第一篇:核能及其应用
目录
摘 要............................................................................................................................1 关键词..........................................................................................................................1 Abstract........................................................................................................................1
引言
1什么是核能
2核能的可利用性及其优越性.....................................................................................2 3核能的利用与发展.....................................................................................................4 3.1核反应堆与核电站..........................................................................................4 3.2压水堆棒形核燃料元件..................................................................................6 4核能发电的利与弊.....................................................................................................7 4.1核能发电的利处..............................................................................................7 4.2核能发电的弊端..............................................................................................8 结论................................................................................................................................8 参考文献........................................................................................................................9
核能及其应用
摘 要:讨论了核能的发展与利用,探讨了核能的可利用性及其作为资源的优越性,同时也论述了核能的弊端并且说明了和平利用核能的重要性。
关键词:核能;和平利用;利与弊。
The peaceful use of nuclear energy and its two sides Abstract: The development and utilization of nuclear energy are discussed, and the availability of nuclear energy as resources superiority is probed into, and also the disadvantages of nuclear power use and illustrates the importance of the peaceful use of nuclear energy are discussed.Keywords: nuclear power;the peaceful use of;pros and cons.引言
1951年美国首次在爱达荷国家反应堆试验中心进行了核反应堆发电的尝试,发出了100千瓦的核能电力,为人类和平利用核能迈出了第一步。此后不久,1954年6月,原苏联在莫斯科近郊粤布宁斯克建成了世界上第一座向工业电网送电的核电站,但功率只有5000kw。1961年7月,美国建成了第一座商用核电站——杨基核电站。该核电站功率近300mw,发电成本降至9.2美厘/度,显示出核电站强大生命力。今天,一些经济发达的国家。由于经济的高速发展与能源洪应的矛盾日趋突出,同时,传统的能源工业造成的环境污染及温室效应严重威胁人类生存环境,因此,不仅缺乏常规能源的国家如法国、日本、意大利等发展核电站,而且常规能源煤、石油、水电等非常丰富的国家如美国、加拿大等也在大力发展核电站。截止1995年全世界运转的核电站总数达438座。其中美国运转的核电站总数达109座,核发电量创下6730亿千瓦小时的最高记录,在美国电力生产中核电比例达22.5%。法国核发电量比前年增长4.9%,达3580亿千瓦小时,运行中的56座核电站发电量占全国总发电量76%,而且去年出口核电达 700亿千瓦小时。核电已成为法国第六大出口产品。日本,由于其常规能源资源短缺,对核电的开发大为重视,目前运转中的51座核电站,供应全国28%的电力总需求。
1什么是核能
核能是人类历史上的一项伟大发明,同时也可以叫它为原子能。这离不开早期西方科学家的探索发现,他们为核能的应用奠定了基础。居里夫人经过4年的艰苦努力发现了放射性元素钋和镭。1905年爱因斯坦提出质能转换公式[1]。20多年以后德国科学家奥托哈恩用中子轰击铀原子核,发现了核裂变现象,核能源开始进入资本主义国家的军事领域。
二战时,原子弹诞生了。人类开始将核能运用于军事、能源、工业、航天等领域。美国、俄罗斯、英国、法国、中国、日本、以色列等国相继展开对核能应用前景的研究。核能有以下几个分类:
核裂变能:所谓核裂变能是通过一些重原子核的裂变释放出的能量。核聚变能:由两个或两个以上氢原子核结合成一个较重的原子核,同时发生质量亏损释放出巨大能量的反应叫做核聚变反应[2],其释放出的能量称为核聚变能。核衰变:核衰变是一种自然的慢得多的裂变形式,因其能量释放缓慢而难以加以利用。
2核能的可利用性及其优越性
核电是浓集、清洁、安全和经济的能源。首先,核能是高度浓集的能源,核电站可建立在最需要用电的地方,不受燃料运输的限制。l公斤铀裂变产生的热量相当于1公斤标准煤燃烧后产生热量的270万倍[3]。因此,核电站特别适合于缺乏常规能源而又急需用电的地区,如我国的东南、华南地区.核能是后备储量最丰富的能源,铀在地球上的储量相当丰富,等于有机燃料储量的20倍。
核能是清洁的能源,有利于保护环境目前,世界上80%的电力来自烧煤或烧油的火力发电站,燃烧后的烟气排放到大气中严重污染环境。相同规模的火电站释放出的放射性比核电站大几倍。煤燃烧后排放的一氧化碳、二氧化碳、硫化氢和苯并芘,容易形成酸性雨,使土壤酸化,水源酸度上升,对植物及水产资源造成有害影响,破坏生态平衡,苯并芘还是一种强致癌物质。同时大气中二氧化碳 2 浓度增加还导致大气层的“温室效应”。另外,煤和石油又是重要的化工原料,大量烧掉十分不利于化学工业的发展,是十分可惜的浪费。
核能又是安全的能源经过几十年的发展和完善,核电站已成为最安全的部门之一。我国核工业多年的安全记录就是良好的佐证。一座反应堆运行一年称为一堆年,三里岛事故之前,全世界商用核电站已运行了1400堆年。三里岛事故是鉴于设计、管理、操作与设备的缺陷交织在一起而造成的十分罕见的事故,只要其中任何一个环节的问题得到排除,就不可能出现这样的后果。事故后果也没有舆论宣传的那样严重,事故中主要安全系统全都自动投入,有专家认为这从反面证实了核电站的安全性。1986年4月苏联切尔诺贝利核电站又出现了重大事故,专家们认为原苏联核电站特别是早期的,安全设施较差,没有安全壳.而事故的直接原因是由于在进行某一试验时违反操作规程,导致信号指示和控制系统没有起作用。如今国际原子能机构和各国的国家安全部门都建立了一系列的安全法规和准则,对核电站的安全进行了严格的管理。
核能也是经济的能源.世界上已运行核电站的经验证明,尽管它的造价比火电站高30—50%,但由于燃料费和运输费较低,它的发电成本仍比火电约低30%,而且随着核电站的技术不断完善和提高,成本还将继续降低日本能源经济研究所预测,至2010年日本的核电成本为8.9日元/千瓦小时,而煤电和油电成本分别为10.45日元/千瓦小时和13.06日元/千瓦小时[4]。因此,有专家们预计,在未来的城市集中供热工程中,逐步采用低温核供热技术是必然趋势。
另外,水力发电虽然很清洁,但毕竟资源有限,所以,核能发电越来越成为各国努力的对像。
3核能的利用与发展
核能发电的历史与动力堆的发展历史密切相关。动力堆的发展最初是出于军事需要。1954年,苏联建成世界上第一座装机容量为 5兆瓦的核电站。英、美等国也相继建成各种类型的核电站。到1960年,有5个国家建成20座核电站,装机容量1279兆瓦[5]。由于核浓缩技术的发展,到1966年,核能发电的成本已低于火力发电的成本。核能发电真正迈入实用阶段。1978年全世界22个国家和地区正在运行30兆瓦以上的核电站反应堆已达200多座,总装机容量已达107776兆瓦。80年代因化石能源短缺日益突出,核能发电的进展更快。到1991 年,全世界近30个国家和地区建成的核电机组为423套,总容量为3.275亿千瓦,其发电量占全世界总发电量的约16%[6]。世界上第一座核电站—苏联奥布宁斯克核电站。
3.1核反应堆与核电站
能维持可控自持核裂变链式反应的装置称为核反应堆。
原子能工业是在第二次世界大战期间发展起来的.当时全力制造核武器以满足军事需要。50年代以来,原子能用于和平事业有了飞速发展,所以核反应堆类型和数量增多。按照核反应堆的用途分类,大体可分为下列几类:
生产堆:主要用于生产易裂变材料和其他材料,或用于工业规模的辐照,称为生产堆.50年代建成的第一批石墨水冷堆和天然重水堆,都是生产军用239Pu。239Pu是一种易裂变物质,可用作核武器原料,氚是氢弹的重要原料。
试验堆:主要是为取得设计或研制一座反应堆或一种堆型所需的堆物理或堆工程数据而运行的反应堆。例如用于核物理、放射化学、生物、医学研究和放射性同位素生产等,也可以用于反应堆元件、结构材料考验以及各种新型反应堆自身的静、动态特性研究等等。
用于生产动力的反应堆称为动力堆,如核电站、核供热、核潜艇等所用的反应堆就是这种类型。目前常用的动力堆型分为四大类:
1.石墨气冷堆——包括最早的镁诺克斯堆,改进型气冷堆及高温气冷堆。该反应堆是以石墨为慢化剂,气体作冷却剂的堆型。镁诺克斯堆以天然铀为燃料,燃料包壳是镁诺克斯镁合金,用二氧化碳冷却.镁诺克斯进一步发展为高温气冷堆。它以氦为冷却剂避免了对石墨的腐蚀作用,取消了用金属材料制成的燃料包壳,其燃料是碳化钠及碳化针混合物的颗粒,燃料颗粒弥散在石墨中,制成燃料元件,装入石墨砌块的燃料孔道中。由于以上措施,大大提高了中子的经济利用及运行温度,致使高温气冷堆热效率提高40%以上[7]。此外高温气冷堆燃料中的钍是增殖原料,它可使反应堆获得较高的转换比目前我国清华大学核研院对高温气冷堆的研究取得了一系列重大成果。
2.轻水堆 轻水堆有两种类型,一是沸水堆,一是压水堆。两者均用轻水作慢化剂兼冷却剂;用低富集度二氧化铀制成芯块,装入锆合金包壳中作燃料,沸水堆不需另设蒸汽发生器、但由于蒸汽带有一定的放射性,对汽轮机的厂房要屏蔽,同时对检修增加了困难[8]。据统计,当今核电站的80%为压水堆。我国秦山 一期和大亚湾核电站均属此类。“九五”期间秦山二期工程、广东核电站以及辽宁核电站也将采用压水堆。
3.重水堆 重水堆是以天然铀作燃料,以重水堆作慢化剂的堆型。它是加拿大重点发展的堆型,以坎都型为代表。由于它用数百根压力管代替整体的压力容器,压力管可以成批生产,易于保证质量,在扩大堆容量时只须多加压力管数,有利于标准化。压力管内,可以实现不停堆装卸料。这样可控制各燃料棒束达到均匀的燃耗深度,有利于充分利用燃料,减少停堆时间,提高反应堆的有效利用率。而且重水堆采用天然铀为燃料,无需设立浓缩铀工厂,对分离能力不足的国家,发展此种堆型特别有利。我国“九五”期间,秦山核电三期工程将引进加拿大的重水堆。重水堆所用重水价格昂贵,防止泄漏及回收泄漏出的重水是一个特别棘手的问题。
4.钢冷快堆钠冷快堆就是钠冷却快中子堆在核能发电问题上,必须考虑增殖问题,否则对核燃料资源的利用是极为不利的。增殖堆的采用,可以将核燃料
资源矿大数百倍快堆是利用中子实现核裂变及增殖。而前述石墨气冷堆,轻水堆和重水堆,都是热中子堆。对每次裂变而言,快堆的中子产额高于热中子堆,且所有结构材料对快中子的吸收截面小于热中子的吸收截面这就是实现增殖的原因。
钠冷快堆用金属钠作冷却剂。钠在98℃时熔化;883℃时沸腾,具有高于大多数金属的比热和良好的导热性能,而且价格较低,适合用作反应堆的冷却剂。
国际快堆的发展已有较长的历史,据报道,1995年8目29日,日本文殊28万千瓦快堆以5%的额定功率l.4万千瓦并入电网[9]。不同类型的核反应堆,相应的核电站的系统和设备有较大的差异。以压水堆为例,核电站是由核反应堆、一回路系统、二回路系统及其他辅助系统组成。核反应堆是核电站动力装置的重要设备,同时,由于反应堆内进行的是裂变反应。因此它又是放射性的发源地。一回路系统由反应堆、主循环泵、稳压器、蒸汽发生器和相应的管道、阀门及其他辅助设备所组成,它形成一个密闭的循环回路,将核裂变所释放的热量以水蒸汽形式带出.二回路系统是将蒸汽的热能转化为电能的装置,并在停机或事故情况下,保证核蒸汽系统的冷却。辅助系统的主要作用是保证反应堆和回路系统能正常运行,为一些重大事故提供必要的安全保护及防止放射性物质扩散的措施。3.2压水堆棒形核燃料元件 核反应堆堆芯结构是反应堆的核心构件,在这里实现核裂变反应,核能转化 为热能;同时它又是强放射源.堆芯由核燃料组件、控制棒组件等组成。现代压水反应堆的燃料是采用低浓铀作核燃料。
核燃料元件制造的第一大工艺过程是在比工车间里生产为满足一定性能要求的二氧化铀粉末。我国目前采用技术上较成熟的ADU法制取二氧化铀粉末。主要过程是将六氟化铀汽化,经水解生产成氟化铀铣,在通有氨水的沉淀槽转化为ADU粉末。经氢气还原为二氧化铀第二大工艺过程是将二氧化铀粉末压制成粗块,经烧结、磨削成一定性能要求、一定尺寸和规格的圆柱形二氧化铀芯块。在经装配车间把二氧化铀芯块和长棒形空锆管装配成核燃料元件棒,并且棒内充入一定量的氦气,两端密封;然后,按一定的排列方式排列成正方形或六角形的栅阵,中间用几层弹簧夹型的定位格架将元件棒夹紧,上下两端固定骨架构件上下管座,构成棒束型的燃料元件。
4核能发电的利与弊
4.1核能发电的利处
核能发电最大的优势就是我们所认识的,能量巨大。它以少量的核子燃料即可产生大量的能量。低浓缩铀1吨具有相当于约5万吨的重油之能量。除此之外,核能发电的优势还有以下几点:
污染低。核能发电的方式是:利用核反应堆中核裂变所释放出的热能进行发电。核能发电不会排放巨量的污染物质到大气中,不会造成空气污染。尤其是同火电站相比,核能发电不会产生地球温室效应的“罪魁祸首”--二氧化碳。核电站设置了层层屏障,基本上不排放污染环境的物质,就是放射性污染也比烧煤电站少得多。
从燃料资源上而言,地球有望供应。世界上有比较丰富的核资源,核燃料有铀、钍氘、锂、硼等等,全球铀的储量约为417万吨。地球上可供开发的核燃料资源、可提供的能量是矿石燃料的十多万倍。
运输方便、成本低。核燃料能量密度比起化石燃料高上几百万倍,故核能电厂所使用的燃料体积小,运输与储存都很方便。例如,核电厂每年要用掉80吨的核燃料,只要2支标准货柜就可以运载。如果换成燃煤,需要515万吨,每天要用20吨的大卡车运705车才够4.2核能发电的弊端
[11]
[10]
。核废料处理需严谨。使用过的核燃料,虽然所占体积不大,但因具有放射性,因此必须慎重处理。一旦处理不当,就很可能对环境生命产生致命的影响。核废料的放射性不能用一般的物理、化学和生物方法消除,只能靠放射性核素自身的衰变而减少。核废料放出的射线通过物质时,发生电离和激发作用,对生物体会引起辐射损伤。
目前,国际上处理高放射性核废料的方式主要有“再处理”和“直接处置”两种。“再处理”主要是从核废料中回收可进行再利用的核原料;“直接处置”是指将高放射性废料进行地下埋藏,一般经过冷却、干式储存、最终处置三个阶段。美国就一直采取地下掩埋的措施来处理核废料。
热污染。核能发电热效率较低,因而比一般化石燃料电厂排放更多废热到环境裏,故核能电厂的热污染较严重。
核能发电被认为存在风险。核裂变必须由人通过一定装置进行控制。一旦失去控制,裂变能不仅不能用于发电,还会酿成灾害。全球已经发生了数起核泄露事故,对生态及民众造成了巨大伤害。有些环保人士就认为,和其他可再生能源相比,核能并不是一种安全的能源。
结论
人们对核电站使用的担心集中在核安全问题上,原苏联切尔诺贝利事故以及上段时间所发生的广岛核泻漏导致一些人对核电的恐惧心理,给和平利用核能蒙上阴影,经专家事后分析,三里岛事故和切尔诺贝利事故都在很大程度上是人为因素造成的。核能技术发展至今,已进入成熟阶段,尤其采用快中子增殖反应堆,既可提高核电站的安全系数,又较少产生核废料,而且所产生核废料较容易处理此外,这种反应堆还可少量处置老式反应堆产生的核废料,在燃烧过程中销毁老式反应堆产生核废料中放射性的钚及锕系元素。有关专家认为。此种反应堆具有很高的运行可靠性和安全性,并是目前销毁部分核废料的最佳方法.目前,国际核能界正致力发展快中子增殖堆。此种反应堆运行时,一方面消耗核燃料,产生热能而发电,另一方面产生新的核燃料钚,并且产出大于消耗、并保持核能的经济性;同时最主要是依靠核燃料、冷却剂、放射性废物及核工艺的其他组份所固有的基本物理化学性能和规律来消除事故,这将是人类“第二个核时代”的主要 7 内涵。这一事实表明,随着世界“能源危机”的加剧,生态环境的进一步恶化,利用清洁、安全的核能将是人类不可回避的课题。
参考文献
[1] 冯晓.核能与技术经济[M].国土资源技术管理,2008,8(15).[2] 彭红.人类安全呼吁核理性[J].南华大学学报,2007,6(15).[3] 韦中桑.漫谈核能的历史[M].现代物理知识,2005,3(18).[4] 刘艳红.核能是危险的还是安全的[J].科学之友,2009,3(10).[5] 世界核能发电的现状与今后发展展望[J].环球能源网,2008,11(11).[6] Wayne C.The toxins of cyan bacteria[J].Scientific American,1994,270(1):25.[7] Buchberger B,Collins G E.Computer Algebra Symbolic and Algebraic Computation[M].New York:Springer Versa,1998:35.[8] 冯晓.核能与技术经济[M].国土资源技术管理,2008,8(15).[9] 彭红.人类安全呼吁核理性[J].南华大学学报,2007,6(15).[10] 韦中桑.漫谈核能的历史[M].现代物理知识,2005,3(18).[11] 世界核能发电的现状与今后发展展望[J].环球能源网,2008,11(11).
第二篇:核能(本站推荐)
核能与核电原理
结业论文
姓名:朱少波 学号:U201115536 班级:电气中英1101班
2014年12月3日星期三
核电站事故对中国核电的影响
近两年来,由于中国国民经济持续快速增长,电力以及能源等的需求量不断增大。随着中国经济的增长,作为主要动力的电力,预计到2020年装机总量将达到8亿~9亿千瓦左右,由于目前中国电力结构以煤电为主,要实现上述目标,如全部用煤势必给资源、采掘、运输及环境带来难以承受之重。电力结构如果得不到优化,能源与环境两大问题的负面影响将难以克服。
在这种情况下,中国迫切需要寻找一种经济、高效的新能源。而风电、太阳能发电、潮汐发电等各类新能源,至今尚未解决电力大规模生产及经济性的问题。目前,能大规模生产电力的方式唯有核电,加快发展核电因此成为解决中国电力供应问题的必然选择。
中国核电建设已有20年的历史,截至目前中国共有核电站8座,共有15台机组,其中已建成运行的9台,正在建造的两台,已报送国务院并得到批准近期将开工的4台。
20年来,中国核电发展虽然进展显著,但距世界水平仍有很大的差距。目前全核电占电能的比重平均为17%,已有17个国家核电在本国发电量中的比重超过25%。而中国核发电量占总量却不到2%,远不到世界平均水平,更远远低于法国、美国85%和30%的水平。长远来看,中国的核能发电潜力巨大。根据规划,到2020年,中国核电装机比重将从目前的1.6%上升到4%左右,核电的装机容量将达到3600万千瓦左右,这个速度相当于每年建一座“大亚湾”。从配套发展角度来看,该规划将带动核燃料各个环节的能力和规模到2020年翻两番,必将为国家带来丰厚的经济利益,同时也将有效地解决资源及环境问题,产生良好的社会效益。
但是根据马克思哲学理论的教导,任何事情都有两面性,核能的发展也是一把双刃剑。随着全球多个国家相继在空气、云层或农作物中检测出不同程度的微量放射性物质,有关核能的担忧和怀疑情绪正在全球范围内蔓延。有迹象显示,在民众反核声浪的推动下,不少国家已被迫对本国核电政策作出调整。如在日本核事故之后,德国政府宣布暂停延长使用过期核电站计划3个月,并关闭7座核电站,对143座核电站进行安全检修。其环境部长更表示,将在2020年之前逐步淘汰核能。此外,瑞士也宣布停止修建核电设施申请的审核,并对境内所有核电站提前进行安全检查。
安全利用核能始终是核电事业发展的首要问题。在削减碳排放的今天,核电已经在发挥着不可替代的作用。然而,安全方面的担心很有可能阻止核电行业复兴——至少在西方的很多国家,民众都强烈反对政府兴建核电站。核事故不会去理会什么国界。日本也远不是利用核技术的唯一地震高发国家。我们生活在一个有核世界。日本福岛的核事故,正好也为其他拥有核技术以及合理发展核电事业的国家敲了警钟。我们该如何确保核设施安全运转,在发生类似情况下我们的应急措施是否完善,我们自己的硬件设备与人为业务是否过硬,等等诸多问题,都不得不引起我们的深思,给我们带来了新的启示。
第一:核电发展必须充分考虑环境变化等自然因素,核电站尽量建在不易发生重大灾害的地区。例如,日本福岛核泄漏是由于特大地震伴随海啸袭来从而引发的,而近几年由于人类对环境的破坏,灾害丛生地震频发。因此,中国核电建设的当务之急就是在设计的层面上充分考虑发生地震的可能性,在抗震方面的设计应该做好最坏的打算。只有这样,才能确保不出问题。在当前东部率先发展的大趋势下,我国沿海地区的经济和人口密度急剧增大。各级政府必须高度重视海洋灾害可能造成的影响,切实提高沿海地区的灾害防御能力。
第二:核电设施应该做好严格的监测和维护,严格禁止这些设施出现超期服役现象,而且不管在怎样的紧急情况下,电站内都必须拥有稳定可靠的“多路”供电系统。据报道,在福岛核电站事故中,泄漏的最主要原因是海啸超出了设想的水平,海啸引起的滔天洪水将柴油发电机房淹没,造成应急供电系统不能工作。并且福岛一期核电站原本设计寿命已经到期,但出于成本考量而继续运作,尽管在今年2月份的评估报告中,东京电力认为这种超期服役不存在风险,但由于其安全设计存在缺陷,最终导致了事态的恶化。
第三:核电发展必须严把质量关。核电是人类主要的清洁能源,具有高效、环保、低成本等特点,大力发展核电等清洁能源,是中国为了适应经济增长和环境保护需要而提出的重要经济战略,是我国经济可持续发展的需要。目前我国已经进入了核电高速发展的时期,核电一旦建成,将会接受时间的考验长期运行,中国同时或者陆续建设这么多台核电机组,我们必须十分重视建设质量,不能为了追求发展速度而降低了建设质量。
第四:对核电这种含有潜在高风险的行业要提前做好相应的应对措施。正所谓有备无患。像日本这种作为世界上利用核能最早也最普遍的国家,核能安全领域中的措施在世界上处于领先水平,在切尔诺贝利核电站事故之后,更是加大了对核电设施的防护力度,设计了多重应对措施,然而,在这场日本历史上最大的地震来袭之后,其既有防护措施却显得捉襟见肘,用于应急启动的电源无法运作,直接导致了后续一系列危机的产生和蔓延。中国核电设施一定要事先制定切实可行的应急预案。在安全运行的时候,就要提前做好一旦发生紧急事故如何处理的预案,对于一些有着潜在危害性的设施,管理者更应当加强事故处理和应对训练,特别是针对极端情况发生时的模拟演练更需提上议事日程,以避免一旦发生紧急事故而束手无策。
第五:我国应该还要在核能法律领域做出一些举措。由于我国在核安全和辐射安全方面存在法律空白,中国核安全问题比较突出,尽快出台核安全法律,这也正是进一步响应了习主席今年关于依法治国的号召,建议由全国人大常委会尽快制定出台核安全法,对核能安全监督、核能监管主体及责任、核事故应急处理以及相关法律责任进行全面规范。在人民群众中宣传法律意识,普及法律知识是非常切实有必要的,这样也可以进一步增加普通民众的自我保护意识,增加普通群众对核安全的进一步认识和了解,当整个社会对核能的认识达到了一定的程度的时候,相信对我们应用核能也会带来不小的帮助。
如今这个一次能源日益匮乏的世界上,石油与煤炭也不能够撑起我们日常庞大的能源开销,而太阳能、地热、风能等技术又受到了极大技术层面的限制,无论从技术层面还是长远可行性的发展而言,核能都不得不首当其冲地成为竞争性极其优越的首选能源,而核电也就不能不成为当今以致以后整个社会发展的主流趋势。相信中国必定会在核能的研究以及应用领域走在世界的前列。在未来,也许社会超过一大半的电力供应会来自核能。我们显然不能只是因为担心核电带来了一定负面效应就停下我们探索的脚步,任何事情都是一把双刃剑,带来利端的同时也必然会产生了弊端。一个封闭严密、安全系数超高的核电设施都有他的风险性,都可能因政策、人为的造成周边乃至大半个世界的不安。深藏在世界核武库中的数万枚杀伤力远大于类似核能事故的核弹,给人类带来的威胁其实更大!而核电站事故到给我们更多的应该是思考怎样高效而安全的利用核能为我们人类服务,在生活领域给我们带来极大的帮助,这对于我们来说既是机遇,又是挑战,但是有一点我们也还是必须正确认识,那就是无论我们怎样发展,保护人民的生命财产安全永远应该被放在第一位,一切都不该越过这个界限,这样我们才可以继续思考如何更好的发挥核能的巨大潜力。
第三篇:核能可持续发展
核能可持续发展
核能(nuclear energy)是人类历史上的一项伟大发现,这离不开早期西方科学家的探索发现,他们为核能的应用奠定了基础。
1895年德国物理学家伦琴发现了X射线。1896年法国物理学家贝克勒尔发现了放射性。1905年爱因斯坦提出质能转换公式。
1938年 德国科学家奥托·哈恩用中子轰击铀原子核,发现了核裂变现象。1942年12月2日美国芝加哥大学成功启动了世界上第一座核反应堆。1954年苏联建成了世界上第一座核电站------奥布灵斯克核电站。在1945年之前,人类在能源利用领域只涉及到物理变化和化学变化。二战时,原子弹诞生了。人类开始将核能运用于军事、能源、工业、航天等领域。美国、俄罗斯、英国、法国、中国、日本、以色列等国相继展开对核能应用前景的研究。
大自然的奉献与人类的聪明才智的结合缔造了核能,一个世纪的时间,核能已经成为了世界能源家族中最重要的一员了。在今天,核能主要有四个作用:
第一也是最主要的用途即用于电力生产。当今世界面临的最大问题之一就是能源短缺。像石油、天然气、煤炭,这些化石燃料不但是污染源,而且终将耗尽。此外,从石油中可以提炼石油化工产品或更有价值的产品,所以应该节约使用石油。现在世界上许多国家,特别是工业国家几乎都用核能发电,世界16%的电也是通过核能保障的。世界上六分之一的电是由核电站生产的。现在许多国家还在继续建造核电站。
第二个用途即发展医学技术。现在核技术的发展越来越使医学技术受益,许多病症需要用放射性物质来治疗和预防。如:核放射和核药物对确诊和治疗癌症就有很大的功效。科学家们制造了各种核放射仪器,用其确诊脑癌、肠癌、前列腺癌和乳癌。这些机器对医生对症下药提供了很大帮助。此外,核放射物还能确诊甲状腺、传染病、关节炎、贫血等症状,这使医学越来越依赖于核技术。现今可以用核能而发明的“CT”和核磁共振来确诊每个人身体上不适的地方,并且其误诊率非常低。
第三个用途即用于处理食物。核技术对食品的影响也越来越大,如有些容易腐坏的食品,现今可以通过核放射物处理就不易腐坏。与此同时,专家们利用核技术消灭食物和植物中的病毒,从而延长事食物的有效期。核技术对食品的另一益处是改变事物食物基因,提高植物质量。伊朗北部古尔冈市农业与自然资源学院的副校长拉希米扬博士说:‘核技术还能用于改变植物基因,以增加植物的种类,从而挑选优质品种。科学家还能利用核技术提高农作物的产量和质量,并且使农作物抵御各种灾害。”
第四个用途为用于其他事物。如,在和技术的帮助下,可以勘探地下水源,或发现水坝受损或渗水。此外核技术还能淡化水,能扫雷。也还可以帮助兽医,对畜牧业产品的质量有一定的提高作用。核能是人类最具希望的未来能源。目前人们开发核能的途径有两条:一是重元素的裂变,如铀的裂变;二是轻元素的聚变,如氘、氚、锂等。重元素的裂变技术,己得到实际性的应用;而轻元素聚变技术,也正在积极研制之中。目前核能的原料开采除了传统的陆地资源开采,还包括两种新来源:海洋核能与月球核能。
月球核能:早在20世纪60年代末和70年代初,美国阿波罗飞船登月时,6次带回368.194千克的月球岩石和尘埃。科学家将月球尘埃加热到3000华氏度时,发现有氦等物质。经进一步分析鉴定,月球上存在大量的氦-3。科学家在进行了大量研究后认为,采用氦-3的聚变来发电,会更加安全。有关专家认为,氦-3在地球上特别少,但是月球上很多,光是氦-3就可以为地球开发1万-5万年用的核电。地球上的氦-3总量仅有10-15吨,可谓奇缺。但是,科学家在分析了从月球上带回来的月壤样品后估算,在上亿年的时间里,月球保存着大约5亿吨氦-3,如果供人类作为替代能源使用,足以使用上千年
在当今世界,核能已经被许多国家利用起来,主要用于发电。但是在人类利用核能的一个世纪的时间内,核电站出现过严重的问题,历史上出现过最严重的问题应当就是切尔诺贝利核电站事故与广岛和长崎原子弹爆炸事件。
切尔诺贝利核电站事故于1986年4月26日发生在乌克兰苏维埃共和国境内的普里皮亚季市该电站第4发电机组爆炸,核反应堆全部炸毁,大量放射性物质泄漏,成为核电时代以来最大的事故。辐射危害严重,导致事故后前3个月内有31人死亡,之后15年内有6-8万人死亡,13.4万人遭受各种程度的辐射疾病折磨,方圆30公里地区的11.5万多民众被迫疏散。为消除事故后果,耗费了大量人力物力资源。广岛与长崎原子弹爆炸发生在第二次世界大战末期,美军在1945年8月分别在日本的广岛市与长崎市投下原子弹,这也是原子弹唯一一次在战争中使用。美国计划使用曼哈顿计划中成功制造的核武器,并分别在8月6日及9日在广岛与长崎投下小男孩原子弹及胖子原子弹。广岛约有90,000-166,000人因核爆而死亡,长崎则有60,000–80,000人死亡。这两起事故因为其核物质的强放射性,是几十万人死去,并且还直接影响着后代,在切尔诺贝利发生的27年后的今天,人们依然谈其色变,据专家估计,消除这场浩劫对自然环境的影响需要800年,而持续的核辐射则会延续10万年。在人类灾难史上,这是何其严重的一笔。总的来说,核电的缺点可以概括为:
1.核能电厂会产生高低阶放射性废料,或者是使用过之核燃料,虽然所占体积不大,但因具有放射线,故必须慎重处理,且需面对相当大的政治困扰。
2.核能发电厂热效率较低,因而比一般化石燃料电厂排放更多废热到环境裏,故核能电厂的热污染较严重。
3.核能电厂投资成本太大,电力公司的财务风险较高。4.核能电厂较不适宜做尖峰、离峰之随载运转。5.兴建核电厂较易引发政治歧见纷争。
6.核电厂的反应器内有大量的放射性物质,如果在事故中释放到外界环境,会对生态及民众造成伤害
观察到核能的缺点,同时我们也正视核能的优点。据了解,全世界已有30个国家拥有核电站。在这些国家中,有26个国家有建造更多其他核电站的计划,而有4个国家决定不再建造核电站。另外,有15个暂未拥有核电站的国家正在准备建造属于这些国家的核电站。法国是核电利用很高的国家,其现有59座核电站,供应全国87.5%的电量,可以说,核电是法国生活必不可少的部分。因为有了核能,我们对传统能源不在那么担心,面对现今世界的能源短缺,污染环境等问题,核能发电是再好不过的选择了。总的来说,核能的优点可以概括为以下几点;
1.核能发电不像化石燃料发电那样排放巨量的污染物质到大气中,因此核能发电不会造成空气污染。
2.核能发电不会产生加重地球温室效应的二氧化碳。3.核能发电所使用的铀燃料,除了发电外,暂时没有其他的用途。4.核燃料能量密度比起化石燃料高上几百万倍,故核能电厂所使用的燃料体积小,运输与储存都很方便,一座1000百万瓦的核能电厂一年只需30公吨的铀燃料,一航次的飞机就可以完成运送。
5.核能发电的成本中,燃料费用所占的比例较低,核能发电的成本较不易受到国际经济情势影响,故发电成本较其他发电方法为稳定。
我们担心将来核能会不受控制,担心将来核能会用于战争毁灭地球,但这不是取消核能的必须要求,核能清洁、高效,是无法替代的优秀能源,在发生的所有核能事件中,都是人为的疏忽或大意才造成了无法挽回的后果,有了前人的教训,我相信每一个国家都会重视核电站的安全与核能的安全,未来是核能的天下。
第四篇:走近核能专题
走近核能
【关键词】:核能
核能发展
开发利用
核能发电
环境污染 【摘要】:
当今世界能源问题已经成为影响人类发展的的大问题,许多问题的产生都直接或间接的与能源问题有关,核能作为一种清洁、安全的能源,将在人类社会中起到越来越重要的作用。正文:
能源是人类社会和经济发展的保障性资源,同时能源问题也是世界性的问题。进入21世纪以来,当今世界能源问题已经成为影响人类发展的的大问题,许多问题的产生都直接或间接的与能源问题有关。目前人类所使用的能源主要是化石能源,自19世纪70年年代产业革命以来,化石燃料的消费量急剧保持增长,90%以上的世界经济活动所需的能源都依靠化石能源提供,由于大量消耗,这类资源正趋于枯竭;同时化石燃料的大规模利用也带来了严重的环境污染,导致了温室效应和全球气候变暖等一系列环境问题。能源危机与环境危机日益紧迫,寻找新的清洁、安全、高效的能源是人类所面临的共同任务。
现代社会中,除了煤炭、石油、天然气、水力资源外,还有许多可利用的能源,如风能、太阳能、潮汐能、地热能等等,但是由于技术问题和开发成本等因素,这些能源很难在近期内实现大规模的工业生产和利用;而核能是一种经济、安全、可靠、清洁的能源,同各种化石能源相比起来,核能对环境和人类健康的危害更小,这些明显的优势使核能成为新世纪可以大规模使用的安全和经济的工业能源。从20世纪50年代以来,前苏联、美国、法国、德国、日本等发达国家建造了大量的核电站,由于核电具有巨大的发展潜能和广阔的利用前景,和平发展利用核能将成为未来较长一段时期内能源产业的发展方向,核能将在人类社会中起到越来越重要的作用。
一、核能定义及其来源
核能,又称原子能,英文名字nuclear energy,是核裂变能的简称。50多年以前,科学家在的一次试验中发现铀-235原子核在吸收一个中子以后能分裂,在放出2—3个中子的同时伴随着一种巨大的能量,这种能量比化学反应所释放的能量大的多,这就是我们今天所说的核能。核能的获得途径主要有两种,即重核裂变与轻核聚变。核聚变要比核裂变释放出更多的能量。例如相同数量的氘和铀-235分别进行聚变和裂变,前者所释放的能量约为后者的三倍多。被人们所熟悉的原子弹、核电站、核反应堆等等都利用了核裂变的原理。只是实现核聚变的条件要求的较高,即需要使氢核处于6000度以上的高温才能使相当的核具有动能实现
聚合反应。
重核裂变是指一个重原子核,分裂成两个或多个中等原子量的原子核,引起链式反应,从而释放出巨大的能量。例如,当用一个中子轰击U-235的原子核时,它就会分裂成两个质量较小的原子核,同时产生2—3个中子和β、γ等射线,并释放出约200兆电子伏特的能量。如果再有一个新产生的中子去轰击另一个铀-235原子核,便引起新的裂变,以此类推,裂变反应不断地持续下去,从而形成了裂变链式反应,与此同时,核能也连续不断地释放出来。
所谓轻核聚变是指在高温下(几百万度以上)两个质量较小的原子核结合成质量较大的新核并放出大量能量的过程,也称热核反应。它是取得核能的重要途径之一。由于原子核间有很强的静电排斥力,因此在一般的温度和压力下,很难发生聚变反应。而在太阳等恒星内部,压力和温度都极高,所以就使得轻核有了足够的动能克服静电斥力而发生持续的聚变。自持的核聚变反应必须在极高的压力和温度下进行,故称为“热核聚变反应”。
二、核能的优越性
与常规能源相比,核能有明显的优越性。第一,核能的能量密度大,消耗少量的核燃料就可以产生巨额的能量。为了使大家对于这一点有很深的印象,我们将核电厂和煤电厂在燃料消耗上作一对比。一座电功率为100万千瓦的燃煤电厂每年要烧掉约300万吨煤,而同样功率的核电站每年只需更换约30吨核燃料,真正烧掉的铀-235大约只有1吨。因此利用核能不仅可以节省大量的煤炭、石油,而且极大地减轻了运输量。
核能的第二个主要优点是清洁,有利于保护环境。众所周知,燃烧石油、煤炭等化石燃料必须消耗氧气、生成二氧化碳。由于人类大量燃烧化石燃料等,已经使得大气中的数量显著增加,导致所谓“温室效应”。其后果是地球表面温度升高、干旱、沙漠化、两极冰层融化和海平面升高等。这一切都会使人类的生存条件恶化。而产生核能,不论是裂变能和聚变能,都不需消耗氧气、不会产生二氧化碳。因此在西方发达国家,虽然目前能源和电力供应都比较充足,但有识之士仍在呼吁发展核能以减少二氧化碳的排放量。除二氧化碳外,燃煤电厂还要排放大量的二氧化硫等,它们造成的酸雨,使土壤酸化、水源酸度上升,对农作物、森林造成危害。煤电厂排出的大量粉尘、灰渣也对环境造成污染。更值得注意的是,燃烧一吨煤平均会产生0.3克苯并芘,它是一种强致癌物质。每1000立方米空气中苯并芘含量增加1微克,肺癌发生率就增加5%~10%。相比之下核电厂向环境排放的废物要少得多,大约是火电厂的几万分之一。它不排放二氧化硫、苯并芘,也不产生粉尘、灰渣。一座电功率100万千瓦的压水堆每年卸出的乏燃料仅25~30吨,经后处理就只剩下10吨了,现已有多种方法将它们安全地放置在合适的地方,不会对环境造成危害。核电站正常运行时当然也会向环境
中排放少量的放射性物质,核电站对周围居民的放射性剂量,不到天然本底的1%,不是什么严重的问题。值得指出的是,由于煤渣和粉尘中含有铀、钍、镭、氡等天然放射性同位素,所以煤电站排放到环境中的放射性、比相同功率的核电站要多几倍、甚至几十倍。
三、核能对环境的影响
虽然核能具有来源丰富、安全、清洁、高效等明显的优点,但是核能仍然可能对环境造成严重的污染,对人类社会和经济的可持续发展造成重大损害。核能的利用对环境造成的污染主要是放射性污染。核能利用上的任何疏忽、无知、差错,其结果并不亚于爆发一场小型核战争,有时甚至遗患无穷,给人类的生活乃至生存,投下可怕的阴影。目前核阴云主要来自核废料的严重污染,使用核能所产生的核废料会产生危险的辐射,并且影响会持续数千年。
到目前为止,全世界核能民用的历史上仅发生过两起重大核安全事故。1979年3月,美国三哩岛核电站二号堆发生了一次严重的失水事故,幸好由于堆的事故冷却紧急注水装置和安全壳等设施发挥了作用,使排放到环境中的放射性物质含量极小,虽然并没有造成大的人员伤亡但在经济上却造成了10到18亿美元的损失,事故的危害尚在进一步观测调查中。1984年4月,前苏联基辅附近的切尔诺贝利核电站发生事故,造成大量的发射性物质泄漏,30km范围内的居民被迫撤离,欧洲不少国家也受到轻微的核污染,引起了强烈的国际反响。据报道,有31人死亡,203人受伤,135000人被疏散。
当前对环境造成污染的放射性核素大多来自核电站排放的废物,核电可能产生的放射性废物主要是放射性废水、放射性废弃和放射性固体废物。1座100万KW的核电站1年卸出的泛燃料约为25t,其中主要成分是少量未燃烧的铀、核反应后的生成物——钚等放射性核素,核废料中的放射性元素经过一段时间后会衰变成非放射性元素。此外,还有铀矿资源的开发问题,由于铀矿资源的开发造成的废弃、废水、废渣等污染也不可忽视,对铀尾矿也必须进行妥善处理,如果处理不好,将会覆盖农田、污染水体,甚至对自然和社会都造成严重影响。一旦发生核事故或核泄漏,对人类和环境造成的影响都是灾难性的,只有加强核安全和辐射安全的管理,处理好放射性核废料,合理科学地利用核能,才能保证核能安全的开发利用。
四、发展核能的必然性
由于人类对化石能源的大规模开发利用,可供开采的化石能源日益衰竭,在世界一次能源供应中约占87.7% , 其中石油占37.3%、煤炭占26.5%、天然气占23.9%。非化石能源和可再生能源虽然发展迅猛、增长很快, 但仍保持较低的比例, 约为12.3%。根据《2004年BP 世界能源统计》, 截止到2003年底, 全世界剩余石油探明可采储量为1565.8亿吨, 2003年世界
石油产量为36.79亿吨, 即可供开采年限大约42 年。煤炭剩余可采储量为9844.5 亿吨, 可供192 年,天然气剩余可采储量为175.78 万亿立方米, 可供67 年。化石燃料在使用过程中也造成了严重的环境污染,温室效应、酸雨和全球气候变暖等全球性的环境问题不断加剧,资源危机和环境危机使人类文明的可持续发展受到制约和挑战。
在已知的可再生新能源中,由于技术上的困难和经济性等因素,已开发的太阳能、风能、沼气等均未能大规模利用,只有水电资源已大规模开发利用,尽管尚可继续开发,但仅靠水电资源难以满足经济和社会发展的需求,由此看来,要使可再生能源达到全面应用并足以支持经济持续发展的水平,还需要相当一段进一步开发的时期。由于新的可再生清洁能源目前面临技术和成本的问题,只有核能是一种既清洁、又安全可靠且经济上具竞争力的最现实的替代能源。
根据国际原子能机构的一位专家发表的报告,一座装机容量为100万KW 的燃煤电厂,每年要耗煤250万吨,所排放的废物有:二氧化碳650万吨(含碳200万吨),二氧化硫1.7万吨,氮氧化物4000吨,煤灰28万吨(其中含有毒重金属约400吨)。而同样规模的一座压水堆核电站,每年才消耗低浓铀25吨(相当于天然铀150吨),所排放的废物为:经处理固化的高放废物9吨(体积约3立方米),将被存放于地下深层与环境隔绝的岩井中,另有中放废物200吨、低放废物400吨。核电厂不排放二氧化碳、二氧化硫或氮氧化物,且1kgU-235裂变产生的能量相当于200吨标准煤。据有关报告显示,现在世界每年因燃烧化石燃料所排放的二氧化碳已达55亿吨(以碳计)之多,而截止1993年的统计,由于使用核能发电已使世界二氧化碳的排放减少了8%。所以在未来相当一段时期内,发展利用核能将成为21世纪人类应对能源危机和实现经济可持续发展的必然选择。
五、核电的发展历程
人类对核能的现实利用始于战争。核能的战争用途在于通过原子弹的巨大威力损坏敌方人员和物资, 达到制胜或结束战争的目的, 目前人类对核能的开发利用主要是发展核电, 相对与其他能源, 核能具有明显的优势。核电站的开发与建设开始于20世纪50年代,1954年,前苏联建成电功率为5000kW 的实验性核电站;1957年,美国建成电功率为9万kW 的希平港原型核电站;这些成就证明了利用核能发电的技术可行性。国际上把上述实验性和原型核电机组称为第一代核电机组。
20世纪60年代后期以来,在试验性和原型核电机组基础上,陆续建成电功率在30万kW 以上的压水堆、沸水堆、重水堆等核电机组,它们在进一步证明核能发电技术可行性的同时,使核电的经济性也得以证明:可与火电、水电相竞争。20世纪70年代,因石油涨价引发的能
源危机促进了核电的发展,目前世界上商业运行的四百多座核电机组大部分是在这段时期建成的,称为第二代核电机组。
第三代核电设计开始于20世纪80年代,第三代核电站按照URD或EUR 文件或IAEA 推荐的新的安全法规设计,但其核电机组的能源转换系统(将核能转换为电能的系统)仍大量采用了第二代的成熟技术,预计一般能在2010年前进行商用建造。从核电发达国家的动向来看,第三代核电是当今国际上核电发展的主流。
与此同时,为了从更长远的核能的可持续性发展着想,以美国为首的一些工业发达国家已经联合起来组成“第四代国际核能论坛”(GIF),进行第四代核能利用系统的研究和开发。第四代是指安全性和经济性都更加优越,废物量极少,无需厂外应急,并具有防核扩散能力的核能利用系统,其目标是到2030 年后能进行商用建造。
六、世界核能的利用现状
1954年前苏联世界建成第一座发电功率为5000KW 的试验性核电站, 美国则在1957年12月建成了发电功率达90000KW的希平港压水堆核电站。20世纪60年代到70年代, 是世界各国经济快速发展时期, 电力需求也以十年翻一番的速度迅速增长, 此时, 核电的安全性和经济性得到验证, 相对于常规发电系统的优越性鲜明地显现出来, 给核电发展提供了一个广阔的市场。核电迅速实现了标准化、批量化的建设和发展。
国际原子能机构公布的一份报告显示, 立陶宛核能发电在全国发电总量中所占的比重接近80%, 这一比重在世界上是最高的。在世界主要工业大国中, 法国核电的比例高, 核电占国家总发电量的78%, 位居世界第二, 日本的核电比例为40%, 德国为33% , 韩国为30% , 美国为22% , 而我国仅为2%右, 发展空间很大。
由于三里岛核电站事故尤其切尔诺贝利核电站事故, 核能在上世纪90年代发展速度明显放缓, 核恐惧和高成本使得核能利用较高的发达国家重新审视核电的利弊, 美国90年代一直致力于核电站的维护而不是新建;在欧洲, 许多国家也在讨论如何迅速关闭其核电厂。但进入新世纪核电又受到世界各国的重视,出现了较快的发展势头。截至2007年12月, 全世界正在运行中的反应堆有439座, 相比2002年的444座微量下降, 但发电能力稳步上升, 总发电量达到37117GW , 全世界核电供应已经达到总供电量的16%, 许多国家达到总供电量的1/3。
随着国际能源价格的进一步飙升, 2000年以来发达国家正在转变其原有的核电发展态度, 调整原有的核电发展计划。美国2005年通过能源政策法, 联邦政府开始积极鼓励建设新的反应堆。英国政府在2008年2月宣布将投巨资发展核电,在2020年以前, 新建反应堆6个, 使英国的电力供应提高18%。据国际原子能机构预测, 到2030年, 全球核电所占份额将增加到
27%。正在崛起的发展中国家能源需求旺盛, 其核能增长最快, 1999到2020年间将增长417% , 尤其是发展中的亚洲, 据世界原子能机构的统计, 未来65座正在兴建或正在立项的核电站中, 2/3分布在亚洲各国。中国目前运行核电机组11个,核电比例为119 % , 核电装机容量900万千瓦, 计划到2020年提高到4000万千瓦。印度运行核电机组17个, 核电比例为216% , 计划到2020年增加20至30个新核电机组,所以目前核电的扩展以及近期和远期的发展前景仍集中在亚洲,亚洲地区尤其是发展中国家发展核电的势头强劲。
七、我国的核能发展及其近况
中国的核工业在五十年代中期开始建立,现已形成比较完整的核工业体系。八十代初核电开始起步。中国自行设计建造的秦山30万千瓦压水堆核电站,1985年3月正式开工,1991年12月并网发电。利用外资和引进国外成套设备兴建的大亚湾核电站两台90万千瓦机组,于1987年8月开工建设,1994年投入商业运行。“九五”期间有4个核电项目8台机组开工建设,总装机容量为660万千瓦。它们分别是:1996年6月开工建设的秦山二期核电站两台60万千瓦压水堆机组,1997年5月开工建设的岭澳核电站两台100万千瓦级压水堆机组,1998年6月开工建设的秦山三期核电站两台70万千瓦级重水堆机组,这三个项目均计划于2003年建成投产;于1999年10月开工建设的田湾核电站两台100万千瓦级压水堆机组,于2005年建成投产。
核电自八十年代初起步以来,在核电站的建设和运行、前期准备工作、国产化、有关法规和管理体系的建立等方面做了大量的工作,取得了相当的进展,为今后的发展奠定了基础。
中国通过6个核电项目11台机组的建设,现已形成基本配套的核动力、核燃料科研开发工业体系;积累了科研、设计、建设、运行等一整套宝贵经验;培养和造就了一支专业齐全,具有相当实力的科研、设计和工程建设队伍,建立了一批大型实验台架,进行了大量科研攻关和设计研究。通过在建项目的实施,掌握了较多的设计资料,积累了大型核电站的工程建设和项目管理经验,国产化能力有了较大的提高。
在核燃料循环工业方面,从五十年代中期以来,中国已经逐步建立了比较完整的核燃料循环体系。随着核电事业的发展,核燃料工业得到了进一步提高,初步形成了从铀矿地质勘查、铀矿采冶、铀同位素分离、核燃料元件制造、乏燃料后处理直至核废物处理与处置等完整的核燃料循环工业体系。特别是改革开放二十年来,在与国际广泛交流的基础上,引进和开发了先进的技术和工艺,在核燃料生产的几个主要环节上,实现了更新换代,不仅对提高产品质量、降低生产成本等发挥了重要的作用,而且可以满足或基本满足“十一五”期间中国核电更大发展的需求。
第五篇:核能论文
核能利用现状与分析
摘要:核能是由原子核内部结构发生变化而释放出的能量。核能发电的历史与动力堆的发展历史密切相关。由世界第一座核电站投入运行后,核电站已经具有污染少,储量丰富,运输方便,燃料成本低,不会加重温室效应等优点,但也具有废料放射性,热效率低,泄漏后果严重等缺点。核电占世界重发电量比重日趋增大。但核燃料泄漏安全已成为世界最为关注的问题,它被认为是存在着风险的,失控后不能用于发电,还会酿成灾害。
关键字:核能;核能发电;核能前景;核泄漏
前言
能源是人类社会的生命线,一个国家开发和利用能源的水平,标志着这个国家的生产力水平、文化水平和人民生活水平。但随着人们日益对资源能量的渴求,传统的能源已经满足不了人们的需求,它们地球上的储量日益面临枯竭。
从而20世纪中期,核能成为了一种新的能源,而不是用于军事。
到了本世纪70年代,核能与核技术已在许多方面形成了新兴的产业,在西方发达国家,核技术的应用已经深入到国民经济的各个领域,技术日趋成熟,并不断取得新进展。核能的利用的优点也伴随着缺点,而且绝不能忽视的。核能原理
2Mmc由相对论的质能关系式 可知,质量和能量是相互联系的。当一个系统的能量减小时,系统向外界散发能量;反之系统吸收能量。我们知道,原子核是由质子和中子组成的,质子和种子都叫做核子。组成某一原子核的核子的的质量和与该原子核质量的差值叫做原子核的质量亏损,用m表示。原子核的质量亏损说明,在原子组成原子核的过程中有能量放出,放出的能量E由质能关系式可得:
E=mc2
这种自由核子结合成原子核时放出的能量叫做原子核的核能,用B表示。相反若要让原子分解成单个的原子,原子核要从外界吸收相应的能量。
由此可见,在原子核内蕴藏大量可利用的能量,而重核裂变和轻核裂变是获取核能的两天主要途径。[1] 世界核能历史
核能是人类历史上的一项伟大发明,这离不开早期西方科学家的探索发现,他们为核能的应用奠定了基础。
19世纪末 英国物理学家汤姆逊发现了电子。1895年 德国物理学家伦琴发现了X射线。1896年 法国物理学家贝克勒尔发现了放射性。1898年 居里夫人发现新的放射性元素钋。
1902年 居里夫人经过4年的艰苦努力又发现了放射性元素镭。1905年 爱因斯坦提出质能转换公式。
1914年 英国物理学家卢瑟福通过实验,确定氢原子核是一个正电荷单元,称为质子。1932年 英国物理学家查得威克发现了中子。
1938年 德国科学家奥托哈恩用中子轰击铀原子核,发现了核裂变现象。1942年12月2日 美国芝加哥大学成功启动了世界上第一座核反应堆。1945年8月6日和9日 美国将两颗原子弹先后投在了日本的广岛和长崎。1954年 苏联建成了世界上第一座核电站——奥布灵斯克核电站。
在1945年之前,人类在能源利用领域只涉及到物理变化和化学变化。二战时,原子弹诞生了。人类开始将核能运用于军事、能源、工业、航天等领域。美国、俄罗斯、英国、法国、中国、日本、以色列等国相继展开对核能应用前景的研究。
世界第一座核电站投入运行始于1954年6月27日,位于前苏联的奥布灵斯克。其热功率为3万千瓦,电功率为5千千瓦。发电率为16.6%、这一小型的实验性核电站标志着人类第一次能把核应用于和平建设。
此后,核电站如雨后春笋般在全国各地建立起来。然而,从二十实际八十年代开始,核能逐步由高潮走入低潮,其原因是20实际七十年代两次石油危机使工业发达国家的经济由高速发展转入到平稳发展,产业结构由高能耗向高技术低能耗方向调整,使大批项目停建,取消,核电首当其冲。截至2000年,全世界共有433座核电机组在运行,总装容量。[2] 3 核能应用现状及分析
3.1 核能优点 核能是地球上储量最丰富的能源,又是高度浓集的能源。一吨金属铀裂变所产生的能量,相当于270万吨标准煤。按照地球上有机燃料的储量和人类耗能的情况来估算,地球上煤的储量大概再过200多年即将耗尽,石油则只够用约40年。聚变反应堆成功以后,能源真可谓取之不尽,用之不竭,人类将不再为能源问题所困扰了。核电是清洁的能源,有利于保护环境。目前世界上大量燃烧有机燃料的后果是相当严重的。燃烧后排出大量的二氧化硫、二氧化碳、氧化亚氮等气体,不仅直接危害人体健康和农作物生长,还导致酸雨和大气层的“温室效应”,破坏生态平衡。比较起来,核电站就没有这些危害。核电站严格按照国际上公认的安全规范和卫生规范设计,对放射性三废,原则上是回收处理储存,不往环境排放。核电在经济上也有优势。核电厂由于特别考究安全和质量,建造费比火电厂高,一般要高出30%~50%,但燃料费则比火电厂低很多,火电厂燃料费约占发电成本的50%~60%,而核电厂的燃料费则只占20%~30%,总的看起来,一般来说核电厂发电成本与燃煤电厂成本相当,而在需要远距离运煤的地方,则要低15%~30%。我国台湾省核电厂成本仅是那里烧石油电厂成本的二分之一。核电厂燃料的运输量只及相同容量煤电厂煤炭运输量的十万分之一。以田湾核电厂为例,它两套机组的总容量为200万千瓦,每年只需核燃料48吨。如果是相同容量的烧煤电厂,每年就需烧煤600万吨。[3] 5 以核燃料代替煤和石油,有利于资源的合理利用。煤和石油都是化学工业和纺织工业的宝贵原料,能以它们制造出多种产品。它们在地球上的蕴藏量是很有限的;作为原料,它们要比作为燃料的价值高得多。[4] 所以,从合理利用资源的角度来说,也应逐步以核燃料代替有机燃料。总之,核能的优点终将为人们所确认。它的利用是解决能源问题的必由之路。
3.2 核能缺点
1.核能电厂会产生高低阶放射性废料,或者是使用过之核燃料,虽然所占体积不大,但因具有放射线,故必须慎重处理,且需面对相当大的政治困扰。
2.核能发电厂热效率较低,因而比一般化石燃料电厂排放更多废热到环境裏,故核能电厂的热污染较严重。[5] 3.核能电厂投资成本太大,电力公司的财务风险较高。
4.核能电厂较不适宜做尖峰、离峰之随载运转。
5.兴建核电厂较易引发政治歧见纷争。[6] 6.核电厂的反应器内有大量的放射性物质,如果在事故中释放到外界环境,会对生态及民众造成伤害。[7] 所以核能的利用应在法制健全,技术先进,管理规范严谨的前提下,而且存在着自然灾害的影响,导致核泄漏,产生严重后果。
3.3 核能在能源中的重要性
能源是人类社会的生命线,一个国家开发和利用能源的水平,标志着这个国家的生产力水平、文化水平和人民生活水平。
在十九世纪产业革命之前,人类消耗能源的增长,相当缓慢。产业革命以来,由于经济的发展,能源耗量也迅速增长。近一百年来,世界能耗增长了二十倍。在上世纪五十年代,世界能源年耗量相当于26亿吨标准煤,至八十年代初已超过年耗量100亿吨标准煤。2000年世界能源的年耗量已超过180亿吨标准煤。但是,迄今为止,世界耗能的85%均来自燃烧煤、石油、天然气等有机燃料。人类已经面临选择后续替代能源的问题。[8]
自然界中,除有机燃料外,核能、水力、风力、太阳能、地热、潮汐能也都是可资利用的能源。水力是无污染的能源,应充分开发使用,但水力资源终究有限,且受地理条件限制。水力发电量又随季节变化很大,故光水力满足不了日益增长的能源要求。太阳能、潮汐能、风力、地热等受多种条件限制,只能在一定条件下有限开发,很难大量使用。多种预测资料表明,即使做较乐观的估计,上述这几种能源中每种在能源总耗量中的比例,都很难超过1%。现在,技术上已较成熟,且能大规模开发使用的,唯有核能。目前,世界上正在运行发电的核电机组已有438座,总电功率为三亿五千多万千瓦,核电占世界总发电量的17%,法国核电占全国总电量的比例已达76%。[9] 所以人类对能源要求的前景来看,发展核能将是必由之路。这是因为核能有其无法取代的优点。
3.4 我国核能现状
我国是重视核能发电的。早在1955年中央制定原子能发展计划12年大纲中就提出:“用原子能发电是动力发展的新纪元,是有远大前途的。在有条件下应用原子能发电,组成综合动力系统”。1974年周恩来总理批准了30万千瓦压水堆核电站方案,作为科技开发项目,列入了国家计划。这就是秦山核电站的由来。于1991年12月15日并网发电,结束了我国大陆无核电的历史。从法国成套进口的广东大亚湾两台90万千瓦的核电机组,也分别于1993年和1994年并网发电。这两个核电站为我国核电发展创造了良好的基础。
在党中央和国务院的重视和关怀下,九五期间我国已开工建设的核电机组有八套,其中:
[10] 1.自行设计建造的秦山二期,有二套60万千瓦级压水堆核电机组,已于1996年6月正式开工,其第一套机组已于2002年2月并网发电,5月达到满功率运行。
2.广东岭澳核电站,与法国合作建设二台90万千瓦级压水堆核电机组,已于1997年5月正式开工建设,其第一套机组已于2002年5月投入商业运行。
3.秦山三期核电站,与加拿大合作建设二台重水堆70万千瓦级机组,已于1998年6月开工建设,预计其第一套机组将于2002年11月并网发电。
4.江苏连云港田湾核电站,与俄罗斯合作建设二套100 万千瓦级压水堆核电机组,已于1999年10月开工建设,预计其第一套机组将于2004年建成发电。[11]
核技术除了用于发电,在工业、商业、医学等各领域的应用也都有较大的发展。目前,中国从事核应用技术开发和生产的企事业单位有300多家,产业规模达到年总产值150多亿元。进入90年代以来,工业用电子加速器、工业钴源的实际装源量的年均增长速度维持在20%以上,是世界上发展最快的国家之一。核技术的应用开发取得一批重要成果,核技术应用的产业化进程明显加快。海关集装箱电子束监测系统、电子束信件灭菌装置等一批装置研制成功,为打击走私和反恐活动提供了新型有效的技术手段。核技术在我国农业领域得到了广泛应用,并取得了卓越成就,创造了巨大的经济、社会与生态效益。中国拥有7个放射性药物生产基地,核医疗器械一直保持快速发展的势头,1000多家医院应用核医学技术,核医学得到普及和推广,为提高人民健康水平做出了积极贡献。[12]
3.5 核能安全
涉及核电站的一个主要问题,是人们对安全标准和安全设备的担忧,因为放射性泄漏总是可能发生的。
对安全最严重的是燃料可能融化,使大量放射物质向环境排放。[13]当然,这种状况是我们在考虑安全性时的一种最坏的设想。事实上,核电站事故在有些国家发生过,但像那种严重事故的自由反应堆以来只有2次。[14]反应堆产生的废物有气体,固体,液体三种,对放射性废物处理的基本要求是:在排放的废气,废液中,放射性物质的浓度低于规定值;存放,储存和投掷深海的固体废物的措施安全可靠。[15]
但在2011年3月15日,日本福岛核电站发生核泄漏事件。日本核泄漏造成的核污染其辐射范围正一步步向外扩散,先是我国沿海地区,接着内地,今天传来除西藏外全国所有省市均在空气中检测到放辐射物质的消息。这核能事故敲响给世界核能安全安敲响了警钟。对于自然灾害对核设施的影响,人们更应注视。更应制定更加严格的控制核能的法律以及对事故的防范措施。结论
国民经济要发展,能源是基础。总之,核能开发利用的前景是光明的,但这终究是一个长期的大系统工程,既要解决为国民经济服务的大量工程技术问题,又要为下一步发展进行系统的预先研究和基础研究,牵涉到的学科范围也十分广泛。因此,必须远近结合,高瞻远瞩,全面考虑,统筹安排,认真落实。发展核能的同时也要时刻考虑着核能的安全利用,一旦发生危害弊远远大于利。
参考文献:
【1】 王莹,21世纪新能源的开发与利用 , 2007.【2】翟秀静,刘奎仁,韩庆,新能源技术, 2005.【3】王丰,热力发动机优化设计,1993.【4】周乃君,能源与环境 , 2008.【5】《一看就懂丛书》编写组,一看就懂的科学发现大事典, 2009.【6】魏切尔,舒尔茨著;俞誉福译,放射生态学核能与环境第1卷, 1988 【7】王喜元,从核弹到核电核能中国, 2009.【8】王莹著,世纪新能源的开发与利用, 2007.【9】翟秀静,刘奎仁,韩庆,新能源技术, 2005.【10】全民科学素质工作领导小组办公室,能源篇, 2007.【11】王秀清,世界核电复兴的里程碑,中国核电发展前沿报告, 2008.【12】Zentner,Irmela;Tarantola,Stefano;de Rocquigny,E ,Sensitivity analysis for reliable design verification of nuclear turbosets.2011.【13】Linnerud,Kristin;Mideksa,Torben K.;Eskeland,Gunnar S ,The Impact of Climate Change on Nuclear Power Supply.Energy Journal 2011.【14】徐恒馨;李弘毅 ,新能源之核能, 2010.【15】中华人民共和国科学技术部,国际安全生产发展报告, 2006.