国外合成氨工艺新技术

时间:2019-05-14 05:04:10下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《国外合成氨工艺新技术》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《国外合成氨工艺新技术》。

第一篇:国外合成氨工艺新技术

国外合成氨工艺新技术

摘要:介绍了近些年来国外合成氨工艺各工序出现的新技术。

关键词:合成氨;工艺;新技术

氨是最为重要的基础化工产品之一,其产量居各种化工产品的首位,同时也是能源消耗的大户,世界上大约有10%的能源用于生产合成氨。氨主要用于农业,合成氨是氮肥工业的基础,氨本身是重要的氮素肥料,其他氮素肥料也大多是先合成氨、再加工成尿素或各种铵盐肥料,同时氨也是重要的无机化学和有机化学工业基础原料,用于生产铵、胺、染料、炸药、制药、合成纤维、合成树脂的原料[1]。随着合成氨生产竞争的日益加剧,提高装置产量、降低生产成本一直是合成氨生产厂家探索的课题。近些年来,经过许多专家、学者的研究,国外合成氨工艺各工序出现了许多新技术。未来合成氨技术进展的主要趋势是“大型化、低能耗、结构调整、清洁生产、长周期运行。转化

1.1 增设预转化炉

许多氨厂蒸汽转化部分是装置的“瓶颈”,制约了产量的提高。增设一台预转化炉提高转化能力,可以增加氨产量。以天然气作原料的工艺,当混合的原料气和蒸汽预热后进入绝热预转化炉催化床层时,发生的吸热反应会使工艺气温度下降,因此从预转化炉出来的气体在进入一段炉之前还须再加热(加热到高于一段炉原来的进口温度),这样可节约转化炉燃料,保证高的转化率和反应速率。另外,重烃可在预转化炉中除去,消除了转化炉结碳的危险。增设预转化炉后节省了转化炉燃料,因而可增加转化炉的进气量[2]。

ICI Katalco新建了一个以天然气为原料有预转化炉的合成氨装置,将预转化炉出来的气体加热到一段炉原来的进口温度,大大减少了一段炉所需的燃料,一段炉燃料进料速率还未达到原来值,原料天然气进料就已增加了9%。预转化炉体积小,安装费用低,可用现有脱硫设备作预转化炉。可在系统检修时将预转化炉并入系统。增设预转化炉后,装置效益大大提高。1.2 催化剂装填

NorskHydr最近研究出了一种新的一段炉催化剂装填技术,适用于氨、甲醇、氢以及其它有转化炉的装置,这就是UnidenseTM。该技术简单,装填迅速,装填过程无需振打炉管,适用于装填内径为3~6英寸的炉管。用该法装填的催化剂,密度均匀,能提高一段炉的生产效率。

装填方法是,炉管内先放入一根带有弹簧刷子的装填绳,催化剂装进炉管后,慢慢拉出装填绳如图1。装填绳上的弹簧刷子可减缓催化剂颗粒的下降速度,避免催化剂破碎。不会因架桥而产生空穴,因而装填过程无需振打炉管。采用该技术装填的催化剂密度比常用的“布袋”法高,且装填时间大大缩短。

图1 催化剂装填

1.3 新型烧嘴

在使用高比表面积(GSA)催化剂降低床层高度后仍不能改善气体混合状况时,就需更换烧嘴。ICI设计的新型烧嘴如图2所示。从图中可见,空气从很多点进入工艺气中,且分布均匀。该烧嘴现已成功地用于二段炉中,在工艺气和空气混合体积受限的转化炉中其性能很好。南方石油化学工业有限公司(SPIC)1996年在印度的吐提可林氨厂的改造中采用了这种烧嘴。

图2 二段炉新型烧嘴 变换 全低变工艺的改进 全低变催化剂Co-Mo-K/γ-Al2O3使用时,活性金属易转化成硫化态,催化剂中的硫会氧化成硫酸根,与钾反应生成硫酸钾,使催化剂失活,第一段汽/气高,反应气易带水雾,导致钾往表面迁移而流失,也引起催化剂失活。此外,还存在第一段阻力升高快的问题。为此,齐鲁石化研究院周红军等提出完善的方案是:制备不含碱金属、不需净化剂的催化剂,从而避免钾失活和催化剂结块等问题。另外,将反应器改造为轴径向反应器[3]。脱碳

在合成氨装置中,脱碳的投资费用占很大比例,同时脱氮也是合成氨装置的主要能耗工序。下面介绍2种低能耗的脱碳方法。3.1 活化MDEA法(aMDEA法)该方法是BASF公司60年代末开始研究、70年代初投入工业应用的,经过不断改进和发展,其工艺技术已很成熟可靠。至今世界上已有66套装置成功地采用了aMDEA法。

aMDEA法综合了化学吸收和物理吸收的优点,通过在MDEA中添加活化剂,大大改善了溶液的吸收能力和吸收速度。改变活化剂的添加量,可使溶液适应各种操作条件。aMDEA法净化度高,不仅能脱除CO2,还可脱除净化气中的H2S多,既适用于装置改造,也适用于新建装置。aMDEA溶液的化学稳定性和热稳定性很好,溶液不易降解,蒸发损失很少,生产过程中补给量较少;溶液不含砷化物,且排放量很少,对周围环境基本上不造成污染。

采用aMDEA法,不会有热钾碱法那样的高强度生产控制,生产过程的监测也很简单,只需配置必要的分析仪表。aMDEA溶液中各组分溶解度大,无颗粒沉淀物,无需对装置进行伴热。另外,aMDEA中的活化剂具有良好的缓蚀性能,对设备材质要求不高,主要设备都可采用碳钢制作。虽然aMDEA法与热钾碱法不同,但它对热钾碱系统的设备有很好的兼容性。由MEA法改为aMDEA法,主要设备不变,只需排放原有溶液,将系统清洗干净,然后加入aMDEA溶液即可开车,开车前也无需对设备进行钝化。aMDEA溶液再生效果好,一般经过一次闪蒸就可完全再生,再生出的CO2含量可达到98%以上,经过简单的净化处理就可得到高品质的CO2。3.2 ACT-1法

该法是环球油品公司(UOP)开发出的。主要是采用一种称为ACT-1的新型活化剂用于热钾碱脱碳液中,促进CO:的吸收,改善脱碳液的性能。其显著特点是活化剂ACT-1本身极其稳定,不降解,不易起泡,具有很高的化学稳定性。可单独使用,亦可与DEA活化剂共用,对原苯菲尔溶液无副作用。若ACT-1活化剂与DEA活化剂共用,ACT-1的浓度为0.5%~1.0%;若单独使用,则为1%~3%。用ACT-1脱碳,可将净化气中的CO2含量降低25%~85%;溶液的循环量降低5%~25%;再生热耗降低5%~15%;设备通气能力增加5%~25%。活化剂消耗量很小,吨氨消耗仅0.02kg。合成

具有代表性的低能耗制氨工艺有4种:Kellogg公司的KREP工艺、Braun公司的低能耗深冷净化工艺、UHDE-ICI-AMV工艺、Topsoe工艺。4.1 Kellogg先进的合成氨工艺(KAAP)英国石油公司(BP)研究开发了触媒,凯洛格(Kellogg)公司设计了新工艺,钉触媒采用促进剂使其活性大大提高,顺利地实现了600吨/日的生产,生产率增加了40%。

钌系触媒的有以下特点:

①对于载体和促进剂非常敏感肖添加碱金属和氧化物时,活性提高非常大;②氮原子的吸附作用弱,不会由于生成氨导致的触媒中毒,而由于氢所致的触媒中毒严重。钌(Rn)触媒在低的H/N比条件下是有利的,在高产NH3条件下其活性也高。

Kellogg工艺补充气和循环气经合成气压缩机压缩后通过进/出物料换热器入有4个床层的径向流KAAP合成塔。合成塔出来的气体压力约9MPa(表压)、氨含量为20%。通过产生高压蒸汽回收热量。回收热后,合成塔出料送到氨回收工序,冷凝得到氨;不凝性气体一小部分送到弛放气回收系统回收氢和氮后再与其余大部分气体汇合,组成循环气。KAAP合成塔是直立的有4个床层的内冷型径向流合成塔。由于操作压力和温度较低,可以采用“热壁”设计和轻质钢结构。第一床层装填铁催化剂,另3个床装活性较高的KAAP催化剂。KAAP催化剂在低温低压条件下活性较高,虽然合成塔操作压力较低,合成塔出口氨含量仍较高。KAAP系统的成功之处在于其独特的催化剂,它由比表面积较大的石墨载体浸渍锗组成,该催化剂活性是铁催化剂的10~20倍。

凯活格公司新的合成氨工艺(KAAP法)与旧的工艺相比有两大不同特点:①在旧工艺中,为了一次重整炉的加热,要用其他燃料,而在新工艺中,将二次重整炉的热量移到一次重整炉中;②在旧工艺中,反应器上面的H/N比约为3,而在新工艺中低达1~2,在反应器下游中(氢回收装置)除了被浓缩的未反应N2外,使其再循环。这两点对于新触媒为高活性的有利条件,在工艺上就把受氢的触媒中毒的不利条件被转化为有利条件[4]。

在触媒活性高的情祝下.可以在合成系统低压而高转化率下开动生产,不需要高压循环的大量能源。

参考文献

[1] 合成氨工艺技术的现状及其发展趋势,蒋德军,大氮肥,1997,(5):297-30 [2] 国外合成氨工艺新技术,娄晓灵,中氮肥,1999,(2):4-9 [3] 2001~2002年合成氨、尿素技术进展,刘苹,2002,(5):60 [4] 新一代的合成氨工艺, 印度Trombay-1氨厂的节能改造,59

第二篇:合成氨工艺简介

合成氨工艺控制方案总结

一 合成氨工艺简介

中小型氮肥厂是以煤为主要原料,采用固定层间歇气化法制造合成氨原料气。从原料气的制备、净化到氨的合成,经过造气、脱硫、变换、碳化、压缩、精炼、合成等工段。工艺流程简图如下所示:

该装置主要的控制回路有:(1)洗涤塔液位;

(2)洗涤气流量;(3)合成塔触媒温度;(4)中置锅炉液位;(5)中置锅炉压力;(6)冷凝塔液位;(7)分离器液位;(8)蒸发器液位。

其中触媒温度控制可采用全系数法自适应控制,其他回路采用PID控制。

二 主要控制方案

(一)造气工段控制

工艺简介:

固定床间歇气化法生产水煤气过程是以无烟煤为原料,周期循环操作,在每一循环时间里具体分为五个阶段;(1)吹风阶段约37s;(2)上吹阶段约39s;(3)下吹阶段约56s;(4)二上吹阶段约12s;(5)吹净阶段约6s.l、吹风阶段

此阶段是为了提高炉温为制气作准备的。这一阶段时间的长短决定炉温的高低,时间过长,炉温过高;时间过短,炉温偏低并且都影响发气量,炉温主要由这一阶段控制。般工艺要求此阶段的操作时间约为整个循环周期的18%左右。

2、上吹加氮制气阶段

在此阶段是将水蒸汽和空气同时加入。空气的加入增加了气体中的氮气含量,是调节 H2/N2的主要手段。但是为了保证造气炉的安全该段时间最多不超过整个循环周期的26%。

3、上吹制气阶段

该阶段与上吹加氯制气总时间为整个循环的32%,随着上吹制气的进行下部炉温逐渐下降,为了保证炉况和提高发气量,在此阶段蒸汽的流量最好能得以控制。

4、下吹制气阶段

为了充分地利用炉顶部高温、提高发气量,下吹制气也是很重要的一个阶段。这段时间 约占整个循环的40%左右。

5、二次上吹阶段

为了确保生产安全,造气炉再度进行吹风升温之前,须把下吹制气时留在炉底及下部管 道中的半水煤气吹净以防不测,故进行第二次上映。这段时间约占7%左右。

6、吹净阶段

这段时间主要是回收上行煤气管线及设备内的半水煤气。约占整个循环的3%。该阶段是由吹风管路送风,该段时间的长短直接影响H2/N2.该控制系统是一个较复杂的时变、间歇、非线性、大滞后控制系统。故将该系统设计为串级控制。

造气炉的工作方式分为开车、停车、正常造气、升温和制惰等五种方式。每台造气炉需要控制15个电磁阀,为了防止多台炉同时进入吹风阶段而引起争风抢汽观象,各台炉之间必须进行吹风排队顺序控制。

控制方案:

1、造气工段H2/N2控制方案

造气工段是通过加减氮操作来进行氢氮比控制的,而加减氮操作又是通过调节上下吹加氮时间和吹风回收时间来实现的,因此,该控制系统最终得到的控制量要转化为上下吹加氮时间或吹风回收时间。本系统的氢氮比控制采用调节吹风回收时间来实现。

在合成氨生产过程中,影响氢氮比的主要干扰来源是造气、脱硫两个环节,这部分仅有较小的滞后,所以对脱硫制氢采用PID闭环控制和较高的采样频率,这是控制的内环。然后将造气脱硫与变换、脱碳、精炼及合成组成一个广义外环,采用预测控制进行控制,这是控制的外环。可选作控制量的参数有:脱硫氢、变换氢、补充氢和循环氢,这四个氢值之间的波动有一个时间差,脱硫氢到变换氢大约有5min,变换氢到补充氢大约有15min,再由补充氢到循环氢又有20min,而且补充氢与循环氢之间存在积分关系,补充氢中氢氮比的微小变化就会造成循环氢中氢的增加与减小,即稳定的补充氢并不能保证循环氢的稳定。而循环氢是生产过程最终阶段的信号,所以采用循环氢作为主调节参数,并选择脱硫氢作为副调参数,以克服循环氢巨大的滞后。

2、H2/N2调节方法

采用改变加氮空气量的方法调节H2/N2,在上吹和下吹阶段设置用/否加氮软手动开关决定是否启用加氮空气,同时采用上/下加氮调节阀来改变加氮空气量,其次可以通过调整 吹净时间的方法来调整H2/N2,同时还采用打吹净软开关确定在吹风阶段是否提前关闭烟囱阀,以辅助调节H2/N2.(三)CO变换工段控制

工艺简介:工艺流程图如下:

中温变换护的正常操作应该是将各段催化剂的温度控制在适宜的范围内,以充分发挥催化剂的活性。同时用最低的蒸汽消耗实现最高的CO变换率。影响中变炉催化剂床层温度变化的因素很多,如蒸汽的加入量、蒸汽的温度、进入催化剂前反应气体的温度、反应气体的组成以及生产负荷等。

该工段主要的控制系统主要有:中变炉入口温度定值控制,入中变护蒸汽流量定值控制,入中变沪中段蒸汽流量定值控制,中变炉下段温度控制等。(1)中变炉人口温度定值控制系统

该系统是通过控制中变炉的入口温度来稳定上段催化剂的温度。选中变炉人口气体的温度作为被控变量,操作变量为中温换热器的半水煤气副线流量。

其主要干扰因素有:半水煤气流量,半水煤气温度,蒸汽流量,蒸汽温度,变换气温度等。

在这个系统中,中变炉人口温度是根据生产要求由人工设定,当受到干扰使该温度偏离没定值时,通过改变中温换热器副线流量来维持其入口温度的稳定。

(2)入炉蒸汽流量定值控制

控制流程图如下:

被控变量和操作变量均为与煤气混合的蒸汽流量。其主要干扰因素是蒸汽的温度和蒸汽管网的压力。求由人工设定,通过改变蒸汽流量调节阀的开度来维持蒸汽流量的稳定。当生产负荷变动或其它干扰因索引起中变炉上段催化剂温度发生变化而需要改变入炉的蒸汽量时,只能通过人工调整系统的设定值来实现,可见该系统不能自动跟踪生产负荷,亦不能按照上段催化剂温度的变化来自动控制所需的蒸汽量。

(3)

中变炉中段蒸汽流量定值控制

(六)氨合成工段控制

在合成氨生产中,合成塔人塔气体的氢气与氮气的比例是工艺上一个极为重要的控制指标。氢氯比合格率对于全厂生产系统的稳定、提高产量和降低原料及能源消耗起着重要作用,氢氮比的过高或过低,都会直接影响合成效率,导致合成系统超压放空,使合成氨产量减少,消耗增加。但合成氨氢氮比对象是一个纯滞后和容积滞后大,无自衡能力和时变的工艺过程,所以氢氮比控制是氨合成工段的主要控制对象。

方案一:

采用变比控制方案,对负荷变化和加氮空气量进行预测控制其工作框图如下:

原料气中各有效成分分析合成总的含H2量作为主物料信号,乘上一个比值系数K,就作为空气调节阀的输入信号,驱动调节阀以得到所需要的与总含H2成比例的N2量。如果由于某种因素使H2/N2比值偏离给定值,就通过调节器GC输出信号修正比值系数K,使H2/N2比回到给定值上来。对于空气流量的干扰,设置一个副环,构成串级控制,对空气的测量,采用压力和温度的补偿。

方案2 预测加PID控制方案

上述方案由两个回路组成:内回路是由造气到脱磕和可调控制器组成的线性反馈回 路;外回路由变换到精炼和通推参数估计器及校正器组成。

方案3 预测+PID串级控制方案

氢氮比通过改变二段炉的空气量来调节,针对被控对象的特点,本文采用多步MAC 预测控制算法、PID算法及前馈调节相结合的控制规律构成氢氮比前馈中级控制系统。系统结构方块图如下所示:

由于负荷(原料气流量)变化是系统可测不可控的干扰,为此,采用前馈调节系统,以便及时克服负荷波动的干扰。由于空气流量波动大,必须采用闭环控制,空气流量调节回路采用YS-80单回路调节器实现。

由于系统滞后时间长,为了能及时克服转化、变化工段的干扰,引入变换氢副调回路,此回路纯滞后时间短,可采用PID调节;主被控对象氢氮比系统纯滞后时间长,惯性大,干扰多,因此主控器采用MAC预测控制

(八)精馏塔控制方案

工艺简介:

合成氨厂氨精馏塔是氨回收单元,以水为溶剂,吸收氨合成回路的放空气和液氨贮槽放空气中的氨,然后利用外部供热使氨水溶液解吸,水作为吸收剂循环使用。其工艺流程图如下:

由于本精馏工段受多种干扰因素如进料量、进料温度、冷凝器冷却水温度、环境温度变化等的影响,而且难以直接测量产品浓度作为被调参数,故选用间接参数温度、压力作为被调参数。

控制方案: 1.压力控制

针对压力设置了一套压力分程调节系统,由PRC-10001检测塔内压力,分别控制塔顶排出的情气量和塔顶冷却器的回水量。其调节过程为:

当PRC-10001测量值增加时,其输出值若在100%~50%内,则情气阀PV—10001A全关(F.C),冷却水阀PV-10001B(F.0)逐渐开大,直至全开,以充分冷凝气体中的氨;若输出值小于50%,则PV—10001B全 开,PV—1000lA逐渐开大,从而使塔内压力降低,反之亦然。以此达到塔内压力恒定。

2、温度控制

由于成品氨的质量与温度有直接关系,液氨流量直接影响着温度,为保证精馏塔温度,设置一套以惰馏塔温度TICAH—10004和液氨流量FIC—10006组成的串级系统。其中流星为副参数,克服影响氨水流量波动的各种扰动因素;以温度为主参数,保证精馏塔温度,其工艺控制流程图如下:

首先,手动调整F—10006输出值,使得T—10004满足工艺要求。然后,调整T—10004的给定值等于测量值,调整F—10006的设定值等于测量值。在此过程中,要保证T—10004输出值等于F—10006,设定值。随后将由手动投入自动,等稳定后投入串级。系统稳定后将T—10004由手动投入自动。

至此,完成了串级调节系统的投运。

在投运过程中,一定要注意T—10004输出值等于F—10006设定值,投运之前,主、副回路均应置于手动状态。

第三篇:合成氨工艺指标

4.工艺控制指标

(1)脱硫工序

铁锰脱硫出口: S≤5ppm 氧化锌出口硫含量: ≤0.1ppm 加氢量 : 2~5% 进口温度TIC-111: 380±5℃ 氧化锌出口温度: ≤360℃ 进脱硫系统压力: ≤4.1 MPa(2)转化工序

水碳比:

3.2~3.5 一段炉进口压力:≤3.82 MPa 对流段出口烟压:-2000 Pa 炉膛负压:

-100 Pa 工艺空气盘管温度:≤615℃ 原料天然气盘管NO.4:≤400℃

燃料天然气预热盘管:≤200℃ 一段炉阻力: ≤0.35 MPa 二段炉出口温度:

≤997℃ 二段炉出口甲烷:

≤0.5% 脱氧槽液位: 80%以上 中压汽包液位: 1/3~2/3 锅炉给水O2含量: ≤0.007ppm(3)变换工序

高变进口温度: TIC-157 370±5℃高变出口CO: ≤3 % 高变汽包蒸汽压力: ≤2.5 MPa 低变出口温度: ≤228℃(4)脱碳工序(碳酸钾溶液)

吸收嗒入气温度: 81℃±5℃ 吸收塔进贫液温度:70℃±5℃ 再生气温度: <40℃ 吸收塔压差: <45KPa 一段炉出口甲烷:

≤12.84% 燃料气压力PI-811: ≤0.35 MPa 排烟温度:

≤170℃ 混合气盘管出口温度:≤610℃ 过热蒸汽盘管NO.3: ≤360℃

原料天然气盘管NO.7:≤295℃ 一段炉出口温度: ≤801℃ 二段炉阻力:

≤92 KPa 二段炉水夹套温度:

≤100℃ 中压汽包蒸汽压力:

≤4.2 MPa 脱氧槽压力: ≤20KPa

锅炉给水PH值: 8.8~9.3 二段炉出口甲烷 ≤ 0.5% 高变出口温度: ≤436℃

高变汽包液位: 1/3~2/3 低变进口温度TIC-220 :200±5℃低变出口CO: ≤0.3 % 吸收塔出气温度: 70℃±5℃ 吸收塔进半贫液温度: 112℃±5℃ 再生塔出口贫液温度: 120℃±5℃ 再生塔压差: <20KPa

再生塔出再生气压力: <75KPa 低变废锅蒸汽压力 : 0.40~0.50MPa 吸收塔出二氧化碳含量: ≤0.1% 再生气纯度: ≥98.5 % 汽提塔出口水中电导率: ≤10μs/cm 吸收塔液位: 1/2~2/3 闪蒸槽液位: 1/2~2/3 低水分液位: 1/3~2/3 低变废锅液位: 1/3~2/3 净水分液位: 1/3~2/3 铁离子含量: <100ppm 汽提塔液位: 1/2~2/3 再生塔中部液位: 1/3~2/3 贫液流量: ≤ 96 t / h 总碱度: 25~30% 半贫液再生度: 1.35~1.45 DEA V5+/V4+: ≥0.5 甲烷化工序

甲烷化进口温度: 310℃±5℃ 甲水分出口温度: <40℃ 甲水分液位: ≤10 %

再生塔上部液位: ≥30 % 再生塔下部液位: 1/2~2/3 半贫液流量: ≤ 778 t / h 贫液再生度: 1.15~1.25 : 2~3% 总矾: 0.7~1.0%(以KVO3)甲烷化床层温度: ≤350℃ 甲烷化出口CO+CO2:≤10ppm(5)

第四篇:国外养猪新技术

国外养猪新技术

一、甲酸钙增肥 据芬兰科学家研究,在仔猪断奶后头几周饲料中添加猪的发病率。

1.5克甲酸钙,可使仔猪的生长速度提高12%以上,饲料转化率提高4%,并能减少仔

二、使母猪多产仔饲喂法 德国畜牧专家研究的方法是:从仔猪断奶第三天起,给母猪喂食时添加200毫克VE和400克胡萝卜,到母猪发情时,将这两种添加剂的数量减少50%,喂至怀孕后21天为止。采用这种方法,可使母猪产仔数增加21.9%,而且母猪、仔猪体质强壮,仔猪成活率高。

三、喂小苏打增重 美国康奈尔大学家畜学博士斯蒂克发现,将小苏打加到缺乏赖氨酸的猪饲料内,可以弥补赖氨酸的不足,并有利于粗纤维的消化吸收,使猪长肉多,增重快。

四、喂铜增重 日本最新研究成果表明:在肉猪育肥期适量添加微量元素铜,可明显增加猪的体重,并抑制某些病菌对猪的侵害。在加拌抗生素的饲料中,如再加拌适量的铜元素,可使猪日增重提高6.7%,饲料利用率提高2%—5%。

五、喂糖精增重 据国外杂志报道,用适量糖精喂猪增重效果好。办法是:在每公斤配合饲料中加0.05克糖精,饲喂时先将糖精溶于水中再拌入料中,可使猪的采食量增加,日增重可提高7%。猪每增重100公斤,饲料消耗和成本分别下降4.8%和3.5%。

六、喂柠檬酸增重 英国研究人员发现,在猪饲料中添加柠檬酸能增加饲料的适口性,改善猪对营养物质的消化吸收能力,提高饲料的转化率。在每公斤饲料中添加30克柠檬酸,可使猪从日增189克提高到216克。这种方法最适合喂养体重在5公斤—10公斤的断奶猪。

七、给猪“搬家”育肥 美国密苏里州大学试验表明,给育肥猪换圈,可使猪多上膘,生长加快,但换圈不宜过勤,以每月一次为宜。圈的大小、形式要基本相同。每组猪群不要任意调换或加入新猪,否则猪群会感到安,甚至相互咬斗。

八、喂含氧汽水增重 据国外资料介绍,用含氧汽水喂养断奶小猪,每隔5天给断奶小猪饮用1次,小猪日增重达200克—250克。其中含氧汽水就是在普通的饮水中加入一定比例的氧气,通常是1升水中注1升氧。如能在汽水中加些催肥剂之类的添加剂,效果更好。

九、喂维生素C提高精液品质 德国发现,在公猪的饲料中,每日添加1克—4克VC,可使公猪的精液品质明显提高。另外,美国还证明,在临产前一周的母猪日粮中,每日添加1克VC,可大大减少仔猪脐带出血,降低仔猪死亡率。

第五篇:布朗合成氨工艺操作

原料气的压缩和脱硫

原料气以35℃,7.8barg进入界区。原料气先经过分离器和过滤器,然后进入原料气压缩机(C-4),原料气经过两端压缩、冷却和分离,最终出口压力为36.5barg。一部分原料气从压缩机的段间抽出作为燃气透平的燃料。脱碳系统来的高压闪蒸气与原料气在压缩机的一段入口混合。

原料气的脱硫分两步完成,先与合成回路来的少量循环氢混合加热到370℃,然后通过一个钴钼加氢反应器(V-5)将有机硫转化为H2S。原料气中所有的H2S在钴钼加氢反应器下游的氧化锌脱硫槽(V-6A/B)中脱除。

离开脱硫槽的原料气中硫含量的期待值小于0.2ppmv。

一段转化

脱硫后的原料气按水蒸汽与碳的比为2.7与蒸汽混合。原料与蒸气的混合气先用高温变换炉出口气预热到415℃,再在一段转化炉对流段进一步加热到550℃,然后进入一段转化炉的催化管,在镍催化剂的作用下,原料气与蒸汽反应生成氢气和碳氧化物。一段转化炉出口气的温度为695℃,压力为30barg,并含有大约30%(mol)未转化的甲烷(干基)。该出口气送至二段转化炉的顶部。

向二段炉提供空气的工艺空气压缩机由燃气透平驱动,538℃的燃气透平排出气用作一段转化炉的燃烧空气。离开一段炉辐射段的热烟道气用来将125barg蒸汽过热到520℃,并预热原料气、一段转化炉入口气、二段转化炉工艺空气和锅炉给水。

二段转化

压缩工艺空气在一段转化炉对流段预热后进入二段转化炉。在二段转化炉的上部,空气中的氧与一段转化炉出口气反应生成碳氧化物和水。

然后该气体混合物气向下通过镍转化催化剂床层。在此,上述氧化反应所放出的热量将更多的甲烷转化为氢和碳氧化物。二段转化炉出口气中甲烷含量约为1.66%(干基),出口气温度为869℃。

二段转化炉出口气在一台能同时产生125barg蒸汽的强制循环废热锅炉中冷却到388℃送往变换。

变换

冷却后的二段炉出口气通过两个并联的高温变换炉触媒床,在此一氧化碳与蒸汽反应生成二氧化碳和氢,大约有67%的一氧化碳被转化。高变炉出口气中一氧化碳的含量约为3.6%(干基)。该气体相继与一段炉入口气及锅炉给水换热,而被冷却到204℃。

然后该气再经过两个并联的低温变换炉触媒床层,在此,残余的大部分一氧化碳转化为二氧化碳。从而使低温变换炉出口气中,残余一氧化碳的含量降为0.38%(干基)。然后该低温变换炉出口气被送到CO2脱除系统。

二氧化碳脱除

低变炉出口气相继经过四个串联的热交换器,冷却到75℃。

工艺气中冷凝下来的水在分离罐V-8中除去并送到工艺冷凝液汽提塔。冷却后的工艺气以75℃进入CO2吸收塔(T-1/T-2),在此工艺气用MEDA溶液洗涤,MEDA溶液进入吸收塔的顶部,气体在第一吸收塔中用半贫液洗涤,大部分CO2被吸收,然后在第二吸收塔(T-2)中用再生后的冷的贫液洗涤,将离开第二吸收塔(T-2)气体中的CO2含量可降到800ppmv。

第一吸收塔(T-1)底出来的富液,先通过一个水力透平回收能量,回收的能量用来驱动一台半贫液循环泵。然后富液被进入吸收塔的原料气预热后进入第一解析塔(T-3)。在此大部分溶解的氢气闪蒸出来,从而可使在第二解析塔(T-4)中所回收的CO2纯度达到99.70%(体积)。闪蒸气在废液洗涤器(T-9)中被少量半贫液洗涤,冷的MDEA溶液返回第一解析塔,放空气返回到原料气压缩机的一段回收氢气。

MDEA 溶液在第二解吸塔(T-4)顶部减压到0.5barg被来自贫液汽提塔顶部的蒸汽汽提。

甲烷化

从CO2吸收塔顶部出来的气体,与甲烷化出口气换热而被预热到316℃(如需要也可在甲烷化炉的开工加热炉内用125barg饱和蒸汽加热),然后该气体进入甲烷化炉,甲烷化炉出口气中残余的碳氧化物低于10ppmv(干基)。

干燥

甲烷化炉出口气首先与甲烷化炉入口气换热,冷却到93℃,然后再用冷却水冷却到37℃,最后用氨冷到4.4℃,这是为了将工艺气中绝大部分的水冷凝下来,以备干燥的工艺气。

深冷净化

干燥器出口气在深冷净化器中与净化合成气及净化装置废气换热,冷却到-129℃然后流经一个透平膨胀机,以除去能量,从而产生深冷净化所需要的冷冻量。膨胀机出口气经过换热进一步冷却,并部分冷凝使其温度降至-175℃,然后进入净化器精馏塔。膨胀机放出的能量,随控制精馏塔底部液位的需要而变化。从精馏塔底部来的液体在精馏塔顶冷凝器壳侧减压使其部分汽化,这样就使精馏塔塔顶流出的物冷却,并使精馏塔产生回流。

精馏塔塔顶冷凝器顶部的净化合成气同净化器入口气换热,而被加热到2.2℃。氢氮比为3:1.净化后的合成气仅残留有0.2%的氩。

压缩

净化合成气在一个三段式压缩机内压缩。循环气在第三段最后一级叶轮前加入到合成气中,该混合气离开压缩机时的压力为151barg。混合气经预热后直接进入氨合成塔。

氨合成

从合成气压缩机来的原料气和循环气先在合成塔进/出口气换热器(E-40A/B)中与第三合成塔出口气换热,使温度从72℃预热到306℃,然后再在E-41中与第一合成塔出口气换热,使温度从306℃加热到380℃,第一合成塔入口气含有大约3.6%的氨。

第一合成塔出口气含有大约11.9%的氨,通过与第一合成塔入口气换热并在废热锅炉中产生125barg蒸汽,其温度冷却到380℃,从第二合成塔出口气中回收的热量产生125barg蒸汽,从第三合成塔出口气回收的热量产生125barg蒸汽并预热第一合成塔的入口气。第一合成塔和第二合成塔出口气中氨浓度分别为17%和21%,第三合成塔出口气进一步用冷却水、循环气和两极氨冷冷却到4.2℃。

在水冷器中,冷凝温度约为50℃时,氨开始冷凝。液氨产品在第一按分离器中回收,并在液氨减压罐中减压到约为36barg,再在液氨收集槽中进一步减压到14barg。第一氨分离器出来的循环气用来冷却合成塔出口气,然后返回到合成气压缩机循环段入口。

进入合成气压缩机的新鲜合成气中惰性气体总含量仅有约0.2%(mol),几乎全是氢气。

冷冻

合成塔出口其中的氨通过17℃和1.6℃两级氨冷,使气氨冷凝,从低位氨冷器出来的气氨进入冰机的第二段。出高位氨冷器的气氨进到冰机的中段,冰机也压缩甲烷化炉出口氨冷器的氨及界区外氨贮存罐闪蒸的气氨。气氨最终被压缩到14.5barg,该压缩后的气氨在用水冷却的氨冷却器冷凝后送到氨收集槽的热氨区。

在氨收集槽中,少量的不凝气通过一个填料段,用来自液氨减压罐4.2℃的液氨洗涤,然后这股不凝气用喷射器抽出并与合成回路的驰放气混合。氨收集槽中冷的液氨用作高位和低位氨冷器及甲烷化炉出口氨冷器的介质。

氨产品

产品氨由氨收集槽抽出,经液氨产品泵送到尿素装置。从氨贮罐来的经升压的少量气氨经C-3压缩、冷凝、冷却后返回到氨贮罐,以维持氨贮罐的液位。

下载国外合成氨工艺新技术word格式文档
下载国外合成氨工艺新技术.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    毕业论文《合成氨工艺设计》

    摘要 氨是重要的无机化工产品之一,合成氨工业在国民经济中占有重要地位。除液氨可直接作为肥料外,农业上使用的氮肥,例如尿素、硝酸铵、磷酸铵、氯化铵以及各种含氮复合肥,都是......

    合成氨工艺复习题(共五则)

    《合成氨工艺》复习题 一. 选择题(将正确答案字母填入括号内、四选一) 1、下列关于氨的性质的叙述中,错误的是(B )。 A、氨易溶于水 B、氨气可在空气中燃烧生成氮气和水 C、液氨......

    林业英才网国外林业新技术

    一览丨林业英才网行业最权威的求职网站YILANLINYEYINGCAIWANG市场研究 行业咨询 国外林业新技术 小编:张新空发布时间2014-02-11来源:林业英才网 一、鉴别树木的新装置日本科......

    合成氨各工序工艺详细流程

    一、合成氨装置工艺流程说明 合成氨装置由一氧化碳变换、酸性气体脱除、硫回收、气体精制、合成气压缩、氨合成、冷冻工序共7个工序组成。 1.一氧化碳变换工序工艺流程说明......

    合成氨工艺的改进与节能

    合成氨工艺条件的改进与节能 杨荣安徽建筑工业学院材化学院应用化学专业 合肥 230601 摘要 本文从合成氨工艺中所存在的一些高能耗问题入手,主要分析了合成氨工艺的改进方......

    工程机械国外行业新技术及发展趋势

    工程机械国外行业新技术及发展趋势 (一)系列化、特大型化 系列化是工程机械发展的重要趋势。国外著名大公司逐步实现其产品系列化进程,形成了从微型到特大型不同规格的产品。与......

    合成氨精脱硫工艺介绍(小编推荐)

    氨气合成工艺流程图 新乡中科化工合成氨工艺 煤„„造气„„ 净化除尘„„静电除尘„„ 脱硫„„合成甲醇(CO+2H2-----CH3OH △H1 =651kj/mol 吸热)CO置换„„脱碳„„精......

    合成氨工艺需要高压的原因5则范文

    合成氨工艺需要高压的原因 【传统观点】 1.为了提高氨气和氢气的转化率 2.为了提高氮气和氢气的反应速率 3.由于经济方法的原因,工艺上不能是太高的压强 【质疑】 1.工业上,并不一......