第一篇:机器人路径规划毕业论文外文翻译
外文文献:
Space Robot Path Planning for Collision Avoidance
Yuya Yanoshita and Shinichi Tsuda
Abstract — This paper deals with a path planning of space robot which includes a collision avoidance algorithm.For the future space robot operation, autonomous and self-contained path planning is mandatory to capture a target without the aid of ground station.Especially the collision avoidance with target itself must be always considered.Once the location, shape and grasp point of the target are identified, those will be expressed in the configuration space.And in this paper a potential method.Laplace potential function is applied to obtain the path in the configuration space in order to avoid so-called deadlock phenomenon.Improvement on the generation of the path has been observed by applying path smoothing method, which utilizes the spline function interpolation.This reduces the computational load and generates the smooth path of the space robot.The validity of this approach is shown by a few numerical simulations.Key Words —Space Robot, Path Planning, Collision Avoidance, Potential Function, Spline Interpolation
I.INTRODUCTION
In the future space development, the space robot and its autonomy will be key features of the space technology.The space robot will play roles to construct space structures and perform inspections and maintenance of spacecrafts.These operations are expected to be performed in an autonomous.In the above space robot operations, a basic and important task is to capture free flying targets on orbit by the robotic arm.For the safe capturing operation, it will be required to move the arm from initial posture to final posture without collisions with the target.山东建筑大学毕业论文外文文献及译文
The configuration space and artificial potential methods are often applied to the operation planning of the usual robot.This enables the robot arm to evade the obstacle and to move toward the target.Khatib proposed a motion planning method, in which between each link of the robot and the obstacle the repulsive potential is defined and between the end-effecter of the robot and the goal the attractive potential is defined and by summing both of the potentials and using the gradient of this potential field the path is generated.This method is advantageous by its simplicity and applicability for real-time operation.However there might be points at which the repulsive force and the attractive force are equal and this will lead to the so-called deadlock.In order to resolve the above issue, a few methods are proposed where the solution of Laplace equation is utilized.This method assures the potential fields without the local minimum, i.e., no deadlock.In this method by numerical computation Laplace equation will be solved and generates potential field.The potential field is divided into small cells and on each node the discrete value of the potential will be specified.In this paper for the elimination of the above defects, spline interpolation technique is proposed.The nodal point which is given as a point of path will be defined to be a part of smoothed spline function.And numerical simulations are conducted for the path planning of the space robot to capture the target, in which the potential by solving the Laplace equation is applied and generates the smooth and continuous path by the spline interpolation from the initial to the final posture.II.ROBOT MODEL The model of space robot is illustrated in Fig.1.The robot is mounted on a spacecraft and has two rotary joints which allow the in-plane motion of the end-effecter.In this case we have an additional freedom of the spacecraft attitude angle and this will be considered the additional rotary joint.This means that the space robot is three linked with 3 DOF(Degree Of Freedom).The length of each link and the angle of each rotary joint are given byliandi(i = 1,2,3), respectively.In order to simplify the discussions a few assumptions are made in this paper:-the motion of the space robot is in-plane,i.e., two dimensional one.-effect of robot arm motion to the spacecraft attitude is negligible.山东建筑大学毕业论文外文文献及译文
2220
(2)2xyAnd this will be converted into the difference equation and then solved by Gauss-Seidel method.In equation(2)if we take the central difference formula for second derivatives, the following equation will be obtained: 220x2y2(xx,y)2(x,y)(xx,y)
(3)x2(x,yy)2(x,y)(x,yy)y2where x,y are the step(cell)sizes between adjacent nodes for each x, y direction.If the step size is assumed equal and the following notation is used:
(xx,y)i1,j
Then equation(3)is expressed in the following manner: i1,ji1,ji,j1i,j1i,j0
(4)
And as a result, two dimensional Laplace equation will be converted into the equation(5)as below: i,j1i1,ji1,ji,j1i,j1
(5)4In the same manner as in the three dimensional case, the difference equation for the three dimensional Laplace equation will be easily obtained by the following:
i,j,k1i1,j,ki1,j,ki,j1,ki,j1,ki,j,k1i,j,k1
(6)6In order to solve the above equations we apply Gauss-Seidel method and have equations as follows: n1i,j1n1nn1i1,jin1,ji,j1i,j1
(7)41where in,j is the computational result from the(n +1)-th iterative calculations of the potential.In the above computations, as the boundary conditions, a certain positive number 0 is defined for the obstacle and 0 for the goal.And as the initial conditions the same number 0 is
山东建筑大学毕业论文外文文献及译文
The length of each link is given as follows:
l1 =1.4[m], l2 = 2.0[m], l3 = 2.0[m] , and the target satellite was assumed 1m square.The grasp handle, 0.1 m square, was located at a center of one side of the target.So this handle is a goal of the path.Let us explain the geometrical relation between the space robot and the target satellite.When we consider the operation after capturing the target, it is desirable for the space robot to have the large manipulability.Therefore in this paper the end-effecter will reach the target when the manipulability is maximized.In the 3DOF case, not depending on the spacecraft body attitude, the manipulability is measured by2,3.And if we assume the end-effector of the space robot should be vertical to the target, then all of the joints angles are predetermined as follows:
1160.7o,232.8o,376.5o
As all the joints angles are determined, the relative position between the spacecraft and the target is also decided uniquely.If the spacecraft is assumed to locate at the origin of the inertial frame(0, 0), the goal is given by(-3.27,-2.00)in the above case.Based on these preparations, we can search the path to the goal by moving the arm in the configuration space.Two simulations for path planning were carried out and the results are shown below.A.2 DOF Robot In order to simplify the situation, the attitude angle(Link 1 joint angle)is assumed to coincide with the desirable angle from the beginning.The coordinate system was assumed as shown in Fig.2.1 was taken into consideration for the calculation of the initial condition of the Link 2 and its
山东建筑大学毕业论文外文文献及译文
the connection of-180 degrees in the 1direction was illustrated.From this figure it is easily seen that over-180 degrees the path is going toward the goal C.B and C are the same goal point.V.CONCLUSION In this paper a path generation method for capturing a target satellite was proposed.And its applicability was demonstrated by numerical simulations.By using interpolation technique the computational load will be decreased and smoothed path will be available.Further research will be recommended to incorporate the attitude motion of the spacecraft body affected by arm motion.山东建筑大学毕业论文外文文献及译文
本文对上述缺陷的消除,提出了样条插值技术。给定的节点作为路径的一部分将被定义为平滑样条函数的一部分。为了捕获到目标,空间机器人的路径规划运用了数字模拟技术,它是通过对势场域求解拉普拉斯函数来实现的,并且从最初的位置到末尾位置的样条插值来产生连续光滑的路径。
2.机器人模型
空间机器人的模型如图1所示:机器人被安装在航天器和两个旋转接头上,这两个旋转接头可以实现末端执行器的平面运动。这种情况下,我们的航天器的姿态角有一个额外的自由度,我们将这个额外的自由度视为额外的旋转接头。这意味着空间机器人有三个自由度的链接,每个链路的长度和每个旋转关节角度,分别由li和i(i = 1,2,3)表示。为了简化这个讨论,本文做了一些假设:(1)空间机器人的运动是平面的,即二维;
(2)机器人机械臂的运动对航天器姿态的影响是可以忽略的;(3)机器人运动给出了静态几何关系,并没有明确的依赖时间;(4)目标卫星在惯性的作用下是很稳定的;
一般情况下,平面运动和空间运动将分别进行,所以我们可以假设上面的第一个不失一般性,第二个假设来自机械臂和航天器质量比的比较,对于第三个假设,我们专注于生成机器人的路径规划,这基本上是由几何关系的静态性质决定,因此并不依赖明确的时间,最后一个就是合作卫星。
图1 双链路空间机器人
0
山东建筑大学毕业论文外文文献及译文
为了解决上述方程,我们应用了高斯赛德尔算法和求解方程,如下:
n1i,j1n1nn1i1,jin1,ji,j1i,j1
(8)4in,j1表示势场域的迭代计算结果。
在上述的计算中,作为边界条件,定义特定的正数0来表示障碍物和目标。为保证初始条件相同,给所有的自由节点赋同样的数值0。通过这种方法,在迭代计算的边界节点获得的的值将不会改变,而且自由节点的值是不同。我们应用相同的域值作为障碍物,并且按照迭代计算方法,则目标周围较小的势场域会像障碍物一样缓慢的向周围传播,势场域就是根据上述方法建立的。采用4节点相邻的空间机器人存在的节点上的势场,最小的节点选择移动到另一点,这个过程最终引导机器人无碰撞的到达目标的位置。
样条内插法:
通过上述方法给出的路径不能保证能够与另一个目标顺利连接,如果节点上没有给定目标,我们会将栅格划分成的更小,但这将增加计算量和所用时间。为了消除这些弊端,我们提出利用样条插值技术。通过在将节点解给出的通过点的道路上,我们试图获得顺利连接路径与准确获取最初的和最后的点。本文主要是通过MATLAB命令应用样条函数。
配置空间:
当我们在应用拉普拉斯势域的时候,路径搜索只能在当机器人在搜索空间过程中表示成一个点的情况下才能保证实现。配置空间(C空间)中机器人仅表示为一个点,主要是用于路径搜索。将真正的空间转换到C空间,必须执行判断碰撞条件的计算,如果碰撞存在,相应的点在c空间被认为是障碍。本文中,在生成势场域时,所有现实空间的点的生成条件对应于所有的节点都是经过计算的。在构成的机械臂和生成的节点的障碍物出现判断选择时,该节点可以看作是在c空间的障碍点。
数值仿真:
基于上述方法对于捕获目标卫星路径规划的检查是使用空间机器人模型进行的。在本文中,我们假设空间机器人二维和2自由度机械手臂见图1。每个链接的长度给出如下:
山东建筑大学毕业论文外文文献及译文
初始角度:264.3,390o 目标角度:2166.5,376.5o
在这种情况下,势场域分成180段计算成C空间。图3显示的C空间和计划中的很大一部分的中心是由航天器本体映射的障碍了,左边部分是目标卫星的映射。图4显示的是生成的路径,这是通过利用离散数据点平滑交替生成的样条插值曲线。当我们考虑航天器本体的旋转时,-180度相当于+180度状态,然后,状态超过-180度时,它将从180度再次转到C-空间当中。正是由于这个原因,为了保证旋转的连续性,我们需要充分利用周期性的边界条件。为方便观察路径,航天器机体的映射体积忽略不计。同时为了路径表述的更加简单,附有在1方向上-180度范围的连接的插图,并做了说明。从图中可以很容易看出在-180度的范围内,沿着路径走向目标C,B和C是走向相同的目标点。
图3 两个自由度的C空间
图4 C空间的路径(2个自由度)
第二篇:机器人外文翻译
沈阳航空工业学院学士学位论文
机 器 人
工业机器人是在生产环境中以提高生产效率的工具,它能做常规乏味的装配线工作,或能做那些对于工人来说是危险的工作,例如,第一代工业机器人是用来在 核电站中更换核燃料棒,如果人去做这项工作,将会遭受有害的放射线的辐射。工业机器人亦能工作在装配线上将小元件装配到一起,如将电子元件安放在电路印制板,这样,工人就能从这项乏味的常规工作中解放出来。机器人也能按程序要求用来拆除炸弹,辅助残疾人,在社会的很多应用场合下履行职能。
机器人可以认为是将手臂末端的工具、传感器和(或)手爪移到程序指定位置的一种机器。当机器人到达位置后,它将执行某种任务。这些任务可以是焊接、密封、机器装料、拆卸以及装配工作。除了编程以及系统的开停之外,一般来说这些工作可以在无人干预下完成。如下叙述的是机器人系统基本术语:
1.机器人是一个可编程、多功能的机械手,通过给要完成的不同任务编制各种动作,它可以移动零件、材料、工具以及特殊装置。这个基本定义引导出后续段落的其他定义,从而描绘出一个完整的机器人系统。
2.预编程位置点是机器人为完成工作而必须跟踪的轨迹。在某些位
沈阳航空工业学院学士学位论文
置点上机器人将停下来做某些操作,如装配零件、喷涂油漆或焊接。这些预编程点贮存在机器人的贮存器中,并为后续的连续操作所调用,而且这些预编程点想其他程序数据一样,可在日后随工作需要而变化。因而,正是这种编程的特征,一个工业机器 人很像一台计算机,数据可在这里储存、后续调用与编译。
3.机器手是机器人的手臂,它使机器人能弯曲、延伸和旋转,提供这些运动的是机器手的轴,亦是所谓的机器人的自由度。一个机器人能有3~16轴,自由度一词总是与机器人轴数相关。
4.工具和手爪不是机器人自身组成部分,但它们是安装在机器人手臂末端的附件。这些连在机器人手臂末端的附件可使机器人抬起工件、点焊、刷漆、电弧焊、钻孔、打毛刺以及根据机器人的要求去做各种各样的工作。
5.机器人系统还可以控制机器人的工作单元,工作单元是机器人执行任务所处的整体环境,该单元包括控制器、机械手、工作平台、安全保护装置或者传输装置。所有这些为保证机器人完成自己任务而必须的装置都包括在这一工作单元中。另外,来自外设的信号与机器人通讯,通知机器人何时装配工件、取工件或放工件到传输装置上。机器人系统有三个基本部件:机械手、控制器和动力源。
A.机械手
沈阳航空工业学院学士学位论文
机械手做机器人系统中粗重工作,它包括两个部分:机构与附件,机械手也用联接附件基座,图21-1表示了一机器人基座与附件之间的联接情况。
机械手基座通常固定在工作区域的地基上,有时基座也可以移动,在这种情况下基座安装在导轨回轨道上,允许机械手从一个位置移到另外一个位置。
正如前面所提到的那样,附件从机器人基座上延伸出来,附件就是机器人的手臂,它可以是直动型,也可以是轴节型手臂,轴节型手臂也是大家所知的关节型手臂。
机械臂使机械手产生各轴的运动。这些轴连在一个安装基座上,然后再连到拖架上,拖架确保机械手停留在某一位置。
在手臂的末端上,连接着手腕(图21-1),手腕由辅助轴和手腕凸缘组成,手腕是让机器人用户在手腕凸缘上安装不同的工具来做不同的工作。
机械手的轴使机械手在某一区域内执行任务,我们将这个区域为机器人的工作单元,该区域的大小与机械手的尺寸相对应,图21-2列举了一个典型装配机器人的工作单元。随着机器人机械结构尺寸的增加,工作单元的范围也必须相应的增加。
机械手的运动有执行元件或驱动系统来控制。执行元件或驱动系统
沈阳航空工业学院学士学位论文
允许各轴力经机构转变为机械能,驱动系统与机械传动链相匹配。由链、齿轮和滚珠丝杠组成的机械传动链驱动着机器人的各轴。
B.控制器
机器人控制器是工作单元的核心。控制器储存着预编程序供后续调用、控制外设,及与厂内计算机进行通讯以满足产品更新的需要。
控制器用于控制机械手运动和在工作单元内控制机器人外设。用户可通过手持的示教盒将机械手运动的程序编入控制器。这些信息储存在控制器的储存器中以备后续调用,控制器储存了机器人系统的所有编程数据,它能储存几个不同的程序,并且所有这些程序均能编辑。
控制器要求能够在工作单元内与外设进行通信。例如控制器有一个输入端,它能标识某个机加工操作何时完成。当该加工循环完成后,输入端接通,告诉控制器定位机械手以便能抓取已加工工件,随后,机械手抓取一未加工件,将其放置在机床上。接着,控制器给机床发出开始加工的信号。
控制器可以由根据事件顺序而步进的机械式轮鼓组成,这种类型的控制器可用在非常简单的机械系统中。用于大多数机器人系统中的控制器代表现代电子学的水平,是更复杂的装置,即它们是由微处理器操纵的。这些微处理器可以是8位、16位或32位处理器。它们可以使得控制器在操作过程中显得非常柔性。
沈阳航空工业学院学士学位论文
控制器能通过通信线发送电信号,使它能与机械手各轴交流信息,在机器人的机械手和控制器之间的双向交流信息可以保持系统操作和位置经常更新,控制器亦能控制安装在机器人手腕上的任何工具。
控制器也有与厂内各计算机进行通信的任务,这种通信联系使机器人成为计算机辅助制造(CAM)系统的一个组成部分。
存储器。给予微处理器的系统运行时要与固态的存储装置相连,这些存储装置可以是磁泡,随机存储器、软盘、磁带等。每种记忆存储装置均能贮存、编辑信息以备后续调用和编辑。
C.动力源
动力源是给机器人和机械手提供动力的单元。传给机器人系统的动力源有两种,一种是用于控制器的交流电,另一种是用于驱动机械手各轴的动力源,例如,如果机器人的机械手是有液压和气压驱动的,控制信号便传送到这些装置中,驱动机器人运动。
沈阳航空工业学院学士学位论文
液压与气压系统
仅有以下三种基本方法传递动力:电气,机械和流体。大多数应用系统实际上是将三种方法组合起来而得到最有效的最全面的系统。为了合理地确定采取哪种方法。重要的是了解各种方法的显著特征。例如液压系统在长距离上比机械系统更能经济地传递动力。然而液压系统与电气系统相比,传递动力的距离较短。
液压动力传递系统涉及电动机,调节装置和压力和流量控制,总的来说,该系统包括:
泵:将原动机的能量转换成作用在执行部件上的液压能。阀:控制泵产生流体的运动方向、产生的功率的大小,以及到达执行部件流体的流量。功率大小取决于对流量和压力大小的控制。
执行部件:将液压能转成可用的机械能。
介质即油液:可进行无压缩传递和控制,同时可以润滑部件,使阀体密封和系统冷却。
联接件:联接各个系统部件,为压力流体提供功率传输通路,将液体返回油箱(贮油器)。
油液贮存和调节装置:用来确保提供足够质量和数量并冷却的液体。
沈阳航空工业学院学士学位论文
液压系统在工业中应用广泛。例如冲压`钢类工件的磨削几一般加工业、农业、矿业、航天技术、深海勘探、运输、海洋技术,近海天然气和石油勘探等行业,简而言之,在日常生活中有人不从液压技术中得到某种益处。
液压系统成功而又广泛使用的秘密在于它的通用性和易操作性。液压动力传递不会象机械系统那样受到机器几何形状的制约,另外,液压系统不会像电气系统那样受到材料物理性能的制约,它对传递功率几乎没有量的限制。例如,一个电磁体的性能受到钢的磁饱和极限的限制,相反,液压系统的功率仅仅受材料强度的限制。
企业为了提高生产率将越来越依靠自动化,这包括远程和直接控制生产操作、加工过程和材料处理等。液压动力之所以成为自动化的组成部分,是因为它有如下主要的特点:
1.控制方便精确
通过一个简单的操作杆和按扭,液压系统的操作者便能立即起动,停止、加减速和能提供任意功率、位置精度为万分之一英寸的位置控制力。图13-1是一个使飞机驾驶员升起和落下起落架的液压系统,当飞行向某方向移动控制阀,压力油流入液压缸的某一腔从而降下起落架。飞行员向反方向移动控制阀,允许油液进入液压缸的另一腔,便收回起落架。
2.增力 一个液压系统(没有使用笨重的齿轮、滑轮和杠杆)能简单
沈阳航空工业学院学士学位论文
有效地将不到一盎司的力放大产生几百吨的输出。
3.恒力或恒扭矩
只有液压系统能提供不随速度变化而变化的恒力或恒扭矩,他可以驱动对象从每小时移动几英寸到每分钟几百英寸,从每小时几转到每分钟几千转。
4.简便、安全、经济
总的来说,液压系统比机械或电气系统使用更少的运动部件,因此,它们运行与维护简便。这使得系统结构紧凑,安全可靠。例如 一种用于车辆上的新型动力转向控制装置一淘汰其他类型的转向动力装置,该转向部件中包含有人力操纵方向控制阀和分配器。因为转向部件是全液压的,没有方向节、轴承、减速齿轮等机械连接,使得系统简单紧凑。
另外,只需要输入很小的扭矩就能产生满足极其恶劣的工作条件所需的控制力,这对于因操作空间限制而需要小方向盘的场合很重要,这也是减轻司机疲劳度所必须的。
液压系统的其他优点包括双向运动、过载保护和无级变速控制,在已有的任何动力、系统中液压系统也具有最大的单位质量功率比。
尽管液压系统具有如此的高性能,但它不是可以解决所有动力传递问题的灵丹妙药。液压系统也有缺点,液压油有污染,并且泄露不可能完全避免,另外如果油液渗漏发生在灼热设备附近,大多数液压油能引起火灾。
沈阳航空工业学院学士学位论文
气压系统
气压系统是用压力气体传递和控制动力,正如名称所表明的那样,气压系统通常用空气(不用其他气体)作为流体介质,因为空气是安全、成本低而又随处可得的流体,在系统部件中产生电弧有可能点燃泄露物的场合下(使用空气作为介质)尤其安全。
在气压系统中,压缩机用来压缩并提供所需的空气。压缩机一般有活塞式、叶片式和螺旋式等类型。压缩机基本上是根据理想气体法则,通过减小气体体积来增加气体压力的。气压系统通常考虑采用大的中央空气压缩机作为一个无限量的气源,这类似于电力系统中只要将插头插入插座边可获得电能。用这种方法,压力气体可以总气体源输送到整个工厂的各个角落,压力气体可通过空气滤清器除去污物,这些污染可能会损坏气动组件的精密配合部件如阀和汽缸等,随后输送到各个回路中,接着空气流经减压阀以减小气压值适合某一回路使用。因为空气不是好的润滑油,气压系统需要一个油雾器将细小的油雾注射到经过减压阀减压空气中,这有帮助于减少气动组件精密配合运动件的磨损。
由于来自大气中的空气含不同数量的水分,这些水分是有害的,它可以带走润滑剂引起的过分磨损和腐蚀,因此,在一些使用场合中,要用空气干燥器来除去这些有还的水分。由于气压系统直接向大气排
沈阳航空工业学院学士学位论文
气,会产生过大的噪声,因此可在气阀和执行组件排气口安装销声器来降低噪声,以防止操作人员因接触噪声及高速空气粒子有可能引发的伤害。
用气动系统代替液压系统有以下几条理由:液体的惯性远比气体大,因此,在液压系统中,当执行组件加速减速和阀突然开启关闭时,油液的质量更是一个潜在的问题,根据牛顿运动定律,产生加速度运动油液所需的力要比加速同等体积空气所需的力高出许多倍。液体比气体具有更大的粘性,这会因为内摩擦而引起更大的压力和功率损失;另外,由于液压系统使用的液体要与大气隔绝,故它们需要特殊的油箱和无泄露系统设计。气压系统使用可以直接排到周围环境中的空气,一般来说气压系统没有液体系统昂贵。
然而,由于空气的可压缩性,使得气压系统执行组件不可能得到精确的速度控制和位置控制。气压系统由于压缩机局限,其系统压力相当低(低于250psi),而液压力可达1000psi之高,因此液压系统可以是大功率系统,而气动系统仅用于小功率系统,典型例子有冲压、钻孔、夹紧、组装、铆接、材料处理和逻辑控制操作等。
第三篇:机器人及机器人传感技术(毕业论文外文翻译).
机器人和机器人传感器 介绍
工业机器人以及它的运行是本文的主题。工业机器人是应用于制造环境下 以提高生产率的一种工具。它可用于承担常规的、冗长乏味的装配线工作, 或执 行那些对工人也许有危害的工作。例如, 在第一代工业机器人中, 曾有一台被用 于更换核电厂的核燃料棒。从事这项工作的工人可能会暴露在有害量的放射线 下。工业机器人也能够在装配线上操作——安装小型元件, 例如将电子元件安装 在线路板上。为此, 工人可以从这种冗长乏味任务的常规操作中解放出来。通过 编程的机器人还能去掉炸弹的雷管、为残疾者服务以及在我们社会的众多应用中 发挥作用。
机器人可被看作将臂端执行工具、传感器以及 /或夹爪移动到某个预定位 置的一台机器。当机器人到达该位置,它将执行某个任务。该任务可能是焊接、密封、机械装载、机械卸载,或许多装配工作。除了编程以及打开和关闭系统之 外,一般情况下,均不需要人们的参与就能完成这类工作。
机器人专业术语
机器人是一台可再编程的多功能机械手,它可通过可编程运动移动零件、物料、工具或特殊装置以执行某种不同任务。由这项定义可导致下面段落中被阐 述的其他定义,它们为机器人系统提供了完整的写照。
预编程位置是机器人为了完成工作必须遵循和通过的途径。在这些位置 的某点,机器人会停下来并执行某种操作,例如装配零件,喷漆或焊接。这些预 编程位置被存储在机器人的记忆装置中供以后继续操作时使用。此外, 当工作的 要求发生变化时, 不仅其他编程数据而且这些预编程位置均可作修改。因此, 正 由于这种编程的特点, 一台工业机器人与一台可存储数据、以及可回忆及编辑的 计算机十分相似。
机械手是机器人的手臂, 它允许机器人俯仰、伸缩和转动。这种动作是由 机械手的轴所提供的, 机械手的轴又称为机器人的自由度。一台机器人可以具有 3至 16根轴。在本人的后面部分,自由度这个术语总与一台机器人轴的数目相
关联。
工具及夹爪并非属于机器人系统的本身, 它们是装在机器人手臂端部的附 件。有了与机器人手臂端部相连接的这些附件,机器人就可以提起零件、点焊、喷漆、弧焊、钻孔、去毛刺,还可以根据所提要求指向各种类型的任务。
机器人系统还可以控制操作机器人的工作单元。机器人工作单元是一种总 体环境, 在该环境下机器人必须执行赋予它的任务。该单元可包容控制器、机器 人的机械手、工作台、安全装置,或输送机。机器人开展工作所需要的所有设备 均被包括在这个工作单元中。此外, 来自外界装置的信号能够与机器人进行交流, 这样就可以告诉机器人什么时候它该装配零件、捡起零件或将零件卸到输送机。基本部件
机器人系统具有 3个基本部件:机械手、控制器及动力源。在某些机器人 系统中可以看到第 4个部件,端部执行件,有关这些部件将在下面小节描述。机械手
机械手承担机器人系统的体力工作,它由两部分组成:机械部分及被连接 的附属物。机械手还有一个与附属物相连的底座。
机械手的底座通常被固定在工作领域的地面。有时, 底座也可以移动。在 该情况下, 底座被安装到导轨上, 这样该机械手就可以从一处移动到另一处。例 如,一台机器人可以为几台机床工作,为每台机床装载和卸载。
正如前面所述,附属物从机器人的底座伸出。该附属物是机器人的手臂。它既可以是一个直线型的可动臂,也可以是一个铰接臂。铰接臂也称关节臂。机器人机械手的附属物可为机械手提供各种运动轴。这些轴与固定底座相 连接, 而该底座又被紧固到机架上。这个机架能确保该机械手被维持在某个位置 上。
在手臂的端部连接着一个手腕。该手腕由附加轴及手腕法兰组成, 有了该 手腕法兰,机器人用户就可以根据不同的工作在手腕上安装不同的工具。
机械手的轴允许机械手在一定区域内执行工作。如前所述, 该区域被称为 机器人的工作单元, 它的尺度与机械手的尺寸相对应。当机器人的物理尺寸增大
时,工作单元的尺寸必然也随之增加。
机械手的运动由驱动器, 或驱动系统所控制。驱动器或驱动系统允许各根 轴在工作单元内运动, 驱动系统可利用电力的、液压的或气压动力。驱动系统发 出的能量由各种机械驱动装置转换成机械动力。这些驱动装置通过机械联动机构 接合在一起。这些联动机构依次驱动机器人的不同轴。机械联动机构由链轮机构, 齿轮机构及滚珠丝杠所组成。
控制器
机器人系统的控制器是运行的心脏。控制器存储着为以后回忆所用的预编 程信息,控制着外围设备,它还与厂内计算机进行交流以使生产不断更新。控制器用于控制机器人机械手运动以及工作单元中的外围部件。工作人员 可以利用手递示教盒将机械手的动作编程进入控制器。这种信息可被存储在控制 器的记忆装置中以便以后回忆使用。控制器存储着机器人系统的所有程序数据。它可以存储几种不同的程序,并且它们中任一程序均可被编辑。
也可要求控制器与工作单元中外围设备进行交流。例如, 控制器具有一根 输入线, 该输入线可识别某项机械加工什么时候完成。当该机械循环完成时, 输 入线被接通,它会吩咐控制器让机械手到位以便机械手能夹起以加工完的零件。接着, 该机械手再捡起一根新的零件并将它安放到机床上, 然后, 控制器向该机 床发出信号让它开始运转。
控制器可由机械操纵的磁鼓构成, 这些鼓按工作发生的先后次序操作。这 类控制器用于非常简单的机器人系统。在大多数机器人系统中见到的控制器是很 复杂的装置, 它们体现了现代化的电子科学。换言之, 它们由微信息处理器操纵。这些
微信息处理器不是 8位、16位就是 32位的信息处理器。这种功能使控制器 的运行具有非常好的柔性。
控制器可通过通讯线路发出电子信号, 发出能与机械手各轴线进行沟通的 电信号, 机器人机械手与控制器之间这种双向交流可使系统的位置及运行维持在 不断修正及更新得状态下,控制器还可以控制安装在机器人手腕端部的任意工 具。
控制器还有与工厂中不同计算机开展交流的任务, 这个通讯网络可使机器 人成为计算机辅助制造(CAM 系统的一部分。
根据上述基本定义, 机器人是一台可再编程序的多功能机械手。所以, 控 制器必须包含某种形式的记忆存储器, 以微信息处理器为基础的系统常与固态记 忆装置连同运行。这些记忆装置可以是磁泡、随机存取记忆装置、软塑料磁盘或 磁带。每种记忆存储装置均可存储编程信息以便以后回忆使用。
动力源
动力源是向控制器及机械手供给动力得装置,有两类动力供给机器人系 统。一类动力是供控制器运行的交流点动力, 另一类被用于驱动机械手各轴。例 如, 若机器人的机械手由液压或气压装置控制, 则控制信号被发送到这些装置才 能使机器人运动。
每个机器人系统均需要动力来驱动机械手,这种动力既可由液压动力源、气压动力源, 也可以由电力动力源提供, 这些动力源是机器人工作单元总的部件 及设备中的一部分。
当液压动力源与及机器人机械手底座相连接, 液压源产生液压流体, 这些 流体输送到机械手各控制元件,于是,使轴绕机器人底座旋转。
压力空气被输送到机械手, 使轴沿轨道作直线运动, 也可将这种气动源连 接到钻床, 它可为钻头的旋转提供动力。一般情况下, 可从工厂得供给站获取气 动源并做调整,然后将它输入机器人机械手的轴。
电动机可以是交流式的, 也可以是直流式的。控制器发出的脉冲信号被发 送到机械手得电机。这些脉冲为电机提供必要的指令信息以使机械手在机器人底 座上旋转。
用于机械手轴的三种动力系统任一种均需要使用反馈监督系统, 这种系统 会不断地将每个轴位置数据反馈给控制器。
每种机器人系统不仅需要动力来开动机械手的轴, 还需要动力来驱动控制 器,这种动力可由制造环境的动力源提供。
端部执行件
在大部分机器人应用的场合见到的端部执行件均是机械手手腕法兰相连 接的一个装置, 端部执行件可应用于生产领域中许多不同场合, 例如, 它可用于 捡起零件, 用于焊接, 或用于喷漆, 端部执行件为机器人系统提供了机器人运行 时必须的柔性。
通常所设计得端部执行件可满足机器人用户的需要。这些部件可由机器人 制造商或机器人系统的物主制造。
端部执行件事机器人系统中唯一可将一种工作变成另一种工作的部件, 例 如, 即日起可与喷水割机相连, 它在汽车生产线上被用于切割板边。也可要求机 器人将零件安放到磁盘中, 在这简单的过程中, 改变了机器人端部执行件, 该机 器人就可以用于其它应用场合, 端部执行件得变更以及机器人的再编程序可使该 系统具有很高的柔性。
机器人传感器
尽管机器人有巨大的能力,但很多时候却比不过没有经过一点训练的工 人。例如, 工人们能够发现零件掉在地上或发现进料机上没有零件, 但没有了传 感器, 机器人就得不到这些信息, 及时使用最尖端的传感器, 机器人也比不上一 个经验丰富的
工人, 因此, 一个好的机器人系统的设计需要使用许多传感器与机 器人控制器相接,使其尽可能接近操作工人得感知能力。
机器人技术最经常使用的传感器分为接触式的与非接触式的。接触式传感 器可以进一步分为触觉传感器、力和扭矩传感器。触觉或接触传感器可以测出受 动器端与其他物体间的实际接触, 微型开关就是一个简单的触觉传感器, 当机器 人得受动气端与其他物体接触时, 传感器是机器人停止工作, 避免物体间的碰撞, 告诉机器人已到达目标;或者在检测时用来测量物体尺寸。力和扭矩传感器位于 机器人得抓手与手腕的最后一个关节之间, 或者放在机械手得承载部件上, 测量 反力与力矩。力和扭矩传感器有压电传感器和装在柔性部件上的应变仪等。非接触传感器包括接近传感器、视觉传感器、声敏元件及范围探测器等。接近传感器和标示传感器附近的物体。例如, 可以用涡流传感器精确地保持与钢 板之间的固定的距离。最简单的机器人接近传感器包括一个发光二极管发射机和
一个光敏二极管接收器, 接收反射面移近时的反射光线, 这种传感器的主要缺点 是移近物对光线的反射率会影响接收信号。其他得接近传感器使用的是与电容和 电感相关的原理。
视觉传感系统十分复杂, 基于电视摄像或激光扫描的工作原理。摄像信号 经过硬件预处理, 以 30帧至 60帧每秒的速度输入计算机。计算机分析数据并提 取所需的信息,例如,物体是否存在以及物体的特征、位置、操作方向,或者检 测元件的组装及产品是否完成。
声敏元件用来感应并解释声波, 从基本的声波探测到人们连续讲话的逐字 识别, 各种声敏元件的复杂程序不等, 除了人机语音交流外, 机器人还可以使用 声敏元件控制弧焊, 听到碰撞或倒塌的声音时阻止机器人的运动, 预测将要发生 的机械破损及检测物体内部缺陷。
还有一种非接触系统使用投影仪和成像设备获取物体的表面形状信息或 距离信息。
传感器有静态探测与闭环探测两种使用方法。当机器人系统的探测和操作 动作交替进行时, 通常就要使用传感器, 也就是说探测时机器人不操作, 操作时 与传感器无关, 这种方法被称为静态探测, 使用这种方法, 视觉传感器先寻找被 捕捉物体的位置与方向,然后机器人径直朝那个地点移动。
相反, 闭式探测的机器人在操作运动中, 始终受传感器的控制, 多数视觉传感器 都采用闭环模式, 它们随时监测机器人的实际位置与理想位置间的偏差, 并驱动 机器人修正这一偏差。在闭环探测中,即使物体在运动,例如在传送带上,机器 人也能抓住它并把它送到预定位置。
Robots and robot sensor Introduction Industrial robot and its operation is the subject of this article.Industrial robots are used in manufacturing environment as a tool to increase productivity.It can be used to undertake routine, tedious assembly line work, or the implementation of those workers may be hazardous work.For example, in the first generation of industrial robots, there were a nuclear power plant is for the replacement of fuel rods.Workers engaged in this work may be exposed to harmful amounts of radiation in the next.Industrial robots can operate in the assembly line-to install small-scale components, such as electronic components mounted on circuit board.To this end, workers from the tedious task of this routine operation freed.The robot can be programmed to remove the bomb detonators for the disabled in our community services and play a role in many applications.Robot arm can be seen as the end of the implementation of tools, sensors, and / or jaws to move to a predetermined position of a machine.When the robot reaches the position, it will perform a task.The task may be welded, sealed, mechanical loading, mechanical unloading, or many assembly work.In addition to programming, and open
and close the system, the general, not require the participation of people will be able to complete such work.Robotics Glossary Robot is a reprogrammable multifunctional manipulator that can be programmable motion moving parts, materials, tools or special devices to perform a different task.By the following paragraphs of this definition may lead to other definitions were described, which provides a complete system for the robot itself.Location is pre-programmed robot must follow in order to complete the work and the way through.A point in these locations, the robot will stop and perform some operations, such as assembling parts, painting or welding.These pre-programmed robot position is stored in the memory device to continue operation for later use.In addition, when job requirements change, the only other programming data and these can be modified pre-programmed locations.Therefore, precisely because of the characteristics of this program, an industrial robot and one can store data, and can recall and edit the computer is very similar.Robot is a robot arm, which allows the robot pitch, stretching and rotating.This action is provided by the robot axis, mechanical axis, also known as robot hand of freedom.A robot can have 3-16 axis.In my later, the term degrees of freedom and a total number of robot axes associated.Tools and not within the robot gripper itself, which is mounted on the robot arm end attachment.With the end of the robot arm connected to these attachments, the robot can lift parts, spot welding, painting, welding, drilling, deburring, the request can also point to various types of tasks.Robot system can also control the operation of the robot's work unit.Robotic work cell is a general environment in the environment, the robot must perform the tasks entrusted to it.The unit can accommodate the controller, the robot manipulator, working platforms, safety devices, or conveyor.Robot to carry out all the equipment needed for the work are included in this unit of work.In addition, the signal from the external device to communicate with the robot, so that you can tell the robot when it is part of the assembly, pick up the parts or the parts to the unloading conveyor.Basic components Robotic system has three basic components: the robot, controller and power source.In some robot system can be seen in the first four components, end of the implementation of parts, these parts will be described in the following sections.Manipulator Robot bear robot system manual work, which consists of two parts: the mechanical parts and is connected to appendages.There is also a robot appendage connected to the base.The base of the robot work area is usually fixed in the ground.Sometimes, the base can be moved.In that case, the base is installed to the rail so that the robot can move from one place to another.For example, a robot can work for a few machine tools, loading and unloading for each machine.As mentioned earlier, the appendage extending from the base of the robot.The attachment is a robot arm.It can be a linear movable arm, it can be a hinged arm.Articulated arm, also known as articulated arm.Adjunct manipulator can provide a variety of sports-axis robot.The shaft is connected with the fixed base, which base has been tightened to the rack.This rack can ensure that the robot is in a position to maintain.Ends of the arm connected to a wrist.The axis of the wrist and wrist flange by additional components, with the flange of the wrist, the robot according to the different users can work in different tools installed on the wrist.Axis allows the robot manipulator in a certain area implementation.As mentioned earlier, the region known as the robot work unit, and its scale and size of the corresponding robot.When the robot's physical size increases, the size of the unit of work must also increase.Mechanical hand movements by the driver, or drive system control.Drive or shaft drive system allows the movement in the work unit, drive system using electric, hydraulic or pneumatic power.Drive the energy emitted from a variety of mechanical drive into mechanical power.These drives are joined together by a mechanical linkage.The linkage in turn drive the various robot axes.Mechanical linkage from the sprocket body, composed of gears and ball screws.Controller Robot controller is running in the heart.After the memory controller stores used for the pre-programmed information, control peripherals, to communicate it with the factory computer to make the production of constantly updated.Controller used to control the manipulator motion and the outer parts of the work unit.Staff can use the box to teach hand-delivery actions programmed into the robot controller.This information can be stored in the controller's memory for later recall using the device.Robot controller stores all program data.It can store several different programs, and they can be in any program to be edited.May also request the work unit controller and peripheral devices to communicate.For example, the controller has an input line, the input line can be identified when a mechanical process to complete.When the mechanical cycle is complete, the input line is connected, it will place orders for the controller to the robot manipulator to pick up the processing of finished parts.Then, the robot then picked up a new part and it is placed into the machine, then, the controller send a signal to the machine to get it started operation.Mechanical manipulation of the drum controller can be constituted, the work place by order of the drum operation.The controller for a very simple robot system.Seen in most of the robot system controller is a very complex device, which reflects the modern electronic science.In other words, they are manipulated by the micro-information processor.These micro-information processors instead of 8 bits, 16 bits of information that is 32-bit processors.This feature allows the controller to run with very good flexibility.Controller can send electronic signals through the communication line to issue with the mechanical hand signals to communicate with the axis of the robot manipulator and controller, this two-way communication between the location and operation makes the system constantly revised and updated to maintain the state may The controller can also control the robot wrist in the end installed any tools.There are different controller computers and factory to carry out the task of communication, the communication network will enable the robot to become computer-aided manufacturing(CAM part of the system.According to the basic definition, the robot is a multi-function can be re-programmed robot.Therefore, the controller must include some form of memory storage, to micro-processor-based information systems are often associated with solid-state
memory device with the operation.These memory devices can be magnetic bubbles, random access memory device, soft plastic disk or tape.Each memory storage device programming information can be stored for later recall using the.Power source Source of power to the controller and the robot was powered device, there are two types of robot power supply system.Controller for a class of power is power to run the exchange point, and the other is used to drive the robot axes.For example, if the robot manipulator controlled by a hydraulic or pneumatic device, the control signal is sent to these devices to make the robot movement.Each robot systems require power to drive the robot, this source of power either by hydraulic power, pneumatic power source, power source can also be provided by electricity, the power source is a unit of work the robot parts and equipment in the total part.When the hydraulic power source with and connected to the base manipulator, hydraulic pressure source to produce the hydraulic fluid, the fluid transport of the control components to the robot, so the robot base rotated around the axis.Pressure air is fed to the robot, the axis along the track in a straight line, the source can also be connected to such a pneumatic drill, it can provide power for the drill rotation.Under normal circumstances, can be obtained from the factory air supply station for the source and make adjustments, and then enter it in the axis manipulator.AC motor type can also be a DC-style.Controller sends out pulses of the signal was sent to the robot motors.These pulses provide the necessary instructions for the motor information to enable the robot in the robot base rotation.The three-axis robot for power systems either require the use of feedback control systems, this system will continue to position data for each axis of feedback to the controller.Each robot system not only need power to start the robot axis, also need power to drive the controller, this dynamic manufacturing environment, the power source can provide.Implementation of end pieces In most applications where the robot to see implementation of end pieces are connected to the robot wrist flange of a device, end pieces can be used in the production areas of the
implementation of many different occasions, for example, it can be used to pick up parts, used for welding, or for painting, the implementation of parts for the robot end system provides the flexibility of the robot must run.Usually designed to meet the end of the implementation of pieces of the robot users.These components can robot manufacturer or owner of manufacturing robot system.The implementation of the system end the only thing the robot can be a work into another working parts, for example, are available from the cutting machine is connected with the water, which is used in the automotive production line cutting edge.May also request the robot placed the parts to disk, in this simple process, change the end of the implementation of parts of the robot, the robot can be used for other applications, the implementation of end pieces may change, and then the robot programmed allows the system to have high flexibility.Robot Sensor Although the robot has great ability, but often than not with a little practice, but the workers.For example, workers can find parts that fall to the ground or no parts feeder, but not the sensor, the robot will not get this information in a timely manner using the most sophisticated sensors, the robot is smaller than an experienced worker Therefore, a good robot system design requires many sensor and robot controller using the phase, it was as close as possible operative awareness.The most frequently used robotics sensors into contact with the non-contact.Contact sensors can be further divided into tactile sensors, force and torque sensors.Tactile or contact sensors can be measured by the drive-side and the actual contact between other objects, micro-switch is a simple tactile sensor, the robot may be angry when the client contact with other objects, the sensor is the robot to stop work and avoid objects between collisions, tell the robot has reached the goal;or when used to measure the size of objects detected.Force and torque sensors in the robot gripper and wrist was the last joint, or between the parts on the robot to carry a measured reaction force and torque.Force and torque sensors are mounted on the flexible piezoelectric sensors and strain gauges on the parts.Non-contact sensors include proximity sensors, vision sensors, sound detectors, sensitive components and scope.Proximity sensors and labeling of objects near the
sensor.For example, eddy current sensor can be used to accurately maintain a fixed distance between the plates.The most simple robot proximity sensors including a light-emitting diode and a photodiode receiver transmitter, receiver reflector closer to the reflection of light, the main disadvantage of this sensor is closer to the object reflectance of light will affect the received signal.The other was close to the sensor using a capacitance and inductance associated with the principle.Visual sensing system is very complex, based on the TV camera or laser scanner works.Video signal through the hardware pretreatment to 30-60 per second input into the computer.Computer analysis of the data and extract the required information, for example, the existence of objects and object features, location, operating direction, or components of the assembly and product testing is complete.Sound sensitive devices used to sense and interpret sound waves, sound waves detected from the basic people recognize continuous speech, word for word, all kinds of sound ranging from sensitive components of the complex procedures, in addition to human-computer voice communication, the robot can also use the sound sensitive devices control of arc welding, I heard the sound of collision or collapse of the movement to stop the robot to predict the mechanical damage will occur and the detection of objects within the defects.There is also a non-contact systems for projector and imaging the surface of the object shape information or distance information.Static detection and closed-loop sensor probe used in two ways.When the detection and operation of the robot system moves alternately, it is usually necessary to use sensors that detect when the robot is not operating, the operation has nothing to do with the sensors, this method is called static detection, using this method, visual Find the sensor captured the first position and orientation of objects, and then the robot moves straight to the site.In contrast, closed manipulation and motion detection robot, always under the control of sensors, vision sensors are used the majority of closed-loop mode, which monitor the robot's actual position at any time and the deviation between the ideal position, and drive the robot fix this error.In the closed-loop detection, even if the object
in motion, for example, the conveyor belt, the robot can grasp it and send it to the desired location.
第四篇:智能机器人外文翻译
Robot Robot is a type of mechantronics equipment which synthesizes the last research achievement of engine and precision engine, micro-electronics and computer, automation control and drive, sensor and message dispose and artificial intelligence and so on.With the development of economic and the demand for automation control, robot technology is developed quickly and all types of the robots products are come into being.The practicality use of robot products not only solves the problems which are difficult to operate for human being, but also advances the industrial automation program.At present, the research and development of robot involves several kinds of technology and the robot system configuration is so complex that the cost at large is high which to a certain extent limit the robot abroad use.To development economic practicality and high reliability robot system will be value to robot social application and economy development.With the rapid progress with the control economy and expanding of the modern cities, the let of sewage is increasing quickly: With the development of modern technology and the enhancement of consciousness about environment reserve, more and more people realized the importance and urgent of sewage disposal.Active bacteria method is an effective technique for sewage disposal,The lacunaris plastic is an effective basement for active bacteria adhesion for sewage disposal.The abundance requirement for lacunaris plastic makes it is a consequent for the plastic producing with automation and high productivity.Therefore, it is very necessary to design a manipulator that can automatically fulfill the plastic holding.With the analysis of the problems in the design of the plastic holding manipulator and synthesizing the robot research and development condition in recent years, a economic scheme is concluded on the basis of the analysis of mechanical configuration, transform system, drive device and control system and guided by the idea of the characteristic and complex of mechanical configuration, electronic, software and hardware.In this article, the mechanical configuration combines the character of direction coordinate and the arthrosis coordinate which can improve the stability and operation flexibility of the system.The main function of the transmission mechanism is to transmit power to implement department and complete the necessary movement.In this transmission structure, the screw transmission mechanism transmits the rotary motion into linear motion.Worm gear can give vary transmission ratio.Both of the transmission mechanisms have a characteristic of compact structure.The design of drive system often is limited by the environment condition and the factor of cost and technical lever.'The step motor can receive digital signal directly and has the ability to response outer environment immediately and has no accumulation error, which often is used in driving system.In this driving system, open-loop control system is composed of stepping motor, which can satisfy the demand not only for control precision but also for the target of economic and practicality.on this basis, the analysis of stepping motor in power calculating and style selecting is also given.The analysis of kinematics and dynamics for object holding manipulator is given in completing the design of mechanical structure and drive system.Kinematics analysis is the basis of path programming and track control.The positive and reverse analysis of manipulator gives the relationship between manipulator space and drive space in position and speed.The relationship between manipulator’s tip position and arthrosis angles is concluded by coordinate transform method.The geometry method is used in solving inverse kinematics problem and the result will provide theory evidence for control system.The f0unction of dynamics is to get the relationship between the movement and force and the target is to satisfy the demand of real time control.in this chamfer, Newton-Euripides method is used in analysis dynamic problem of the cleaning robot and the arthrosis force and torque are given which provide the foundation for step motor selecting and structure dynamic optimal ting.Control system is the key and core part of the object holding manipulator system design which will direct effect the reliability and practicality of the robot system in the division of configuration and control function and also will effect or limit the development cost and cycle.With the demand of the PCL-839 card, the PC computer which has a.tight structure and is easy to be extended is used as the principal computer cell and takes the function of system initialization, data operation and dispose, step motor drive and error diagnose and so on.A t the same time, the configuration structure features, task principles and the position function with high precision of the control card PCL-839 are analyzed.Hardware is the matter foundation of the control.System and the software is the spirit of the control system.The target of the software is to combine all the parts in optimizing style and to improve the efficiency and reliability of the control system.The software design of the object holding manipulator control system is divided into several blocks such as 2 system initialization block, data process block and error station detect and dispose model and so on.PCL-839 card can solve the communication between the main computer and the control cells and take the measure of reducing the influence of the outer signal to the control system.The start and stop frequency of the step motor is far lower than the maximum running frequency.In order to improve the efficiency of the step motor, the increase and decrease of the speed is must considered when the step motor running in high speed and start or stop with great acceleration.The increase and decrease of the motor’s speed can be controlled by the pulse frequency sent to the step motor drive with a rational method.This can be implemented either by hardware or by software.A step motor shift control method is proposed, which is simple to calculate, easy to realize and the theory means is straightforward.The motor' s acceleration can fit the torque-frequency curve properly with this method.And the amount of calculation load is less than the linear acceleration shift control method and the method which is based on the exponential rule to change speed.The method is tested by experiment.At last, the research content and the achievement are sum up and the problems and shortages in main the content are also listed.The development and application of robot in the future is expected.机器人
机器人是典型的机电一体化装置,它综合运用了机械与精密机械、微电子与计算机、自动控制与驱动、传感器与信息处理以及人工智能等多学科的最新研究成果,随着经济的发展和各行各业对自动化程度要求的提高,机器人技术得到了迅速发展,出现了各种各样的机器人产品。机器人产品的实用化,既解决了许多单靠人力难以解决的实际问题,又促进了工业自动化的进程。目前,由于机器人的研制和开发涉及多方面的技术,系统结构复杂,开发和研制的成本普遍较高,在某种程度上限制了该项技术的广泛应用,因此,研制经济型、实用化、高可靠性机器人系统具有广泛的社会现实意义和经济价值。
由于我国经济建设和城市化的快速发展,城市污水排放量增长很快,污水处理己经摆在了人们的议事日程上来。随着科学技术的发展和人类知识水平的提高,人们越来越认识到污水处理的重要性和迫切性,科学家和研究人员发现塑料制品在水中是用于污水处理的很有效的污泥菌群的附着体。塑料制品的大量需求,使得塑料制品生产的自动化和高效率要求成为经济发展的必然。
本文结合塑料一次挤出成型机和塑料抓取机械手的研制过程中出现的问题,综述近几年机器人技术研究和发展的状况,在充分发挥机、电、软、硬件各自特点和优势互补的基础上,对物料抓取机械手整体机械结构、传动系统、驱动装置和控制系统进行了分析和设计,提出了一套经济型设计方案。采用直角坐标和关节坐标相结合的框架式机械结构形式,这种方式能够提高系统的稳定性和操作灵活性。传动装置的作用是将驱动元件的动力传递给机器人机械手相应的执行机构,以实现各种必要的运动,传动方式上采用结构紧凑、传动比大的蜗轮蜗杆传动和将旋转运动转换为直线运动的螺旋传动。机械手驱动系统的设计往往受到作业环境条件的限制,同时也要考虑价格因素的影响以及能够达到的技术水平。由于步进电机能够直接接收数字量,响应速度快而且工作可靠并无累积误差,常用作数字控制系统驱动机构的动力元件,因此,在驱动装置中采用由步进电机构成的开环控制方式,这种方式既能满足控制精度的要求,又能达到经济性、实用化目的,在此基础上,对步进电机的功率计一算及选型问题经行了分析。
在完成机械结构和驱动系统设计的基础上,对物料抓取机械手运动学和动力学进行了分析。运动学分析是路径规划和轨迹控制的基础,对操作臂进行了运动学正、逆问题的分析可以完成操作空间位置和速度向驱动空间的映射,采用齐次坐标变换法得到了操作臂末端位置和姿态随关节夹角之间的变换关系,采用几何法分析了操作臂的逆向运动学方程求解问题,对控制系统设计提供了理论依据。机器人动力学是研究物体的运动和作用力之间的关系的科学,研究的目的是为了4 满足是实时性控制的需要,本文采用牛顿-欧拉方法对物料抓取机械手动力学进行了分析,计算出了关节力和关节力矩,为步进电机的选型和动力学分析与结构优化提供理论依据。
控制部分是整个物料抓取机械手系统设计关键和核心,它在结构和功能上的划分和实现直接关系到机器人系统的可靠性、实用性,也影响和制约机械手系统的研制成本和开发周期。在控制主机的选用上,采用结构紧凑、扩展功能强和可靠性高的PC工业控制计算机作为主机,配以PCL-839卡主要承担系统功能初始化、数据运算与处理、步进电机驱动以及故障诊断等功能;同时对PCL-839卡的结构特点、功能原理和其高定位功能等给与了分析。硬件是整个控制系统以及极限位置功能赖以存在的物质基础,软件则是计算机控制系统的神经中枢,软件设计的目的是以最优的方式将各部分功能有机的结合起来,使系统具有较高的运行效率和较强的可靠性。在物料抓取机械手软件的设计上,采用的是模块化结构,分为系统初始化模块、数据处理模块和故障状态检测与处理等几部分。主控计算机和各控制单元之间全部由PCL-839卡联系,并且由该卡实现抗干扰等问题,减少外部信号对系统的影响。
步进电机的启停频率远远小于其最高运行频率,为了提高工作效率,需要步进电机高速运行并快速启停时,必须考虑它的升,降速控制问题。电机的升降速控制可以归结为以某种合理的力一式控制发送到步进电机驱动器的脉冲频率,这可由硬件实现,也可由软件方法来实现。本文提出了一种算法简单、易于实现、理论意义明确的步进电机变速控制策略:定时器常量修改变速控制方案。该方法能使步进电机加速度与其力矩——频率曲线较好地拟合,从而提高变速效率。而且它的计算量比线性加速度变速和基于指数规律加速度的变速控制小得多。通过实验证明了该方法的有效性。
最后,对论文主要研究内容和取得的技术成果进行了总结,提出了存在的问题和不足,同时对机器人技术的发展和应用进行了展望。
第五篇:机器人算法外文翻译
Improved Genetic Algorithm and Its Performance Analysis
Abstract: Although genetic algorithm has become very famous with its global searching, parallel computing, better robustness, and not needing differential information during evolution.However, it also has some demerits, such as slow convergence speed.In this paper, based on several general theorems, an improved genetic algorithm using variant chromosome length and probability of crossover and mutation is proposed, and its main idea is as follows : at the beginning of evolution, our solution with shorter length chromosome and higher probability of crossover and mutation;and at the vicinity of global optimum, with longer length chromosome and lower probability of crossover and mutation.Finally, testing with some critical functions shows that our solution can improve the convergence speed of genetic algorithm significantly , its comprehensive performance is better than that of the genetic algorithm which only reserves the best individual.Genetic algorithm is an adaptive searching technique based on a selection and reproduction mechanism found in the natural evolution process, and it was pioneered by Holland in the 1970s.It has become very famous with its global searching, parallel computing, better robustness, and not needing differential information during evolution.However, it also has some demerits, such as poor local searching, premature converging, as well as slow convergence speed.In recent years, these problems have been studied.In this paper, an improved genetic algorithm with variant chromosome length and variant probability is proposed.Testing with some critical functions shows that it can improve the convergence speed significantly, and its comprehensive performance is better than that of the genetic algorithm which only reserves the best individual.In section 1, our new approach is proposed.Through optimization examples, in section 2, the efficiency of our algorithm is compared with the genetic algorithm which only reserves the best individual.And section 3 gives out the conclusions.Finally, some proofs of relative theorems are collected and presented in appendix.Description of the algorithm 1.1 Some theorems Before proposing our approach, we give out some general theorems(see
appendix)as follows: Let us assume there is just one variable(multivariable can be divided into many sections, one section for one variable)x ∈ [ a, b ] , x ∈ R, and chromosome length with binary encoding is 1.Theorem 1
Minimal resolution of chromosome is s = ba 2l1Theorem 2
Weight value of the ith bit of chromosome is
wi = bai1(i = 1,2,…l)2l1Theorem 3
Mathematical expectation Ec(x)of chromosome searching step with one-point crossover is Ec(x)= baPc 2lwhere Pc is the probability of crossover.Theorem 4
Mathematical expectation Em(x)of chromosome searching step with bit mutation is Em(x)=(b-a)Pm
1.2 Mechanism of algorithm
During evolutionary process, we presume that value domains of variable are fixed, and the probability of crossover is a constant, so from Theorem 1 and 3, we know that the longer chromosome length is, the smaller searching step of chromosome, and the higher resolution;and vice versa.Meanwhile, crossover probability is in direct proportion to searching step.From Theorem 4, changing the length of chromosome does not affect searching step of mutation, while mutation probability is also in direct proportion to searching step.At the beginning of evolution, shorter length chromosome(can be too shorter, otherwise it is harmful to population diversity)and higher probability of crossover and mutation increases searching step, which can carry out greater domain searching, and avoid falling into local optimum.While at the vicinity of global optimum, longer length chromosome and lower probability of crossover and mutation will decrease searching step, and longer length chromosome also improves resolution of mutation, which avoid wandering near the global optimum, and speeds up algorithm
converging.Finally, it should be pointed out that chromosome length changing keeps individual fitness unchanged, hence it does not affect select ion(with roulette wheel selection).1.3 Description of the algorithm
Owing to basic genetic algorithm not converging on the global optimum, while the genetic algorithm which reserves the best individual at current generation can, our approach adopts this policy.During evolutionary process, we track cumulative average of individual average fitness up to current generation.It is written as 1X(t)= GGft1avg(t)where G is the current evolutionary generation, fitness.favg is individual average When the cumulative average fitness increases to k times(k> 1, k ∈ R)of initial individual average fitness, we change chromosome length to m times(m is a positive integer)of itself , and reduce probability of crossover and mutation, which can improve individual resolution and reduce searching step, and speed up algorithm converging.The procedure is as follows:
Step 1 Initialize population, and calculate individual average fitness and set change parameter flag.Flag equal to 1.favg0, Step 2 Based on reserving the best individual of current generation, carry out selection, regeneration, crossover and mutation, and calculate cumulative average of individual average fitness up to current generation
favg;
favgStep 3 If
favg0≥k and Flag equals 1, increase chromosome length to m times of itself, and reduce probability of crossover and mutation, and set Flag equal to 0;otherwise continue evolving.Step 4 If end condition is satisfied, stop;otherwise go to Step 2.2 Test and analysis
We adopt the following two critical functions to test our approach, and compare it with the genetic algorithm which only reserves the best individual: f1(x,y)0.5sin2x2y20.5[10.01xy222]
x,y∈ [5,5]
[1,1] f2(x,y)4(x22y20.3cos(3πx)0.4cos(4πy))
x,y∈2.1 Analysis of convergence During function testing, we carry out the following policies: roulette wheel select ion, one point crossover, bit mutation, and the size of population is 60, l is chromosome length, Pc and Pm are the probability of crossover and mutation respectively.And we randomly select four genetic algorithms reserving best individual with various fixed chromosome length and probability of crossover and mutation to compare with our approach.Tab.1 gives the average converging generation in 100 tests.In our approach, we adopt initial parameter l0= 10, Pc0= 0.3, Pm0= 0.1 and k= 1.2, when changing parameter condition is satisfied, we adjust parameters to l= 30, Pc= 0.1, Pm= 0.01.From Tab.1, we know that our approach improves convergence speed of genetic algorithm significantly and it accords with above analysis.2.2 Analysis of online and offline performance
Quantitative evaluation methods of genetic algorithm are proposed by Dejong, including online and offline performance.The former tests dynamic performance;and the latter evaluates convergence performance.To better analyze online and offline performance of testing function, w e multiply fitness of each individual by 10, and we give a curve of 4 000 and 1 000 generations for f1 and f2, respectively.(a)online
(b)online
Fig.1 Online and offline performance of f1
(a)online
(b)online
Fig.2 Online and offline performance of f2
From Fig.1 and Fig.2, we know that online performance of our approach is just little worse than that of the fourth case, but it is much better than that of the second, third and fifth case, whose online performances are nearly the same.At the same time, offline performance of our approach is better than that of other four cases.Conclusion In this paper, based on some general theorems, an improved genetic algorithm using variant chromosome length and probability of crossover and mutation is proposed.Testing with some critical functions shows that it can improve convergence speed of genetic algorithm significantly, and its comprehensive performance is better than that of the genetic algorithm which only reserves the best individual.Appendix With the supposed conditions of section 1, we know that the validation of Theorem 1 and Theorem 2 are obvious.Theorem 3 Mathematical expectation Ec(x)of chromosome searching step with one point crossover is baPc2lEc(x)=
where Pc is the probability of crossover.Proof
As shown in Fig.A1, we assume that crossover happens on the kth locus, i.e.parent’s locus from k to l do not change, and genes on the locus from 1 to k are exchanged.1During crossover, change probability of genes on the locus from 1 to k is 2
(“1” to “0” or “0” to “1”).So, after crossover, mathematical expectation of chromosome searching step on locus from 1 to k is
k11ba1baEck(x)wjl2j1l(2k1)
22121j12j12Furthermore, probability of taking place crossover on each locus of k1chromosome is equal, namely l Pc.Therefore, after crossover, mathematical expectation of chromosome searching step is 1Ec(x)PcEck(x)
k1lSubstituting Eq.(A1)into Eq.(A2), we obtain l1PbaP(ba)11ba1Pcl(2k1)cl[(2i1)l]c(1l)2212l212l21k1llba0, so Ec(x)Pc where l is large, l2l21Ec(x)l1
Fig.A1 One point crossover
Theorem 4 Mathematical expectation Em(x)of chromosome searching step with bit mutation Em(x)(ba)Pm, where Pm is the probability of mutation.Proof Mutation probability of genes on each locus of chromosome is equal, say Pm, therefore, mathematical expectation of mutation searching step is Em(x)=åPm·wi=åPm·i=1i=1llb-ai-1b-a·2=P··(2i-1)=(b-a)·Pm mli2-12-1
一种新的改进遗传算法及其性能分析
摘要:虽然遗传算法以其全局搜索、并行计算、更好的健壮性以及在进化过程中不需要求导而著称,但是它仍然有一定的缺陷,比如收敛速度慢。本文根据几个基本定理,提出了一种使用变异染色体长度和交叉变异概率的改进遗传算法,它的主要思想是:在进化的开始阶段,我们使用短一些的变异染色体长度和高一些的交叉变异概率来解决,在全局最优解附近,使用长一些的变异染色体长度和低一些的交叉变异概率。最后,一些关键功能的测试表明,我们的解决方案可以显著提高遗传算法的收敛速度,其综合性能优于只保留最佳个体的遗传算法。
遗传算法是一种以自然界进化中的选择和繁殖机制为基础的自适应的搜索技术,它是由Holland 1975年首先提出的。它以其全局搜索、并行计算、更好的健壮性以及在进化过程中不需要求导而著称。然而它也有一些缺点,如本地搜索不佳,过早收敛,以及收敛速度慢。近些年,这个问题被广泛地进行了研究。
本文提出了一种使用变异染色体长度和交叉变异概率的改进遗传算法。一些关键功能的测试表明,我们的解决方案可以显著提高遗传算法的收敛速度,其综合性能优于只保留最佳个体的遗传算法。
在第一部分,提出了我们的新算法。第二部分,通过几个优化例子,将该算法和只保留最佳个体的遗传算法进行了效率的比较。第三部分,就是所得出的结论。最后,相关定理的证明过程可见附录。
1算法的描述
1.1 一些定理
在提出我们的算法之前,先给出一个一般性的定理(见附件),如下:我们假设有一个变量(多变量可以拆分成多个部分,每一部分是一个变量)x ∈ [ a, b ] , x ∈ R,二进制的染色体编码是1.定理1 染色体的最小分辨率是
s =
ba l21定理2 染色体的第i位的权重值是
bai1(i = 1,2,…l)2l1定理3 单点交叉的染色体搜索步骤的数学期望Ec(x)是
wi =
Ec(x)= baPc 2l其中Pc是交叉概率
定理4 位变异的染色体搜索步骤的数学期望Em(x)是
Em(x)=(b-a)Pm
其中Pm是变异概率 算法机制
在进化过程中,我们假设变量的值域是固定的,交叉的概率是一个常数,所以从定理1 和定理3我们知道,较长的染色体长度有着较少的染色体搜索步骤和较高的分辨率;反之亦然。同时,交叉概率与搜索步骤成正比。由定理4,改变染色体的长度不影响变异的搜索步骤,而变异概率与搜索步骤也是成正比的。
进化的开始阶段,较短染色体(可以是过短,否则它不利于种群多样性)和较高的交叉和变异概率会增加搜索步骤,这样可进行更大的域名搜索,避免陷入局部最优。而全局最优的附近,较长染色体和较低的交叉和变异概率会减少搜索的步骤,较长的染色体也提高了变异分辨率,避免在全局最优解附近徘徊,提高了算法收敛速度。
最后,应当指出,染色体长度的改变不会使个体适应性改变,因此它不影响选择(轮盘赌选择)。
算法描述
由于基本遗传算法没有在全局优化时收敛,而遗传算法保留了当前一代的最佳个体,我
们的方法采用这项策略。在进化过程中,我们跟踪到当代个体平均适应度的累计值。它被写成:
1GX(t)= favg(t)Gt1其中G是当前进化的一代,favg是个体的平均适应度。
当累计平均适用性增加到最初个体平均适应度的k(k> 1, k ∈ R)倍,我们将染色体长度变为其自身的m(m 是一个正整数)倍,然后减小交叉和变异的概率,可以提高个体分辨率、减少搜索步骤以及提高算法收敛速度。算法的执行步骤如下:
第一步:初始化群体,并计算个体平均适应度favg0,然后设置改变参数的标志flag。flag设为1.第二步:在所保留的当代的最佳个体,进行选择、再生、交叉和变异,并计算当代个体的累积平均适应度favg
favg0第三步:如果
favgk 且flag = 1,把染色体的长度增加至自身的m倍,减少交叉和变异概率,并设置flag等于0;否则继续进化。
第四步:如果满足结束条件,停止;否则转自第二步。
测试和分析
我们采用以下两种方法来测试我们的方法,和只保留最佳个体的遗传算法进行比较:
f1(x,y)0.5sin2x2y20.5[10.01xy222] [5,5]
x,y∈ [1,1] f2(x,y)4(x22y20.3cos(3πx)0.4cos(4πy))
x,y∈收敛的分析
在功能测试中,我们进行了以下政策:轮盘赌选择,单点交叉,位变异。种群的规
模是60。L是染色体长度,Pc和Pm分别是交叉概率和变异概率。我们随机选择4个遗传算法所保留的最佳个体来与我们的方法进行比较,它们具有不同的固定染色体长度和交叉和变异的概率。表1给出了在100次测试的平均收敛代。
在我们的方法中,我们采取的初始参数是l0 = 10,Pc0 = 0.3,Pm0 = 0.1和k = 1.2,当满足改变参数的条件时,我们调整参数l = 30,Pc = 0.1,Pm = 0.01。
1.1 在线和离线性能的分析
Dejong提出了遗传算法的定量评价方法,包括在线和离线性能评价。前者测试动态性能,而后者评估收敛性能。为了更好地分析测试功能的在线和离线性能,我们把个体的适应性乘以10,并f1和f2分别给出了4 000和1 000代的曲线:
(a)在线
(b)离线
图1 f1的在线与离线性能
(a)在线
(b)离线
从图1和图2可以看出,我们方法的在线性能只比第四种情况差一点点,但比第二种、第三种、第五种好很多,这几种情况下的在线性能几乎完全相同。同时,我们方法的离线性能也比其他四种好很多
结论
本文提出了一种使用变异染色体长度和交叉变异概率的改进遗传算法。一些关键功能的测试表明,我们的解决方案可以显著提高遗传算法的收敛速度,其综合性能优于只保留最佳个体的遗传算法。
附件
有了第一部分中假定的条件,定理1和定理2的验证是显而易见的。下面给出定理3和定理4的证明过程:
定理3 单点交叉的染色体搜索步骤的数学期望Ec(x)是
Ec(x)= 其中Pc是交叉概率
baPc 2l证明:
如图A1所示,我们假设交叉发生在第k个基因位点,从k到l的父基因位点没有变化,基因位点1到k上的基因改变了。
在交叉过程中,1到k基因位点上的基因改变的概率为0.5(“1”变化”0”或者”0”变为”1”),因此,交叉之后,基因位点上的染色体搜索步骤从1到k的数学期望是
k11ba1baEck(x)wjl2j1l(2k1)
22121j12j121此外,每个位点的染色体发生交叉的概率是相等的,即lPc。交叉后,染色
k体搜索步骤的数学期望是
1Ec(x)PcEck(x)k1l
把Eq.(A1)替换为Eq.(A2),我们得到 l1PbaP(ba)11ba1Pcl(2k1)cl[(2i1)l]c(1l)l22l2l212121k1lba0,所以Ec(x)Pc 其中l是非常大的,l2l21Ec(x)l1图1 单点交叉
定理4 位变异的染色体搜索步骤的数学期望是
Em(x)(ba)Pm
其中Pm是变异概率。证明:
每个基因位点上的基因的变异概率是相等的,比如Pm,因此变异搜索步骤的数学期望是:
Em(x)=åPm·wi=åPm·i=1i=1ll
b-ai-1b-a·2=P··(2i-1)=(b-a)·Pmmli2-12-1