伺服系统工作原理(本站推荐)

时间:2019-05-14 04:29:17下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《伺服系统工作原理(本站推荐)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《伺服系统工作原理(本站推荐)》。

第一篇:伺服系统工作原理(本站推荐)

第一部分:伺服系统的工作原理 伺服系统(servo system)亦称随动系统,属于自动控制系统中的一种,它用来控制 被控对象的转角(或位移),使其能自动地、连续地、精确地复规输入指令的变化规 律。它通常是具有负反馈的闭环控制系统,有的场合也可以用开环控制来实现其功 能。在实际应用中一般以机械位置或角度作为控制对象的自动控制系统,例如数控 机床等。使用在伺服系统中的驱动电机要求具有响应速度快、定位准确、转动惯量 较大等特点,这类专用的电机称为伺服电机。其基本工作原理和普通的交直流电机 没有什么不同。该类电机的专用驱动单元称为伺服驱动单元,有时简称为伺服,一 般其内部包括转矩(电流)、速度和/或位置闭环。其工作原理简单的说就是在开 环控制的交直流电机的基础上将速度和位置信号通过旋转编码器、旋转变压器等反 馈给驱动器做闭环负反馈的PID调节控制。再加上驱动器内部的电流闭环,通过这 3个闭环调节,使电机的输出对设定值追随的准确性和时间响应特性都提高很多。伺服系统是个动态的随动系统,达到的稳态平衡也是动态的平衡。全数字伺服系统一般采用位置控制、速度控制和力矩控制的三环结构。系统硬 件大致由以下几部分组成:电源单元;功率逆变和保护单元;检测器单元;数 字控制器单元;接口单元。相对应伺服系统由外到内的“位置”、“速度”、“转矩” 三个闭环,伺服系统一般分为三种控制方式。在使用位置控制方式时,伺服完 成所有的三个闭环的控制。在使用速度控制方式时,伺服完成速度和扭矩(电 流)两个闭环的控制。一般来讲,我们的需要位置控制的系统,既可以使用伺 服的位置控制方式,也可以使用速度控制方式,只是上位机的处理不同。另外,有人认为位置控制方式容易受到干扰。而扭矩控制方式是伺服系统只进行扭矩 的闭环控制,即电流控制,只需要发送给伺服单元一个目标扭矩值,多用在单 一的扭矩控制场合,比如在小角度裁断机中,一个电机用速度或位置控制方式,用来向前传送材料,另一个电机用作扭矩控制方式,用来形成恒定的张力。『伺服机构系统』源自servomechanism system,系指经由闭回路控 制方式达到一个机械系统位置、速度、或加速度控制的系统。一个伺 服系统的构成通常包含受控体(plant)、致动器(actuator)、控制器(controller)等几个部分,受控体系指被控制的物件,例如一格机械手 臂,或是一个机械工作平台。致动器的功能在於主要提供受控体的动 力,可能以气压、油压、或是电力驱动的方式呈现,若是采用油压驱 动方式,一般称之为油压伺服系统。目前绝大多数的伺服系统采用电 力驱动方式,致动器包含了马达与功率放大器,特别设计应用於伺服 系统的马达称之为伺服马达(servo motor),通常内含位置回授装置,如光电编码器(optical encoder)或是解角器(resolver),目前主要应用於 工业界的伺服马达包括直流伺服马达、永磁交流伺服马达、与感应交 流伺服马达,其中又以永磁交流伺服马达占绝大多数。控制器的功能 在於提供整个伺服系统的闭路控制,如扭矩控制、速度控制、与位置 控制等。目前一般工业用伺服驱动器(servo drive)通常包含了控制器与 功率放大器。一个传统伺服机构系统的组成如图1所示,伺服驱动器主要 包含功率放大器与伺服控制器,伺服控制器通常包含速度控 制器与扭矩控制器,马达通常提供类比式的速度回授信号,控制界面采用±10V的类比讯号,经由外回路的类比命令,可直接控制马达的转速或扭矩。采用这种伺服驱动器,通常 必须再加上一个位置控制器(position controller),才能完成 位置控制。图2所示是一个现代的伺服机构系统架构图,其 中的伺服驱动器包含了伺服控制器与功率放大器,伺服马达 提供解析度的光电编码器回授信号。图1.一个传统伺服机构系统的组成 图2.现代伺服机构系统的组成 多轴运动控制系统 精密伺服系统多应用於多轴运动控制系统,如工业机 器人、工具机、电子零件组装系统、PCB自动差建机等等。图3所示是一个运动控制平台的方块图,工作物件的位置控 制可藉由平台的移动来达成,平台位置的侦测有两种方式,一种是藉由伺服马达本身所安装的光电编码器,由於是以 间接的方式回授工作物件的位置,再藉由闭回路控制达到 位置控制的目的,因此也称之为间接位置控制(indirect position control)。另一种方式是直接将位置感测元件安装 在平台上,如光学尺、雷射位置感测计等等,直接回授工 作物件的位置,再藉由闭回路控制达到位置控制的目的,称之为直接位置控制(direct position control)。一个多轴运动控制系统由高阶的运动控制器(motion controller)与低阶的伺服驱动器(servo drive)所组成,运动 控制器负责运动控制命令解码、各个位置控制轴彼此间的相对 运动、加减速轮廓控制等等,其主要关键在於降低整体系统运 动控制的路径误差;伺服驱动器负责伺服马达的位置控制,主 要关键在於降低伺服轴的追随误差。图5所示是一个双轴运动 控制系统的简化控制方块图,在一般的情况下x-轴与y-轴的动 态响应特性会有相当大的差异,在高速轮廓控制时(contouring control),会造成显著的误差,因此必须设计一 个运动控制器以整体考量的观点解决此一问题。图3.双轴运动控制系统 图4.双轴运动控制系统的简化控制方块图 图5.网路控制分散式伺服系统 图6.伺服系统的整合 图7.伺服系统的阶层式控制架构 图8.伺服系统的环状多回路控制架构 图9.现代伺服系统的阶层式控制介面 图10.直流伺服驱动器的系统方块图 图11.交流伺服驱动器的系统架构图 图12.泛用型伺服驱动器的系统架构图 图13.一个典型闭回路控制系统的方块图 图14.伺服系统的环状多回路控制架构 图15.一个典型的多回路直流伺服系统控制方块图 图16.实用的工业数位伺服控制法则 图17.伺服马达驱动系统的自调控制架构 图18.数位马达控制技术的演进 图19.以DSP为核心的伺服系统解决方案 图20.DSP数位伺服驱动器的硬体电路图(TI Application Note)The Resolver �6�1 The resolver is essentially a rotating transformer �6�1 Very rugged deviceMotor FB Velocity Feedback The Position Servo Compensator Commanded Position Drive Actual Position Position Error ++Pcomp Vcomp Icomp Actual Velocity Current Command To Inner Loop Vder* Actual Current + Motor FB +Pderived Controller Drive Current Limit Velocity Command Position Feedback +Pcomp Vff + Motor FB ++ Pderived Controller Drive Velocity Command Position Feedback Velocity Feedforward Lexium 24V Fuses Contactor Choke Motor Brake Motor Connection Brake Timing Enable Input Speed Brake Output Enable Power Section Emergency StopThe Golden Rules �6�1 Command the System to Do Only What it is Capable of – If the motor and drive is incorrectly sized for the desired motion profile no amount of tuning will yield the desired results �6�1 Tune Inside Out – It is essential to tune the inner loops first.A common mistake is to have a low bandwidth, poorly tuned velocity loop then try to tune the position loop.The position loop can never be properly tuned because of the phase shift in the inner loop �6�1 Proper Grounding and Shielding – Great care must be taken in following the grounding and shielding procedures in the installation manual.If there is excessive system noise the system must be detuned(low bandwidth)so that it is not excited by high frequency noise �6�1 Robust Mechanical Design – Ensure that there is minimum flexibility in the mechanical system and that couplings are tight.Without a good mechanical design, resonances will be introduced which again force system detuning Velocity Control Architecture + +Pderived Position Feedback Proportional Plus Integral Velocity Loop Position Control Architecture +P P+I Vderivedstep change in velocity �6�1 Constant speed �6�1 Constant torque �6�1 Constant current The Current Loop �6�1 The current loop is configured automatically when the motor is selected.It is usually not necessary to modify parameters.Optimizing Velocity Loop Step Response �6�1 Proportional Gain – Higher proportional gain results in faster rise time but more overshoot and ringing.The optimum response is a small amount of overshoot with minimal ringing �6�1 Integral Gain – Higher integral gain improves immunity to disturbances but increases ringing.In a high friction system the integral gain can be increased more significantly Time Velocity The Position Loop �6�1 The integral term moves from the velocity loop to the position loop.It should normally be increased 2-3 times the value from the optimized speed loop.A higher integral gain reduces following error but increases ringing �6�1 The proportional gain may require no adjustment.A higher gain reduces following error bu increases ringing �6�1 Following error is significantly reduced by Vff which normally requires no adjustment from the default 第二部分:伺服电机的工作原理 无刷永磁电机原理图 Rotor Magnets 3 Phase Stator Windings Phase A Phase B Phase C Motor Inertia m F Force = mass x linear acceleration J T Torque = inertia x angular acceleration Step 2 Step 3 Step 4 Step 1 步进电机原理图 Servo/Stepper Comparison Feature Servo Stepper Torque/Speed Excellent Limited Efficiency High Low Position Information Yes Possible Lost Steps Ease of Use Requires Tuning Very Simple Settling Time Excellent Poor to Fair Cost Higher Lower Position Resolution High Limited Resonances Low High Velocity Ripple Excellent Poor Runaway Take Precautions Inherently Safe DC Permanent Magnet Motor-Theory of Operation N S + _ Magnetic Field Around Rotor Coil Permanent Magnet Stator Brush Commutator Rotor Coils Multiple Poles and Coils S N S N S N Feedback Devices Explain the feedback concepts of resolution, accuracy and repeatability Discuss resolvers and encoders and how they work Compare feedback options and review relative benefits Resolution Higher Resolution Lower Resolution Accuracy Higher Accuracy Lower Accuracy �6�1 Accuracy defines how close each measured position is to the actual physical position �6�1 The higher accuracy example has a tighter tolerance for the placement of each increment Repeatability High Repeatability �6�1 In the example above, the accuracy is poor but the repeatability is good Incremental, Absolute and Multiturn Position Change Actual Position Within Revolution Incremental Absolute Multiturn Actual Position Over Multiple Revolutions The Incremental Encoder Sensor 1 Sensor 2 Moving Disk Light Source Sensor 1 Sensor 2 �6�1 The encoder uses optical scanning of a fine grating in the form of a moving disc �6�1 The incremental encoder can only measure position changes �6�1 Digital pulse ouputs are typically provided which can be counted by the controller �6�1 A third sensor is often used to generate a marker pulse at a specific position within a revolution The Absolute Encoder �6�1 The absolute encoder has multiple disks which completely define position within a revolution �6�1 With mechanical gearing of the disk to another moving disk it is possible to define position over multiple revolutions �6�1 The encoder interface to the is typically Endat/Hyperface or SSI 总结 �6�1 交流伺服电机通常都是单相异步电动机,有鼠笼形转子和杯形转子两种结构 �6�1 形式。与普通电机一样,交流伺服电机也由定子和转子构成。定子上有两个 �6�1 绕组,即励磁绕组和控制绕组,两个绕组在空间相差90°电角度。固定和保 �6�1 护定子的机座一般用硬铝或不锈钢制成。笼型转子交流伺服电机的转子和普 �6�1 通三相笼式电机相同。杯形转子交流伺服电机的结构如图3-12由外定子4,杯 �6�1 形转子3和内定子5三部分组成。它的外定子和笼型转子交流伺服电机相同,�6�1 转子则由非磁性导电材料(如铜或铝)制成空心杯形状,杯子底部固定在转 �6�1 轴7上。空心杯的壁很薄(小于0.5mm),因此转动惯量很小。内定子由硅钢 �6�1 片叠压而成,固定在一个端盖1、8上,内定子上没有绕组,仅作磁路用。电 �6�1 机工作时,内、外定子都不动,只有杯形转子在内、外定子之间的气隙中转 �6�1 动。对于输出功率较小的交流伺服电机,常将励磁绕组和控制绕组分别安放 �6�1 在内、外定子铁心的槽内。交流伺服电机的工作原理和单相感应电动机 �6�1 无本质上的差异。但是,交流伺服电机必须具备一个性能,就是能克服交流 �6�1 伺服电机的所谓“自转”现象,即无控制信号时,它不应转动,特别是当它 �6�1 已在转动时,如果控制信号消失,它应能立即停止转动。而普通的感应电动 �6�1 机转动起来以后,如控制信号消失,往往仍在继续转动。�6�1 当电机原来处于静止状态时,如控制绕组不加控制电压,此时只有励磁绕组 �6�1 通电产生脉动磁场。可以把脉动磁场看成两个圆形旋转磁场。这两个圆形旋 �6�1 转磁场以同样的大小和转速,向相反方向旋转,所建立的正、反转旋转磁场 �6�1 分别切割笼型绕组(或杯形壁)并感应出大小相同,相位相反的电动势和电 �6�1 流(或涡流),这些电流分别与各自的磁场作用产生的力矩也大小相等、方 �6�1 向相反,合成力矩为零,伺服电机转子转不起来。一旦控制系统有偏差信 �6�1 号,控制绕组就要接受与之相对应的控制电压。在一般情况下,电机内部产 �6�1 生的磁场是椭圆形旋转磁场。一个椭圆形旋转磁场可以看成是由两个圆形旋 �6�1 转磁场合成起来的。这两个圆形旋转磁场幅值不等(与原椭圆旋转磁场转向 �6�1 相同的正转磁场大,与原转向相反的反转磁场小),但以相同的速度,向相反的方向 �6�1 旋转。它们切割转子绕组感应的电势和电流以及产生的电磁力矩也方向相反、大小不 �6�1 等(正转者大,反转者小)合成力矩不为零,所以伺服电机就朝着正转磁场的方向转 �6�1 动起来,随着信号的增强,磁场接近圆形,此时正转磁场及其力矩增大,反转磁场及 �6�1 其力矩减小,合成力矩变大,如负载力矩不变,转子的速度就增加。如果改变控制电 �6�1 压的相位,即移相180o,旋转磁场的转向相反,因而产生的合成力矩方向也相反,伺 �6�1 服电机将反转。若控制信号消失,只有励磁绕组通入电流,伺服电机产生的磁场将是 �6�1 脉动磁场,转子很快地停下来。�6�1 为使交流伺服电机具有控制信号消失,立即停止转动的功能,把它的转子电 �6�1 阻做得特别大,使它的临界转差率Sk大于1。在电机运行过程中,如果控制 �6�1 信号降为“零”,励磁电流仍然存在,气隙中产生一个脉动磁场,此脉动磁 场可 �6�1 视为正向旋转磁场和反向旋转磁场的合成。图3-13画出正向及反向旋转磁场 �6�1 切割转子导体后产生的力矩一转速特性曲线1、2,以及它们的合成特性曲线 �6�1 3。图3-13b中,假设电动机原来在单一正向旋转磁场的带动下运行于A点,�6�1 此时负载力矩是。一旦控制信号消失,气隙磁场转化为脉动磁场,它可视为 �6�1 正向旋转磁场和反向旋转磁场的合成,电机即按合成特性曲线3运行。由于转 �6�1 子的惯性,运行点由A点移到B点,此时电动机产生了一个与转子原来转动方 �6�1 向相反的制动力矩。在负载力矩和制动力矩的作用下使转子迅速停止。�6�1 必须指出,普通的两相和三相异步电动机正常情况下都是在对称状态 下工作,不对称运行属于故障状态。而交流伺服电机则可以靠不同程 度的不对称运行来达到控制目的。这是交流伺服电机在运行上与普通 异步电动机的根本区别。

第二篇:0904048导弹伺服系统原理与设计教学大纲

《导弹伺服系统原理与设计》课程教学大纲

一、课程基本信息

课程编号:0904048 课程中文名称:导弹伺服系统原理与设计

课程英文名称:Theory and Design of Missile Servo System 课程性质:专业主干课程 考核方式:考试

开课专业:探测制导与控制技术 开课学期:7 总学时: 32(其中理论32学时,实验0学时)总学分:2

二、课程目的

导弹伺服系统是导弹控制系统和稳定回路中一个不可缺少的组成部分。本课程的目的是培养学生综合运用自动控制理论、自动控制元件等基础知识,掌握伺服系统的原理和设计,掌握导弹上电动舵机、液压舵机、气压舵机、发动机推力矢量机构以及导引头伺服机构的原理与设计,了解导弹伺服系统的电磁兼容设计。

三、教学基本要求(含素质教育与创新能力培养的要求)

1.掌握伺服系统的概念及导弹伺服系统的基本组成。2.掌握伺服系统的稳态设计与动态设计。

3.掌握导弹上的电动舵机、液压舵机以及气压舵机伺服机构的原理与设计。4.掌握发动机推力矢量机构工作原理。5.掌握电视导引头和红外导引头伺服机构原理。6.了解导弹伺服系统的电磁兼容设计。

四、教学内容与学时分配

第一章

概论(2学时)

伺服系统的发展、基本组成;导弹执行元件及伺服系统基本组成。第二章

伺服系统的设计与分析(8学时)

伺服系统设计概述;稳态设计包括负载的分析计算,执行元件的选择,检测装置的选择,信号转换电路的设计和选择等,动态设计包括动态设计原则,希望特性的绘制,补偿环节传递函数的获取,补偿装置的实现等。第三章

电动舵机伺服机构设计(6学时)

舵机及伺服机构组成;直接控制式电动伺服机构和间接控制式电动伺服机构设计原理。第四章

液压舵机伺服机构(4学时)

液压伺服机构的组成和工作原理;电液伺服阀的分析与设计。第五章

气动舵机伺服机构(2学时)气动舵机伺服机构的组成和工作原理。第六章

发动机推力矢量机构(2学时)发动机推力矢量机构工作原理。

第七章

导引头伺服系统。(6学时)

导引头伺服系统组成:电视导引头伺服系统原理、组成和机构设计;红外导引头组成及伺服系统设计原理。

第八章

导弹伺服系统的电磁兼容设计(2学时)

导弹伺服系统电磁兼容的解决方法,电气系统的电磁环境,电磁兼容设计。

五、教学方法及手段(含现代化教学手段及研究性教学方法)

使用多媒体课件授课。

六、实验(或)上机内容

七、先修课程

先修课程:自动控制元件、自动控制理论、制导与控制系统。

八、教材及主要参考资料

教材:

自编讲义《导弹伺服系统原理与设计》 主要参考资料:

[1] 张莉松,胡佑德,徐立新.伺服系统原理与设计[M].北京理工大学出版社,2006.[2] 刘胜.现代伺服系统设计[M].哈尔滨:哈尔滨工程大学出版社,2001.[3] 潘荣霖.飞航导弹测高装置与伺服机构[M].北京:宇航出版社,1993.[4] 叶尧卿.便携式红外寻的防空导弹设计[M].北京:宇航出版社,1996.[5] 张万清.飞航导弹电视导引头[M].北京:宇航出版社,1994.[6] 丁兰芳.飞航导弹电气系统设计[M].北京:宇航出版社,1994.九、课程考核方式

闭卷考试。

撰写人签字:

院(系)教学院长(主任)签字:

第三篇:雷达工作 原理

雷达的原理

雷达(radar)原是“无线电探测与定位”的英文缩写。雷达的基本任务是探测感兴趣的目标,测定有关目标的距离、方问、速度等状态参数。雷达主要由天线、发射机、接收机(包括信号处理机)和显示器等部分组成。

雷达发射机产生足够的电磁能量,经过收发转换开关传送给天线。天线将这些电磁能量辐射至大气中,集中在某一个很窄的方向上形成波束,向前传播。电磁波遇到波束内的目标后,将沿着各个方向产生反射,其中的一部分电磁能量反射回雷达的方向,被雷达天线获取。天线获取的能量经过收发转换开关送到接收机,形成雷达的回波信号。由于在传播过程中电磁波会随着传播距离而衰减,雷达回波信号非常微弱,几乎被噪声所淹没。接收机放大微弱的回波信号,经过信号处理机处理,提取出包含在回波中的信息,送到显示器,显示出目标的距离、方向、速度等。

为了测定目标的距离,雷达准确测量从电磁波发射时刻到接收到回波时刻的延迟时间,这个延迟时间是电磁波从发射机到目标,再由目标返回雷达接收机的传播时间。根据电磁波的传播速度,可以确定目标的距离为:S=CT/2

其中S:目标距离

T:电磁波从雷达到目标的往返传播时间

C:光速

雷达测定目标的方向是利用天线的方向性来实现的。通过机械和电气上的组合作用,雷达把天线的小事指向雷达要探测的方向,一旦发现目标,雷达读出些时天线小事的指向角,就是目标的方向角。两坐标雷达只能测定目标的方位角,三坐标雷达可以测定方位角和俯仰角。

测定目标的运动速度是雷达的一个重要功能,—雷达测速利用了物理学中的多普勒原理.当目标和雷达之间存在着相对位置运动时,目标回波的频率就会发生改变,频率的改变量称为多普勒频移,用于确定目标的相对径向速度,通常,具有测速能力的雷达,例如脉冲多普勒雷达,要比一般雷达复杂得多。

雷达的战术指标主要包括作用距离、威力范围、测距分辨力与精度、测角分辨力与精度、测速分辨力与精度、系统机动性等。

其中,作用距离是指雷达刚好能够可靠发现目标的距离。它取决于雷达的发射功率与天线口径的乘积,并与目标本身反射雷达电磁波的能力(雷达散射截面积的大小)等因素有关。威力范围指由最大作用距离、最小作用距离、最大仰角、最小仰角及方位角范围确定的区域。

雷达的技术指标与参数很多,而且与雷达的体制有关,这里仅仅讨论那些与电子对抗关系密切的主要参数。

根据波形来区分,雷达主要分为脉冲雷达和连续波雷达两大类。当前常用的雷达大多数是脉冲雷达。常规脉冲雷达周期性地发射高频脉冲。相关的参数为脉冲重复周期(脉冲重复频率)、脉冲宽度以及载波频率。载波频率是在一个脉冲内信号的高频振荡频率,也称为雷达的工作频率。

雷达天线对电磁能量在方向上的聚集能力用波束宽度来描述,波束越窄,天线的方向性越好。但是在设计和制造过程中,雷达天线不可能把所有能量全部集中在理想的波束之内,在其它方向上在在着泄漏能量的问题。能量集中在主波束中,我们常常形象地把主波束称为主瓣,其它方向上由泄漏形成旁瓣。为了覆盖宽广的空间,需要通过天线的机械转动或电子控制,使雷达波束在探测区域内扫描。

概括起来,雷达的技术参数主要包括工作频率(波长)、脉冲重复频率、脉冲宽度、发射功率、天线波束宽度、天线波束扫描方式、接收机灵敏度等。技术参数是根据雷达的战术性能与指标要求来选择和设计的,因此它们的数值在某种程度上反映了雷达具有的功能。例如,为提高远距离发现目标能力,预警雷达采用比较低的工作频率和脉冲重复频率,而机载雷达则为减小体积、重量等目的,使用比较高的工作频率和脉冲重复频率。这说明,如果知道了雷达的技术参数,就可在一定程度上识别出雷达的种类。

雷达的用途广泛,种类繁多,分类的方法也非常复杂。通常可以按照雷达的用途分类,如预警雷达、搜索警戒雷达、无线电测高雷达、气象雷达、航管雷达、引导雷达、炮瞄雷达、雷达引信、战场监视雷达、机载截击雷达、导航雷达以及防撞和敌我识别雷达等。除了按用途分,还可以从工作体制对雷达进行区分。这里就对一些新体制的雷达进行简单的介绍。(军事观察·warii.net)

双/多基地雷达

普通雷达的发射机和接收机安装在同一地点,而双/多基地雷达是将发射机和接收机分别安装在相距很远的两个或多个地点上,地点可以设在地面、空中平台或空间平台上。由于隐身飞行器外形的设计主要是不让入射的雷达波直接反射回雷达,这对于单基地雷达很有效。但入射的雷达波会朝各个方向反射,总有部分反射波会被双/多基地雷达中的一个接收机接收到。美国国防部从七十年代就开始研制、试验双/多基地雷达,较著名的“圣殿”计划就是专门为研究双基地雷达而制定的,已完成了接收机和发射机都安装在地面上、发射机安装在飞机上而接收机安装在地面上、发射机和接收机都安装在空中平台上的试验。俄罗斯防空部队已应用双基地雷达探测具有一定隐身能力的飞机。英国已于70年代末80年代初开始研制双基地雷达,主要用于预警系统。

相控阵雷达

我们知道,蜻蜓的每只眼睛由许许多多个小眼组成,每个小眼都能成完整的像,这样就使得蜻蜓所看到的范围要比人眼大得多。与此类似,相控阵雷达的天线阵面也由许多个辐射单元和接收单元(称为阵元)组成,单元数目和雷达的功能有关,可以从几百个到几万个。这些单元有规则地排列在平面上,构成阵列天线。利用电磁波相干原理,通过计算机控制馈往各辐射单元电流的相位,就可以改变波束的方向进行扫描,故称为电扫描。辐射单元把接收到的回波信号送入主机,完成雷达对目标的搜索、跟踪和测量。每个天线单元除了有天线振子之外,还有移相器等必须的器件。不同的振子通过移相器可以被馈入不同的相位的电流,从而在空间辐射出不同方向性的波束。天线的单元数目越多,则波束在空间可能的方位就越多。这种雷达的工作基础是相位可控的阵列天线,“相控阵”由此得名。

相控阵雷达的优点

(1)波束指向灵活,能实现无惯性快速扫描,数据率高;(2)一个雷达可同时形成多个独立波束,分别实现搜索、识别、跟踪、制导、无源探测等多种功能;(3)目标容量大,可在空域内同时监视、跟踪数百个目标;(4)对复杂目标环境的适应能力强;(5)抗干扰性能好。全固态相控阵雷达的可靠性高,即使少量组件失效仍能正常工作。但相控阵雷达设备复杂、造价昂贵,且波束扫描范围有限,最大扫描角为90°~120°。当需要进行全方位监视时,需配置3~4个天线阵面。

相控阵雷达与机械扫描雷达相比,扫描更灵活、性能更可靠、抗干扰能力更强,能快速适应战场条件的变化。多功能相控阵雷达已广泛用于地面远程预警系统、机载和舰载防空系统、机载和舰载系统、炮位测量、靶场测量等。美国“爱国者”防空系统的AN/MPQ-53雷达、舰载“宙斯盾”指挥控制系统中的雷达、B-1B轰炸机上的APQ-164雷达、俄罗斯C-300防空武器系统的多功能雷达等都是典型的相控阵雷达。随着微电子技术的发展,固体有源相控阵雷达得到了广泛应用,是新一代的战术防空、监视、火控雷达。

宽带/超宽带雷达

工作频带很宽的雷达称为宽带/超宽带雷达。隐身兵器通常对付工作在某一波段的雷达是有效的,而面对覆盖波段很宽的雷达就无能为力了,它很可能被超宽带雷达波中的某一频率的电磁波探测到。另一方面,超宽带雷达发射的脉冲极窄,具有相当高的距离分辨率,可探测到小目标。目前美国正在研制、试验超宽带雷达,已完成动目标显示技术的研究,将要进行雷达波形的试验。

合成孔径雷达

合成孔径雷达通常安装在移动的空中或空间平台上,利用雷达与目标间的相对运动,将雷达在每个不同位置上接收到的目标回波信号进行相干处理,就相当于在空中安装了一个“大个”的雷达,这样小孔径天线就能获得大孔径天线的探测效果,具有很高的目标方位分辨率,再加上应用脉冲压缩技术又能获得很高的距离分辨率,因而能探测到隐身目标。合成孔径雷达在军事上和民用领域都有广泛应用,如战场侦察、火控、制导、导航、资源勘测、地图测绘、海洋监视、环境遥感等。美国的联合监视与目标攻击雷达系统飞机新安装了一部AN/APY3型X波段多功能合成孔径雷达,英、德、意联合研制的“旋风”攻击机正在试飞合成孔径雷达。

毫米波雷达

工作在毫米波段的雷达称为毫米波雷达。它具有天线波束窄、分辩率高、频带宽、抗干扰能力强等特点,同时它工作在目前隐身技术所能对抗的波段之外,因此它能探测隐身目标。毫米波雷达还具有能力,特别适用于防空、地面作战和灵巧武器,已获得了各国的调试重视。例如,美国的“爱国者”防空导弹已安装了毫米波雷达导引头,目前正在研制更先进的毫米波导引头;俄罗斯已拥有连续波输出功率为10千瓦的毫米波雷达;英、法等国家的一些防空系统也都将采用毫米波雷达。

激光雷达

工作在红外和可见光波段的雷达称为激光雷达。它由激光发射机、光学接收机、转台和信息处理系统等组成,激光器将电脉冲变成光脉冲发射出去,光接收机再把从目标反射回来的光脉冲还原成电脉冲,送到显示器。隐身兵器通常是针对微波雷达的,因此激光雷达很容易“看穿”隐身目标所玩的“把戏”;再加上激光雷达波束窄、定向性好、测量精度高、分辨率高,因而它能有效地探测隐身目标。激光雷达在军事上主要用于靶场测量、空间目标交会测量、目标精密跟踪和瞄准、目标成像识别、导航、精确制导、综合火控、直升机防撞、化学战剂监测、局部风场测量、水下目标探测等。美国国防部正在开发用于目标探测和识别的激光雷达技术,已进行了前视/下视激光雷达的试验,主要探测伪装树丛中的目标。法国和德国正在积极进行使用激光雷达探测和识别直升机的联合研究工作。参考资料:

第四篇:扫地机工作原理

扫地机器人工作原理:

1.通过电动机的高速旋转,在主机内形成真空,利用由此产生的高速气流,从吸入口吸进垃圾。这时气流的速度高达时速240转,虱子等害虫在进入主机之内,便因高速碰撞吸尘管内壁而死掉。

2.吸入扫地机的垃圾,被积蓄在布袋机,被过滤网净化过的空气,则边冷却电动机,边被排出扫地机。

3.电动机是扫地机的心脏,其性能的好坏,可直接影响扫地机的可靠性。另外,扫地机所使用的电动机,每分钟旋转2万转~4万转。而如电扇的电动机,其转速为每分钟约1800~3600转,由此可知扫地机电动机转速是多么高。

4.正确表示扫地机性能的单位,不是输入功率(瓦数、或安培数),而是输出功率(吸入功率)。

5.“吸入力”取决于所产生的风力和真空力的合力,但这两个因素却具有相反的特性。也就是说,风力大时真空力变弱,真空力强时则风力变小。这两者的合力的最大值,即表示该扫地机能力的“吸入功率”,吸入功率用瓦(W)表示。这一定义,是国际标准组织(ISO)规定的表示扫地机性能的国际标准,在世界范围内得以承认。目前,日本、德国等将其作为表示扫地机性能的单位而使用这一单位,但在其它地区,则直接将输入功率的大小,误解为表示扫地机性能的单位。

关天排气过滤网

1.为了不使吸入扫地机的微小的灰尘泄漏到外边,扫地机里装有种种过滤网。例如:松下电器的扫地机里,至少装有2-3个过滤网,另外,布袋或者纸袋,也起着过滤网的作用。这些过滤网,可防止极为微小的灰尘损伤电动机,同时还可起到防止弄脏室内空气的作用。

2.长期使用扫地机时,会因过滤网网眼的堵塞而致使吸力下降。为了防止吸力下降,应定期用水清洗过滤网以及布袋,洗后在阴凉处晾干再使用,即可恢复吸力。

扫地机器人的基本配线

1.高速运转的扫地机电动机一般使用1000瓦以下的电力,故其所产生的热量与电热取暖炉相当。

2.一般的扫地机中,均装有电流保险丝和“热保护器”,故即使出现电动机过热,也可及时监测出温度上升,暂时性切断通往电动机的电流,防患于未然。还装有“气流保护器”,在吸嘴等阻塞、空气停止流动时动作,打开紧急空气吸入口,利用外部凉气来抑制主机的过热。

第五篇:DCS工作原理

DCS系统即分布式控制系统,其实质时计算机技术对生产过程进行集中监视、操作、管理和分散控制的一新型控制技术。分布式操作系统的构成:作为一种纵向分层和横向分散的大型综合控制系统,它以多层计算机网络为依托,将分布在全场范围内的各种控制设备的数据处理设备连接在一起,实现各部分信息的共享的协调工作,共同完成控制、管理及决策功能。

其硬件设备由管理操作应用工作站、现场控制站和通信网络组成。管理操作应用工作站包括工程师站、操作员站和立式数据站等各种功能服务站。工程师站提供对技术人员生成控制系统的人机接口,主要用于系统组态和维护,技术人员也可以通过工程师站对应用系统尽心监控。操作员总理提供技术人员与系统数据库的人机交互界面,用于监视可以完成数据的状态值显示和操作员对数据点的操作。历史站保存整个系统的历史数据,供组态软件实现历史趋势显示,报表打印和事故追忆等功能。现场控制站用于对现场信号的采集处理,控制策略的实现,并具有可靠地冗余保证。网络通信功能:通信网络连接分布式控制系统的各个分布部分,完成数据、指令及其他信息的传递。为保证DCS可靠性,电源、通信网络、过程控制站都采用冗余配置。

PLC即可编程控制器,由CPU、存储器、输入输出接口、内嵌的精简高效操作系统组成。用户可根据自己的需要配置(扩展)自己的I/O类型及数量,用户按自己的控制需求编写控制程序下载到PLC的存储器内,PLC在运行的时候,PLC内的操作系统能运行用户的程序,根据用户程序通过输入端子完成输入信号(开关、触点、传感器等)的读取,并进行处理运算,把运算处理的结果输出到端子,以控制用户的执行机构(阀门、线圈、指示灯等),从而完成用户所需的控制功能。

电子汽车衡时利用应变电测原理称重。在称重传感器的弹性体上粘有应变计,组成惠斯通电桥。在零负载时,电桥处于平衡状态,输出为0。当弹性体承受载荷时,各应变计随之产生与载荷成比例的应变,由输出电压即可测出外加的载荷的大小。将多个称重传感安装在称台的下方,多个传感器电缆线引入接线盒并联,然后用一根电缆线接入仪表。当汽车驶上称台后,称台将所受力传递到各个称重传感器上,使应变电桥的电阻发生变化,引起输出电压变化,即输出了电信号。此电线号传输到一表内,经数字滤波、线性放大、A/D转换,经CPU处理后最终显示称重值。电子汽车衡除其基本组成之外,可通过仪表同时连接微机、打印机、大屏幕显示器等其他电气设备,可直接实现称重打印,也可通过微机管理最终达到网络化管理。

下载伺服系统工作原理(本站推荐)word格式文档
下载伺服系统工作原理(本站推荐).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    电焊机工作原理

    电焊机工作原理: 1、普通电焊机的工作原理和变压器相似,是一个降压变压器。在齿及线圈的两端是被焊接工件和焊条,引燃电弧,在电弧的高温中将工件的缝隙和焊条熔接。 电焊变压器......

    测速雷达工作原理

    测速雷达工作原理 车友多有闯红灯或超速被电子眼拍到而被罚的经历。只要给电子眼拍到,罚款不是200就是500,心痛之余,车友去寻找反电子眼的设备。本文就目前的几类常用设备作一......

    激光雷达工作原理

    激光雷达工作原理 激光是 2 0世纪 6 0年代出现的最重大科学技术成就之一。它的出现深化了人们对光的认识 ,扩大了光为人类服务的天地。激光技术从它的问世到现在 ,虽然时间......

    柴油机工作原理

    柴油发电机的基本结构是由柴油机和发电机组成,柴油机作动力带动发电机发电。 先说柴油机的基本结构:它由气缸、活塞、气缸盖、进气门、排气门、活塞销、连杆、曲轴、轴承和飞......

    发电机组工作原理

    ? 柴油机[1]?驱动发电机运转,将柴油的能量转化为电能。 柴油发电机组1在柴油机汽缸内,经过空气滤清器过滤后的洁净空气与喷油嘴喷射出的高压雾化柴油 充分混合,在活塞上行的挤......

    压力传感器工作原理

    压力传感器是工业实践、仪器仪表控制中最为常用的一种传感器,并广泛应用于各种工业自控环境,涉及水利水电、铁路交通、生产自控、航空航天、军工、石化、油井、电力、船舶、机......

    腹腔镜工作原理

    腹腔镜工作原理.是一种带有微型摄像头的器械。腹腔镜手术就是利用腹腔镜及其相关器械进行的手术:使用冷光源提供照明,将腹腔镜镜头( 直径为3-10mm)插入腹腔内,运用数字摄像技术使......

    传感器工作原理

    传感器工作原理压电传感器:基于压电效应的传感器。是一种自发电式和机电转换式传感器。它的敏感元件由压电材料制成。压电材料受力后表面产生电荷。此电荷经电荷放大器和测量......