系统则把角位移传感器安装在电机轴或滚珠丝杆端部。
134.开环系统无位置反馈元器件,其驱动动力源将数字脉冲转换为角位移。135.在进给伺服系统的环节中,可等效为惯性环节的是调速单元;位置控制器相当于一个比例环节。
136.在相位比较式进给位置伺服系统的四个环节中,用来计算位置跟随误差的是鉴相器(鉴相器的作用就是计算X1和X2的相位之差,这一相位差就是伺服系统的位置跟随误差。)
137.相位比较伺服系统中,“脉冲/相位变换器”输出的信号反应了 138.在脉冲比较式进给位置伺服系统的四个环节(可逆计数器UDC、位置检测器PT、偏差补偿寄存器AM)中,用来计算位置跟随误差的是可逆计数器UDC。139.脉冲比较伺服系统中,可逆计数器的作用是计算位置指令脉冲个数与位置反馈脉冲个数之差。
140.闭环数控系统中,采样系统的采样周期T应满足
141.斜坡位置指令描述的位置指令称为最有这种位置指令函数的主要缺点是没有对加速度进行限制。这种位置指令函数是没有经过修正的指令函数。对位置指令函数进行修正就是要对加速度进行限制。
142.进给伺服系统的静态性能的优劣主要体现为的大小。
143.若仅采用比例型的位置控制,是无法完全消除的。
144.为了提高轮廓加工精度,在设计数控系统及加工中应
给速度。
145.为了综合性地判别数控机床所能达到的精度,应做的检测试验项目是度。
146.数控机床坐标轴的重复定位误差应为各测点重复定位误差中的 147.闭环控制系统的定位误差主要取决于贝误差。
148.数控机床移动部件的位置偏差x反映了移动部件在该点的 149.数控机床在某位置的定位误差的分布符合正态分布曲线的统计规律,其均方根误差б反映了机床在该位置的重复定位精度。
150.定位误差的离散带宽(分散范围)反映了该系统存在差。
151.对于数控机床,最具有该类机床精度特征的一项指标是 152.数控机床的重复定位误差呈正态分布时,误差离散带宽反映了该机床的性误差。
153.对于配有设计完善的位置伺服系统的数控机床,其定位精度和加工精度主要取决于位置检测元器件的精度。
154.反馈数控机床失动量的精度评定项目是
155.156.数控机床的重复定位精度是控制机床存在的157.在闭环数控机床上铣削外圆的圆度主要反应了该机床的度。
158.定位误差按其出现的规律可分为两大类: 159.定位精度的高低用的大小衡量。
160.FANUC 15系统中的AC伺服电动机带有高分辨率的回转编码器,其最小检测单位为0.1um。
161.在FANUC 15数控系统中,对进给电机实现全闭环或半闭环控制的功能模块是数控伺服功能模块。
162.在FANUC15 数控系统中,实现插补等运算功能的模块是 163.PLC功能模块用来对内装的。
164.CNC系统的工件加工程序必须按照或格式编写。
165.FANUC 株式会社开发的编码器与CNC系统之间采用方式来传送高频信号。
166.所谓意思是即使负载惯量和扭矩干扰等使电动机负载发生变化时,也不会影响伺服系统的工作。
167.在攻螺纹时,主轴一转,z轴的进给量必须和丝锥的一致。
168.169.机床工作时发生的振动有:两种。
170.用于CNC系统的PLC有两种:。