高中数学研究性学习案例分析

时间:2019-05-14 04:27:44下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高中数学研究性学习案例分析》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高中数学研究性学习案例分析》。

第一篇:高中数学研究性学习案例分析

高中数学研究型学习报告

姓 名:苏啸武 班 级:高二(1)班 指导老师:刘宏晓

高中数学研究性学习案例分析

背景与问题

在水平桌面上放一只内壁光滑的且近似抛物面形的玻璃水杯,取一些长短不一的细直金属棒随意丢入该水杯中,发现呈现如图所示的现象:

(1)猜想交汇点性质;

(2)结合猜想,根据物理学原理,对上述现象提出假说;

(3)将假说数学化;

(4)对假说的真假加以证明;

(5)自我评价以下探索过程.发现与探索

(1)焦点;

(2)假说:根据物体平衡的重心性质判断,当细棒长度不小于抛物线通径时,当且仅当细棒过抛物线焦点时它的中点到桌面距离最小;反之,当且仅当细棒平行于桌面时它的中点离桌面距离最小。

(3)数学化:已知抛物线方程是x2=2py,焦点是F,现有长度为定值a的抛物线的弦AB,AB中点为M。则当|AB|≥2p时,只要AB过F,M到x轴的距离最小;而当|AB|<2p时,只要AB与x轴平行,M到x轴的距离最小。

(4)证明:

方法一:如图,记A、B、M在准线上的射影分别是A1、B1、M1,因为总有|FA|+|FB|≥|AB|,所以2|MM1|=|AA1|+|BB1|=|FA|+|FB|≥|AB|=a,即当AB过焦点时M到准线距离取得最小值,为|AB|的一半,此时M到x轴距离最小。不过这个方法只证明了AB长不小于2p时的情形。

方法二:令AB所在的直线方程是:y=kx+b,代入x2=2py得x2-2pkx-2pb=0,如令A(x1,y1)、B(x2,y2)则有x1+x2=2pk,x1x2=-2pb。

所以由弦长公式可得:a2=|AB|2=(1+k2)[(2pk)2+8pb],上为增函数可知k=0时y1+y2最小(因而M到x轴距离最小),此时AB平行x轴;

方法三:“物理”方法。

如图,对于后一条件易证明弦恰过焦点,对于前一条件,当然是指弦与x轴平行了。

综上所述,当弦长不小于通径时,它过焦点时重心最低;当弦长小于通径时,它平行于x轴(这样的弦因为太“短”,不能够过焦点)时重心最低。从而根据物理学原理证明了原数学问题。

(5)上述探索的过程表明:“数理相通,数学与物理是人们从不同角度认识世界的两种表面迥异但内涵相同的东西。总之它们可以互相证明、变通。如本题,一旦理解了它的物理含义,则它其中隐含的东西就

第二篇:高中数学研究性学习教学案例

高中数学研究性学习教学案例

―――――关于高一数学中分期付款问题

高一数学教材中的研究性学习是关于分期付款问题,这个问题在生活中有比较现实的意义,而且研究好了这个问题,对学习等比数列以及等比数列的求和公式的应用可以起到巩固的作用。

一、问题的背景

故事背景:一外国老太太与一中国老太太的比较:一外国老太太到了快要死去时 叹了口气说,我终于还够了买房子的钱,而中国老太太到了快要死去时叹了口气说,我终于攒够了买房子的钱。那么问同学们,你们赞同于哪一种生活方式呢?这个问 题提出来之后,大家讨论的结果是,这个故事反应的是两个国家人们消费观念的 不同,同样的结果是老太太辛苦一辈子挣得一座房子,但两者的生活质量却有着 很大的不同,国外比较早实行分期付款的消费方式,而且信用体系比较完善。现实背景:据统计现在上海以及一些大城市的年轻人越来越多的“负”翁出现,年 轻

人消费观念正发生着巨大变化,一般的工薪阶层兴起买房热和买车热,他们敢于用 明天的钱享受今天的生活。在我们身边,你们可以调查一下是不是也有很多青年人是 采用分期付款的方式买的房子和汽车呢?那么,如果是你有了一定的经济能力后也采 用分期付款的方式,那么你能不能算一算你每一期将会付多少款呢,会不会影响到 自己的生活质量呢?

通过这个问题的故事背景,使学生对分期付款问题产生了比较浓厚的兴趣,使我们 对问题的展开奠定了良好的基础。

单利与复利

1、按单利计算,如果存入本金a元,每月的利率为0.8%,试分别计算1月后,2月后,3个月后,……12个月后的本利和是多少?

解:已知本金为a元,1月后的本利和为a(1+0.8%)

2月后的本利和为a(1+2*0.8%)

3月后的本利和为a(1+3*0.8%)

……

12月后的本利和为a(1+12*0.8%)

一般的,本金为a元,每期利率为r,设本利和为y,存期为n,本利和y随存期n变化的函数式为y=a(1+n*r)。

2、按复利计算,如果存入本金a元,每月的利率为0.8%,试分别计算1月后,2月后,3个月后,……12个月后的本利和是多少?

解:已知本金为a元, 1月后的本利和为a(1+0.8%)

2月后的本利和为a(1+0.8%)2

3月后的本利和为a(1+0.8%)3

……

12月后的本利和为a(1+0.8%)12

一般的,本金为a元,每期利率为r,设本利和为y,存期为n,本利和y

n随存期n变化的函数式为ya(1r)

3、分期付款

3、购买一件售价为5000元的商品,采用分期付款的办法,每期付款数相同,购买1个月后第1次付款,再过1个月第2次付款,如此下去,共付款5次后还清,如果按月利率0.8%,每月利息按复利计算(上月利息要计入下月本金),那么每期应付款多少?(精确到1元)

解法1:设每月应付款x元,购买1个月后的欠款数为5000·1.008-x,购买2个月后的欠款数为(5000·1.008-x)·1.008-x

即 5000·1.0082-1.008x-x

购买3个月后的欠款数为(5000·1.0082-1.008x-x)·1.008-x

即5000·1.0083-1.0082x-1.008x –x

……

购买5个月后的欠款数为:5000·1.0085-1.0084x–1.0083x-1.0082x-1.008x –x

由题意 5000·1.0085-1.0084x–1.0083x-1.0082x-1.008x –x=0

1.00851于是,x50001.0085

1.0081

即 x+1.008x+1.0082x+1.0083x+1.0084x=5000·1.0085

这就是说,每月应付款1024元。

解法2:设每月应付款x元,那么到最后1次付款时(即商品购买5个月后)付款金额的本利和为:

(x+1.008x+1.0082x+1.0083x+1.0084x)元;

另外,5000元商品在购买后5个月后的本利和为5000·1.0085元。

根据题意,x+1.008x+1.0082x+1.0083x+1.0084x=5000·1.0085

解法3:从贷款时(即购买商品时)的角度来看

第1个月偿还的x元,贷款时值 :

x第2个月偿还的x元,贷款时值: x元元2… … 1.0081.008第5个月偿还的x元,贷款时值:

贷款5000元购买商品时值5000元。x元5由此可列出方程: 1.008

xxxxx500023451.0081.0081.0081.0081.008

一般性结论:

(1)设贷款a元,拟m个月等额将贷款全部付清,月利率为r,每月付款x元,有

23n1mx[1(1r)(1r)(1r)(1r)]a(1r)

mar(1r)得到xm(1r)1

(2)设贷款a元,m个月分n次付清,(n是m的约数),月利率为r,每月付款x元,有a(1r)xx(1r)x(1r)x(1r)

整理得到x

mmn2mn(n1)na(1r)([1r)1]m(1r)1mmn

第三篇:高中数学研究性学习论文

高中数学研究性学习论文

摘要:研究性学习具有综合性和开放性的特征,但究其实施过程,也需要依托相应的课程作为载体。从而,现行的中学各学科教学中也都应该为研究性学习的实施做出自己的努力。那么,高中数学中如何进行研究性学习呢? 论文针对高中数学研究性学习中存在的误区及应坚持正确的导向进行了认真审视和深入思考。

关键词:高中数学 研究性学习问题 思考

2004年4月,教育部颁布《全日制普通高级中学数学教学大纲(实验修订版)》首次明确提出:在必修课的内容中安排“研究性课题学习”(12课时),并给出了其教学目标和参考课题。研究性学习,作为培养学生创新精神和实践能力的一种重要途径和载体,无疑是当前我国基础教育课程改革的热点、亮点和难点。应该说,目前中学对数学研究性学习进行了一些积极的尝试,并且取得了一定成绩,体现在推动了学校管理体制的改革,促进了学校、社会、家庭间的相互配合,从整体上推进了数学素质教育的实施,加快了教学设备的更新,为学校发展奠定了基础。而且,数学研究性学习的开展充分尊重与满足师生及学校环境的独特性与差异性,有助于学校形成支持和激励的氛围,有助于教育质量的提高。但是,我们也应该看到,由于数学研究性学习没有非常成熟的经验可供借鉴,因而在具体运作过程中,也会出现一些问题,需要我们认真审视和深入思考,并在实施前就要加以注意。

一、高中数学研究性学习的展开要学会因校制宜

高中数学研究性学习强调要结合学生学习、生活和社会生活实际选择研究专题,同时要充分利用本校本地的各种教育资源。学校内部资源包括具有不同知识背景、特长爱好的数学教师,包括图书馆、实验室、计算机、校园等设施设备和场地。也包括反映学校文化的各种有形无形的资源。有条件的地方应尽量利用高校、科研院所、学术团体等部门的数学人才和数学电子信息资源为数学研究性学习的开展提供有力支持。从某种意义上说,越是困难的地区和学校,对培养学生应用所学知识研究解决实际问题的意识和能力的需求越迫切。上海郊县一所中学的农村学生在数学和生物教师指导下,针对当地经常受到乳虫危害,造成麦子大量减产的情况,成立了“勤虫诱因与防治预报”课题组,他们的研究结果被镇植保站采纳,课题组也深受鼓舞。

除了充分利用校内外教育资源外,学校也要结合自身实际对数学研究性学习的开展进行有效管理。在这方面,上海市晋元高级中学做法有可取之处。他们有研究性学习的两级管理指导协调系统:一是学校和教师,包括研究性学习教研室,教务处、年级组、学生处、团委、总务处,大家分工明确,互相配合。二是教研室与学生之间管理协调系统,例如,他们有高一年级组研究性学习协调委员会,由学生干部担任主要角色,对包括数学研究性学习在内的各类研究性学习进行学生间的协调和管理,有助于及时发现问题,解决问题。

二、教师观念的转变和角色的转换

数学研究性学习的具体操作者是学校和教师,除了学校以外,数学教师的作用更是不容忽视。数学研究性学习是为了让学生“会学数学”,数学研究性学习应视学校学习为起点,以“终身学习”为目标,为了更好的开展研究性学习,数学教师要进行如下观念的转变:以人为本,以问题和问题解决为中心,因为“问题是数学的心脏”:数学研究性学习应面向全体学生,实现“人人学有价值的数学”,“人人都获得必需的数学’,“不同的人在数学上获得不同的发展”。在数学研究性学习的实施中,要让全体同学参与其中,乐在其中;数学来源于生活又回归于生活,因此,数学研究性学习应在学生认知发展水平和已有的知识经验基础上,帮助他们在自主探索和合作交流过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。公务员之家

在数学研究性学习的实施中,数学教师观念转变是前提,同时要求数学教师也要进行角色的转换。首先,数学教师应是学习者。因为“数学课程标准”的理念是“以人为本”,数学研究性学习是人本思想的体现,因此数学教师要摸清学生在数学研究性学习中的心理机制和认知特点,以学习者的身份去体验数学研究,以学习者的立场参与其中,去发现问题,反思问题,进而引发学生学会向数学提问,学会向数学问题解决提问。

其次,数学教师应充当指导者.数学研究性学习是与数学问题的解决密不可分的,而问题的解决又不是一朝一夕之功。为此,数学教师在选题阶段,要针对学生学习与发展需要,结合学校和社区教育资源条件、特点,开发设计适合学生研究的课题。另外,还可提出建议,让学生讨论,形成具体计划,还可提供相关背景知识,诱导学生寻找值得研究的课题:在实施阶段,教师要进行分工指导,帮助学生明确目标任务和职责。另外,数学教师还要对学生进行心理疏导,激励学生研究探索,鼓励学生克服挫折。在方法上,教师也要根据新情况新问题鼓励学生不断对实施方案进行微调。除此之外,教师要指导学生在数学研究性学习中,获得数学科学态度、科研方法、探索兴趣的感悟和体验。

再有,数学教师应充当评价者。这里的评价包括两方面,一是教师对学生的评价,在这一过程中,要注意过程评价与结果评价相结合,多注重过程,注意激励与导向的结合。注意多元化的评价,既要关注学生在数学研究性学习方面已达到的程度水平,更要关注学生行为、情感、态度的生成和变化,一些中学转自http://开展的数学研究性学习论文答辩会和成长纪录袋的评价形式值得借鉴;二是数学教师对自身的评价。数学课程的改革,要求教师对任何学习活动都要有反思与体验,对研究性学习也是如此。从这一点来讲,数学教师应当去反思自己在研究性学习中的表现,强化评价意识。只有知道什么样的选题是好的选题,自己才能帮助学生把好关、选好题,只有知道什么样的指导最到位,才会引领学生在数学研究性学习的过程中少走弯路,提高效率。

三、研究性学习的定位及其与数学教学的关系

数学研究性学习是面向全体学生的,而不是只针对少数优秀学生的,它以激发学生主动探索的积极性,培养学生的创新精神为追求目标,鼓励学生介入数学学科前沿的研究,要求学生的研究结果具有一定的科学性,但并不强求每个学生的最后研究结果都必须独一无二.。强调这样的定位,有助于预防数学研究性学习变为新的数学学科竞赛。

由于数学研究性学习的特点,大大改变了以往的教育模式,学生不再只是被动接受者,而是成为学习的主人,是问题的研究者和解决者,而教师则是在适当的时候对学生给予帮助,起着组织和引导的作用。从初步开展数学研究性学习的实践情况来看,凡是认真参加数学研究性学习的学生,基本上都没有影响数学学科内容的学习。访谈结果显示,因为开展数学研究课题的需要,学生“用然后知不足”,常常自觉的加深或拓宽了与课题相关的数学学科课程的学习:有的通过自己的亲身实践,更加加深了对数学学科课程的理解和热爱。因此,是否

可以这样说,数学研究性学习和现有数学学科教学之间,不是一个反对一个,一个否定一个,而是互为补充,相互促进的关系。

四、应着眼于使学生认识数学文化的魅力,将知识融入到生活实际

毫无疑问,数学作为一种科学,描述了一种最高的文化成就。美国数学家怀尔德1981年从数学人类学的角度提出了“数学——一种文化体系”的数学哲学观,这是很长时期以来出现的第一个成熟的数学哲学观。数学作为一种文化,除了具有文化的某些普通特征外,还有其区别于其他文化形态的独有特征。数学是科学的语言,是思维的工具,也是传播人类思想的一种基本方式:数学用一种客观的方式将自然与社会连接起来,并具有相对的稳定性和延续性:数学作为一种思想方法,充满着理性精神。学校数学研究性学习的开展有助于学生认识数学文化,在数学研究性学习中,我们要发挥这种魅力对同学们的吸引。一些中学显然认识到了这一点,如在北京某中学进行数学研究性学习的活动动员中,数学组长的发言为同学们提到了海湾战争中的数学,提到了推理小说中蕴涵的数学,提到了古汉语研究中的数学,还提到了经济中的数学、化学中的数学等等,让同学们充分认识到了数学文化的无处不在,同时也认识到了数学文化的传承与发展。一斑窥全貌,由此可见,开展研究性学习有助于让学生们进入到数学文化的氛围,从而感受到数学文化的魅力。如果数学研究性学习能为人们认识数学文化、推动数学文化的发展做一些贡献,那么在未来培养出大批积极主动和有能力的年轻的数学文化传播者,也是指日可待的。

另外,数学研究性学习应首先着眼于让学生融入生活实践,所研究的数学问题不要求很大,只要能有一定的生活实践意义和价值,不管多么小的问题,都不失为一个好问题。在以往的数学研究性学习课题中,也己体现了这一着眼点。如某中学同学研究的“学校食堂窗口的设置问题”就是从生活实践的角度出发,从统计学的角度出发,找到了学生到达窗口与厨师盛饭时间的大致规律,从而让同学们更加融入了身边的生活实际,也增强了服务于生活实践的意识。学校和教师作为数学研究性学习的真正的管理者和执行者,一定注意不要贪大舍小。要首先从观念上教会学生融入生活实际。为什么这么说呢?因为数学是生活世界的财产,在实践中应用数学财产,而且这种应用与感兴趣的日常实际密切结合,就可以让学生走进生活实践、提高生存能力,从而使生活变得轻松,因而会让学生们感到学习数学的轻松愉快。

总之,研究性学习,作为培养学生创新精神和实践能力的一种重要途径和载体,无疑是当前我国基础教育课程改革的热点、亮点和难点。研究性学习具有综合性和开放性的特征,但究其实施过程,也需要依托相应的课程作为载体。从而,现行的中学各学科教学也都应该为研究性学习的实施做出自己的努力。

参考文献:

[1]宋益大.信息技术和数学教学之关系的思考与研究[J]兵团教育学院学报,2005,(01).[2]李茜,李卫祥,毕如田.试谈课程论文的评价[J]高等农业教育, 2003,(05).[3]熊有胜,李建辉.合作探索学习的指导:原则与策略[J]高等函授学报(哲学社会科学版),2005,(06).[4]文可义.研究性学习的课程价值[J]广西教育学院学报,2003,(01).[5]李允.论“研究性学习”的教师角色期待[J]西华师范大学学报(哲学社会科学版),2004,(04).[6]李莹,乔占奎.试论师范生研究性学习能力培养[J]集宁师专学报, 2002,(04).[7]高飞,秦贇.关于研究性学习评价若干问题的思考[J]蒙自师范高等专科学校学报,2003,(03).[8]汪基德,王萍.研究性学习实施现状的调查与思考[J]教育科学,2003,(04).

第四篇:高中数学研究性学习报告

世界近代史上三大数学猜想——费尔马大定理

现在不少学生认为数学是一门枯燥乏味、难以学习的学科,那是因为他们没有体会到数学的价值就认为数学是没有实际意义的学科,学数学只是为了应付考试。现在的高中生的数学学习的观念主要有:

(1)学数学主要靠记忆、模仿;

(2)学数学就是为了在考试中取得好成绩;

(3)学数学就是要会做数学题;

(4)学数学就是要培养一个人的运算能力;

(5)学数学就是用数学知识解决实际问题

这些信念说明了现在的多数高中生的数学观念不够健全和科学。而数学史对改变学生的数学观念能产生积极的影响,同时对激发学生学习数学的兴趣十分有帮助。

1、学习数学史能使学生体会到数学的价值,认识数学的本质。

2、学习数学史能调动学生学习数学的积极性,激发学习数学的兴趣。

3、学习数学史有助于培养学生正确的数学观念。

4、学习数学史有助培养学生的爱国主义思想和民族自尊心。

5、学习数学史有助于培养学生坚强的意志品质和实事求是的态度以及创新精神。(第二部分世界近代史上三大数学猜想):

① 接下来我们就从下面几个方面来谈谈数学史中最有名的理论或人物。首先请三位同学来

说说“世界近代史上三大数学猜想”,第一,费尔马大定理

接下来,讲讲第二大猜想———四色猜想。(第5-6页)

③下面我们说说第三大猜想———哥德巴赫猜想。(第7-8页)

(第一部分的小结)

现在大家对三大猜想是不是有了一定的了解?是不是觉得数学也有很多有趣的看似简单但其实非常难以解决的问题呢?希望大家今后多注意简单的问题,多从简单的问题深入思考,说不定你就是第四大猜想的发现者哟!

(第二部分阿拉伯数字的起源):

我们现在每天学数学都在跟一些数字打交道,什么数字呀?(同学回答:阿拉伯数字),那你们知不知道阿拉伯数字是怎么来的呀?

下面我们说说阿拉伯数字的起源。(第9-10页)

(第三部分解析几何的创始人笛卡儿)

我们现在正在学习的是必修2的第二章——解析几何初步,那大家知不知道解析几何是谁创始的吗?下面我们搜集了一些资料来帮助我们了解这一部分历史。请宋嘉彬同学来给我们讲讲这里的故事。(第11-12页)

(第三部分小结)

解析几何是我们高中数学非常重要的一部分,希望通过今天的学习让大家对解析几何有一个更全面一点的认识,从而加强对这一部分的学习。

(第四部分菲尔兹奖)

大家知道数学上最高荣誉奖是什么奖吗?不知道吧?下面我们也来了解一下数学中的诺贝尔奖,我们介绍一下。(第13页)

(第五部分总结)

希望通过今天的学习大家能明白数学并不是你们现在所想的那样枯燥无味,在这块领域里要好多感人的有趣的故事,更别说它对其它学科的渗透力。所以希望今后大家能多了解一些数学史的知识,从而能更全面的学好数学这门学科

下面我就来给大家讲讲世界近代史上三大猜想之一:费尔马大定理

费尔马大定理,起源于三百多年前,挑战人类3个世纪,多次震惊全世界,耗尽人类众多最杰出大脑的精力,也让千千万万业余者痴迷。终于在1994年被安德鲁·怀尔斯攻克。古希腊的丢番图写过一本著名的“算术”,经历中世纪的愚昧黑暗到文艺复兴的时候,“算术”的残本重新被发现研究。

1637年,法国业余大数学家费尔马在“算术”的关于勾股数问题的页边上,写下猜想:对于任意大于2的整数n , 不可能有非零的整数 a, b, c满足。此猜想后来就称为费尔马大定理。费尔马还写道“我对此有绝妙的证明,但此页边太窄写不下”。一般公认,他当时不可能有正确的证明。猜想提出后,经欧拉等数代天才努力,200年间只解决了n=3,4,5,7四种情形。1847年,库木尔创立“代数数论”这一现代重要学科,对许多n(例如100以内)证明了费尔马大定理,是一次大飞跃。

历史上费尔马大定理高潮迭起,传奇不断。其惊人的魅力,曾在最后时刻挽救自杀青年于不死。他就是德国的沃尔夫斯克勒,他后来为费尔马大定理设悬赏10万马克(相当于现在160万美元多),期限1908-2007年。无数人耗尽心力,空留浩叹。最现代的电脑加数学技巧,验证了400万以内的N,但这对最终证明无济于事。1983年德国的法尔廷斯证明了:对任一固定的n,最多只有有限多个a,b,c振动了世界,获得费尔兹奖(数学界最高奖)。

历史的新转机发生在1986年夏,贝克莱·瑞波特证明了:费尔马大定理包含在“谷山丰—志村五朗猜想 ” 之中。童年就痴迷于此的怀尔斯,闻此立刻潜心于顶楼书房7年,曲折卓绝,汇集了20世纪数论所有的突破性成果。终于在1993年6月23日剑桥大学牛顿研究所的“世纪演讲”最后,宣布证明了费尔马大定理。立刻震动世界,普天同庆。不幸的是,数月后逐渐发现此证明有漏洞,一时更成世界焦点。这个证明体系是千万个深奥数学推理连接成千个最现代的定理、事实和计算所组成的千百回转的逻辑网络,任何一环节的问题都会导致前功尽弃。怀尔斯绝境搏斗,毫无出路。1994年9月19日,星期一的早晨,怀尔斯在思维的闪电中突然找到了迷失的钥匙:解答原来就在废墟中!他热泪夺眶而出。怀尔斯的历史性长文“模椭圆曲线和费尔马大定理”1995年5月发表在美国《数学年刊》第142卷,实际占满了全卷,共五章,130页。1997年6月27日,怀尔斯获得沃尔夫斯克勒10万马克悬赏大奖。离截止期10年,圆了历史的梦。他还获得沃尔夫奖(1996.3),美国国家科学家院奖(1996.6),费尔兹特别奖(1998.8)。

下面我就来说说世界近代史上第二大数学猜想:四色猜想

四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位

搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。1852年10月23日,他的弟弟就这个问题的证明请教他的老师、著名数学家德.摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家哈密尔顿爵士请教。哈密尔顿接到摩尔根的信后,对四色问题进行论证。但直到1865年哈密尔顿逝世为止,问题也没有能够解决。1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。1878~1880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。11年后,即1890年,数学家赫伍德以自己的精确计算指出肯普的证明是错误的。不久,泰勒的证明也被人们否定了。后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题:先辈数学大师们的努力,为后世的数学家揭示四色猜想之谜铺平了道路。进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。1913年,伯克霍夫在肯普的基础上引进了一些新技巧,美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。1950年,有人从22国推进到35国。1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。看来这种推进仍然十分缓慢。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。四色猜想的计算机证明,轰动了世界。它不仅解决了一个历时100多年的难题,而且有可能成为数学史上一系列新思维的起点。不过也有不少数学家并不满足于计算机取得的成就,他们还在寻找一种简捷明快的书面证明方法。

那我就来跟大家讲讲世界近代史上三大数学猜想:哥德巴赫猜想

史上和质数有关的数学猜想中,最著名的就是“哥德巴赫猜想”了。哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。1742年6月7日,哥德巴赫在写给著名数学家欧拉的一封信中,提出了两个大胆的猜想:

一、任何不小于6的偶数,都是两个奇质数之和;

二、任何不小于9的奇数,都是三个奇质数之和。

这就是数学史上著名的“哥德巴赫猜想”。显然,第二个猜想是第一个猜想的推论。因此,只需在两个猜想中证明一个就足够了。

同年6月30日,欧拉在给哥德巴赫的回信中,明确表示他深信哥德巴赫的这两个猜想都是正确的定理,但是欧拉当时还无法给出证明。由于欧拉是当时欧洲最伟大的数学家,他对哥德巴赫猜想的信心,影响到了整个欧洲乃至世界数学界。从那以后,许多数学家都跃跃欲试,甚至一生都致力于证明哥德巴赫猜想。可是直到19世纪末,哥德巴赫猜想的证明也没有任何进展。证明哥德巴赫猜想的难度,远远超出了人们的想象。有的数学家把哥德巴赫猜想比喻为“数学王冠上的明珠”。

我们从6=3+3、8=3+5、10=5+

5、„„、100=3+97=11+89=17+83、„„这些具体的例子中,可以看出哥德巴赫猜想都是成立的。有人甚至逐一验证了3300万以内的所有偶数,竟然没有一个不符合哥德巴赫猜想的。20世纪,随着计算机技术的发展,数学家们发现哥德巴赫猜想对于更大的数依然成立。可是自然数是无限的,谁知道会不会在某一个足够大的偶数上,突然出现哥德巴赫猜想的反例呢?于是人们逐步改变了探究问题的方

式。

1900年,20世纪最伟大的数学家希尔伯特,在国际数学会议上把“哥德巴赫猜想”列为23个数学难题之一。此后,20世纪的数学家们在世界范围内“联手”进攻“哥德巴赫猜想”堡垒,终于取得了辉煌的成果。

20世纪的数学家们研究哥德巴赫猜想所采用的主要方法,是筛法、圆法、密率法和三角和法等等高深的数学方法。解决这个猜想的思路,就像“缩小包围圈”一样,逐步逼近最后的结果。

1920年,挪威数学家布朗证明了定理“9+9”,由此划定了进攻“哥德巴赫猜想”的“大包围圈”。这个“9+9”是怎么回事呢?所谓“9+9”,翻译成数学语言就是:“任何一个足够大的偶数,都可以表示成其它两个数之和,而这两个数中的每个数,都是9个奇质数之和。” 从这个“9+9”开始,全世界的数学家集中力量“缩小包围圈”,当然最后的目标就是“1+1”了。

1924年,德国数学家雷德马赫证明了定理“7+7”。很快,“6+6”、“5+5”、“4+4”和“3+3”逐一被攻陷。1957年,我国数学家王元 证明了“2+3”。1962年,中国数学家潘承洞 证明了“1+5”,同年又和王元合作证明了“1+4”。1965年,苏联数学家证明了“1+3”。

而大家知道是谁证明了“1+2”吗?(下面同学讨论看能不能得出结果)

1966年,我国著名数学家陈景润 攻克了“1+2”,也就是:“任何一个足够大的偶数,都可以表示成两个数之和,而这两个数中的一个就是奇质数,另一个则是两个奇质数的和。”这个定理被世界数学界称为“陈氏定理”。1996年3月下旬,当陈景润即将摘下数学王冠上的这颗明珠,“在距离哥德巴赫猜想(1+1)的光辉顶峰只有飓尺之遥时,他却体力不支倒下去了„„”在他身后,将会有更多的人去攀登这座高峰。

由于陈景润的贡献,人类距离哥德巴赫猜想的最后结果“1+1”仅有一步之遥了。但为了实现这最后的一步,也许还要历经一个漫长的探索过程。有许多数学家认为,要想证明“1+1”,必须通过创造新的数学方法,以往的路很可能都是走不通的。

我们都知道,数学计算的基础是阿拉伯数字,那大家知不知道阿拉伯数字有多少个?(下面同学齐声回答:10个),哪10个?(下面同学齐声回答:1、2、3、4、5、6、7、8、9、0)。离开这些数字,我们无法进行计算。然而阿拉伯数字是阿拉伯人发明创造的吗?(下面同学回答)。其实,阿拉伯数字并不是阿拉伯人发明创造的,而是发源于古印度,后来被阿拉伯人掌握、改进,并传到了西方,西方人便将这些数字称为阿拉伯数字。以后,以讹传讹,世界各地都认同了这个说法。

阿拉伯数字是古代印度人在生产和实践中逐步创造出来的。

在古代印度,进行城市建设时需要设计和规划,进行祭祀时需要计算日月星辰的运行,于是,数学计算就产生了。大约在公元前3000年,印度河流域居民的数字就比较先进,而且采用了十进位的计算方法。

到公元前三世纪,印度出现了整套的数字,但在各地区的写法并不完全一致,其中最有代表性的是婆罗门式:这一组数字在当时是比较常用的。它的特点是从“1”到“9”每个数都有专字。现代数字就是由这一组数字演化而来。在这一组数字中,还没有出现“0”(零)的符号。“0”这个数字是到了笈多王朝(公元320—550年)时期才出现的。公元四世纪完成的数学著作《太阳手册》中,已使用“0”的符号,当时只是实心小圆点“·”。后来,小圆点演化成为小圆圈0”。

这样,一套从“1”到“0”的数字就趋于完善了。这是古代印度人民对世界文化的巨大贡献。

印度数字首先传到斯里兰卡、缅甸、柬埔寨等印度的近邻国家。

公元七到八世纪,地跨亚非欧三洲的阿拉伯帝国崛起。阿拉伯帝国在向四周扩张的同时,阿拉伯人也广泛汲取古代希腊、罗马、印度等国的先进文化,大量翻译这些国家的科学著作。公元771年,印度的一位旅行家毛卡经过长途跋涉,来到了阿拉伯帝国阿拔斯王朝首都巴格达。毛卡把随身携带的一部印度天文学著作《西德罕塔》,献给了当时的哈里发(国王)曼苏尔。曼苏尔十分珍爱这部书,下令翻译家将它译为阿拉伯文。译本取名《信德欣德》。这部著作中应用了大量的印度数字。由此,印度数字便被阿拉伯人吸收和采纳。

此后,阿拉伯人逐渐放弃了他们原来作为计算符号的28个字母,而广泛采用印度数字,并且在实践中还对印度数字加以修改完善,使之更便于书写。

阿拉伯人掌握了印度数字后,很快又把它介绍给欧洲人。中世纪的欧洲人,在计数时使用的是冗长的罗马数字,十分不方便。因此,简单而明了的印度数字一传到欧洲,就受到欧洲人的欢迎。可是,开始时印度数字取代罗马数字,却遭到了基督教教会的强烈反对,因为这是来自“异教徒”的知识。但实践证明印度数字远远优于罗马数字。

1202年,意大利出版了一本重要的数学书籍《计算之书》,书中广泛使用了由阿拉伯人改进的印度数字,它标志着新数字在欧洲使用的开始。这本书共分十五章。在第一章开头就写道:“印度的九个数目字是‘9、8、7、6、5、4、3、2、1’,用这九个数字以及阿拉伯人叫做‘零’的记号‘0’,任何数都可以表示出来。”

随着岁月的推移,到十四世纪,中国印刷术传到欧洲,更加速了印度数字在欧洲的推广与应用。印度数字逐渐为全欧洲人所采用。

西方人接受了经阿拉伯传来的印度数字,但他们当时忽视了古代印度人,而只认为是阿拉伯人的功绩,因而称其为阿拉伯数字,这个错误的称呼一直流传至今。

大家知道解析几何的创始人是谁吗?他就是伟大的哲学家、物理学家、数学家、生理学家笛卡儿(Rene Descartes)。

笛卡儿1596年3月31日生于法国土伦省莱耳市的一个贵族之家,笛卡儿的父亲是布列塔尼地方议会的议员,同时也是地方法院的法官,笛卡儿在豪华的生活中无忧无虑地度过了童年。他幼年体弱多病,母亲病故后就一直由一位保姆照看。他对周围的事物充满了好奇,父亲见他颇有哲学家的气质,亲昵地称他为“小哲学家”。

父亲希望笛卡儿将来能够成为一名神学家,于是在笛卡儿八岁时,便将他送入拉弗莱什的耶稣会学校,接受古典教育。校方为照顾他的孱弱的身体,特许他可以不必受校规的约束,早晨不必到学校上课,可以在床上读书。因此,他从小养成了喜欢安静,善于思考的习惯。笛卡儿1612年到普瓦捷大学攻读法学,四年后获博士学位。1616年笛卡儿结束学业后,便背离家庭的职业传统,开始探索人生之路。他投笔从戎,想借机游历欧洲,开阔眼界。这期间有几次经历对他产生了重大的影响。一次,笛卡儿在街上散步,偶然间看到了一张数学题悬赏的启事。两天后,笛卡儿竟然把那个问题解答出来了,引起了著名学者伊萨克·皮克曼的注意。皮克曼向笛卡儿介绍了数学的最新发展,给了他许多有待研究的问题。与皮克曼的交往,使笛卡儿对自己的数学和科学能力有了较充分的认识,他开始认真探寻是否存在一种类似于数学的、具有普遍使用性的方法,以期获取真正的知识。

据说,笛卡儿曾在一个晚上做了三个奇特的梦。第一个梦是,笛卡儿被风暴吹到一个风力吹不到的地方;第二个梦是他得到了打开自然宝库的钥匙;第三个梦是他开辟了通向真正知识的道路。这三个奇特的梦增强了他创立新学说的信心。这一天是笛卡儿思想上的一个转折点,有些学者也把这一天定为解析几何的诞生日。

然而长期的军旅生活使笛卡儿感到疲惫,他于1621年回国,时值法国内乱,于是他去荷兰、瑞士、意大利等地旅行。1625年返回巴黎,1628年移居荷兰。

在荷兰长达20多年的时间里,笛卡尔对哲学、数学、天文学、物理学、化学和生理学等领域进行了深入的研究,并通过数学家梅森神父与欧洲主要学者保持密切联系。他的主要

著作几乎都是在荷兰完成的。

1628年,笛卡尔写出《指导哲理之原则》,1634年完成了以哥白尼学说为基础的《论世界》。书中总结了他在哲学、数学和许多自然科学问题上的一些看法。1637年,笛卡儿用法文写成三篇论文《折光学》、《气象学》和《几何学》,并为此写了一篇序言《科学中正确运用理性和追求真理的方法论》,哲学史上简称为《方法论》,6月8日在莱顿匿名出版。1641年出版了《形而上学的沉思》,1644年又出版了《哲学原理》等重要著作。

笛卡儿近代科学的始祖,是欧洲近代哲学的奠基人之一,黑格尔称他为“现代哲学之父”。他自成体系,熔唯物主义与唯心主义于一炉,在哲学史上产生了深远的影响。

笛卡儿在科学上的贡献是多方面的,但是,笛卡儿最杰出的成就是在数学发展上创立了解析几何学。在笛卡儿时代,代数还是一个比较新的学科,几何学的思维还在数学家的头脑中占有统治地位。笛卡儿致力于代数和几何联系起来的研究,于1637年,在创立了坐标系后,成功地创立了解析几何学。他的这一成就为微积分的创立奠定了基础。解析几何直到现在仍是重要的数学方法之一。

解析几何的出现,改变了自古希腊以来代数和几何分离的趋向,把相互对立着的“数”与“形”统一了起来,使几何曲线与代数方程相结合。笛卡儿的这一天才创见,更为微积分的创立奠定了基础,从而开拓了变量数学的广阔领域。

正如恩格斯所说:“数学中的转折点是笛卡儿的变数。有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要了。”

菲尔兹奖是以已故的加拿大数学家、教育家J.C.菲尔兹(Fields)的姓氏命名的。J.C.菲尔兹1863年5月14日生于加拿大渥大华。他11岁丧父,18岁丧母,家境不算太好。J.C.菲尔兹17岁进人多伦多大学攻读数学,24岁时在美国的约翰·霍普金斯大学获博土学位,26任美国阿勒格尼大学教授。1892年他到巴黎、柏林学习和工作,1902年回国后执教于多伦多大学。J.C.菲尔兹于1907年当选为加拿大皇家学会会员。他还被选为英国皇家学会、苏联科学院等许多科学团体的成员。

菲尔兹强烈地主张数学的发展应是国际性的。他对于促进北美数学的发展有独特见解,并作出了很大贡献。菲尔兹全力筹备并主持了1924年在多伦多召开的国际数学家大会,当他得知大会经费有剩余时,就萌发了设立一个国际数学奖的想法,并为设立国际数学奖积极地奔走于欧美各个国家以谋求更多的支持。菲尔兹教授在去世前立下遗嘱,要把自己的遗产添加到上述剩余的经费中,由多伦多大学转交给第九次国际数学家大会。国际数学家大会的每位成员都被菲尔兹教授的举动所深深感动,于是大会一致同意将该奖项命名为菲尔兹奖。菲尔兹奖就这样于1932年的第9届国际数学家大会上诞生了。1936年首次颁奖,该奖专门用于奖励40岁以下有卓越贡献的年轻数学家,菲尔兹奖每4年颁发一次,每次最多四人得奖,每人可获得一枚纯金制成的奖章和一笔奖金,奖章上面有希腊著名数学家阿基米德的头像,并且用拉丁文镌刻有“超越人类权限,做宇宙主人”的格言。由于在诺贝尔奖中,只设有物理、化学、生物或医学、文学、和平事业五个类别(1968年又增设了经济学奖),没有设立数学奖,在这种背景下,菲尔兹奖被誉为数学界的诺贝尔奖。中国的丘成桐教授,因为成功的把微分几何与偏微分方程的技巧与理论结合在一起,解决了许多有名的猜想,并在偏微分方程、微分几何、複几何、代数几何、以及广义相对论,都作出了巨大的贡献。因此,在1983年获得了菲尔兹奖。丘成桐教授是唯一一位获得此奖的中国数学家。

2002年的菲尔兹奖颁奖大会,还在中国的北京举行。获得此奖的是法国的洛朗.拉福格和俄罗斯的弗拉基米尔.沃埃沃德斯基。

第五篇:基于高中数学研究性学习模式的分析

龙源期刊网 http://.cn

基于高中数学研究性学习模式的分析

作者:张国勇

来源:《教育教学论坛》2013年第08期

摘要:随着新课程的不断深化改革,高中数学的学习也随之发生了突破性的变化。加强对高中数学研究性学习的运用,不仅可以激发学生对学习数学的兴趣,还可以鼓励学生更加灵活的运用数学知识。高中数学研究性学习是基于拓展新课程与基础性学习,是学生数学学习的关键组成部分。本文通过深入分析高中数学研究性学习模式,为高中数学学习提供了一种创新性的模式。

关键词:研究性学习模式;高中数学;教学模式

中图分类号:G633.6 文献标志码:A 文章编号:1674-9324(2013)08-0116-02

一、引言

数学研究性的学习模式,能够加深学生对数学的认识,提高学习能力、创造及实践能力,能够激发学生培养对学习的兴趣,并锻炼其研究能力,能够真正体现新型学习的要求及素质教育的要求。在本文中,我们对于高中数学在教学中研究性学习形式的开展进行了探讨,并对该模式的构建所需要具备的条件进行了分析。

二、研究性学习的理论依据

1.建构主义是认知心理学派的一个分支。建构主义认为教师在整个教学过程中只起指导者、组织者、促进者和帮助者的作用,提倡以学生为中心,为了最终达到使学生有效的实现对所学知识的建构意义的目的,必须利用情境、协作、会话等学习环境要素充分发挥学生的积极性、主动性和首创精神,教材所提供的知识是学生主动构建意义的对象,不再是教师传授的内容;媒体是用来创作情境、会话交流、协作学习,是学生协作式探索和主动学习的工具,不再是教师传授知识的方法和手段。研究性学习模式提倡的就是以学生为主体、在研究的方法和研究过程中获取知识的规律在本质上是一样的,因此,数学研究性学习模式是建构主义学习理论的有益实践。

下载高中数学研究性学习案例分析word格式文档
下载高中数学研究性学习案例分析.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高中数学研究性学习实践探索

    高中数学研究性学习实践探索 温 琦(黄石市第二十中学,435000) 2007.5.10日交 [摘要]:研究作为人类发现知识的一种最基本和最有效的方式,也是一种学习方法。本文结合现行高中课堂......

    高中数学解题技巧研究性学习报告

    研究性学习报告 数形结合的思想方法是数学教学内容的主线之一,应用数形结合的思想,可以解决以下问题: 一、解决集合问题:在集合运算中常常借助于数轴、Venn图来处理集合的交、并......

    高中数学研究性学习备选课题

    高中数学研究性学习备选课题 一、函数部分 问题1 整理求定义域的规则及类型(特别是复合函数的类型)。 问题2 求函数的值域、单调区间、最小正周期等有关问题时,往往希望将自变......

    高中数学研究性学习课题集锦

    高中数学研究性学习课题集锦 一、课本知识延伸型 1、空集是一切集合的子集,但在解决关集合问题时,常常忽略这一事实。试整理这方面的各类问题。 2、整理求定义域的规则及类型(......

    高中数学研究性学习第一阶段工作总结

    《高中数学研究性学习》 第一阶段工作总结金乡县第二中学 二00四年一月《高中数学研究性学习》之准备阶段 工作总结 在《高中数学研究性学习》的准备阶段,我们主要做了以下工......

    高中数学研究性学习实验总结

    高中数学研究性学习实验总结席静1 高中数学研究性学习实验第二学期总结宝石中学席静高中数学研究性学习是学校立项的从2004年9月开始、高中数学教师全员参加的一项教改实验......

    高中数学研究性学习报告(定稿)

    高中数学研究性学习报告 研究性学习是学生在教师指导下,从自然、社会和生活中选择和确定专题进行研究, 以类似科学研究的方式主动地获取知识、应用知识、解决问题,并在研究......

    高中数学研究性学习如何选题

    高中数学研究性学习如何选题 从科学研究的意义上讲,发现问题比解决问题更重要,科学家们都认为,提出问题是学得真知的关键一步,一个人在学习的过程中,假如提不出问题,那么就很难想......