第一篇:基因工程药物论文
基因工程药物
姓名:陈剑云 学号:U201210914 班级:机械学院测控1204班
摘要:自1972年DNA重组技术诞生以来,生命科学进入了一个崭新的发展时期。1982年美国礼莱公司推出基因工程胰岛素,这是第一个人用基因工程药物。从那时起,以基因工程为核心的现代生物技术已应用到农业、医药、化工、环境等各个领域。基因工程技术的迅速发展不仅使医学基础学科发生了革命性的变化,也为医药工业发展开辟了广阔的前景,以DNA重组技术为基础的基因工程技术改造和替代传统医药工业技术,已成为重要的发展方向。
关键词:基因工程制药应用
基因的定义:基因是脱氧核糖核酸(DNA)分子上的一个特定片段。不同基因的遗传信息,存在于各自片段上的碱基排列顺序之中。基因通过转录出的信使使核糖核酸(mRNA),指导合成特定的蛋白质,使基因得以表达。
基因工程定义:基因工程又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因(DNA分子),按预先设计的蓝图,在体外构建杂种DNA分子,然后导入细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。基因工程药物定义:基因工程药物又称生物技术药物,是根据人们的愿望设计的基因,在体外剪切组合,并和载体DNA 连接,然后将载体导入靶细胞(微生物、哺乳动物细胞或人体组织靶细胞),使目的基因在靶细胞中得到表达,最后将表达的目的蛋白质纯化及做成制剂,从而成为蛋白类药或疫苗。
基因工程药物的发展历程:自1972年DNA重组技术诞生以来,作为现代生物技术核心的基因工程技术得到飞速的发展。1982年美国Lilly公司首先将重组胰岛素投放市场,标志着世界第一个基因工程药物的诞生。美国是现代医药生物技术的发源地,也是率先应用基因工程药物的国家,其基因工程技术研究开发以及产业化居于世界领先地位。美国已拥有世界上一半的生物技术公司和一半的生物技术专利。据1998年美国药学会统计,美国FDA已批准了56种生物技术医药产品上市,其中绝大多数为基因工程药物。此外,还有200多种基因工程药物正在进行临床试验,其中至少有1/5的产品将可能在今后10年内上市。基因工程药物为美国的一些公司创造了丰厚的回报,取得了巨大的经济效益和社会效益。欧洲在发展基因工程药物方面也进展较快,英、法、德、俄等国在开发研制和生产基因工程药物方面成绩斐然,在生命科学技术与产业的某些领域甚至赶上并超过了美国。我国基因工程药物的研究和开发起步较晚,直至20世纪70年代初才开始将DNA重组技术应用到医学上,但在国家产业政策的大力支持下,这一领域发展迅速,逐步缩短了与先进国家的差距。1989年我国批准了第一个在我国生产的基因工程药物———重组人干扰素重组人干扰素αIb,标志着我国生产的基因工程药物实现了零的突破。重组人干扰素αIb是世界上第一个采用基因克隆和表达的基因工程药物,也是到目前为止唯一的一个我国自主研制成功的拥有自主知识产权的基因工程一类新药。从此以后,我国基因工程制药产业从无到有,不断发展壮大。截止1998年底,我国已批准上市的基因工程药物和疫苗产品共计15种,国内已有30余家生物制药企业取得基因工程药物或疫苗试生产或正式生产批准文号。至2000年,我国已有200多家生物技术公司,有20多家生产销售人干扰素、白细胞介素、乙肝疫苗等12种基因工程药物。
基因工程药物的本质是蛋白质,生产基因工程药物的方法是:将目的基因连接在载体上,然后将导入靶细胞(微生物、哺乳动物细胞或人体组织靶细胞),使目的基因在靶细胞中的到表达,最后将表达的目的蛋白质提纯做成制剂,从而成为蛋白类药或疫苗。若目的基因直接在人体组织靶细胞表达,就称为基因治疗。
基因治疗:基因治疗就是从遗传物质本身,即基因入手,不必产生或纯化基因的最终产物,而是将基因,通常是通过一个载体直接导入人体,再利用人体自身就具有的基因复制、转录与翻译功能来产生这些产物,达到补充正常基因产物或对抗异常基因的目的。将基因导入哺乳类动物细胞的方法有两种,一类是理化方法,一类是病毒介导的DNA转移。
利用基因工程技术生产药品的优点在于:大量生产过去难以获得的生理活性物质和多肽;挖掘更多的生理活性物质和多肽;改造内源生理活性物质;可获得新型化合物,扩大药物筛选来源。
基因药物的发展前景
与传统制药相比,生物制药有便于大规模生产、利润高、生产工艺简单、人力投入少、无污染、生产周期短等优点,因此,随着人类基因组计划的实施和科技水平的进一步发展,基因药物在医药市场的比例也将会日益提升,也将越来越影响人类的生活。
基因药物同时具有高投入、高收益、高风险、长周期的特征。Frost&Sullivan公司的一份最新报告指出,2004年,全球生物制药市场的收入为450亿美元。到2011年,其有望达到982亿美元。据预测,全球第一个用转基因植物生产的生物药物可望于2005~2006年上市。随着公众认知度的提高和相关法规的逐步完善,用转基因植物生产生物药物的市场将飞速增长,到2011年,单美国市场就将达到22亿美元。2002年底到2003年5月间一场突如其来的SARS疫情,再加上2005年度禽流感病毒传播,席卷了亚洲及加拿大等地。在紧张而又严肃的应对这场疫情的过程中,生物制药又成为医药行业人士关注的焦点。
我国生物制品需求巨大,过去的几年我国企业一直能保持年均15%以上增幅,并且近年来销售的增长速度有加快的趋势。据统计,2005年国内生物制品销售收入总额为157.4亿元人民币,销售利润总额为38.7亿元人民币。预计到2006年生物技术工业总产值将达400亿到500亿元,到2015年总产值可达1100亿到1300亿元。我国的生物制药业将进入一个快速发展的阶段,生物医药工业将成为医药产业增长最快的部分。目前,我国许多省市已将生物制药作为本地的支柱产业重点扶持。一大批生物医药科技园相继在各地高新技术开发区建成。面对入世带给我国生物制药业的挑战和机遇,专家们预测,在未来若干年,我国的生物制药业将以超过全球平均增长速度步入高速发展轨道,前景十分广阔。
基因工程药物的发展概况
20世纪70年代,随着DNA重组技术的成熟,诞生了基因工程药物,高产值、高效率的基因药物给医药产业带来了一场革命,推动了整个医药产业的发展,医药产业进入了新的历史时期。基因药物经历了三个阶段:第一阶段是把药用蛋白基因导入到大肠杆菌等细菌中,通过大肠杆菌等表达药用蛋白但这类药物往往有缺陷,人类的基因在低等生物的细菌中往往不表达或表达的蛋白没有生物活性。第二阶段是人们用哺动物的细胞代替细菌,生产第二代基因工程药物。第三阶段是到了80年代中期,随着基因重组和基因转移技术的不断发展和完善,科学家可以将人们所需要的药用蛋白基因导入到哺乳动物体内,使目的基因在哺乳动物身上表达,从而获得药用蛋白。
基因工程技术制药展望
基因工程技术在医药工业中的应用非常广泛,利用基因工程技术开发药物已成为当前.最为活跃和迅猛发展的领域。随着人类基因组计划的完成,以及基因组学、蛋白质组学、生物信息学等研究的深入,为医药生物技术开拓了一个新的领域,基因工程制药将有更多机会获得突破性进展,为保障人类健康做出更大的贡献。
参考文献:
[1] 张天民,基因工程药物浅释[J].山东肉类科技,1997,1. [2] 李拥军,基因工程药物及其产业化发展[J].生产力研究,2003,3:185.[3] 阚劲松,吴克,基因工程制药研究进展[J].合肥联合大学学报,2000,10(4):108.[4] 唐冬生,夏家辉,新型基因工程药物[J].生命科学研究,1999,3(2):93.[4] 袁建民等,动物乳腺生物反应器研究进展,中国农学通报,2006.22(2):20.[5] 韩玉刚,李建凡,动物生物反应器的现状和进展[J].国外畜牧科技,2002,29(1):30-33
[6] 张忠诚,动物乳腺生物反应器的原理及研究进展,中国奶牛,2006,4:29.[7] 孔秀英 ,孙秀杰,基因治疗,生物学杂志[J].2005,7(2):63.[8] 陈诗书,人类基因治疗研究的新进展,生物工程进展[J].1994,14(1):30.[9] 张明徽,基因治疗的现状与展望,世界科学[J].1995,10:20-21.[10] 罗登,基因治疗新时期,生物工程进展,1994,14(4):28-29.[22] 胡蝶,廖静.基因芯片技术在肿瘤研究中的应用[J].首都医科大学学报,2004,25(1):1 29.
[11] 陆祖宏,何农跃,孙啸.基因芯片技术在基因药物研究和开发中的应用[J].中国药科大学学报.2001,32(2):81.
第二篇:基因工程药物教学大纲(范文)
基因工程药物教学大纲
课程名称:基因工程药物
课程编号:0235203 学分:1.5 学时数:28
考核方式:N+2。笔记10%,考试成绩占40%,过程成绩N占50%。先修课程:生物化学、微生物学、基因工程等。课程说明:专业选修课。
一、课程的性质
基因工程技术, 不仅使整个生命科学的研究发生了前所未有的深刻变化, 而且也给工农业生产和国民经济发展带来了巨大的经济和社会效益, 给人类进步带来了新的契机。目前,基因工程学正以新的势头继续向前迅猛发展, 成为当今生物科学研究诸领域中最具生命力、最引人注目的前沿学科之一, 特别是基因工程在医药生物技术领域中的研究和应用,其意义深远、潜力之巨大。
二、课程的目的与教学基本要求
课程目的:为了适应生物工程技术的迅速发展、拓宽专业面, 为了使学生对当今世界生物工程领域日新月异地发展的高新技术有更多的了解, 进一步扩大学生的知识面和视野,同时为他们今后从事这方面的工作和研究打下一定理论基础, 特开设该课程。
课程任务: 通过讲授基因工程制药的概貌及国内外研究进展、基因工程制药常用的工具酶和克隆载体、基因工程药物无性繁殖系的组建以及基因工程药物的生产和质量控制等, 使学生对基因工程的基本理论、基本步骤和操作技术以及基因工程药物的生产技术原理和方法有比较系统的了解, 初步掌握基因工程制药有关基本知识。
三、课程适用专业
本课程适用于生物技术专业等相关专业。
四、教学内容、要求与学时分配
第一章 基因工程制药概述(2学时)
第一节:基因工程的概貌 简述基因工程的诞生和兴起,基因工程的定义、特点与基本步骤,基因工程早期的开创性研究成就,基因工程的应用与发展趋势等。
第二节:基因工程与生物制药 简述基因工程药物的研究和发展概况,介绍应用基因工程和蛋白质工程技术研究开发的几种新型基工药物。
第二章 基因工程制药常用的工具酶(2学时)
第一节:限制性核酸内切酶 简述限制酶的发现、限制酶的种类、限制酶的命名和限制酶的特性与用途等。
第二节 DNA连接酶 重点介绍DNA连接酶连接作用的特点,基因工程中常用的连接酶(T4噬菌体DNA连接酶、大肠杆菌DNA连接酶)的酶活性和用途,DNA连接酶连接作用的分子机理。
第三节 DNA聚合酶 重点介绍大肠杆菌DNA聚合酶
1、Klenow大片段酶、T4噬菌体DNA聚合酶、TaqDNA聚合酶及、反转录酶等的酶活性和用途。
第四节 DNA修饰酶 重点介绍末端脱氧核苷酸转移酶、碱性磷酸酶、T4噬菌体多核苷酸激酶等的酶活性和用途。
第五节 单链核酸内切酶 重点介绍S1核酸酶、Bal31核酸酶等的酶活性和用途。
第三章 基因工程制药常用的克隆载体(4学时)第一节 质粒载体 内容:质粒的定义、质粒DNA分子的特性、质粒载体的改造及构建。重点介绍基因工程制药中常用的几种质粒载体的结构和用途,主要包括pBR322及其衍生栽体、pUC系列载体。
第二节 λ噬菌体载休 内容:λ噬菌体的基本特性、λ噬菌体基因组的结构与功能、λ噬菌体DNA的改造及其载体的构建。重点介绍基因工程制药中常用的几种λ噬菌体载体,主要包括 Charon系列载体、EMBL系列载体、λgt系列载体。
第三节 M13噬菌体载体 内容包括:M13噬菌体的基本特性、M13丝状噬菌体载体的构建、常用的M13噬菌体载体,主要包括M13mp18和M13mp19载体。
第四节 粘粒(Cosmid)载体 内容:粘粒载体的构建、常用的粘粒载体。
第五节 哺乳动物细胞载体系统 主要介绍:SV40载体、BPV载体、EBV病毒载体。
第四章 目的基因的制取(2学时)
第一节 目的基因的化学合成 内容:目的基因的设计, 寡聚核苷酸片段的合成, 寡核苷酸片段的分离和纯化, 用寡核苷酸片段组装目的基因, 化学合成寡核苷酸的其它用途。
第二节 构建基因文库法分离目的基因 内容:构建基因文库法分离目的基因的基本步骤, 真核基因组DNA文库的构建过程
第三节 酶促合成法制取目的基因 内容:真核生扬细胞中的mRNA, 从构建 的cDNA文库中筛选目的cDNA, RT-PCR法合成目的cDNA。
第五章 目的基因与克隆载体的体外重组(2学时)
第一节 目的基因与质粒载体的连接 内容:粘性末端连接法, 定向克隆法,平末端连接法, 同聚物加尾法, 加人工接头连接法, 加DNA衔接物连接法, 其它转换末端形式连接法。
第二节 目的基因与噬菌体载体的连接 内容包括:噬菌体载体臂DNA的制备, 噬菌体载体臂与外源目的DNA片段的连接。
第六章 重组克隆载体引入受体细胞(2学时)
第一节 概述 内容:基因工程的受体细胞, 重组体分子导入受体细胞的途径。
第二节 重组体DNA分子的转化或转染 内容包括:用氯化钙制备新鲜的感受态细胞转化法, 用复合剂制备感受态细胞转化法, 高压电穿孔转化法。
第三节 重组噬菌体DNA的体外包装与转染 内容:噬菌体体外包装的基本原理, 噬菌体DNA的体外包装, 包装提取物的制备, 重组DNA的体外包装与感染方法。
第四节 重组克隆载体导入哺乳动物细胞的转染
第七章 含目的基因重组体的筛选、鉴定与分析(6学时)
第一节 重组体(菌)的筛选 内容:抗生素抗性基因插入失活法, b-半乳糖苷酶 基因插入失活法, 快速细胞破碎与凝胶电泳筛选法, 放射性标记核酸探针杂交筛选法, 免疫化学筛选法。
第二节 重组体的鉴定 内容:酶切及凝胶电泳鉴定法, Southern印迹杂交法, 电镜R-环检测法, 基因产物鉴定法。
第三节 重组DNA的序列分析 内容:Sanger双脱氧链终止法DNA测序, Maxam-Gilbert化学修饰法DNA测序。
第八章 目的基因在宿主细胞中的表达(2学时)
第一节 外源目的基因在原核细胞中的表达 内容:原核基因表达载体的构建, 常见的原核细胞表达载体系统, 外源目的基因在原核细胞中的表达形式, 在原核细胞中高效表达目的基因, 基因定点诱变技术。
第二节 外源目的基因在真核细胞中的表达 内容:真核细胞表达载体的功能元件, 酵母菌表达系统, 哺乳动物细胞表达系统。
第九章 基因工程无性繁殖系的组建(2学时)
内容:人胰岛素原融合蛋白重组菌的组建, 人a2b型干扰素工程菌的组建, 集落刺激因子工程菌的组建, 白细胞介素融合蛋白工程菌的组建, 乙型肝炎表面抗原重组酵母的组建, 人组织型纤溶酶原激活剂细胞株的组建, 红细胞生成素CHO细胞株的组建, 人肿瘤坏死因子昆虫细胞株的组建。
第十章 基因工程药物的生产(2学时)
第一节 基因工程菌(细胞)的培养与发酵 内容包括:工程细菌的培养与发酵, 工程酵母的培养与发酵, 工程细胞的培养与发酵。
第二节 基因工程药物的分离纯化 内容包括:影响分离纯化工艺的主要因素, 各种产物表达形式采用的分离纯化方法,。
第三节 基因工程药物的分离纯化实例 内容包括:以包涵体形式表达的rGM-CSF中试分离纯化, 以分泌型表达的人a1-干扰素的分离纯化, 以可溶性形式表达的rhG-CSF的分离纯化, 在酵母中表达的HBsAg的分离纯化。
第十一章 基因工程药物的检验(学生自学)
第一节 基因工程药物的质量控制 内容包括:主要的基因工程药物, 基因工程药物的特点, 基因工程药物的质量要求, 基因工程药物的质控要点, 基因工程药物的制造及检定规程。
第二节 基因工程药物常用的检验方法 内容:化学检定法, 肽图分析法,外源性DNA残留量的测定,宿主细胞蛋白杂质的检测,无菌试验,内毒素试验,异常毒性试验,热原质试验,生物学活性(效价)检定。
第三节 主要基因工程药物的检验 内容:重组人胰岛素的检验,重组人生长激素的检验,重组人干扰素的检验,重组人白细胞介素的检验,重组人红细胞生成素的检验,重组人集落刺激因子的检验,重组人组织型纤溶酶原激活剂的检验, 重组人肿瘤坏死因子的检验,重组乙型肝炎疫苗的检验。
五、教材和主要参考资料
理论教学教材: 《基因工程》, 杨汝德主编,华南理工大学出版社,2006.8 主要参考教材: 《基因克隆技术在制药中的应用》, 杨汝德主编,化学工业出版社,2004.1
执笔人:阚劲松
教研室:
系主任审核签名:
第三篇:基因工程药物开发利用前景
基因工程药物开发利用前景
摘 要:生物制药是以基因工程为基础的现代生物工程,即利用现代生物技术对DNA进行切割、连接、改造,生产出传统制药技术难以获得的生物药品。而现代生物技术是以基因为源头,基因工程和基因组工程为主导技术,与其他高技术相互交叉、渗透的高新技术。比尔·盖茨预言:下一个首富可能是从事生物技术的投资者。本文简要分析了国内外基因工程药物开发的现状和前景。
以基因工程,细胞工程,发酵工程和酶工程为主体的现代生物技术是70年代开始异军突起的高新技术领域,近一,二十年来发展极为神速,它与微电子技术,新材料和新能源技术并列为影响未来国计民生的四大科学技术支柱,被认为是21世纪世界科学技术的核心。现代生物技术又是一项与医药产业结合极为密切的高新技术,它的发展已带给了某些医学基础学科的革命性变化,并给医药工业开辟了更为广阔的心领域。
自1982年全世界第一个基因重组医药产品“人胰岛素”在美国面市以来,至今已有数十个生物技术药物上市。现代生物技术开辟了人体内源性多肽,蛋白质药物的新天地。于此同时它也正渗透到传统医药的哥哥领域,以抗生素,氨基酸,细胞融合及基因工程菌,化学合成药物的生物转化性,到单克隆抗体靶向制剂等等。不久之前美国的Eli Lilly公司又提出了生物技术在医药上的更大应用,是在新药研究筛选方法上的革命,即用基因工程受体实验代替传统的动物实验,所有这一切都表明了医药产业的技术基础正在发生战略性的变革。世界各大医药企业已瞅准目标,纷纷投入巨资围绕以现代生物技术为核心的产品和技术结构开拓,展开了面向21世纪的空前激烈的竞争。基因药物的前沿技术及部分基因药物
基因药物的直接体内基因治疗发展迅速,新型基因药物不断产生。现着重介绍对效果比较肯定关于基因药物的几项前沿技术,基因疫苗、反义RNA 药物、三链DNA 药物这三种新型基因药物技术的基本方法。1.1基因疫苗
基因疫苗的免疫方法即基因疫苗的给药途径,目前使用的方法有以下几种:(1)裸DNA 直接注射:将裸质粒DNA 直接注射到机体的肌肉、皮内、皮下、粘膜、静脉内。这种方法简单易行。
(2)脂质体包裹DNA 直接注射:包裹DNA 的脂质体能与组织细胞发生膜融合,而将DNA 摄入,减少了核酸酶对DNA 的破坏。注射途径同裸DNA直接注射。
(3)金包被DNA 基因枪轰击法:将质粒DNA 包被在金微粒子表面,用基因枪使包被DNA 的金微粒子高速穿入组织细胞.。
(4)繁殖缺陷细菌携带质粒DNA 法:选择一种容易进入某组织器官的细菌,将其繁殖基因去掉,然后用质粒DNA 转化细菌,当这些细菌进入某组织器官后,由于不能繁殖,则自身裂解而释放出质粒DNA。1.2反义RNA 反义RNA 指与mRNA 互补后,能抑制与疾病发生直接相关基因的表达的RNA。它封闭基因表达,具有特异性强、操作简单的特点,可用来治疗由基因突变或过度表达导致的疾病和严重感染性疾病,反义RNA 治疗的基本方法有: 1)反义寡核苷酸:体外合成十至几十个核苷酸的反义寡核苷酸或反义硫代磷酸酯寡核苷酸序列,用脂质体等将反义寡核苷酸导入体内靶细胞,然后反义寡核苷酸与相应mRNA特异性结合,从而阻断mRNA 的翻译。
2)反义RNA表达载体:合成或PCR 扩增获取反义RNA 的DNA ,将它克隆到表达载体,然后
将表达载体用脂质体导入靶细胞, 该DNA 转录反义RNA ,反义RNA 即与相应的mRNA 特异性结合,同样阻断某基因的翻译。
反义RNA目前主要用于恶性肿瘤、病毒感染性疾病等。有报导,用反义封闭胰腺癌、肺癌的癌基因,对癌细胞具有明显的抑制作用。1.3三链DNA 脱氧寡核苷酸能与双螺旋双链DNA 专一性序列结合,形成三链DNA ,来阻止基因转录或DNA 复制,此脱氧寡核苷酸被称为三链DNA 形成脱氧寡核苷酸(TFO)。为了与作用在mRNA 翻译水平的反义RNA 的反义技术相区别,将三链DNA 技术称之为反基因技术。
基本方法与机理
设计合成15~40个碱基的脱氧寡核苷酸, 这些序列具有较短而兼并性较高的特点, 与双链DNA结合,通常结合在蛋白识别位点处,形成三链DNA ,干扰DNA与蛋白质的结合, 如转录激活因子, 从而阻止基因的转录与复制。1.4部分基因药物
生物技术的开发迅猛异常、日新月异。生物技术的核心是基因工程, 基因工程技术 最成功的是用于生物治疗的新型药物的研制。已有近50 种基因工程药物投入市场, 产生 了巨大的社会效益和经济效益。生物技术用于疾病的预防和疑难病症的治疗已经成为现 实。基因药物主要为以下几个系列:
(1)干扰素系列(IFN)IFN是一类具有广谱抗病毒活性的蛋白质,仅在同种细胞上可发挥作用。根据其来源、理化及生物学性质的不同,可分为IFN-α、IFN-β、IFN-γ 3种干扰素。干扰素具有很强的生物活性,主要表现在:
①抗病毒作用 目前慢性丙型肝炎的治疗以IFN-α为首选。②抗肿瘤作用。③免疫调节作用。
(2)白介素系列 白细胞介素是非常重要的细胞因子家族,现在得到承认的成员已达15个;它们在免疫细胞的成熟、活化、增殖和免疫调节等一系列过程中均发挥重要作用,此外它们还参与机体的多种生理及病理反应。
(3)集落刺激因子类药物(CSF)一些细胞因子可刺激不同的造血干细胞在半固体培养基中形成细胞集落,这些因子被命名为集落刺激因子,根据其作用对象,进一步命名分为粒细胞-CSF,巨噬细胞-CSF,粒细胞和巨噬细胞-CSF及多集落刺激因子。
(4)其他基因工程药物
①促进红细胞生成素 促红细胞生成素(Epo)是一种调节红细胞生成的体液因子,自从成功地克隆人类Epo基因后,其产物重组人促红细胞生成素被成功用于治疗肾性贫血及肿瘤等疾病伴发的贫血。最近的研究认为Epo是一种由缺氧诱导因子(Hypoxia-inducible factor,HIF)家庭诱导产生的多功能细胞因子超家庭成员,对于多种器官都有保护作用。有报导,Epo能通过降低肾IRI时MDA、IL-6水平,增加SOD水平从而发挥保护作用,而最新研究还表明Epo有促进血管生成的作用。
②人生长激素人类的生长激素(Growth hormone,GH)是一条单链、非糖化、191个氨基酸合成的亲水性球蛋白,分子量21700Da,等电点pI为4.9.人生长激素具有促生长、促进蛋白质合成、对脂肪、糖、能量代谢有影响。
③人表皮生长因子 皮肤细胞表达10种以上的生长因子,它们以自分泌和旁分泌的方式对细胞自身和邻近细胞进行多种调节。
④重组链激酶 对心脑血管疾病有一定的疗效。
⑤肿瘤坏死因子 研究表明,巨噬细胞是产生TNF的主要来源。当肝、脾等网状内皮系统受到刺激后,借助于脂多糖的帮助,TNF基因开始转录,产生并释放TNF。同时B淋巴细胞也
产生一种与TNF类似的淋巴毒素,并与TNF享有共同受体。为了便于区分二者,将巨噬细胞产生的毒素称为TNF—α,淋巴细胞产生的毒素称为TNF-β。
TNF-α是迄今为止发现的抗肿瘤作用最强的细胞因子,它能特异性地直接杀伤肿瘤细胞,而对正常细胞无不良影响,能抑制肿瘤细胞的增殖并促使其溶解,还可激活机体的抗肿瘤免疫反应。但是由于TNF-α能被肾快速排泄和各种蛋白酶分解作用,在体内很不稳定,半衰期很短(15~30min),而杀伤肿瘤细胞需要12~36 h。若希望通过静脉给药获得明显的抗肿瘤效果,则必须频繁大剂量注射,进而导致严重的不良反应。目前国内外学者对其的制剂研究主要集中在高分子化学修饰和药物载体传递系统两方面.无论采取何种手段,其最终目的有二:一是减少RES的摄取,延长药物血中半衰期;二是提高药物的靶向性,降低不良反应.国外基因工程药物研究开发现状和展望
据不完全统计,欧美诸国目前已经上市的基因工程药物近100 种,还有约300 种药物正在临床试验阶段,处于研究和开发中的品种约2 000 个。近两年基因药物上市的周期明显缩短,与一般药物研究开发相比,基因工程药物研究投入较大。
美国作为基因重组技术的发源地和众多基因工程药物的第一制造者,每年在基因工程药物研究方面的投资高达数十亿美元,现已成为国际公认的现代生物技术研究和开发的“带头羊”。日本,欧洲等地也不甘落后,都根据各自的特点,制定出符合本国国情的发展战略和对策,进行着激烈的竞争和角逐,就连亚洲的韩国,新加坡等也野心勃勃地着手这方面的研究和开发。
美国:在基因工程药物的研究和开发方面美国一直保持着世界领先地位。从1971年成立第一家美国生物技术公司到现在已形成拥有1300余家公司(占全世界生物技术公司总数的2/3的令人注目的产业规模,不过短短25年的历史,到1996年8月美国有20多种基因工程药物和疫苗上市。(详见表1)另有113家美国公司的284个产品处于临床试验阶段或等待FDA批准,呈现了强劲的发展势头。
日本:日本在基因工程药品的研究和开发方面也投入了大量资金,并取得了丰硕成果。现已开发出干扰素,乙肝疫苗,人促红细胞生产素,组织纤溶酶原激活剂,人生长激素,人胰岛素,人巨噬细胞集落刺激因子,人粒细胞集落刺激因子等众多产品。国内基因工程药物研究开发现状及展望
我国生物工程药物研究虽起步较晚,基础较差,但一开始就受到党和国家的高度重视。为跟踪世界新技术革命迅猛发展的浪潮,1986年3月我国一批著名科学家倡导起草了“高技术研究计划”——“863计划”,并将现代生物技术列为“863计划”最优先发展的项目和国家“七五”,“八五”攻关项目。经过广大科技工作者的艰苦努力,已取得了鼓舞人心的进展,一批基因工程产品的上游研究正在努力展开;一些产品正逐步进入开发研究阶段,不少产品已步入临床试验阶段或已获新药证书,进入工业化生产,详见表2。
与传统制药相比,生物制药有便于大规模生产、利润高、生产工艺简单、人力投入少、无污染、生产周期短等优点,因此,随着人类基因组计划的实施和科技水平的进一步发展,基因药物在医药市场的比例也将会日益提升,也将越来越影响人类的生活。
基因药物同时具有高投入、高收益、高风险、长周期的特征。Frost&Sullivan公司的一份最新报告指出,2004年,全球生物制药市场的收入为450亿美元。到2011年,其有望达到982亿美元。据预测,全球第一个用转基因植物生产的生物药物可望于2005~2006年上市。随着公众认知度的提高和相关法规的逐步完善,用转基因植物生产生物药物的市场将飞速增长,到2011年,单美国市场就将达到22亿美元。2002年底到2003年5月间一场突如其来的SARS疫情,再加上2005禽流感病毒传播,席卷了亚洲及加拿大等地。在紧张而又严肃的应对
这场疫情的过程中,生物制药又成为医药行业人士关注的焦点。
我国生物制品需求巨大,过去的几年我国企业一直能保持年均15%以上增幅,并且近年来销售的增长速度有加快的趋势。据统计,2005年国内生物制品销售收入总额为157.4亿元人民币,销售利润总额为38.7亿元人民币。预计到2006年生物技术工业总产值将达400亿到500亿元,到2015年总产值可达1100亿到1300亿元。我国的生物制药业将进入一个快速发展的阶段,生物医药工业将成为医药产业增长最快的部分。目前,我国许多省市已将生物制药作为本地的支柱产业重点扶持。一大批生物医药科技园相继在各地高新技术开发区建成。面对入世带给我国生物制药业的挑战和机遇,专家们预测,在未来若干年,我国的生物制药业将以超过全球平均增长速度步入高速发展轨道,前景十分广阔。
参考文献
[1] 张骁,束梅英,张韬.中国药房,9(1):977-978,1998 [2] 张天民,杨钊,谢继青,等.2000 年我国生化药物的研究进展[J].中国药学杂志,2001,36(5):296-299.[3] 李元,陈松森,王渭川.基因工程药物[M].北京:化学工业出版社,2002,2.[4] 唐冬生,夏家辉,新型基因工程药物[J].生命科学研究,1999,3(2):93.[5] 李拥军,基因工程药物及其产业化发展[J].生产力研究,2003,3:185 [6] 孔秀英 ,孙秀杰,基因治疗,生物学杂志[J].2005,7(2):63.[7] 陈诗书,人类基因治疗研究的新进展,生物工程进展[J].1994,14(1):30.[8] 张明徽,基因治疗的现状与展望,世界科学[J].1995,10:20-21.[9] 罗登,基因治疗新时期,生物工程进展,1994,14(4):28-29.[10] 胡蝶,廖静.基因芯片技术在肿瘤研究中的应用[J].首都医科大学学报,2004,25(1):1 29. [11] 张忠诚,动物乳腺生物反应器的原理及研究进展,中国奶牛,2006,4:29 [12] 安瑞生,陈晓峰,肿瘤基因治疗技术,中国肿瘤,2001,10(10):578-579.[13] P Ghezzi, M Brines,Erythropoietin as an antiapoptotic,tissue-protective cytokine[J].Cell Death Differ,2004,11(Suppl 1):37-44.
[14] C23 Erbayraktar S,Yilmaz O,Gokmen N,et a1.Erythropoietin is a multifunctional tissue-protective cytokine[J].Curr Hematol Rep,2003,2(6):465-470.
[15] Kang DH,Park EY,Yu ES,et al, Renoprotective effect of erythropoietin(EPO):Possiblyvia an amelioration of renal hypoxia with stimulation of angiogenesis in the kidney[J].Kidney Int.2005, 67(5):1683.[16] 人生长激素研究进展,陈蓓,朱威,生物学杂志[J].2004,21(1):9-10
第四篇:基因工程论文
学号:13054107
基因工程结课论文
靶向MRP1基因pRNAT-H1.1/shuttle-RFP重组质粒表达载体构建
院(系)名
称: 理学院 专业
名
称: 生物科学 学
生
姓名: 姜己玉 所
在班
级: 13-1
目录
摘要............................................................................................................................................2 第一章 绪论..............................................................3 1..1RNAi的研究进展....................................................3 1.1.1RNAi的分子作用机制...........................................3 1.1.2 RNAi 的特点..................................................3 1.1.3 siRNA简介.........................................................3 1.1.4 s iRNA 的设计原则..........................................3 1.2 用于 RNA i 的载体....................................................4 1.2.1 载体的选择..................................................4 1.2.2 质粒人工构建的目的.................................................4 1.3 MRP1 的研究进展......................................................4 第二章 实验材料与方法.....................................................5 2.1 实验材料.............................................................5 2.1.1 宿主菌.............................................................5 2.1.3 载体通用引物................................................5 2.1.5 主要仪器..........................................................5 2.2 试验方法.........................................................5 2.2.1 shRNA 的设计与退火..................................................5 2.2.2 合成干涉片段的退火..........................................6 2.2.3 重组载体的构建..............................................6 2.2.4 菌落PCR初步筛选阳性重组子..................................7 2.2.5 测序鉴定重组载体...............................................7 第三章 结果与分析.........................................................8 3.1 质粒经HindⅢ和BamHI双酶切后胶回收结果...........................8 3.1.1 质粒经HindⅢ和BamHI双酶切后结果.............................8 3.1.2 目的片段的回收................................................8 3.2 重组质粒的菌落PCR...................................................8 3.3 重组质粒大量提取......................................................8 3.4 重组质粒测序结果.................................................8 参考文献..................................................................9
摘 要
癌症严重威胁着人类的健康,其发病率呈上升趋势。化疗作为其常规临床治疗手段,在癌症治疗中具有手术和放射治疗不能替代的作用。肿瘤细胞的多药耐药性(multidrug resistance, MDR)是导致肿瘤细胞化疗失败的主要原因。肿瘤细胞产生多药耐药的原因较为复杂,多药耐药相关蛋白1(Multidrug Resistance-associated Protein 1,MRP1)的过度表达是导致其产生多药耐药的主要原因之一。RNA干扰(RNA interference,RNAi)是近年来发现的能快速、高效、特异的沉默目的基因表达的技术,如能通过RNAi技术沉默MDR1基因,逆转肿瘤细胞的多药耐药性将为改善癌症病人的化疗效果奠定基础。
目的:本课题选用pRNAT-H1.1/shuttle-RFP表达穿梭载体。构建针对mrp1 mRNA的RNA干扰表达载体。
方法:将预先根据MRP1基因序列设计合成的编码siRNA的cDNA序列与pRNAT-H1.1/shuttle-RFP质粒载体连接,构建靶向mrp1 siRNA重组质粒。将重组质粒转化E.coli DH5α后大量提取重组质粒,经菌落 PCR和 DNA测序分析检测重组载体构建结果。
结果:成功构建靶向MRP1基因pRNAT-H1.1/shuttle-RFP重组质粒表达载体。为下一步抑制mrp1基因在肿瘤细胞中的表达奠定基础。
关键词:RNA干扰;MRP1;pRNAT-H1.1/shuttle-RFP质粒;穿梭载体
第1章 绪 论
1.1 RNAi的研究进展
RNA干扰(RNA interference , RNAi)是由双链RNA分子介导的序列特异性转录后基因沉默过程,为一种双链RNA分子在mRNA 水平上关闭相关基因表达的过程,是一项新兴的基因阻断技术。RNAi有望成为分析人类基因组功能的有力工具,在肿瘤病因、免疫机制及治疗等方面的研究上有广阔的发展前景。
1.1.1 RNAi的分子作用机制
RNAi的作用机制在众多学者的努力研究下日渐明朗。不同生物体内的RNA干扰作用机制也各有不同,但是主要可以分为两种类型:特异效应作用机制与非特异效应作用机制。特异性效应一般发生在短双链RNA(21~23nt)上,非特异性效应发生于长双链RNA(30nt以上)。
1.1.2 RNAi的特点
RNAi具有高效性,也就是说与细胞内的mRNA的量相比,注入细胞内的siRNA的量要少得多。但由于循环放大机制的存在,仍可以有效地阻断目的基因的表达;同时,RNAi也具有高特异性,小干扰RNA由dsRNA降解得到的,除在序列识别中不起主要作用的正义链3′端的两个碱基以外,其余碱基均为必需。
1.1.3 siRNA简介
RNA干扰作用是通过siRNA(small interfering RNA,siRNA)这类小RNA分子作为较稳定的中间介质实现的。通过对植物的研究证明,双链RNA复合体降解为35nt左右的小RNA分子后通过序列互补与mRNA结合,进而降解mRNA。
1.1.4 siRNA的设计原则
RNAi 作用的成功与否,关键在于siRNA序列的结构,不同结构的siRNA序列沉默基因的效率差别很大,2001年,Elbashir S M等[应用化学合成法合成了siRNA,并发现可以诱导哺乳动物发生RNAi,他们进而据此提出了siRNA 设计方法:1)从起始密码下游50~100nt开始搜索siRNA以避免出现于5′或3′端的UTRs 的蛋白结合位点,;
2)搜索5′AA(N19)UU序列,如果没有相应序列,可以选择5′AA(N21)或5′NA(N21);3)G/C含量在32%~79%之间[16]; 4)要确定siRNA对靶基因的特异性,可以利用Blast软件在基因组中进行比对,;5)设置在基因组中无对应序列的siRNA的对照siRNA。但是,Elbashir S M等的设计方法siRNA 筛选效率仍然很低,要更好的掌握RNAi。
1.2 用于RNAi的载体
基因工程中,携带目的基因进入宿主细胞进行扩增和表达的工具,称为载体。是指能够运载外源DNA片段进入受体细胞,具有自我复制能力,使外源DNA片段在受体细胞中得到扩增和表达,不被受体细胞的酶系统所破坏的一类DNA分子。载体具有以下的功能:(1)运送外源基因高效转入受体细胞;(2)为外源基因提供复制能力或整合能力;(3)为外源基因的扩增或表达提供必要的条件。
1.2.1载体的选择
质粒是为一种1-200kb不等的双链、闭环的DNA分子。是染色体外稳定遗传,并能以超螺旋状态存在于宿主细胞中的因子。RNA干扰实验通常选用质粒作为载体。质粒载体是为适应实验室操作在天然质粒的基础上人工构建的。但是,天然质粒的缺点是分子量大,拷贝数低,所以为使分子量尽可能减少,必须去掉大部分的非必需序列,以便于基因工程操作。
1.2.2 质粒人工构建的目的
天然存在的野生型质粒由于分子量大、拷贝数低、单一酶切位点少、遗传标记不理想等缺陷,因而不适合用作基因工程的载体,必须对之进行改造构建
1.3 MRP1的研究进展
MRP1的底物 直接通过细胞毒性分析和底物刺激的ATP酶测量进行识别MRP1的底物的,底物是由大量的多样化的疏水复合物,有机阴离子结合物以及阴离子非结合性底物所组成。典型的结合型底物包括:谷胱甘肽,葡糖醛酸和硫酸盐结合物,MRP1的组织分布 MRP1在体内的表达可以说是无所不在。
第2章 实验材料与方法
2.1 实验材料
2.1.1 宿主菌
E.coli DH5α:为感受态宿主菌由北京鼎国生物技术有限责任公司提供。
2.1.2 质粒载体
pRNAT-H1.1/shuttle-RFP质粒。pRNAT-H1.1/shuttle-RFP质粒特性如下:pRNAT-H1.1/shuttle 是一种腺病毒siRNA穿梭质粒,shRNA的表达由人的转录启动子H1 Promoter启动,H1启动子属于PolⅢ启动子,该启动子总在其下游的固定距离开始转录合成RNA,转录过程遇到4~5个连续的U即终止,非常精确;同时CMV Promoter为真核生物启动子,可在该质粒中高效启动红色荧光蛋白的表达;MCS为多克隆位点。
2.1.3 载体通用引物
正向引物(M13):5′-GTTTTCCCAGTCACGAC-3′ 反向引物(Rev):5′-GAGTTAGCTCACTCATTAGGC-3′
2.1.4 主要试剂、具酶及仪器
质粒快速提取试剂盒,Sanprep柱式DNA胶回收试剂盒,10×PCR buffer,dNTP,Marker(1kb,100bp),Goldview DNA染料,EDTA Bio Basic Inc 溶菌酶,LiCl Amresco RNase Sigma bacto-typtone Bio Basic Inc bacto-yeast extract Bio Basic Inc PEG8000,HindⅢ NEB,BamHI NEB,T4DNA连接酶 NEB,Taq酶,微量振荡器(MM-2型),微量振荡器(MM-2型),恒温空气摇床,电子天平,紫外分析仪(ZF型),低温离心机(SK18),低温离心机(SK18),PCR仪(9600型),ABI 恒温磁力搅拌器(2003-16),恒温水浴锅,自动双重纯水仪
2.2 实验方法
2.2.1 shRNA的设计与退火
根据siRNA设计原则[34],根据MRP1靶序列,设计合成四对互补反向重复脱氧核糖核酸序列,中间间隔9nt茎环序列(TTCAAGAGA),5′端带有BamHⅠ酶切位点,3′端带有HindⅢ酶切位点,用BLAST进行同源性分析,确定与其他基因无同源性。shRNA的 5
DNA模板由上海生工合成,单链干涉片段退火后形成双链。根据2个靶序列设计的2对DNA干涉片段mrp1-1,mrp1-2。
2.2.2 合成干涉片段的退火
合成片段的退火体系:各管混匀后90℃保温3分钟,37℃保温1h,再取5μL退火溶液加45μL 灭菌双蒸水混匀,使干涉片段终浓度为8ng/μL。
2.2.3 重组载体的构建
(1)将含有pRNAT-H1.1/shuttle-RFP质粒的大肠杆菌接种入盛有200mL LB培养基(含2μg/mL氨苄青霉素)的500mL三角瓶中,置37℃振荡培养过夜(置摇床中160r/min)。(2)实验前预先配制溶液Ⅱ,溶菌酶。预冷溶菌酶、溶液Ⅰ和溶液Ⅲ。取出菌悬液,观察菌体生长状况,将菌悬液分装于两个250ml离心桶中,调平。预冷离心机至4℃,4℃下8000r/min离心5min,弃上清,得菌体。(3)加预冷的溶液Ⅰ50ml于每离心桶,混匀,洗涤沉淀。8000r/min离心5min,弃上清,得沉淀。此步骤的目的为出去培养基,以获得更纯的细菌沉淀物。(4)用17ml溶液Ⅰ吹散重悬细菌沉淀物,加3ml新配制的溶菌酶溶液,温和混匀,室温放置10min,裂解大肠杆菌。(5)加40ml新配制的溶液Ⅱ,以使菌体破碎,释放质粒DNA等内容物。缓慢颠倒数次,防止破坏基因组DNA,室温放置3min。(6)加30ml预冷的溶液Ⅲ,缓慢颠倒数次,防止SDS破坏基因组DNA,冰浴放置15min。4℃下以10000r/min离心10min,然后将上清液全部倒入新离心桶中。(7)将上清液在4℃下以10000r/min离心10min,然后将上清液经8层纱布过滤至新离心桶中。(8)加0.6倍体积(约54ml)的异丙醇,充分混匀,室温放置15min,以沉淀核酸。8000r/min离心15min,小心倒掉上清,敞开瓶口倒置于纸巾上,使残余上清液流尽,晾干。(9)加15ml水再加15ml LiCl(预冷)混匀,静置沉淀15min,4℃下10000r/min离心15min,以出去蛋白质和RNA。(10)倒上清于新的离心桶中,加30ml异丙醇,剧烈震荡,静置沉淀15min,在4℃下以10000r/min离心15min。再次沉淀核酸。(11)弃上清,得到沉淀的核酸。敞开瓶口倒置于纸巾上使残余上清液流尽。(12)用70%乙醇洗涤沉淀,4℃下以10000r/min离心5min,弃去乙醇,离心桶敞口倒置于纸巾上,使乙醇挥发殆尽。此步骤可以沉淀DNA。(13)加2ml无菌水溶解沉淀,将液体吸到10ml离心管中,再吸2ml ddH2O冲洗瓶壁,随后将洗液加到同一10ml离心管中,随后加100µl RNaseA,37℃,水浴30min。以使RNA彻底分解。(14)加等体积含13%(w/v)聚乙二醇(PEG 8000)的1.6mol/L NaCl,充分混合,用微量离心机于4℃以12000转/分,离心15分钟,以回收质粒DNA。(15)沉淀用3ml70%乙醇重悬清洗,以除去PEG,12000r/min离心8min。(16)重复上步操作,将离心管倒扣于纸巾上10min,加1ml H2O溶解,用等体积酚/氯仿/异戊醇再抽提一次蛋白质,室温下8000r/miin离心10min。(17)小心吸上清与另一离心管中,加2倍体积的预冷无水乙醇,再加0.1体积的NaAC(3mol,pH5.2),冰上沉淀20min,4℃下10000r/min离心15min,使DNA沉淀出来。(18)去上清加入3ml 70%乙醇重悬清洗,10000r/min 离心15min,晾干,用500µl无菌水溶解沉淀。
2.2.4菌落PCR初步筛选阳性重组子
灭菌牙签挑取LB筛选平板上圆滑单菌落,先在预先分隔并标记的另一LB平皿上划板,然后点入制备好的PCR反应混合液,开始扩增。PCR反应条件为:94℃预变性2分钟;94℃ 变性30s,55℃ 退火30s,72℃ 延伸45s,共35个循环;72℃ 延伸1分钟,4℃保存,1.2%琼脂糖凝胶电泳检测PCR产物。划板的平皿于37℃培养12-16h。
2.2.5 测序鉴定重组载体
将小提鉴定结果正确的质粒送交上海生工生物工程技术服务有限司,以载体反向引物为测序引物。将经鉴定后未发生突变的H1.1-
1、H1.1-2靶向MRP1基因siRNA重组质粒的宿主菌摇瓶扩大培养后,进行质粒大量提取,方法如2.1.2.3.1所述。
第3章 结果与分析
3.1 质粒经HindⅢ和BamHI双酶切后胶回收结果
3.1.1 质粒经HindⅢ和BamHI双酶切后结果
pRNAT-H1.1/shuttle-RFP质粒经HindⅢ和BamHI双酶切,结果显示单酶切产物大小约为6200bp,双酶切产物略小于单酶切产物,与预期结果相符。
3.1.2 目的片段的回收
目的片段回收 ,结果显示回收产物大小约为6Kb,与预期结果相符。
3.2 重组载体的菌落PCR 重组载体菌落 PCR电泳,结果显示PCR扩增产物,电泳分析发现阳性产物可以扩增出560bp大小的条带,假阳性产物不能扩增出560bp大小的条带,与预期结果相符,可以初步筛选出阳性产物。
3.3 重组质粒大量提取
重组质粒大量提取后的电泳,结果显示pRNAT-H1.1/shuttle-RFP 重组质粒大小约为6.2kb,与预期结果相符。
重组质粒大提并稀释50倍以后在紫外分光光度仪Genespec上测其OD值。
3.4 重组质粒测序结果
pRNAT-H1.1/shuttle-RFP重组质粒测序鉴定,结果显示重组质粒的碱基序列与预期结果一致,未发生碱基突变,说明pRNAT-H1.1/shuttle-RFP重组质粒构建成功。
参考文献
[1] 张淑华.小干扰RNA靶向VEGF基因在体内外抑制乳腺癌细胞增殖的研究[D].青岛:青岛大学硕士,2007.[2] Sharp PA.RNA interference-2001.Genes Dev.2001, 15: 485-490.[3] 康洁, 刘福林.RNAi的抗病毒作用及其机制[J].现代免疫学, 2004, 24(5): 439-441.[4] 林少微,王雪华,郑高哲等.RNAi的研究进展 [J].中国医药导报, 2007, 4(29)_3.[5] 黄艳敏,贾欣秒.RNA干扰技术的研究进展 [J].河北化工, 2009, 32(1):213-216.[6] 邓庆.E2F8及肿瘤-睾丸(CT)基因在肝癌中作用的研究[D].上海交通大学硕士.2009.[7] 赖长城.人类Pin1在食管癌组织中的表达[D].福建:厦门大学硕士.2008.[8] 魏群,分子生物学实验指导(第二版)[Q]2007,11:3.[9] 陈爱葵,李梅红.RNAi的研究及应用 [J].广东教育学院学报, 2008, 28(3):5.[10] 王光海.MRP1与肺癌耐药.临床肺科杂志[J].2005,5,(3):367.
第五篇:基因工程论文
基因工程论文
一. 定义
基因工程(genetic engineering)又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。基因工程技术为基因的结构和功能的研究提供了有力的手段
二,基本操作步骤:
1.提取目的基因:一条是从供体,的DNA中直接分离基因;另一条是人工合成基因(1)直接分离基因:最常用的方法是“鸟枪法”,又叫“散弹射击法”。鸟枪法的具体做法是:用限制酶将供体细胞中的DNA切成许多片段,将这些片段分别载入运载体,然后通过运载体分别转入不同的受体细胞,让供体细胞提供的DNA(即外源DNA)的所有片段分别在各个受体细胞中大量复制(在遗传学中叫做扩增),从中找出含有目的基因的细胞,再用一定的方法把带有目的基因的DNA片段分离出来。
(2)工合成基因的方法主要有两条。一条途径是以目的基因转录成的信使RNA为模版,反转录成互补的单链DNA,然后在酶的作用下合成双链DNA,从而获得所需要的基因。另一条途径是根据已知的蛋白质的氨基酸序列,推测出相应的信使RNA序列,然后按照碱基互补配对的原则,推测出它的基因的核苷酸序列,再通过化学方法,以单核苷酸为原料合成目的基因。
2.目的基因与载体结合:将目的基因与运载体结合的过程,实际上是不同来源的DNA重新组合的过程。
3.将目的基因导入受体细胞:目的基因的片段与运载体在生物体外连接形成重组DNA分子后,下一步是将重组DNA分子引入受体细胞中进行扩增。
4.目的基因检测与表达:在全部的受体细胞中,真正能够摄入重组DNA分子的受体细胞是很少的。必须通过一定的手段对受体细胞中是否导入了目的基因进行检测。重组DNA分子进入受体细胞后,受体细胞必须表现出特定的性状,才能说明目的基因完成了表达过程。
三.基因工程应用:
1.与医药卫生
(1)生产基因工程药品(2)基因诊断(3)基因治疗
2.与农牧业、食品工业
(1)农业:培育高产、优质或具特殊用途的动植物新品种。
(2)畜牧养殖业:培育体型巨大、品质优良的转基因动物;利用外源基因在哺乳动物体内的表达获得人类所需要的各种物质,如激素、抗体及酶类等。(3)食品工业:为人类开辟新的食物来源。
3.与环境保护
(1)用于环境监测:用DNA探针可检测饮水中病毒的含量
(2)用于被污染环境的净化:分解石油的“超级细菌”;“吞噬”汞和降解土壤中DDT的细菌;能够净化镉污染的植物;构建新的杀虫剂;回收、利用工业废物等。
生物081 马明臣 0802030119