人工智能浪潮掀起三大技术支撑智能制造(精选五篇)

时间:2019-05-14 04:35:59下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《人工智能浪潮掀起三大技术支撑智能制造》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《人工智能浪潮掀起三大技术支撑智能制造》。

第一篇:人工智能浪潮掀起三大技术支撑智能制造

人工智能浪潮掀起三大技术支撑智能制造

继移动互联网之后,人工智能浪潮已开始掀起。今年5、6月,国务院连续印发了《中国制造2025》和《关于积极推进互联网+行动的指导意见》两个国家战略层面的文件,将我国智能产业推入快速发展的轨道。在中国人工智能学会近日于上海召开的“2015第五届中国智能产业高峰论坛”上,多位院士、专家解读了人工智能、互联网和智能制造的趋势和技术。

中国工程院院士卢秉恒在分析“中国制造2025”时认为,支撑智能制造的三大技术是:机器人、智能装备以及3D打印。

这其中,我国高端机器人和数控机床都处在产业化的艰苦攻关期,而3D打印技术正处于产业发展的起步期和企业的跑马圈地期。

卢秉恒认为,3D打印最符合工业4.0的制造工艺。它给制造业带来颠覆性变革——产品开发周期与成本成倍下降,基本上是原来的1/3至1/5,使用材料利用率由5%提升至85%。GE公司做了一个非常创新的工作,用3D打印把20个零件合成了1个零件,提高燃油效率15%,发动机前进了一代。

他还认为,中国制造在基础研究方面要强调三个新的基础:传感器、软件、大数据。

如今,大数据已成为网络时代人类社会的重要资产,被称之为“新时代的石油”。而手机、电视机、汽车和聊天机器人等作为“传感器”,为互联网商提供源源不断的大数据资产。各行各业的大数据,规模从TB到PB到EB到ZB,以三个数据级的阶梯迅速发展。

此外,机器人也在人工智能领域扮演重要角色。中国工程院院士李德毅认为,当前应该更多研发的不是人型机器人,而是云机器人。在云计算数据中心,用成千上万台的CPU+GPU服务器架构,通过大数据样本做混合的大规模深度学习的并行训练,可确定几十亿个参数的人工神经,成为人工智能又一大亮点。

“互联网、云计算、物联网和大数据可有力支撑云机器人如何听说、如何看、如何想,而解决机器人如何动作的‘智能制造2025’迎来了我国机器人的春天。”

生物识别同样是人工智能的重要一环。《关于继续推进互联网+行动指导意见》一共有11项“重点行动”,最后一个就是“互联网+人工智能”,其中特别提到“生物特征识别”的研发和产业化,为产业智能化升级夯实基础。

百度的特点是连接人与信息,阿里巴巴是连接人与商品,腾讯是连接人与人。中国人工智能学会副理事长、中国科学院院士谭铁牛认为,“互联网+”的本质就是“以人为本,连接一切。”既然是以人为本,一定要知道这个人是谁,所以“生物识别”将是智能化时代的一个关键技术。

谭铁牛认为,可穿戴设备蕴含生物识别巨大的发展空间。在未来,生物识别将以“云”服务的形式提供。用户本身成为一个采集设备,通过可穿戴设备等智能终端、智能汽车、智能家居等行业内的生物识别数据收集和互换,形成云端数据库从而实现精准垂直服务。

第二篇:智能制造技术

现代制造技术

1142813203 吴文乐

摘要:现代制造技术是在传统制造技术的基础上, 不断吸收和发展机械、电子、能源、材料、信息及现代管理技术的成果, 将其综合应用于产品设计、制造、检验、管理服务等产品生命周 期的全过程, 以实现优质、高效、低耗、灵活、清洁的生产技术模式,取得理想的技术经济效果的制造技术的总称传统的自动化生产技术可以显著提高生产效率,然而其局限性也显而易见,即无法很好地适应中小批量生产的要求。随着现代制造技术的发展,特别是自动控制技术、数控加工技术、工业机器人技术等的迅猛发展,柔性制造技术(FMI)应运而生。

关键词:现代制造技术;自动控制技术;柔性制造技术

1.现代制造技术发展综述

现代制造技术在系统论、方法论、信息论和协同 论等的基础上形成制造系统工程学,是一种广义制造的概念,亦称之为“大制造”的概念,它体现了制造概念的扩展。广义制造概念的形成过程主要有以下几方面原因[1]。

1).制造设计一体化。体现制造和设计的密切结合,形成了设计制造一体化,设计不仅是指产品设计,而且包括工艺设计、生产调度设计、质量控制设计等。

2).材料成形机理的扩展。现在加工成形机理明确地将加工分为去除加工、结合加工和变形加工。

3).制造技术的综合性。现代制造技术是一门以 机械为主体,交叉融合光、电、信息、材料等学科的综合体,并与管理科学、社会科学、文化、艺术、人机工 程、生物工程和生命科学等相结合,拓展了新领域。现代制造技术应包括硬件和软件两大方面,硬/软件工具、平台和支撑环境有了很大的发展。

4).产品的全生命周期。制造的范畴从过去的设计、加工和装配发展为产品的全生命周期,包括市场调研、设计、制造、销售、维修和报废处理等。

5).生产制造模式的发展。计算机集成制造技术 是制造技术与信息技术结合的产物,集成制造系统强 调信息集成,其后出现了柔性制造、敏捷制造、虚拟制 造、网络制造、大规模定制、绿色制造、智能制造和协 同制造等多种制造模式,有效地提高了制造技术的水平,扩展了制造技术的领域[2]。

现代制造技术的发展主要沿着“广义制造”或称 “大制造”的方向发展,其具体的发展可以归纳为四个方面和多个大项目[3],如图1所示:

图1:现代制造技术方向

针对现代制造技术,本文从柔性制造技术的角度对现代制造技术进行学习,对柔性制造在实际中的应用进行深入的研究;

2.柔性制造

2.1 柔性制造简述

所谓“柔性”,是指制造系统(企业)对系统内部及外部环境的一种适应能力,也是指制造系统能够适应产品变化的能力。柔性可分为瞬时、短期和长期柔性[4]。瞬时柔性是指设备出现故障后,自动排除故障或将零件转移到另一台设备上继续进行加工的能力;短期柔性是指系统在短时期内,适应加工对象变化的能力,包括在任意时期混合进行加工2种以上零件的能力;长期柔性则是指系统在长期使用中,能够加工各种不同零件的能力。迄今为止,柔性还只能定性地加以分析,尚无科学实用的量化指标。因此,凡具备上述3种柔性特征之一的、具有物料或信息流的自动化制造系统都可以称为柔性制造系统。柔性制造技术是计算机技术在生产过程及其装备上的应用,是将微电子技术、智能技术与传统制造技术融合在一起,具有自动化、柔性化、高效率的特点,是目前自动化制造系统的基本单元技术[5]。

柔性制造技术是对各种不同形状加工对象实现程序化柔性制造加工的各种技术的总和[6]。柔性制造技术是技术密集型的技术群,我们认为凡是侧重于柔性,适应于多品种、中小批量(包括单件产品)的加工技术都属于柔性制造技术。目前按规模大小划分为[7]:

(1)柔性制造系统(FMS):关于柔住制造系统的定义很多,权威性的定义有:美国国家标准局把FMS定义为:“由一个传输系统联系起来的一些设备,传输装置把工件放征其他联结装置上送到各加工设备,使工件加工准确、迅速和自动化。

(2)柔性制造单元(FMC):M S是FMS向廉价化及小型化方向发展的一种产物,它是由l~2台加工中心、工业机器人。数控机床及物料运送存贮设备构成,其特点是实现单机柔性化及自动化,具有适应加工多品种产品的灵活性。迄今已进入普及应用阶段。

(3)柔性制造线(FML):它是处于单一或少品种人批量非柔性自动线与中小批量多品种FMS之间的生产线。其加工设备可以是通用的加工中心,CNC机床;亦可采用争用机床或NC专用机床,对物料搬运系统柔性的要求低于FMS,但生产率更高。它是以离散型生产中的柔性制造系统和连续生过程中的分散型控制系统(D C S)为代表,其特点是实现生产线柔性化及自动化,其技术已日趋成熟,迄今已进入实用化阶段。

(4)柔性制造工厂(FMF):FMF是将多条FMS连接起来,配以自动化屯体仓库,用计算机系统进行联系,采用从订货、设计、加工、装配、检验、运送至发货的完整F M S。它包括了CAD/CAM,并使计算机集成制造系统(CIMS)投入实际,实现生产系统 柔性化及自动化,进而实现全厂范围的生产管理、产品加工及物料贮运进程的全盘化。FMF是自动化生产的最高水平,反映出世界上最先进的自动化应用技术。它是将制造、产品开发及经营管理的自动化连成一个整体,以信息流控制物质流的智能制造系统(IMS)为代表,其特点是实现工厂柔性化及自动化[8]。

2.2柔性制造所采用的关键技术

1.计算机辅助设计未来CAD技术发展将会引入专家系统,使之具有智能化,可处理各种复杂的问题。当前设计技术最新的一个突破是光敏立体成形技术,该项新技术是直接利用CAD数据,通过计算机控制的激光扫描系统,将二维数字模型分成若干层二维片状图形,并按二维片状图彤对池内的光敏树脂液面进行光学扫描,被扫描到的液面则变成固化塑料,如此循环操作,逐层扫描成形,并自动地将分层成形的各斤状固化塑料粘合在一起,仅需确定数据,数小时内便呵制出精确的原型。它有助于加快开发新产品和研制新结构的速度。

2.模糊控制技术模糊数学的实际应用是模糊控制器。最近开发出的高性能模糊摔制器具有自学习功能,可在控制过程中不断获取新的信息井自动地对控制量作调整,使系统性能大为改善,其中尤其以基于人工神经网络的自学方法更引起人们极大的关注。

3.人工智能、专家系统及智能传感器技术迄今,柔性制造技术中所采用的人工智能大多指基础规则的专家系统。专家系统利用专家知识和推理规则进行推理,求解各类问题(如解释、预测,诊断、查找故障、设汁、计划、监视、修复、命 令及控制等)。由于专家系统能简便地将各种事实及经验证过的理论与通过经验获得的知识相结合,因而专家系统为柔性制造的诸方面工作增强综合性。展望未来,以知识密集为特征,以知识处理为手段的人工智能(包括专家系统)技术必将在柔性制造(尤其智能型)中起着非常重要的关键性的作用。目前对未来智能化柔性制造技术具有重要意义的一个正在急速发展的领域是智能传感器技术。该项技术是伴随计算机应用技术和人工智能产生的,它使传感器具有内在的“决策”功能。

4.人工神经网络技术人工神经网络(ANN)是模拟智能生物的神经网络对信息进行并处理的一种方法。故人工神经网络也就是一种人工智能工具。在自动控制领域,神经网络不久将并列到专家系统和模糊控制系统,成为现代自动化系统中的一个组成部分[9]。

3.国内现代制造技术状况

近年来,世界各国都投入了巨大的财力和物力,强化作为光机电一体化制造业基础的先进制造业的技术和产业发展的战略研究。美国、德 国、日 本 等 国 已 经 开 发 出 了 数 控(NC)、计算机数控(CNC)、直接数控(CAM)、计算机集成制造系统(CIMS)、制造资源规则(MRP)、柔性制造单元(TMC)、柔性制造系统(FMS)、机器人、计算机辅助设计/制造(CAD/CAM)、精益生产(LP)、智能制造系统(MS)、并行工程(CE)和敏捷制造(AM)等多项现代制造技术与制造模式。这些技术的推广与应用,不仅使本国企业的国际竞争力得到巩固,也使得世界先进制造业发展迅猛[10]。我国制造业市场的巨大潜力,为现代制造技术发展提供了广阔的市场空间。但是,与制造业发达国家和地区相比,国内的现代制造技术的研发与市场拓展还不均衡。其中,国内机械基础件制造行业中的数控化率极低,不足1.6%,先进加工工艺、技术和装备的普及程度不足10 % ;CAD/CAM 系统应用的普及率在国内骨干企业仅有35%,产业规模较小。另外,在相关行业中如印刷业、电力行业和医疗器械行业等,技术装备的低数控化率也远不能满足市场对中高档先进产品的需求。纵观国际制造业的竞争与发展,面对国际、国内两个制造业市场的日渐融合,如何立足国内制造业的市场需求,整合分散的科研与企业资源,尽快形成自己在先进制造产业竞争中的技术优势,已经是摆在我国制造业面前的迫在眉睫的课题了[11]。

总之,重视制造业和现代制造技术已成为全球化的大趋势。现代制造技术不是一项具体技术,而是利用系统工程技术将各种相关技术集成的一个有机整体;现代制造技术是一种动态技术,而不是一成不变的,它需要不断吸收各种高新技术成果,并将其渗透到产品的所有领域,结合成一个有机整体,实现优质、高效、低耗、清洁和灵活的生产[12];现代制造技术的目的是提高制造业的综合效益,其不摒弃传统技术,而是有赖于不断用科技新手段去研究它和传承它,并应用科技新成果去改造它和充实它;现代制造技术在强调环境保护的同时,还强调各专业学科之间的相互渗透、融合和淡化,并消除其间的界限。我国先进制造技术的发展应结合自身的特点,形成特色,大力发展一些关键前沿技术,比如新一代材料成型技术、微米及纳米技术、快速原型制造以及智能制造等[13]。在不久的将来,现代制造技术将得到更大的发展和壮大,发展和应用先进制造技术是每个国家为提高企业的国际竞争力和技术创新能力的必然选择。

参考文献:

[1]张强.浅谈柔性制造技术的现状及发展[J].技术与市场,2008.(5):39-40.[2]沈向东.柔性制造技术[M].北京:机械工业出版社,2013.2.[3]吴立.关于柔性制造的研究[J].机床与液压,2010,38(14):9-11.[4]陈琪.制造业企业推行柔性制造的意义及对策[J].企业经济,2005(4):7-8.[5]崔培枝,朱胜,姚巨坤.柔性再制造系统研究[J].机械制造,2003(11):7-9

[6]王隆太,朱灯林,戴国洪.机械CAD/CAM技术[M].北京:机械工业出版社,2005.

[7]盛晓敏,邓朝辉.先进制造技术[M].北京:机械工业出版社,2003.[8]李楷模.LI Kai-mo 现代制造技术的发展动向[J]-科技成果管理与研究2008(6).[9]蒋新松.21世纪企业的主要模式一敏捷制造企业[J].计算机集成制造系统一CIMS,1996,2(4):3—8.

[10]罗振壁,周兆英,汪劲松,等.制造的革新[J].机械工程学报,1995,31(4):31—37.

[11]王永贵.战略柔性与企业高成长.天津:南开大学出版社,2003.67—69.[12]张荣,陈大佑.提升国有大中型企业竞争力的新途径——柔性化管理.当代经济研究.2006.(1):33~35.[13]王先逵.制造工艺核心论[J].世界制造技术与装备市场,2005(3):28—32.

第三篇:金准人工智能 2018中国智能制造报告

金准人工智能 2018中国智能制造报告 前言

智能制造是基于新一代信息技术,贯穿设计、生产、管理、服务等制造活动环节,具有信息深度自感知、智慧优化自决策、精准控制自执行等功能的先进制造过程、系统与模式的总称。简而言之,智能制造是由物联网系统支撑的智能产品、智能生产和智能服务。

智能制造已经成为全球价值链重构和国际分工格局调整背景下各国的重要选择。发达国家纷纷加大制造业回流力度,提升制造业在国民经济中的战略地位。亚洲作为制造业重要区域也在积极部署自动化、智能化。

一、突破与成长

亚洲正受到自动化、智能化大潮冲击。国际劳工组织(International Labour Organisation)调研发现,越南、柬埔寨、菲律宾和印度尼西亚的工人的失业风险最高,据估计这几个区域约50%的工人工作可能在未来20年被自动化取代。

亚洲作为制造业的重要区域,在面临制造业向自动化、智能化、数字化转型中,能否继续保持其竞争力?

毫无疑问,亚洲正在积极寻求突破。以人工智能为例,各国政府大力支持人工能,推动科技公司、初创公司和学术界的创新。2017年,韩国政府宣布了10亿美元的人工智能资金;日本鼓励人工智能创业公司和风险投资;新加坡政府的国家研究基金会宣布国家人工智能计划(AI.SG),计划未来五年投入1.5亿新加坡元(约1.07亿美元)发展人工智能。

除了政府的支持,亚洲企业更积极打破行业壁垒加快新产品开发。不同于欧美同类企业,中国领先企业间的合作屡见不鲜,一些知名范例包括:百度与小米在物联网与人工智能领域合作开发更多应用场景;腾讯与京东合作布局电子商务生态圈;印度系统集成商组成AI联盟(OpenAI)。这赋予它们惊人的影响力,也意味着它们拥有可用于快速推动创新的技术实力和资本基础。

中国是亚洲智能化转型的重要力量。政府加强智能制造顶层设计,开展试点示范和标准体系建设;企业加快数字化转型,提升系统解决方案能力。中国智能制造取得明显成效,进入高速成长期。

中国智能制造进入成长期主要体现在三方面:首先,中国工业企业数字化能力素质提升,为未来制造系统的分析预测和自适应奠定基础。第二、财务效益方面,智能制造对企业的利润贡献率明显提升。第三、典型应用方面,中国已成为工业机器人第一消费大国,需求增长强劲。

1.1数字化能力素质提升

企业数字化能力素质体现在其利用数据指导生产以及系统自优化的能力。我们借鉴国际普遍认可的工业4.0发展路径,将企业智能化成熟度分为六个阶段:计算机化、连接、可视、透明、预测和自适应。

① 计算机化:

企业通过计算机化高效处理重复性工作,并实现高精度、低成本制造。但不同的信息技术系统在企业内部独立运作,很多设备并不具备数字接口。② 连接:

相互关联的环节取代各自为政的信息技术。操作技术(OT)系统的各部分实现了连通性和互操作性,但是依旧未能达到IT层面和OT层面的完全整合 6。

③ 可视:

了解正在发生什么,通过现场总线和传感器等物联网技术,企业捕获大量的实时数据,建立起企业的“数字孪生”,从而改变以前基于人工经验的决策方式,转为基于数字进行决策。

④ 透明:

了解事件发生的原因,并通过根本原因分析生成认识。⑤ 预测:

将数字孪生投射到未来,模拟不同的情景对未来发展进行预测,并适时做出决策和采取适当措施。

⑥ 自适应:

预测能力只是自动化行为和决策的根本要求,而持续的自适应则使企业实现自主响应,以便其尽快适应变化的经营环境。

随着中国两化融合和工业物联网建设等多项举措推进,制造型企业数字化能力素质显著提升,大部分企业正致力于数据纵向集成。金准人工智能专家调研结果显示,81%的受访企业已完成计算机化阶段,其中41%处于连接阶段,28%处于可视阶段,9%处于透明阶段,而预测和自适应阶段的企业各自占2%。

1.2智能制造利润贡献显著提升

向工业4.0进阶为制造企业带来真实可见的效益。2013年金准人工智能专家曾调研全国200家制造型企业,结果显示中国企业智能制造处在初级阶段,且利润微薄。经过五年的快速发展,智能制造产品和服务的盈利能力显著提升。

2013年智能制造为企业带来的利润并不明显,55%的受访企业其智能制造产品和服务净利润贡献率处于0-10%的区间,而2017年,仅有11%的受访企业处于这个区间,而41%的企业其智能制造利润贡献率在11-30%之间。利润贡献率超过50%的企业,由2013年受访企业占比14%提升到2017年的33%。智能制造利润贡献率明显提升,利润来源包括生产过程中效率的提升和产品服务价值的提升。

1.3应用市场潜力

中国已连续六年为工业机器人第一消费大国。IFR(International Federationof Robotics)数据显示,中国工业机器人市场规模在2017年为42亿美元,全球占比27%,2020年将扩大到59亿美元。2018-2020年国内机器人销量将分别为16、19.5、23.8万台,未来3年CAGR达到22%。汽车、高端装备制造和电子电器行业依然为工业机器人的主要用户。

中国有哪些独特优势?首先是数据量。当前人工智能热潮背后的机器学习技术对数据极其依赖。识别人脸、翻译语言和试验无人驾驶汽车需要大量的“训练数据”。由于中国的人口数量和设备数量庞大,中国企业在获取数据方面具有天然的优势。第二,中国制造业企业硬件设备和厂房相对欧美企业普遍较新,比较容易实现设备连接和厂房改造。

二、智能制造部署重点

金准人工智能专家调查发现,中国工业企业智能制造五大部署重点依次为:数字化工厂(63%)、设备及用户价值深挖(62%)、工业物联网(48%)、重构商业模式(36%)以及人工智能(21%)。

访企业所关注的相关技术包括工业软件、传感器技术、通信技术、人工智能、物联网、大数据分析等。当然,我们不能简单认为有了这些技术,就是实现智能制造,因为新制造业文化的变革进程是相当复杂和缓慢的,没有行业、企业与用户的融合推进,这次变革无法实现。

2.1 数字化工厂

智能制造是以制造环节的智能化为核心,以端到端数据流为基础,以数字作为核心驱动力,因此数字化工厂被企业列为智能制造部署的首要任务。目前企业数字化工厂部署以打通生产到执行的数据流为主要任务,而产品数据流和供应链数据流提升空间大。

数字化工厂通过新一代信息技术,实现从设计、生产、物流和服务等各个环节的数据串连,加速决策,提高准确性。只有打通数据流才能实现基于实时数据变化,对生产过程进行分析和优化处理,进而实现业务流程、工艺流程和资金流程的协同,以及生产资源(材料、能源等)在企业内部及企业之间的动态配置。打通数据流也是工厂建立“数字孪生”的前提,数字孪生不仅指产品的数字化,也包含工厂本身和工艺流程及设备的数字化,从而实现全面追溯、物理与虚拟双向共享和交互信息。打通数据流主要包括三类数据的连通,即生产流程数据、产品数据以及供应链数据。2.1.1生产流程数据 打通生产流程数据除了从生产计划到执行的数据流(如ERP到MES),还包括MES与控制设备和监视设备之间的数据流,现场设备与控制设备之间的数据流,以及MES与现场设备之间的数据流等。

2.1.2产品数据流

打通产品数据流主要体现在产品全生命周期数字一体化和产品全生命周期可追溯。产品全生命周期数字一体化以缩短研发周期为核心,主要应用基于模型定义(MBD)技术进行产品研发、建设产品全生命周期管理系统(PLM)等。研发是数字化工厂“数据链条”的起点,研发环节产生的数据将在工厂的各个系统间实时传递,数据的同步更新避免了传统制造企业经常出现的由于沟通不畅产生的差错,也使得工厂的效率大大提升,缩短产品研制周期。产品全生命周期可追溯以提升产品质量管控为核心。

主要应用是让产品在全生命周期具有唯一标识,应用传感器、智能仪器仪表、工控系统等自动采集质量管理所需要数据,通过MES系统开展在线质量检测和预警等。2.1.3供应链数据流

打通供应链数据流主要体现在供应链上下游协同优化,实现网络协同制造。主要应用是建设跨企业制造资源协同平台,实现企业间研发、管理和服务系统的集成和对接,为接入企业提供研发设计、运营管理、数据分析、知识管理、信息安全等服务,开展制造服务和资源的动态分析和柔性配置。

金准人工智能专家调研结果显示,目前企业致力于打通从ERP到MES乃至现场设备的数据流,但这也仅是从生产到执行的打通,未来还需将产品数据、供应链数据串联。我们们将生产数据流分为两个环节:

一、打通生产计划与执行系统的数据流;

二、执行与监控和现场设备的数据流。结果显示,83%的受访企业表示已打通ERP和MES的数据流打通。62% 的企业继续向下打通MES到现场设备的数据流。但仅有47%的企业打通了产品数据流,44%的企业打通供应链数据流(图2.4)。而且考虑到我们调查的企业均为资质较好且为中等以上规模,这一系列比率显然高于中国整体平均水平。

从行业角度来看,航空航天领域全部受访企业已经打通从生产计划到执行的数据,但从生产执行到现场设备、产品以及供应链的数据链条连通相对滞后,提升空间大。电子组件及电器制造行业产品数据流和供应链数据流连通情况高于其他行业,数字化工厂整体水平较高。产品质量可谓是制药行业的生命,而打通产品数据流的制药企业仅占33%,行业需要强化产品全生命周期可追溯,提升产品质量管控能力。汽车及汽车零部件以及高端装备制造都在产品数据流方面领先(图2.5)。

未来数字世界和现实世界会是一体两面,打通数据流也是数字孪生(digital twin)操作的基础。金准人工智能专家认为数字孪生是物理实体或流程的准实时数字化镜像,有助于企业绩效提升。数字孪生往往包含“数字产品孪生”、“生产工艺流程数字孪生”和“设备数字孪生”不同层面但可以高度集中统一的数据模型。

数字产品孪生领域,特斯拉公司为其生产和销售的每一辆电动汽车都建立数字孪生模型,相对应的模型数据都保存在公司数据库。每辆电动车每天报告其日常经验,并通过数字孪生的模拟程序使用这些数据来发现可能的异常情况并提供纠正措施。通过数字孪生模拟,特斯拉每天可获得相当于160万英里的驾驶体验,并在不断的学习过程中反馈给每辆车。生产流程数字孪生领域,一些嗅觉敏锐的工厂及生产线开始引入数字孪生,在建造之前,对工厂进行仿真和模拟,虚拟出建造工厂的最佳流程,再将真实参数传给实际的工厂建设,有效减少误差和风险。待厂房和生产线建成之后,日常的运行和维护通过数字孪生进行交互,能够迅速找出问题所在,提高工作效率。Gartner对美国、德国、中国与日本的202位企业的调查发现,到2020年,至少50%年收入超过50亿美元的制造商将为其产品或资产启动至少一项数字孪生项目,届时参与使用数字孪生技术的企业数量将增长3倍。预计在今后数年时间,将有数以亿计的用户使用数字孪生操作,它将被企业用于规划设备服务、生产线操作、预测设备故障、提高操作效率、加速新产品开发等。在未来,这项技术有望与工业生产彻底融合,推动智能工业进入新阶段。如何创建数字孪生?金准人工智能专家认为数字孪生的创建包含两个主要关注领域:

一是设计数字孪生的流程和产品生命周期的数据要求—— 从资产的设计到资产在真实世界中的现场使用和维护;

二是创建使能技术,整合真实资产及其数字孪生,使传感器数据与企业核心系统中的运营和交易信息实现实时流动。

2.2 设备和用户价值深度挖掘

制造型企业面临愈发激烈的市场竞争和日益透明的产品定价,不得不寻找新的价值来源。金准人工智能专家智能制造调研结果显示,设备和用户价值深度挖掘是企业智能制造部署第二重点领域。62%的受访企业正积极部署设备和用户价值深度挖掘,其中41%的企业侧重设备价值挖掘,21%的企业侧重用户价值挖掘。

围绕设备进行价值挖掘可以说是制造型企业的天性。如在研发设计阶段,嵌入新技术,生产更智能或更多样化的产品;在销售阶段,提供设备相关金融服务;在售后阶段,对出厂设备和产品进行实时数据采集和监控,并进行性能分析、预测性维护等,既提升安全性,也为企业创造更多服务机会。

虽然起步较晚,制造型企业也在探索和尝试对用户价值进行深度挖掘,其中以C2M(customer-to-manufactory,客户到制造)最受瞩目。C2M体现了定制化生产的特性,使制造商直接面对用户,以满足用户个性化需求;同时通过减少中间环节降低成本、提升效率。红领集团通过打造C2M电商平台、柔性供应能力和大数据能力实现了大规模定制化。顾客可以在其C2M电商平台选择款式、工艺、材料并下单。平台快速收集顾客分散、个性化需求数据的同时,大数据和云计算技术按客户需求匹配产品数据模型,其款式数据和工艺数据能满足超过百万万亿种设计组合,覆盖99.9%的个性化设计需求。当版型确定后,系统自动生成工艺数据,工艺数据发送至工厂,工厂进行生产交付。整个流程从下订单到产品出厂仅需7个工作日,并做到按需生产、零库存、一人一版、一衣一款。

阿里巴巴的“淘工厂”集结上万家工厂,将电商买家订单与制造厂商产能进行对接,把柔性产能档期联网,解决电商买家有订单无工厂,制造企业有产能无订单的结症。

2.3 工业物联网

智能制造要求制造系统具备感知、分析、决策和执行的能力,而这些能力的核心均涉及物联网相关技术,如面向感知的物联技术(传感器、RFID、芯片)、面向分析的工业大数据分析和面向决策及服务的应用平台。

金准人工智能专家调研结果显示,目前中国制造企业物联网应用以感知为重点,分析和服务交融将是未来物联网建设重点。受访企业普遍建立系统以传感器采集动态数据,但数据分析和平台应用相对滞后。从行业应用来看,电子及电器行业传感器和平台应用最为普及,76%的受访企业利用传感器采集数据,43%的企业利用物联网平台,但仅有33%的企业采用大数据技术分析所采集的数据。汽车及零部件制造行业传感器技术应用也有较高普及率达73%,但大数据和平台应用低于其他受访行业。制药行业大数据技术利用最为积极,因为医药行业早已面临海量数据和非结构化数据挑战(图2.6)。

感知仅是物联网应用的初级阶段,以数据洞察指导行动,从而提高效率,或者与服务交融创造新价值,才是物联网的核心。云平台通过提供强大的数据传输、存储和处理能力,帮助制造企业采集和处理大量数据。工业云平台不仅能够实现企业通过平台完成产品的设计、工艺、制造、采购、营销等环节,还将改变传统生产方式和制造生态,创造新的收入来源和商业模式。中国制造企业云部署现状如何?

金准人工智能专家调研发现,中国制造企业云部署积极性不高。53%的受访制造企业尚未部署工业云,47%的企业正在进行工业云部署,其中27%的企业部署私有云,14%部署公有云,6%部署混合云(图2.7)。上云可以大幅降低每个单元的储存和计算成本,甚至通过跨界创造新的商业模式,但也带来了复杂性。企业担心一旦将诸如工厂生产过程、资产性能管理的数据放到云平台上之后,信息安全、知识产权问题会接踵而至。除此之外,很多企业尚未明确工业云在企业层面的商业应用和相关能力欠缺也是导致企业云部署积极性不高的原因。

对于选择公有云还是私有云,很大程度取决于企业的关注点不同。如果企业只是聚焦自己的生产制造,降本增效,往往不会选择公有云;如果企业聚焦商业模式创新和产品转型,则会天然的更倾向于选择公有云或混合云,因为往往涉及服务平台,需要做到一定程度上的兼容和融合。由于目前国内比较常见的工业云的部署以云的基础功能为主,企业把云看作虚拟服务器,在云上做存储、计算,只有少数企业通过云部署改变生产方式和制造生态,进行公有云和混合云部署的企业仍为少数。

金准人工智能专家认为物联网在智能制造领域的应用场景主要分为三类:设备与资产管理、产品洞察和服务创新。2.3.1设备与资产管理

具备感测与联网功能的系统与大数据结合,可以实现设备的监控和管理,如远程监控、预测性维护和互联现场等。远程监控以物联网替代传统的人工巡检机制,通过传感器远距离将设备数据传输到运营中心。预测性维护打破传统工厂按计划进行定期维护设备的运营方式,通过物联网对设备整个生命周期进行全程监控,并预测设备未来可能发生的故障,提前制定预防性维护计划,减少故障率并提高生产效率。物联网还可以连接和监控厂房的工业装置和设备,获得有见解的分析,从而帮助跨工业设备、生产线以及在整个工厂范围内优化性能和效率。当然,除了新厂房,老厂房和设备在没有更新换代之前,也有联网监控的需要,如何在现有设备上进行物联网改造是值得企业关注的问题。2.3.2产品洞察

制造企业往往不太了解自己的产品如何被使用,而物联网将改变这一现状。在产品投入使用后,制造厂商可以通过物联网与产品建立并保持联系,收集动态数据,以更加系统的方式实时地持续地分析产品使用情况。在了解客户对产品的使用方式后,厂商还可以基于数据预测客户需求,开发个性化产品和新的服务项目,提高产品附加值。2.3.3服务创新

基于数据和平台提供后市场服务,物联网与服务交融实现商业模式创新。物联网协助制造企业更有效捕捉和预测市场需求,创造动态化、个性化的智能服务、咨询服务、数据服务、物联网金融与保险等新的服务种类。这类应用将打破企业原来的边界,从全社会的维度思考制造资源的优化,客户和制造端的互动以及各种商业模式的创新。企业需要评估自身业务需要,明确商业目标、相关流程和预期结果的范围,在考虑技术可扩展性、性能、带宽经济和技术创新等级后,才能对数据和物联网系统的处理架构做出明智的选择。

2.4 重构未来商业模式

智能制造不仅能够帮助制造型企业实现降本增效,也赋予企业重新思考价值定位和重构商业模式的契机。同时,新进入者也在不断挑战传统市场参与者的地位,众多技术型企业加入战场推动工业企业探索商业模式上的创新。金准人工智能专家调研发现企业对未来商业模式的规划大致呈四类:30%的受访企业未来商业模式将以平台为核心,26%的企业走规模化定制模式,24%以“产品+服务”为核心向解决方案商转型,12%以知识产权为核心(图2.8)。平台型商业模式定位以提供多种软件服务和搭建生态系统为核心,未来可能不会出现类似BAT这样的行业巨头,但不乏垂直行业领军企业或平台。

规模化定制模式,如C2M已经不局限于服装制造,而延伸到汽车和装备制造等行业。“产品+服务”为核心旨在围绕客户需求提供解决方案,是目前很多企业在做的。以知识产权为核心的企业往往通过专利战略,形成技术壁垒占领市场。

不同商业模式的价值定位和价值创造方式不同,所面临的挑战也不尽相同(图2.9)。企业需要持续审视自己的商业模式,通过评估自身运营情况进行适当地改善并定期评估其他商业模式是否具有可行性。

2.5 人工智能

人工智能对制造业的影响主要来自两方面: 一是在制造和管理流程中运用人工智能提高产品质量和生产效率;二是对现有产品与服务的彻底颠覆。

随着国内制造业自动化程度提高,机器人在制造过程和管理流程中的应用日益广泛,而人工智能更进一步赋予机器人自我学习能力。结合数据管理,导入自动化设备及相关设备的联网,机器人通过机器学习分析,可以实现生产线的精准配合,并更准确的预测和实时检测生产问题。人工智能在制造业产品和服务领域的应用则更具有颠覆性。产品本身就是人工智能的载体,硬件与各类软件结合具备感知、判断的能力并实时与用户、环境互动。而产品的功能和服务,也将颠覆原有生态系统。以汽车产业为例,传统汽车行业的竞争格局是金字塔型——整车厂处于顶端,各级别供应商跟随其后。但是在智能汽车时代,整车厂的主导地位将受到严峻挑战,零部件厂商、互联网巨头、算法公司、芯片制造商、传感器供应商等企业无不加快对无人驾驶技术的研发和商业化步伐,并期望通过占据技术制高点打破汽车产业的生态平衡。

中国制造企业人工智能应用情况如何?金准人工智能专家智能制造调研发现,51%的受访企业在制造和管理流程中运用人工智能,46%的受访企业在产品和服务领域已经或计划部署人工智能(图2.10)。制造和管理流程中人工智能的运用更偏向系统自动化和制造精益化,目的是提高生产效率和产品质量,同时人也被解放出来,可以去思考更复杂的问题。主要应用场景包括使用机器人实现流程自动化、柔性制造、定制化生产、质量检测等。在产品和服务领域人工智能的运用更侧重产品和服务与使用者的互动,典型应用包括研发和新品测试、用户行为分析、自动驾驶等。

当然人工智能仍处在其发展早期,技术突破及商业论证需要更长时间。另外,人工智能应用环境和基础设施的完善程度,信息和安全法规、企业自身的能力都成为企业面临的主要挑战。我们发现,对于尚未部署人工智能的制造企业来说,缺乏投资人工智能的商业论证、尚不具备建立和支持人工智能的系统能力、尚不明确部署人工智能的前提为主要挑战(图2.11)。

人工智能正迅速渗透各行各业。汽车及汽车零部件制造、高端装备制造、电子及电器制造三个行业在制造流程中采用机器人的比例过半。汽车及零部件制造行业使用机器人的企业比例达到80%,预示未来工业机器人的市场增量将主要来自非汽车行业。在产品和服务领域已经或计划部署人工智能的行业分布比较均匀,高端装备制造和制药比例较高,但其他行业如新材料、汽车及零部件、航空航天、电子及电器也正在或计划部署人工智能。

行业对人工智能的理解已随着算法、技术和应用的发展,越来越加深。对于企业而言,应跳出人工智能仅是“机器换人”的既定思维,在精益制造、产品质量、用户体验等多方面进行部署。

三、跨越能力鸿沟

重构商业模式是一项复杂艰巨的任务,我们请企业就实现构想中的商业模式所面临的能力鸿沟进行打分,综合来看,商业模式优化、创新管理以及云部署为企业能力建设三大关键任务,金准人工智能专家建议分别从以下几个方面入手提升能力:

3.1商业模式优化

优化商业模式可能仅需要改变或改进目前模式中部分元素,也可能涉及改变整体运营模式的重大转型。在过去的15年里,由于技术、通信、物流和交通等方面的迅速进步,整体运营模式的重大转型已更为常见。企业需要运用行之有效的方法和工具,从以下工作流程各环节入手优化商业模式:

① 企业转型整编:

优化现有商业模式,包括从原材料采购到产品销售过程所涉及的一切环节,挖掘可以整体改动或局部改进的待优化环节,以支持新的商业模式。

② 重新配置信息技术系统:

企业需要探索、设计与实施基础设施及信息技术系统的改进。③ 重新调配人员: 人尽其用是企业转型可持续性的关键之一。重新调配人员侧重于设计和实施人员调度,以支持新商业模式,并实现从原有模式到新模式的顺利过渡。该环节还包括制定新的关键绩效指标及汇报关系以支持新商业模式。

④ 重组法律、财务及税务架构:

商业模式优化方案的设计和实施通常涉及许多复杂的法律实体及税务架构上的改变。企业管理团队需要分析不同方式的利与弊。如新商业模式下所得税和转让定价事项有何变化,增值税和关税对新商业模式可能产生的影响。

3.2创新管理

创新管理的目标包括优化创新产品管理、优化生命周期成本、优化资本使用效率和优化风险管理。

① 优化创新产品管理:

建立统一的产品管理体系(包括有形的产品和服务),优化决策流程,提高决策效率 ② 优化生命周期成本:

通过产品生命周期的最优化运作,优化产品投资成本和运营成本 ③ 优化资本使用效率:

通过监控、评估和KPI管理,优化产品管理、提升资本使用效率 ④ 优化风险管理:

有效管理创新过程中的市场风险和数据安全风险等诸多风险值得注意的是,单纯的产品创新管理并不能令企业长久保持竞争优势。如今,几乎所有产品类别都处于激烈的竞争之中,任何新产品的任何独特优势都会被快速吞噬。组合多种创新类型可以帮助公司拥有更好的财务回报。虽然不能把这些公司的绩效全部归功于创新,但创新有助于提升一家公司的机制,包括投资者对它未来的预期。3.3云部署

仅仅把数据和应用转移到云上是远远不够的,大多数情况,上云会牵涉多个业务功能,影响企业的供应商、财务报表和客户,企业需要长远规划,分步执行。企业还需要充分考虑人力资源和数字化程度如何与云部署配合。

① 规划:

审视企业现有商业模式并探讨是否有其他可行的商业模式,根据商业模式制定云部署战略,进行商业论证和自身能力评估。

② 执行:

执行阶段可以分四步走,第一步是SaaS部署,包括ERP,CRM,人力资源转型和其他软件部署;第二步是个性化部署,包括应用开发、架构搭建和平台部署;第三步为云迁移,其间可能需要对应用软件进行更新和调整。第四步为引入大数据分析平台。

总结

今天的市场变得越来越多样化,消费者的需求在不断变化。同时,产品、生产流程和服务的数字化、智能化已是大势所趋,受此趋势影响,工业企业正在加快智能制造部署,并不断审视商业模式,并制定有效策略,以期从运营和战略层面推动实际价值的创造。

第四篇:先进制造技术论文智能制造

智能制造

作者:王玉石

湖北文理学院机械与汽车工程学院工业工程1311班 学号2013123106

摘要:介绍了智能制造提出的背景、主要研究内容和目标,人工智能与IMT、IM的关系,IMS和CIMS,智能制造的物质基础及理论基础,智能制造系统的特征及框架结构,并简要介绍了智能加工中心IMC,智能制造技木的发展趋势,以及智能制造系统研究成果及存在问题。

关键词:智能制造,IMS,IMC,IMT。1.主要研究内容和目标

智能制造在国际上尚无公认的定义。目前比较通行的一种定义是, 智能制造技术是指在制造工业的各个环节,以一种高度柔性与高度集成的方式,通过计算机来模拟人类专家的制造智能活动。因此,智能制造的研究开发对象是整个机械制造企业, 其主要研究开发目标有二: ①整个制造工作的全面智能化,它在实际制造系统中首次提出了以机器智能取代人的部脑力劳动作为主要目标,,强调整个企业生产经营过程大范围的自组织能力;②信息和制造智能的集成与共享, 强调智能型的集成自动化。目前,IMT和IMS的研究方向已从最初的人工智能在制造领域中的应用(AiM)发展到今天IMS,研究课题涉及的范围由最初仅一个企业内的市场分析、产品设计、生产计划、制造加工、过程控制、信息管理、设备维护等技术型环节的自动化,发展到今天的面向世界范围内的整个制造环境的集成化与自组织能力,包括制造智能处理技术、自组织加工单元、自组织机器人、智能生产管理信息系统、多级竞争式控制网络、全球通讯与操作网等。2.人工智能与IMT,IMS 人工智能的研究一开始就未能摆脱制造机器生物的思想,即“机器智能化”。这种以“自主”系统为目标的研究路线,严重地阻碍了人工智能研究的进展。许多学者已意识到这一点, Feigenbaum、Newell、钱学森从计算机角度出发,提出了人与计算机相结合的智能系统概念。目前国外对多媒体及虚拟技术研究进行大量投资,以及日本第五代智能计算机研制计划的搁浅等事例, 就是智能系统研究目标有所改变的明证。人工智能技术在机械制造领域中的应用涉及市场分析、产品设计、生产规划、过程控制、质量管理、材料处理、设备维护等诸方面。结果是开发出了种类繁多的面向特定领域的独立的专家系统、基于知识的系统或智能辅助系统,形成一系列的“智能化孤岛”。随着研究与应用的深入,人们逐渐认识到, 未来的制造自动化应是高度集成化与智能化的人—机系统的有机融合, 制造自动化程度的进一步提高要依赖于整个制造系统的自组织能力。如何提高这些“孤岛”的应用范围和在实际制造环境中处理问题的能力, 成为人们的研究焦点。在80 年代末和90年代初,一种通过集成制造自动化、新一代人工智能、计算机等科学技术而发展起来的新型制造工程—— IMT和新——代制造系统—— IMS 便脱颖而出。人工智能在制造领域中的应用与 IMT 和IMS 的一个重要区别在于, IMS 和 IMT 首次以部分取代制造中人的脑力劳动为研究目标, 而不再仅起“辅助和支持”作用,在一定范围还需要能独立地适应周围环境, 开展工作。四IMS和CIMS发展的道路不是一帆风顺的。今天,CIMS的发展遇到了不可逾越的障碍,可能是刚开始时就对CIMS提出了过高的要求,也可能是CIMS本身就存在某种与生俱来的缺陷,今天的CIMS在国际上已不像几年前那样受到极大的关注与广泛地研究。从CIMS的发展来看,众多研究者把重点放在计算机集成上,从科学技术的现状看,要完成这样一个集成系统是很困难的。CIMS作为一种连接生产线中的单个自动化子系统的策略,是一种提高制造效率的技术。它的技术基础具有集中式结构的递阶信息网络。尽管在这个递阶体系中有多个执行层次,但主要控制设施仍然是中心计算机。CIMS存在的一个主要问题是用于异种环境必须互连时的复杂性。在CIMS概念下,手工操作要与高度自动化或半自动化操作集成起来是非常困难和昂贵的。在CIMS深入发展和推广应用的今天,人们已经逐渐认识到,要想让CIMS真正发挥效益和大面积推广应用,有两大问题需要解决:①人在系统中的作用和地位;②在不作很大投资对现有设施进行技术改造的情况下亦能应用CIMS。现有的CIMS概念是解决不了这两个难题的。今天,人力和自动化是一对技术矛盾,不能集成在一起,所能做的选择,或是昂贵的全自动化生产线,或是手工操作,而缺乏的是人力和制造设备之间的相容性,人机工程只是一个方面的考虑,更重要的相容性考虑要体现在竞争、技能和决策能力上。人在制造中的作用需要被重新定义和加以重视。

3.智能制造的物质基础及理论基础

3.1.智能制造系统的物质基础主要有:

(1)数控机床和加工中心美国于1952年研制成功第一台数控铣床,使机械制造业发生一次技术革命。数控机床和加工中心是柔性制造的核心单元技术。(2)计算机辅助设计与制造提高了产品的质量和缩短产品生产周期,改变了传统用手工绘图、依靠图纸组织整个生产过程的技木管理模式。

(3)工业控制技术、微电子技术与机械工业的结合———机器人开创了工业生产的新局面,使生产结构发生重大变化,使制造过程更富于柔性扩展了人类工作范围。

(4)制造系统为智能化开发了面向制造过程

中特定环节、特定问题的“智能化孤岛”,如专家系统、基干知识的系统和智能辅助系统等。

(5)智能制造系统和计算机集成制造系统用计算机一体化控制生产系统,使生产从概念、设计到制造联成一体,做到直接面向市场进行生产,可以从事大小规模并举的多样化的生产;近年来,制造技术有了长足的发展和进步,也带来了很多新问题。数控机床、自动物料系统、计算机控制系统、=机器人等在工业公司得到了广泛的应用,越来越多的公司使用了“计算机集成制造系统(CIMS)”、“柔性制造系统(FMS)”、“工厂自动化(FA)”、“多目标智能计算机辅助设计(M1CAD)”、“模块化制造与工厂(MXMF)、并行工程(CE)”、“智能控制系统(ICS)”以及“智能制造(IM)”、“智能制造技术(IMT)”和“智能制造系统(IMS)”等等新术语。先进的计算机技术、控制技术和制造技术向产品、工艺和系统的设计师和管理人员提出了新的挑战,传统的设计和管理方法不能再有效地解决现代制造系统提出的问题了。要解决这些问题、需要用现代的工具和方法,例如人工智能(AI)就为解决复杂的工业问题提出了一套最适宜的工具。3.2.智能制造技术的理论基础

智能制造技术是采用一种全新的制造概念和实现模式。其核心特征强调整个制造系统的整体“智能化”或“自组织能力”与个体的“自主性”。“智能制造国际合作研究计划JIRPIMS”明确提出:“智能制造系统是一种在整个制造过程中贯穿智能活动,并将这种智能活动与智能机器有机融合,将整个制造过程从订货、产品设计、生产到市场销售等各个环节以柔性方式集成起来的能发挥最大生产力的先进生产系统“。基于这个观点,在智能制造的基础理论研究中,提出了智能制造系统及其环境的一种实现模式,这种模式给制造过程及系统的描述、建模和仿真研究赋予了全新的思想和内容,涉及制造过程和系统的计划、管理、组织及运行各个环节,体现在制造系统中制造智能知识的获取和运用,系统的智能调度等,亦即对制造系统内的物质流、信息流、功能决策能力和控制能力提出明确要求。作为智能制造技术基础,各种人工智能工具,及人工智能技术研究成果在制造业中的广泛应用,促进了智能制造技术的发展。而智能制造系统中,智能调度、智能信息处理与智能机器的有机融合而构成的复杂智能系统,主要体现在以智能加工中心为核心的智能加工系统的智能单元上。作为智能单元的神经中枢——智能数控系统,不仅需要对系统内部中各种不确定的因素如噪声测量、传动间隙、摩擦、外界干扰、系统内各种模型的非线性及非预见性事件实施智能控制,而且要对制造系统的各种命令请求做出智能反应。这种功能已远非传统的数控系统体系结构所能胜任,这是一个具有挑战性的新课题。对此有待研究解决的问题有很多,其中包括智能制造机理、智能制造信息、制造智能和制造中的计算几何等。总之,制造技术发展到今天,已经由一种技术发展成为包括系统论、信息论和控制论为核心的、贯穿在整个制造过程各个环节的一门新型的工程学科,即制造科学。制造系统集成与调度的关键是信息的传递与交换。从信息与控制的观点来看,智能制造系统是一个信息处理系统,由输入、处理、输出和反馈等部分组成。输入有物质(原料、设备、资金、人员)、能量与信息;输出有产品与服务;处理包括物料的处理与信息处理;反馈有产品品质回馈与顾客反馈。制造过程实质上是信息资源的采集、输入、加工处理和输出的过程,而最终形成的产品可视为信息的物质表现形式。4.结语

制造业是国家经济和综合国力的基础,被称为“立国之本”。而我国的制造工业与发达国家相比,差距很大,主要表现为自主开发能力和技术创新能力薄弱,核心技术、关键技术仍依赖进口。对此,我国已引起重视,在“九五”科技规划和15年科技发展规划中,将先进制造技术列为重点发展领域之一。进入21世纪,经济全球化的进程日益加快,制造业领域的竞争日益加剧,而竞争的核心是先进制造技术。在此环境下,我们只有抓住机遇,迎接挑战,利用先进制造技术改造传统产业,实现技术创新、机制创新、管理创新及人才创新,才能实现我国跻身世界制造强国的目标。

参考文献

[1]李伟。先进制造技术。北京:机械工业出版社,2005 [2]张世昌。先进制造技术。北京:天津大学出版社,2004 [3]颜永年。先进制造技术。北京:化学工业出版社,2002 [4]张迪妮。现金制造技术。北京:北京大学出版社,2006 [5]周育才,刘忠伟。先进制造技术。北京:国防工业出版社,2011 [6]王隆太。现金指导技术。北京:机械制造出版社,2012 [7]赵云龙。先进制造技术。北京:机械工业出版社,2005 [8]张平亮。先进制造技术。北京:高等教育出版社,2012 [9]李发致。模具先进制造技术。北京;机械工业出版社,2003 [10]刘延林。柔性制造自动化概念。武汉:华中科技大学出版社,2001

第五篇:《汽车智能制造技术》课程教学大纲

《汽车智能制造技术》课程教学大纲

课程代码:020242024

课程英文名称:

Intelligent

Manufacturing

of

Vehicle

课程总学时:24

讲课:24

实验:

0

上机:0

适用专业:车辆工程

大纲编写(修订)时间:2017.9

一、大纲使用说明

(一)课程的地位及教学目标

本课程是车辆工程专业的一门专业选修课。通过本课程的学习,使学生了解工业4.0智能制造在汽车生产中的应用,通过相关章节的学习,使学生能够掌握汽车智能制造理论、智能制造工艺、智能制造设备、智能管理系统等方面的知识,使学生能够学习到汽车生产制造中的前沿思想和技术,紧紧的把握汽车生产制造的发展方向。

(二)知识、能力及技能方面的基本要求

通过本课程的学习使学生掌握智能制造在汽车生产过程中的应用,包括:智能制造在机械加工、冶金及塑料成型的应用;智能制造在发动机箱体、连杆、曲轴及装配中的应用;智能制造在底盘悬架、轴类、制动系统、车轮及装配中的应用;智能制造在车身冲压、装焊、涂装中的应用;智能制造在总装中的应用。重点掌握制造设备、工艺及其管理系统。使学生能够掌握工业发展的前沿知识,具备将前沿技术与汽车实际生产过程相结合能力。

(三)实施说明

1.教学方法:以讲授教学为主,包括对主要原理和理论的讲解,对重点和难点问题,采用实例教学、启发式教学,增强学生对知识点的理解和记忆,并增加学生的互动环节,如分组讨论并进行讲解,课堂提问等形式,调动学生的积极性及课堂的参与度。

2.教学手段:结合本课程内容特点,以多媒体教学为主,通过电子讲义展示智能制造相关的内容、视频及图片,使学生能够直观的学习工业4.0的智能制造,避免教材内容晦涩,不直观的缺点,提高课堂信息量及学生学习效率。

(四)对选修课的要求

本课程的教学必须在完成先修课程之后进行。本课程主要的先修课程有:汽车构造,汽车理论,汽车制造工艺学。

(五)对习题课、实践环节的要求

对课堂所讲授的重要知识点,在课堂上安排习题或者思考题,增强学生的思考能力和解决问题能力,通过对习题或思考题的讲解,增强学生对知识的理解和记忆。

(六)课程考核方式

1.考核方式:考查

2.考核目标:重点考核学生对智能制造的理解及智能制造在汽车生产中的应用。

3.成绩构成:本课程的总成绩主要由两部分组成:平时成绩(包括课堂表现、出勤情况等)占30%,期末成绩占70%(期末成绩以小论文或者课堂测试的方式进行)

按优、良、中、及格、不及格五等级给出最终成绩。

(七)参考书目

《智能制造》,国家制造强国建设战略咨询委员会编,电子工业出版社出版,2016

《智能制造之路:数字化工厂》,陈明等编,机械工业出版社,2016

《智能制造:关键技术与企业应用》,谭建荣等编,机械工业出版社,2017

《汽车制造工艺及装备》,丁柏群等编,中国林业出版社,2014

二、中文摘要

课程围绕汽车智能制造的相关知识展开,涵盖了智能制造在汽车发动机、底盘零部件、车身制造、总装等方面的应用,通过课堂讲解及演示,使学生学习智能制造在汽车未来生产中的应用,提高学生对智能制造的认识和理解。

三、课程学时分配表

序号

教学内容

学时

讲课

实验

上机

汽车智能制造概论

汽车零件智能制造基础

2.1

机械加工

2.2

冶金及塑料成型

汽车发动机智能制造

3.1

箱体类零件制造

3.2

连杆、曲轴制造

3.3

发动机装配

汽车底盘智能制造

4.1

底盘零部件制造

4.2

底盘总成装配

车身智能制造

5.1

车身冲压

5.2

车身装焊

5.3

车身涂装

汽车智能总装

合计

四、大纲内容

第1部分

汽车智能制造概论

总学时2学时

讲课

2学时

实验0学时

上机0学时

具体内容:

1)汽车智能制造背景和内涵

2)汽车智能制造基础

3)汽车智能制造的发展路径

点:

汽车智能制造基础设备,自动化在汽车行业的应用,信息化在汽车制造中的应用

点:

汽车智能制造的理论基础

习题内容:

如何描述智能化技术?

第2部分

汽车零件智能制造基础

总学时4学时

讲课

4学时

实验0学时

上机0学时

第2.1部分

机械加工(讲课

2学时)

具体内容:

1)智能制造在铸造、锻造中的应用

2)智能制造在冲压、焊接、切削中的应用

点:

智能铸造系统,智能切削技术的设备及加工过程

点:

智能切削技术的原理

习题内容:

智能切削技术可以应用于汽车哪些零部件的加工?

第2.2部分

冶金及塑料成型(讲课

2学时)

具体内容:

1)智能制造在冶金中的应用

2)智能制造在塑料成型中的应用

点:

智能化设计在钢铁冶炼中的应用,3D打印技术在塑料成型中的应用

点:

钢铁冶炼中管控架构及物理架构

习题内容:

智能化钢铁冶炼有哪些优势?

第3部分

汽车发动机智能制造

总学时6学时

讲课

6学时

实验0学时

上机0学时

第3.1部分

箱体类零件制造(讲课

2学时)

具体内容:

1)数控技术在箱体加工中的应用

2)柔性生产线在箱体加工中的应用

点:

柔性生产线的组成,数控技术加工箱体的具体方式

点:

柔性生产线的原理

习题内容:

柔性生产线与传统生产线的主要区别?

第3.2部分

连杆、曲轴制造(讲课

2学时)

具体内容:

1)智能制造在连杆加工中的应用

2)智能制造在曲轴加工中的应用

点:

曲轴、连杆加工中的智能制造设备,工艺及流程

点:

曲轴线自动监控管理系统的基本原理

习题内容:

连杆的智能制造设备有哪些特点?

第3.3部分

发动机装配(讲课

2学时)

具体内容:

1)发动机装配线智能管理

2)发动机装配线智能设备

点:

发动机混流装配线的智能管理,智能检测装配系统

点:

发动机混流装配线管理策略

习题内容:

发动机装配线智能设备有哪些?

第4部分

汽车底盘智能制造

总学时4学时

讲课

4学时

实验0学时

上机0学时

第4.1部分

底盘零部件制造(讲课

2学时)

具体内容:

1)智能制造在悬架中的应用

2)智能制造在轴类中的应用

3)智能制造在制动系统中的应用

4)智能制造在车轮、轮胎中的应用

点:

减振器,弹簧的智能加工,轮胎的智能加工

点:

制动系统的智能加工

习题内容:

悬架智能加工设备有哪些?

第4.2部分

底盘总成装配(讲课

2学时)

具体内容:

1)底盘总成装配的自动化生产

2)底盘总成装配的智能设备

点:

底盘总成装配自动化流程,底盘总成装配主要设备及原理

点:

自动化生产的基本原理

习题内容:

智能制造如何应用在底盘总成装配过程中?

第5部分

车身智能制造

总学时6学时

讲课

6学时

实验0学时

上机0学时

第5.1部分

车身冲压(讲课

2学时)

具体内容:

1)计算机辅助冲压技术

2)模具智能制造工艺

点:

计算机模拟技术,计算机虚拟技术

点:

模块式冲压技术基本原理

习题内容:

计算机控制技术是如何提高冲压质量的?

第5.2部分

车身装焊(讲课

2学时)

具体内容:

1)焊接机器人

2)

装焊生产线

点:

装焊机器人组成及分类,装焊机器人在装焊线的应用

点:

装焊生产线机器人布局策略

习题内容:

装焊生产线机器人一般如何布局?

第5.3部分

车身涂装(讲课

2学时)

具体内容:

1)智能涂装材料及工艺

2)

涂装生产线智能控制

3)涂胶机器人

4)喷涂机器人

点:

水性涂装材料,柔性运输系统,生产线能耗控制

点:

涂装生产线的实时监控

习题内容:

智能生产线如何对能耗进行控制?

第6部分

汽车智能总装

总学时2学时

讲课

2学时

实验0学时

上机0学时

具体内容:

1)总装自动化

2)物流系统智能控制

点:

总装自动化设备及生产线布局,数字化物流配送系统及其设备

点:

数字化物流的信息监控原理

习题内容:

AGV系统的基本构成

下载人工智能浪潮掀起三大技术支撑智能制造(精选五篇)word格式文档
下载人工智能浪潮掀起三大技术支撑智能制造(精选五篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐