第一篇:人类利用能源的几个阶段
人类利用能源的几个阶段
能源、材料和信息被称为人类社会发展的三大支柱。所谓能源是指提供能量的自然资源。人类的文明始于火的使用,燃烧现象是人类最早的化学实践之一,燃烧把化学与能源紧密地联系在一起。人类巧妙地利用化学变化过程中所伴随的能量变化,创造了五光十色的物质文明。从人类社会的发展历史进程,可以从中找到能源品种的不断开发不断更替的作用。根据各个历史阶段所使用的主要能源,可以分为柴草时期、煤炭时期和石油时期。
一、柴草时期
从火的发现到18世纪产业革命期间,树枝杂草一直是人类使用的主要能源。柴草不仅能烧烤食物,驱寒取暖,还被用来烧制陶器和冶炼金属。
陶器是人类利用火制造出来的第一种自然界不存在的材料,世界古文明发源地都在新石器时代中后期出现过陶器。把自然界的粘土,加水调和,揉捏成一定形状的泥坯,晾干后用柴火烧烤,使粘土中部分成分发生化学变化,冷却后即成为质地坚硬的陶器。制陶技术经过几千年的发展演变后出现的瓷器,至今还受到人们青睐。制陶技术的成熟也为金属冶炼和铸造技术的发展提供了条件。
金属冶炼技术的发展史中,以铜为先,翠绿色的孔雀石和深蓝色的蓝铜矿是铜的两种常见矿石,它们的主要成分是碱式碳酸铜。铜的熔点比较低,是1083℃(铁的熔点是1537℃)。在陶制容器中用木炭可将碱式碳酸铜还原成金属铜,然后铸成各种形状的器皿和用具。考古学已证实在公元前3000年,亚、非、欧广大地区已普遍掌握了用木炭炼铜的技术。金属材料的出现加速了人类文明的进程。
能源中煤炭和石油天然气的重要性虽已居首位,但柴草作为生活能源却从未间断过,不少发展中国家的农牧民至今仍以柴灶为主。在能源危机的呼唤中,这种最古老的能源品种,又以它的容易再生而再度受到关注。可以说人类是在利用柴火的过程中,产生了支配自然的能力而成为万物之灵的。
二、煤炭时期
煤炭的开采始于13世纪,而大规模开采并使其成为世界的主要能源则是18世纪中叶的事了。1769年,瓦特发明蒸汽机,煤炭作为蒸汽机的动力之源而受到关注。第一次产业革命期间,冶金工业、机械工业、交通运输业、化学工业等的发展,使煤炭的需求量与日俱增,直至20世纪40年代末,在世界能源消费中煤炭仍占首位(见表2-1)。
煤是发热量很高的一种固体燃料。它的主要成分是碳(C),还有一定量的氢(H)和少量的氧(O)、氮(N)、硫(S)和磷(P)等。煤是既含有机物也含无机物的复杂混合物。煤可以直接当燃料使用,但从物尽其用的角度来看,应多提倡煤的综合利用。例如煤经过干馏(隔绝空气情况下强热),可以分别得到焦炭、煤焦油和焦炉气。焦炭可以供炼铁用;煤焦油可提取苯、萘、酚等多种化工原料;从焦炉气中也可提取一定量的化工原料,也可直接作为气体燃料,其污染性远低于直接烧煤。煤炭的利用使人类获得了更高的温度,推动了金属冶炼技术的发展,工业革命后100多年生产力的发展促进了人类近代社会的进步。
三、石油时期
第二次世界大战之后,在美国、中东、北非等地区相继发现了大油田及伴生的天然气,每吨原油产生的热量比每吨煤高一倍。石油炼制得到的汽油、柴油等是汽车、飞机用的内燃机燃料。世界各国纷纷投资石油的勘探和炼制,新技术和新工艺不断涌现,石油产品的成本大幅度降低,发达国家的石油消费量猛增。到60年代初期,在世界能源消费统计表里,石油和天然气的消耗比例开始超过煤炭而居首位。
第二篇:人类利用的主要能源的教案
人类利用的主要能源的教案
1.能说出人类不同时期利用主要能源的发展历程。
2.结合实例,说出能源与人类生存和社会发展的关系。
3.常识性了解什么是一次能源、二次能源及其特点。
根据一次能源、二次能源的特点,会给常规能源和新能源进行分类。
了解21世纪的能源趋势,形成节约能源的意识。
重点:结合实例,说出能源与人类生存和社会发展的关系。
难点:了解21世纪的能源趋势。
随着社会的发展,人类使用的能源也在不断变化,可以通过图片、视频介绍人类使用能源的发展历程,使用能源的变化导致了社会技术的不断变革,人类社会的发展离不开能源的使用。介绍我国和世界现阶段的能源结构及消耗趋势,近几十年来来,能源消耗量在急剧增长,并且能源使用都是以煤、石油等化石能源为主,分析这类能源的特点,它们在地球上的储量有限。这些能源直接从自然界获得,这类能源是一次能源,还有一些能源无法从自然界直接获得,只能通过一次能源转化得到,这类能源为二次能源,如电能就是二次能源。根据一次能源和二次能源的定义给常用能源进行分类。
随着社会的发展,对能源的需求量在迅速增加,但目前作为人类主要能源的化石能源储量并不丰富,而且化石能源开发利用后,不能再生,人类正面临着能源危机。为了使人类获得持续的发展,解决能源危机,就要开发利用新的能源,如太阳能、核能等。另外在使用能源时要注意节约,提高能源的能源效率等也是缓解能源危机的途径,要形成节约能源的意识。
学生课前收集不同时代人类利用的主要能源的资料、实物投影、世界和我国能源消耗的资料、多媒体课件整合网络。
教学环节教师活动学生活动设计意图
(5分钟)播放人类利用能源的一些场景,提出问题,人类利用的很多的能源都是来自于太阳,那么这些能量都是由太阳提供的吗?人类使用的能量是无穷无尽的吗?学生观察图片和视频,了解人类能源的使用,知道生活生产离不开能源创造课堂情景,激发学生的兴趣和求知欲
(5分钟)播放水力发电、煤炭、石油、核能、天然气等图片,提出人类使用的能量是通过不同的能源提供的,各种能源的使用,促进了人类文明的发展。你能说出这些能源的来源吗?说出人们在使用能源时,能说出各种能源的来源联系实际,贴近生活,培养分析与总结能力
新课内容(25分钟)人类利用能源的历程
结合课前大家收集的资料,请同学们从三个方面对人类能源利用发展的历程进行介绍。
自从人类掌握了人工取火的方法之后,人类就开始了开发利用能源的进程。
提出问题:内燃机中能量转化,对生产和生活带来什么影响。
人类利用能源史上两次划时代革命转折,即煤炭代替柴薪成为主要能源,石油取代煤炭而居主导,创造了世界经济发展的奇迹。
提出问题:生活中常见的家用电器所涉及的能量转化有哪些?
学生展示课前的调查资料,介绍人类从利用能源的起始阶段,以及柴薪时代向煤炭时代的转折。
学生展示以蒸气机、热机为代表的以化石能源为动力的各种机械。引发了世界性的工业革命。
学生展示电磁感应现象的发现以及发电机的发明使煤、石油等化石能源被转换成更加便于输送和利用的电能。
学生介绍现代新能源的开发和利用,分析新能源的优势了解能源使用与人类社会发展的关系。
培养学生资料搜集能力,学生合作学习的能力
学生分组讨论:
请你对下列能源进行分类,并说出分类标准。
煤、天然气、汽油、太阳能、核能、地热能、电能。
一次能源:煤、天然气、太阳能、核能、地热能。
二次能源:汽油、电能。
可再生能源:太阳能、地热能。
不可再生能源:煤、天然气、汽油、电能、核能。
常规能源:煤、天然气、汽油、电能。
新能源:太阳能、核能、地热能。
清洁能源:太阳能、核能、地热能、电能、天然气。
非清洁能源:煤、汽油。
学生说出电能使用树中的能量转化培养学生利用物理知识解决实际问题的能力。
从能量转化的角度来认识能源的利用
阅读课本中“21世纪的能源趋势”,了解当今世界范围能源所面临的严峻问题,了解近年来世界能源消耗情况。
展示资料,以百分比方式描述的我国和世界能源扇形图。分析世界与我国目前能耗结构比是否合理。
中国
世界
我国人均能源拥有量处于世界较低的标准。
思考:(1)能耗结构比的不合理,会带来什么样的问题?
(2)从我国的能源人均拥有量偏低中感悟到什么?学生阅读课本内容,了解当今世界能源消耗情况。
学生分析能源消耗扇形图,可以得出,能源消耗中化石能源消耗占比最大,可再生的清洁能源利用率太低。能耗结构比不合理。
学生讨论回答:
(1)无论是中国还是世界范围,化石能源消耗占比过重,化石能源是不可再生能源,储量有限。要积极开发清洁的新能源,降低化石能源消耗比,实现能源的可持续发展。
(2)我国能源人均拥有量偏低,这就要求我们在实际使用能源时要节约能源,要更加迫切地去开发新能源和使用可再生能源。如开发我国现在使用较少的水电、核能、太阳能等新能源。培养学生自学能力。
通过数据了解现阶段能源使用的状况及结构。
对情感态度和价值观的培养,形成节约能源的意识
1.通过本节课的学习,你知道了有关能源的哪些知识?
2.你能说说人类利用能源经历了哪些历程吗?
3.你能说出一些常见的一次能源和二次能源吗?
4.你能说出21世纪能源趋势吗?中国现阶段能源利用的结构合理吗?学生梳理本节课知识内容。
1.了解人类使用能源的历程;了解21世纪的能源趋势等。
2.人类从使用柴薪能源开始使用能源;蒸汽机的出现使煤、石油的使用越来越普遍,它引发了一次工业革命。汽轮机及大型发电机的出现,使电能的应用越来越广泛。
3.一次能源是直接能从自然界获得的,如煤、石油、天然气等,二次能源通过一次能源转化得来,如电能。
4.总结现阶段能源使用培养学生总结归纳的能力。
利用物理方法解决实际问题,加强理论联系实际的能力
作业布置完成《动手动脑学物理》第1~2题按要求完成知识巩固
第三篇:能源利用与环境保护
环境概论
能源利用与环境保护
——煤炭利用过程的节能减排潜力研究
绪论
随着生产力的不断发展,环境问题已成为人们共同面临的挑战。煤炭在燃烧过程中会产生二氧化硫等有毒气体和二氧化碳等温室气体,这些气体的排放,会加重雾霾天气的形成并影响全球气候变暖,严重威胁着人类的生存和发展。经济的快速发展使得能源的需求不断增加,2012年我国煤炭消费量占能源消费总量的比重为66.6%,说明我国是一个以煤炭为主的能源国家,并且据有关部门预测,在未来很长一段时间内,我国以煤炭为主的能源结构仍将继续存在[1]。为了满足经济发展的需要,我国的煤炭产量逐年增加,从1978到2012年,煤炭的生产总量从44127.31万吨标准煤增长到253863.72万吨标准煤,煤炭工业在我国的国民经济建设中发挥着重要作用。然而,煤炭在促进经济发展的同时,带来了严重的环境污染。煤炭在开采过程中,会产生矿井水等工业废水,矿井水排出会破坏周围的生活环境和污染河流;煤炭开采后,如果不及时填充采空区,会造成地表沉陷,损害矿区的地表植被,加剧水土流失;煤炭在生产和燃烧过程中,也会产生瓦斯和其他有害气体、煤矸石、煤灰等工业固体废物。煤矸石含碳量低,平均每采10吨煤,就会产生1.5吨的煤矸石,长期堆积会引起自燃。另外,煤炭在燃烧过程中,会产生细小颗粒物,加速雾霾天气的出现次数,直接影响社会可持续发展和人们的身体健康。早在2012年底我国政府发布的《重点区域大气污染防治“十二五规划”》提出重点解决PM2.5污染问题,严格控制主要污染物新增排放量,并提出与2010年相比,到2015年京津冀、长三角、珠三角区域PM2.5浓度下降6%的目标。2013年9月《大气污染防治行动计划》的正式发布,更是明确了通过5年改善全国空气质量、较大幅度减少重污染天气的目标。这些充分显示了当前我国的环境污染问题开始变得严重,尤其是2013年入冬以来,雾霾天气越来越频繁,持续时间也越来越长。当前,煤炭燃烧带来的二氧化碳排放占我国能源总碳排放的80%以上,二氧化硫排放占我国二氧化硫总排放量的90%以上,氮氧化物约为50%,对环境尤其是大气环境造成了深远的影响[2]。
2011年3月全国人大通过的《国民经济和社会发展第十二个五年规划纲要》,将应对气候变化正式纳入了中长期规划。该《纲要》将单位GDP能源消耗量、单位GDP二氧化碳分别降低16%、17%,主要污染物排放明显减少,其中SO2、NOX排放分别减少8%、10%等作为约束性指标,并提出控制温室气体排放、加强应对气候变化方面的国际合作等任务。2012年3月国家发改委发布《煤炭工业发展“十二五”规划》,提出鼓励发展大型煤化工和煤炭转化技术,煤层气抽采综合利用,煤气共采、煤矸石综合利用等,大力发展洁净煤技术。因此,如何实现我国的碳减排承诺,改善环境污染,是我国政府和煤炭企业不得不面对的问题。
本文从煤炭利用方面进行研究,分析我国的煤炭资源在利用过程中对废气、二氧化硫、烟尘粉尘造成的影响程度和因果关系,并且提出改善环境问题的实现路径是节能减排,研究了煤炭利用节能减排的潜力。因此,研究煤炭利用的环境影响和节能减排潜力,对于实现我国的碳减排承诺,解决环境污染问题,积极发展煤炭技术和碳减排技术,促进我国经济的持续快速发展有着重要的意义。
环境概论
原理:
本文是煤炭利用的节能减排潜力研究,文中以火电行业为例介绍我国燃煤行业煤炭利用环节的能耗现状,通过燃煤发电能耗指标、燃煤供电能耗指标分析火电行业的国内外能耗差距,并推算我国燃煤行业在煤炭利用环节可以节约多少标准煤,减少多少CO2、SO2以及烟尘粉尘,分析我国燃煤行业的节能减排潜力,为解决环境问题提供了实现路径;
煤炭利用的节能减排潜力研究:以火电行业和钢铁行业为例
火电行业的能耗现状
二十一世纪以来,我国电力行业发展迅速,电力装机容量增长很快,在表4.1中可以看出,我国的火电装机容量占整个装机容量的70%以上,虽然近几年有所下降,但是2012年仍然达到71.55%。在表4.2中可以看出,我国的火电发电量占总发电量的比重一直在80%以上,直到2012年才下降到78.57%。2013年我国发电量为53975.9亿千瓦小时,火电为42358.7亿千瓦时,占我国发电量的78.48%。与此同时我国发电装机容量首次超过美国成为世界第一,达到124738万千瓦,其中火电装机容量86238万千瓦,占总发电装机容量的69.14%。因此,了解我国火力发电的能耗处于什么水平,节能减排潜力有多大,是火力发电节能工作者不能回避的问题[3],也是煤炭高效利用工作者不能回避的问题。
代百乾等通过灰色系统GM(1.1)模型对我国火电煤耗、二氧化碳、二氧化硫的排放前景进行预测,发现我国火力发电行业有巨大的减排潜力[4]。汤庆合认为煤电的能源消耗高、单位电力的二氧化碳排放系数最大,由于不需要消耗化石燃料,核电和可再生能源发电在低碳经济发展中受到欢迎。而黄毅诚指出通过改变电源结构,发展核电、水电、风电等,降低燃煤发电占总发电量的比例,可以降低二氧化碳排放量,但是考虑到我国“富煤、少气、缺油”的能源特点,燃煤发电在今后相当一段时间内仍将占主力地位,因此当前应该降低发电煤耗,实现用现有的煤多发电。当前我国的电源结构包括水电、火电、核电、风电,以火电为主,而在火电中包括燃煤发电、燃油发电、燃气发电,以燃煤发电为主。但是燃煤电厂的大量存在给环境带来了巨大的压力,为了适应节能减排的政策要求,各地针对小火电纷纷实施有计划的关停政策,监管部门鼓励建设超临界、超超临界大容量、高效能燃煤机组,同时鼓励电厂脱硫等环保项目。
火电行业的能耗比较
从1990年以来,随着大容量机组的持续增加、小火电机组的关停和节能管理技术的实施,我国的火力发电煤耗水平正在逐年下降,图4.2可以看出二十几年来我国6000kw及以上火电厂发电供电煤耗在大幅度下降,1990年发电煤耗为392克标准煤/千瓦时,2012年发电煤耗为305克标准煤/千瓦时,降低幅度为87克标准煤/千瓦时,降低率为22.19%。同样供电煤耗也从1990年的427克标准煤/千瓦时降到326克标准煤/千瓦时,降低幅度为101克标准煤/千瓦时,降低率为23.65%。根据中国电力企业联合会统计,2013年我国火电机组供电煤耗将达到321克标准煤/千瓦小时。这与我国的节能降耗政策分不开,与我国电力企业燃煤发电技术的改进分不开。
尽管我国的燃煤发电能耗在降低,但是与国外相比还是存在很大的差距,尤
环境概论
其是与日本的发电煤耗相比,2012年我国的发电煤耗为305克标准煤/千瓦时,在表4.3中可以看到,日本的发电煤耗为295克标准煤/千瓦时,相差10克标准煤/千瓦时,这说明我国与日本在发电煤耗方面存在一定的差距,我国的煤炭利用率比较低。
图 1 1990-2012年我国的发电供电煤耗率
表 1 日本发电供电煤耗
火电行业的节能潜力 发电煤耗是指发电厂每生产1kwh的电能所消耗的标准煤量。发电厂生产的电能,自身需要消耗掉一部分,剩余的才供给用户。为此,供电煤耗是指发电厂每供出1kwh电能所消耗的标准煤量。根据原电力工业部《火力发电厂按入炉煤量正平衡计算发供电煤耗的方法》规定:煤耗是考核机组运行性能最主要的指标之一,火电厂发供电煤耗统一以入炉煤计算煤量和入炉煤机械取样分析低位发热量为基础,按正平衡计算。反平衡计算煤耗的结果,可以用来分析机组运行的不足,为机组性能改善提供依据。以下为发电煤耗和供电煤耗的公式:
第一种:正平衡煤耗的计算
式中:
表示发电标准煤耗,单位为克每千瓦时(g/kwh); b f 表示统计期内耗用标准煤量,单位为吨(t); B b 表示统计期内发电量,单位为千瓦时(kwh);W f
由于火力发电燃料主要是煤、油和气等,因此火力发电供电煤耗率又可按以
环境概论
下公式计算:
式中:
b f表示发电标准煤耗,单位为克每千瓦时(g/kwh);
c表示电厂效率,单位为百分数(%)
在我国,发电煤耗是指6000kw及以上的火力发电煤耗,2012年我国6000kw及以上的火电发电量为39160.03亿千瓦时,其中各个部分的发电量见表4.4,发电煤耗为305克标准煤/千瓦时,所以火电消耗的煤炭为119438.09万吨标准煤,而2012年燃煤发电消耗的煤炭是114770万吨标准煤,占全部火电标准煤的96.09%。《行业节能减排技术与能耗考核》书中提到2010年我国火电厂的供电标准限额为389克标准煤/千瓦时,供电标准定额为330克标准煤/千瓦时,按照2010年6000kw及以上火力发电的厂用电率6.33%计算得到发电限额为364.38克标准煤/千瓦时,发电定额为309.11克标准煤/千瓦时。千瓦时。为此,可以得出以下结论:
(1)2012年我国的发电煤耗未超过我国2010年的发电限额和发电定额,而2010年我国的发电煤耗为312克标准煤/千瓦时,超过了我国的发电定额,这说明我国的发电煤耗水平和发电利用效率在不断提高,同时说明我国火电厂“上大压小”的政策实施效果明显,为此,我国政府应该综合考虑实际情况制定我国各年的发电标准煤限额。
(2)我国的发电煤耗与日本相比,二者相差10克标准煤/千瓦小时,这说明我国与日本的燃煤发电技术存在一定的差距,我国的节能潜力较大。在发电量一定的情况下,如果按照2012年日本的先进水平进行测算,那么我国可以节约3916万吨标准煤,其中在燃煤发电环节可以节约3762.89万吨标准煤。
表 2
2011和2012年我国6000千瓦以上的火电发电量
环境概论
火电行业的减排潜力
根据王佳在博士论文《中国地区碳不平等:测度及影响因素》提到的对CO2的估计方法,本文估计了由于煤炭消费所产生的CO2。主要考虑了《中国能源统计年鉴》中的原煤、洗精煤、其他洗煤、型煤,由于“我国能源平衡表(实物量)”中,“终端能源消费量”没有包括火力发电、供热等环节的能源消费,而“可供本地区消费的能源消费量”会重复计算一次能源生产加工的产品,因此,本文采取了“终端能源消费量”“火力发电”“供热”及“平衡差额”的加总。二氧化碳的计算公式如下:
式中:
CE为煤炭消费的CO2排放总量; 为第j种煤炭的消费量。A j 煤炭的CO2排放系数见下表:
表 3 煤炭的CO2排放系数
通过计算可以得到2012年二氧化碳的排放量为582384.2万吨。同时2012年我国二氧化硫的排放量为2117.63万吨,烟粉尘排放量为1235.77万吨,煤炭消费量为240913.51万吨标准煤,为此,在发电量一定的情况下,如果按照2012年日本的先进水平进行测算,那么可以减少9096.41万吨二氧化碳排放量,减少33.08万吨二氧化硫排放量,减少19.30万吨烟粉尘排放量。
另外,值得注意的是,不同容量的发电机组燃煤能耗的水平不同,发电机组容量越大,发电煤耗越低,为此火电行业要鼓励建立大容量机组,关停小容量机组。而且根据反平衡计算公式(4-4),提高电厂效率可以降低发电煤耗率。电力是关系国民经济的重要基础产业,如果燃煤发电的比例过大,一方面会受制于煤炭资源,影响电力供应安全;另一方面不利于我国减排工作的展开。所以,在电力工业稳定发展的前提下,要合理优化电源结构,逐步降低燃煤发电在电力工业的比例。
结论
通过燃煤发电能耗指标进行测算,结果表明我国与国际先进水平(本文为日本)相差10克标准煤/千瓦小时,在2012年发电量一定的情况下,如果我国火电行业能耗达到国际先进水平,那么我国在燃煤发电环节可以节约3762.89万吨标准煤,减少9096.41万吨二氧化碳排放量,减少33.08万吨二氧化硫排放量,减少19.30万吨烟粉尘排放量。
因此,通过本章的分析说明,我国煤炭利用环节的节能减排潜力较大,通过能源技术创新,如果将我国燃煤行业的煤炭利用效率提高到国际先进水平,可以有效达到节能减排的目的。
环境概论
创新之处
本文的创新之处主要有:
(1)通过计量模型定量分析了煤炭利用对大气污染的影响关系,发现我国煤炭消费每增加1单位,废气增加0.52单位、二氧化硫增加0.09单位、烟粉尘增加0.90单位,煤炭利用对环境存在较大的影响关系。
(2)通过对比分析,指出了我国高耗能产业的节能空间。本文以火电行业为例,发现我国能耗与国外先进能耗标准存在较大的差距,不仅分析了差距有多大,而且按照国际先进标准测算出我国在产量既定的情况下,按国外标准可以有效节约的煤炭消耗量和减少的排放量。
(3)提出了通过能源技术创新,进行能源结构调整和提高煤炭利用率双管齐下的能源政策。本文分析了煤炭利用对环境的影响和煤炭利用的节能减排潜力,发现煤炭利用对环境存在较大的影响,为此需要进行能源结构调整,提高煤炭资源利用效率。
结论(可行性)
本文研究了煤炭利用的环境影响以及节能减排潜力,得到如下结论:
(1)煤炭利用对我国的环境污染造成了影响,尤其体现在大气污染方面。通过分析表明:我国煤炭消费与废气、煤炭消费与二氧化硫、煤炭消费与烟粉尘均存在长期均衡关系。通过面板模型估计发现,我国煤炭消费每增加1单位,废气增加0.52单位,二氧化硫增加0.09单位,烟粉尘增加0.90单位,虽然煤炭消费对环境污染的影响系数并不大,但是每年的煤炭消费量基数比较大,所以累积的环境影响也会增加。在因果关系中,我国存在煤炭消费到废气的单向因果关系,存在煤炭消费与二氧化硫的双向因果关系。因此,说明煤炭利用对环境存在较大的影响和存在因果关系,煤炭的不合理利用对大气污染造成了很大的影响,甚至加重了雾霾天气。
(2)通过煤炭利用环节的能源技术创新,可以实现节能减排,进而达到减少环境污染的目的。本文以火电行业为例,参考这行业的国外先进能耗标准,测算出我国在产量既定的情况下,按照国外标准可以有效节约的煤炭消耗量,进而可以实现减少排放的目的。说明我国在煤炭利用环节还有较大的节能减排潜力。
(3)改善我国环境污染的出路在于调整能源结构和提高能源利用效率两方面。通过研究发现,我国的煤炭利用对环境污染存在因果关系,通过火电行业和钢铁行业为例对燃煤行业进行能耗分析发现如果将我国燃煤行业的煤炭利用效率提高到国际先进水平,同样可以达到降低环境污染和节能减排的目的。因此,为了提高我国的空气质量以及兑现2020年的碳减排承诺,我国在逐步调整能源结构,减少煤炭利用的同时,可以大力发展洁净煤技术,提高煤炭资源的利用效率。
政策建议(意义)
结合本文的结论,为我国政府制定环境措施提供一些政策建议:
(1)调整能源结构,减少煤炭利用总量。我国是以煤炭为主要能源的国家,煤炭在能源结构中所占比重大约为70%,然而煤炭在开发利用过程中,会产生大量的工业废水,污染周围的河流,煤炭燃烧会向大气中排放大量的有害物质,如二氧化硫、二氧化碳等,而且本文分析也证明了我国煤炭消费与废气、煤炭消费与二氧化硫、煤炭消费与烟粉尘之间均存在长期均衡关系,煤炭消费数量越多,环境概论
环境污染越严重,甚至危害到人们的身体健康。想要减轻和改善环境问题,需要调整能源消费结构,减少煤炭使用量,提高水电、风电和核电等清洁能源的比重。清洁能源的特点在于促进经济发展的同时,不会造成环境污染。因此,政府需要加强清洁能源的开发力度,引导企业贯彻实施清洁能源开发政策,提高企业使用清洁能源的积极性,从而降低煤炭利用的总量。
(2)加强技术开发,提高煤炭利用效率。针对我国的煤炭行业,要建立以企业为主体,政府引导的研发模式,提高研发资金使用效率,通过退税或补贴政策提高企业自主研发的积极性,鼓励企业积极研发新的技术,通过技术开发提高煤炭利用效率。同时吸收国内外优秀人才,大力攻克燃煤技术的难点,不定期学习、引进、借鉴日本等国外先进的技术和经验,如洁净煤技术、整体煤气联合气化技术、超超临界发电技术、二氧化碳捕获与封存技术等,通过技术创新不断降低煤炭消费过程中的能耗水平,以较少的投入实现较高的产出、较低的碳排放。
(3)淘汰落后产能,降低煤炭单耗水平。2012年我国的煤炭消费量为352647.07万吨,高耗煤行业煤炭消费量为292033.97万吨,占全国煤炭消费量的82.81%,然而我国的高耗煤行业的能耗与国际先进水平存在一定差距,存在能源消耗较高,浪费现象严重的问题,为了满足高耗煤行业的需求,尤其是电力、钢铁行业的需求,除了要优化能源消费结构,提高煤炭利用效率,政府还需要淘汰落后产能,鼓励改进脱硫脱硝技术,加快智能电厂的推广和应用,降低我国燃煤行业的煤炭单耗水平,实施优胜劣汰制度。通过提高燃煤行业的发电效率,鼓励低热值煤发电,逐步减少碳排放。
参考文献
[1]齐晓燕,郭丕斌.煤炭低碳化技术创新研究进展综述[J].科技管理研究,2014(4):211-215 [2]吴越涛,苗韧.我国煤炭绿色消费的若干思路[J].中国能源,2013,35(11):14-17.[3]杨勇平,杨志平,徐钢,等.中国火力发电能耗状况及展望[J].中国电机工程学报,2013, 33(23):1-11.[4]代百乾,张忠孝,王婧,等.我国火力发电节煤和CO2/SO2减排潜力的探讨[J].节能技术,2008(3):163-167.
第四篇:2011年能源利用状况报告
2011年能源利用状况报告
填报单位 :浙江华彩薄板有限公司
填报日期 :
一、企业概况
浙江华彩薄板有限公司座落于杭嘉湖平原腹地桐乡市石门镇工业园区,桐乡素有“渔米之乡”、“丝绸之府”、“人文之邦”的美誉,是文学巨匠茅盾的故乡,又是大漫画家丰子恺的故里。公司成立于2003年,主要专业从事生产和销售各种颜色的彩钢卷、镀锌卷、冷轧卷、钢卷、酸洗板及金属薄板。公司现有员工115人。具有中、高级以上技术职称者28人,其中高级工程师3人。是一家集高新科技开发、生产加工于一体的科技型工业企业。
目前,公司拥有固定资产390000亿元,厂区占地面积达79亩。现有彩涂板生产线1条;硅钢生产线1条;镀锌生产线2条。2011年销售额为 68000万元。
面对市场竞争和社会需要,华彩人深知责任重大。本着“开拓进取、争强创先、节能发展”的企业精神,运用多年凝结的经验和科学发展观,奋发创新,深入镀锌和彩涂业的研究和开发,努力打造减排节能的科技型企业。
目前我公司以成为华东地区最大的钢铁(镀锌、彩涂、硅钢)生产基地。
生产工艺特点简述
镀锌主要生产工艺流程为:上卷—开卷(1#及2#开卷机轮流作业)—剪切(1#及2#剪切机轮流作业)—焊接—清洗脱脂—电解清洗—水涮洗—漂洗—烘干—入口活套—还原退火—热浸镀—气刀吹刮—空冷—水淬—光整—拉矫—钝化—出口活套—剪切—卷取—卸卷— 称重—包装。
彩涂主要生产工艺流程:原料拆包 — 上卷 — 开卷— 剪切 — 缝合 — 压毛刺 — 入口活套 — 1号碱喷淋 — 挤干 — 刷洗 — 挤干 — 2号碱喷淋 — 挤干 — 1级热水漂洗 — 2级热水漂洗 — 挤干 —烘干 — 化学预处理 — 烘干 — 初涂 — 固化— 烘干 — 精涂 — 固化 — 烘干 — 出口活套 — 检验 — 剪切 — 卷取 — 卸卷 — 称重 — 包装。
硅钢主要生产工艺流程为:上卷—开卷(1#及2#开卷机轮流作业)—剪切(1#及2#剪切机轮流作业)—焊接—清洗脱脂—电解清洗—水涮洗—漂洗—烘干入口活套—脱碳退火—水冷—空冷—涂层—烘干—烧结—风冷—出口活套—剪切—卷取—卸卷— 称重—包装。
公司节能计划和节能技术改造计划的实施情况
为积极响应节能降耗文件精神,更好地做好节能降耗工作,围绕我公司节能降耗总体目标。结合公司实际,特制定节能工作计划。
1、2007年主导研发的技改项目煤气发生炉,不仅使煤的用量减少60%以上,而且还将水循环利用。该项目每年为企业降低成本在200万元以上2、2008年节气省电省煤综合利用项目,主要通过对设备的改造成,将蒸气在不用时,保证蒸气的温度不变的情况下储存在设备中,使蒸气利用率达到98%以上。该项目的投入使用防止了蒸气的冷却,还大量节省了煤的耗用量。
3、硅钢脱碳热能连续循环交换炉项目安装已完成,2011年4月点火火投入试生产。
4、去年硅钢线利用退火炉的余热气,增加余热锅炉一台,通过余热锅炉加热水至80℃左右,送到清段清洗钢板,通过以上节能改造。节能效果明显好,每年可节能50万元/年。
5、今年计划1#镀锌线钝化烘箱实施改造:由原来的电加管加热,用来烘干钝化钢板,改为现在用煤气站废蒸气通过热交换器加热空气,然后再通过风机送到烘箱去加热,然后再通过风机送到烘站的废蒸气利用,每年可降低电能消耗20万元/每年。
总之,我们将密切配合上级领导,进一步抓好节能,全面落实各项目标任务,努力提高我公司经济效益。
公司贯彻落实节能法律法规
公司贯彻落实节能法律法规有:中华人民共和国计量法、中华人民共和国节约能源法、重点用能单位节能管理办法、重点用能单位能源利用状况报告制度实施方案、节能技术改造财政奖励资金管理暂行办法、公司燃料管理制、公司合理用电、节约用电管理制度、能源消耗定额的考核和奖惩、公司节能奖惩制度、公司合理用热、用水管理制度,公司能源计量、统计管理制度等。
能源管理现状及操作培训:
1、操作人员必须严格按照国家关于燃料燃烧合理化管理标准的要求,对设备进行操作,如锅炉和工业窑炉的空气系数,排渣含碳量、供引风风量与压力等都要达到标准。
2、公司教育部门负责分别对电力设备运行人员和生产工艺操作人员进行节电经济运行专业知识与节电操作规程的培训,并经考核合格后发证上岗。变电所(站)运行人员必须经常关注力率补偿装置的工作情况,确保公司电力系统的功率因数在0.9以上,力争接近0.95,对具有较大冲击性负荷的情况下,研究无功动态补偿的问题,以使公司电力系统功率因数补偿处于最佳状态。
3、车间生产操作人员对所有动力设备应尽可能减少空载操作。严格公司照明用电管理,节约照明用电,车间照明采用大功率节能灯淘汰白炽灯、汞灯,替代钠灯,在照度满足的前题下,减少用灯数量,随手关灯,杜绝白昼灯、长明灯。
4、公司合理用热、用水管理制度,各生产车间在进行工艺操作时要严格执
行。生产技术部门根据生产工艺要求的温度和加热形式,正确决定供热蒸汽的参数,按生产工艺用热的具体情况,采用热能的梯级利用,最大可能地利用热能资源。按照工艺条件的规定,生产操作时应准确控制被加热或被冷却物体的温度,5、设备主管部门与生产车间管理负责人在生产过程中,要不断的研究改善传热设备的运行管理,及时调整被加热或被冷却物体的数量,使每台设备接近额定产量,防止产量过低或过高而增加热耗。
生产计划部门合理安排计划,保证用热机台或作业线的集中和连续运行,尽可能防止过频的冷车起动。各生产车间,根据用水工艺要求,操作人员应严格按操作规程进行。
公司能源计量、统计管理制度,能源计量的检测率和计量器具的准确度都要达到的要求。根据本公司实际需要,严格计量监督、对使用量小,准确度要求高,而本公司又不能检定的能源计量器具,公司计量主管部门可以有计划地报请政府计量部门安排检定。
第五篇:秸秆能源化利用2
秸秆能源化利用技术
摘 要: 秸秆能源化利用技术是近年来迅速发展起来的生物质能利用新技术,我国农作物秸秆资源丰富,秸秆生物质资源的有效利用对解决环境污染和优化能源结构具有重要的意义。综述了秸秆固化、秸秆沼气、秸秆气化、秸秆发电、秸秆液化等秸秆能源化利用技术的原理,分析了各类技术的发展状况及存在的问题,认为在部分技术中存在生产成本高、技术不成熟、生产效率低、能耗高、行业标准缺失等问题,最后展望了秸秆能源化利用技术的发展方向和未来发展趋势。关键词: 秸秆;能源化利用;技术
能源是人类赖以生存的物质基础,我国能源供应主要依靠煤炭、石油和天然气等化石能源,化石能源资源的有限性及其开发利用过程对生态环境造成的巨大压力,严重制约着经济社会的可持续发展。因此,开发清洁的可再生能源已成为解决我国能源与环境问题的一条重要途径。农作物秸秆作为生物质能资源的主要来源之一,是目前世界上仅次于煤炭、石油以及天然气的第四大能源在世界能源总消费量中占14%[1]。目前秸秆生物质资源开发利用的主要技术有固化成型技术、直燃及气化发电技术、气化集中供气技术、热裂解液化技术、秸秆沼气发酵技术以及制取燃料乙醇技术等[3]。本文从应用层面对秸秆能源化利用各类技术原理进行了综述,分析了各类技术的发展状况及存在的问题,并展望了秸秆能源化利用技术的发展方向和未来发展趋势,旨在为秸秆能源化利用和相关产业发展提供参考。秸秆生物质能源
生物质能是太阳能以化学能形式贮存在生物质中的能量,它直接或间接地来源于绿色植物的光合作用。在风能、生物质能、太阳能、地热等可再生能源中,生物质能是唯一可存储和运输的可再生能源。作为生物质能的主要来源之一,农作物秸秆与化石能源相比具有来源丰富、清洁环保、可再生、分布分散等特点,其主要成分为纤维素、半纤维和木质素,其中纤维素含量为40%~55%、半纤维素含量为10%~25%、木质素含量为20%~30%[5]。木质素除自身难以分解外,还常与纤维素、半纤维素等成分相互缠绕,形成致密的空间结构进而阻碍纤维素的降解。因此,秸秆转化利用的关键是将其主要组分(纤维素、半纤维素和木质素)进行有目的地转化利用。如何通过物理、化学、热解以及生物学方法实现秸秆资源的高效转化利用已成为生物能源工作者的研究热点。2 秸秆能源利用技术 2.1 秸秆固化成型技术
秸秆固化成型是指在一定温度和压力作用下,利用固化成型设备将秸秆压缩成棒状、块状或颗粒状等成型燃料的技术[8]。秸秆生物质的基本组织是纤维素、半纤维素和木质素,它们在适当的温度(通常为200~300℃)下可以软化,利用这一特性,用压缩成型机械将经干燥和粉碎过的松散生物质废料在超高压(0.5~1.0t/cm3)的条件下,靠机械与生物质废料之间及其生物质废料相互之间摩擦产生的热量或外部加热,使纤维素、木质素软化,经挤压成型后得到具有一定形状和规格的新型燃料[9]。秸秆固化成型基本生产工艺流程包括:秸秆收集、粉碎、干燥、混料、成型、冷却、包装等程序。固化成型后的秸秆燃料,密度可达0.8~1.2t/m3,热值可达13~25 MJ/m3,可代替木柴、原煤、燃油、液化气等,广泛用于生物质锅炉、生活炉灶、生物质发电等。
根据秸秆压缩成型设备工作原理的不同,可将秸秆固化成型设备分为三大类[12],即螺旋挤压型成型设备、活塞冲压型成型设备、辊压型成型设备。螺旋挤压型成型设备主要依靠锥形螺旋推进器旋压成型;活塞冲压型成型设备通常不用加热,物料由活塞推动挤压成型,该技术成型密度较大,对物料含水量要求较宽,但生产率较低,产品质量不太稳定,成型模腔容易磨损,一般模腔平均寿命为100h左右;辊模成型设备依靠物料挤压成型时产生的摩擦热即可使物料软化、黏合,对原料的含水率要求较宽,一般在10%~18% 均能成型,该技术效率较高,辊模使用寿命较长,可达1000h以上。
固化成型工艺可分为三大类: 一是热成型工艺,根据原料被加热的部位不同,又可细分为2类: 一类是原料在进入压缩结构之前和在成型部位分别加热,称为预热热压成型工艺;另一类是原料只在成型部位加热,称为非预热热压成型工艺。从实际应用情况看,由于预热成型工艺能耗较高、生产工序复杂,非预热热压成型工艺在市场中占主导地位。二是常温成型工艺,秸秆常温成型工艺即在常温条件下将生物质燃料经过粉碎、干燥等预处理后放入秸秆压块机械挤压成型的过程。常温成型工艺一般需要很大的成型压力,有时需要在成型过程中加入一定的黏结剂。除了上述2种主要的成型工艺外,目前市场上采用的还有炭化成型工艺等[9]。2.2 秸秆沼气技术
秸秆沼气技术以秸秆为发酵原料,在隔绝空气并维持一定温度、湿度、酸碱度等条件下,经过沼气细菌的发酵作用生产沼气。沼气是一种混合气体,主要成分是甲烷,其次为二氧化碳、氧气、氮气和硫化氢等,其中甲烷含量为55%~70%,沼气热值为20~25MJ/m
3[13]
。根据处理工艺秸秆,沼气发酵可分为干法和湿法发酵两类;另外从工程规模和利用方式上又可分为户用秸秆沼气和秸秆沼气集中供气工程两类。由于秸秆不易被厌氧微生物及酶直接利用,因在发酵前需对其进行预处理。秸秆中的C/N比较高,在50以上,高于正常发酵所需的20~30,因此在发酵时需添加富含氮素的原料,如碳酸氢铵、尿素或动物粪污等,以减少发酵启动时间,提高沼气产量。
生物质秸秆的预处理方法大体上分为物理法、化学法、热处理法和生物法四大类[17]。物理法主要是通过粉碎、揉丝、浸泡等方法,改变秸秆的外部形态或内部组织结构;化学处理就是利用化学制剂(氢氧化钠、氨水等)破坏秸秆细胞壁中半纤维素与木质素形成的共价键,从而达到提高秸秆消化率的目的[14]。此方法处理后秸秆中残存的化学试剂可能对沼气发酵产生抑制作用以及易引起环境的二次污染等问题限制了其应用。热处理法目前应用的主要是高压水蒸气爆破法,通过高压水蒸气爆破破坏秸秆结构,提高秸秆利用率[18]。该方法的处理成本较高,需要专用的设备,因而在推广应用中受到了限制。生物法主要是利用微生物对秸秆进行预处理,主要包括以乳酸菌为核心的青贮方法,以降解木质素的白腐真菌为核心的绿秸灵复合菌剂,以及利用沼液中的水解微生物对秸秆进行堆沤等[20]。生物法处理成本较低,条件温和且无需专门的设备设施,处理效果较好,因而近年来受到极大的关注,在实践中应用较多。秸秆户用沼气以秸秆作为沼气发酵原料,通过秸秆发酵菌剂(绿秸灵复合菌剂等)预处理秸秆,利用甲烷细菌发酵产生沼气。一般一口8m3的沼气池,需400kg秸秆、1kg秸秆发酵菌剂、15kg左右碳酸氢铵、4t左右的水,10%~15%的接种物,可持续产气8~10个月[21]。主要工艺流程分为秸秆预处理-投料-加水封池-点火试气等几个阶段。
秸秆沼气工程根据秸秆物料在反应器中的形态不同可分为液态消化工艺、固态消化工艺和固液两相消化工艺[22]。液态消化指秸秆物料在有流动水状态进行的厌氧消化过程。消化反应器通常为立式或卧式,通常采用序批式或连续式进出料方式,沼液回流循环使用。固态消化工艺主要有车库(集装箱)式、红泥塑料和覆膜槽干式厌氧消化工艺,以序批式投料为主,大都采用多个不同消化阶段反应器并联的方式运行,以保证整个系统产气稳定。固液两相消化工艺通过将固相和液相发酵原料分在不同区域,以达到产酸相和产甲烷相分离,有利于产酸菌和产甲烷菌在各自的反应区内保持适宜的生长环境,并利用沼液回流实现循环接种[23]。2.3 秸秆气化技术 秸秆热解气化是指秸秆原料在缺氧状态下发生热化学反应转化为气体燃料的能量转换过程。生物质是由碳、氢、氧等元素组成的,当生物质原料在气化炉中燃烧时,随着温度的升高,燃烧秸秆干燥、裂解反应、氧化反应、还原反应4个阶段[26]。秸秆燃气经冷却、除尘、除焦等处理后,可供民用炊事、取暖、发电等使用。
根据气化工艺不同,秸秆气化炉可分为固定床秸秆气化炉和流化床气化炉2种类型[27]。固定床气化炉又可进一步细分为固定床上吸式气化炉和固定床下吸式气化炉两类。固定床上吸式气化炉进料口位于炉体顶部,物料由炉顶加料口进入炉内,炉内料层自上而下分别为干燥层、热解层、还原层和氧化层;气化剂由炉体底部的进风口进入炉内参与气化反应。固定床下吸式气化炉物料由炉顶加料口加入炉内,气化剂由炉体上部进风口和炉顶进料口进入炉内,可燃气体最终通过炉体下部排出。流化床气化炉流化床材料为精选过的惰性材料砂子,物料通过输送搅龙进入炉内,炉底以较大压力通入气化剂,使炉内呈沸腾、鼓泡等不同状态,物料和气化剂的充分接触,发生气化反应。该类气化炉具有受热均匀、气化反应快、产气率高、燃气焦油含量少等优点[29],但其对秸秆物料大小要求严格,气化炉结构复杂,可燃气中灰分较多,实践中应用较少。2.4 秸秆发电技术
秸秆发电技术是以农作物秸秆为原料的一种发电方式,根据秸秆利用方式的不同,主要有以下3种技术路线:秸秆直接燃烧发电、秸秆/煤混合燃烧发电、秸秆气化发电[30]。截止2010年6月底,国内各级政府核准的生物质秸秆发电项目累计超过了170个,总装机容量从2006年的1400MW增长到了2010年的5500MW,并有50多个项目成功实现了并网发电,发电装机容量达2000MW以上[32]。
秸秆直接燃烧发电是指把秸秆原料送入锅炉中直接燃烧产出高压水蒸汽,通过汽轮机的涡轮膨胀做功,驱动发电机发电。目前,秸秆直接燃烧发电技术主要有2类,分别为水冷式振动炉排燃烧发电技术和流化床燃烧发电技术。秸秆混合燃烧发电是指使用秸秆和煤的混合燃料进行发电,秸秆混合燃烧方式主要有直接混合燃烧、间接混合燃烧和并联燃烧3种方式。直接混合燃烧是指在秸秆预处理阶段,将粉碎处理好的秸秆与煤粉在进料的上游充分混合后,输入锅炉燃烧。间接混合燃烧是指先对秸秆进行气化,然后将秸秆燃气输送至锅炉燃烧。并联混合燃烧指秸秆在独立的锅炉中燃烧,将产生的蒸汽与传统燃煤锅炉产生的蒸汽一并供给汽轮机发电机组做功。秸秆气化发电是指,首先使生物质原料在缺氧状态下[28]发生热化学反应转化为气体燃料(一氧化碳、氢气、甲烷),然后将转化后的可燃气体由风机抽出,经冷却除尘、去焦油和杂质后,供给内燃机或者小型燃气轮机,带动发电机发电。2.5 秸秆液化技术
秸秆液化是指通过物理、化学或生物学方法,使秸秆中的木质素、纤维素等转化为醇类、可燃性油或其他化工原料[36-37]。根据生物质液化方式的不同,主要分为直接液化、高温高压液化、微波液化3种形式。
直接液化是指在中低温、高压并有催化剂参与情况下,将生物质转化为液体的热化学反应过程,通常有还原性气体(例如氢气、一氧化碳等)参与反应。根据液化目的不同,可将直接液化细分为两大类: 一类是反应产物保留植物纤维原料的大分子结构,主要目的是制备天然高分子材料;另一类是破坏原料的大分子结构,将植物纤维原料转化成小分子后再加以利用,如生产乙醇等。由秸秆生产乙醇主要包括预处理、水解和发酵三大步骤,预处理主要是通过物理、化学、热解以及生物法等破坏木质纤维素的结构,分离或脱除生物质中木质素,增加生物质的孔隙率,提高接触比表面积和酶对纤维素的可及性,从而提高转化率。预处理后的秸秆物质在一定温度和催化剂作用下,其中的纤维素和半纤维素经水解过程转化为单糖,再通过微生物发酵技术,将其转化为乙醇[39]。
高温高压液化是指在高压下发生热化学反应的过程,典型的液化工艺是在较高的压力和温度(300~500℃)以及在催化剂存在下进行的。此方式需要消耗大量的能量,同时对设备耐压要求较高,目前研究较多的主要有秸秆制柴油等技术。以秸秆等木质纤维素为原料,通过快速热解液化、加压催化液化等转化分离出碳水化合物,再经水解、发酵、转酯化过程制备生物柴油。微波液化是指利用微波辐射使小分子极性物质产生物理效应,从而加速反应、改变反应机理或启通新的反应通道的一项技术。一般情况下,微波能量越高,辐射时间越长,添加的催化剂越多,液化效率就越高。3 秸秆能源化技术存在的问题
一是在秸秆固化方面,主要是成型设备标准不统一、生产率低、能耗高、主要工作部件的使用寿命短、易出故障、易损件费用高、设备系统配合协调能力差、运行不稳定等。二是在秸秆沼气方面,主要为沼气反应体系不稳定,秸秆消化效率不高,中高浓度的秸秆易结壳、出料困难,反应器设计有待优化等问题[42-45]。三是在秸秆气化方面,主要问题是燃气热值低,一般在5MJ/m3左右;焦油含量过高,焦油占秸秆气总能量的5%~15%,在低温下焦油凝结为液态,容易堵塞送气管道和燃烧灶具[26]。目前采用较为广泛的湿法除尘除焦技术容易带来处理水的二次污染问题。四是在秸秆发电方面,目前国产秸秆发电锅炉结焦、腐蚀和效率低等问题还不能得到很好的解决,秸秆发电核心技术和设备大部分依靠进口,价格昂贵,在现有的技术水平下,生物质发电成本约为煤电的1.5倍[46-47]。五是在秸秆液化方面,目前国内外对秸秆液化机理和数学模型的研究还很欠缺,秸秆预处理技术有待发展,高效催化剂的筛选方面有待提高,液化产物的分离、提纯技术有待发展。六是就秸秆能源化产业而言,目前整个产业还未建立完善的产品质量标准体系和质量检测体系,市场上销售的秸秆能源化设备质量参差不齐,运行不稳定、经济效益不明显[48-49]。4 结论与建议
推广秸秆能源化利用技术,对于控制秸秆焚烧、保护环境、减少碳排放、应对能源短缺等方面有着重大意义。我国秸秆能源化利用技术的研究与应用尚处于起步阶段,目前部分秸秆能源利用技术还存在着工艺技术不成熟、生产效率低、能耗高、行业标准缺失、经济效益不明显等问题。因此,应加大对秸秆能源化基础性研究的支持力度,积极引进国外先进技术和经验[50],加强科技攻关,重点在农作物秸秆高能效低能耗转化、生物质热解生产、生物质发电、木质纤维素生产燃料乙醇、生物柴油等方面开展研究,尽快完善农业生物质资源化利用标准体系。虽然我国目前在秸秆生物质能利用领域还存在着一些亟待解决的问题,但其具有的综合效益越来越为人们所认知和重视。秸秆生物质能作为可再生能源中唯一可存储和运输的能源,在我国自然环境、社会环境和政策环境下,秸秆生物质的大规模开发利用必将成为未来的发展趋势。