第一篇:材料与能源利用情况分析
材料与能源利用情况分析
编号:
1.目的和作用
物质资源是企业开展经营活动的必要条件。有足够的物力,而且又能合理、有效地利用,经营目标就会顺利实现。然而,企业常会面临原材料、能源供应不足的局势,因此如何组织好原材料的采购、供应与储备,充分发挥原材料的使用价值,以较少的原材料消耗,生产出较多的产品,是企业经营管理上经常性的一个重要课题。通过对材料、能源利用情况的分析,有助于企业总结经验,消除弊病,使各种物质资源能够得到合理、有效的利用。2.管理职责
2.1 物控部应做好材料物质供应情况的分析,重点放在供应计划执行情况、供应的及时性和均衡性、采购与库存量的配合以及采购成本的合理性等方面进行分析,改善管理,做好物资供应工作。2.2 生产部门应做好材料物资使用情况的分析,重点放在合理控制消耗量、杜绝浪费、提高材料利用率以及材料的综合利用等方面进行分析,改善管理,以实现用尽可能少的投入获得尽可能大的产出效益。
2.3 负责主管生产与物控管理的副总经理应重点把握住公司成本经营战略的设计、鉴别与实施。在具体工作中要做好产、需之间的调控平衡工作,同时应抓好物资供应与使用部门间的业务衔接与沟通。3.物资材料供应情况分析 3.1 供应计划执行情况分析提示
提供数量充足的,质量符合生产要求的材料物资也是保证工业企
材料与能源利用情况分析
编号:
业生产经营顺利进行的条件。
企业物资供应的根本,是为了及时提供生产所需的物资,因此应当根据企业的生产任务来制定材料采购供应计划,做到有计划、均衡地采购和供应,又能有计划地安排采购资金。采购时应避免盲目采购与超量采购,防止库存物资积压,造成资金占用增加。因此在分析企业生产经营活动时,应对原材料等物资的采购供应情况进行分析,主要是检查材料物质供应计划的完成情况,分析影响计划完成的原因。
按计划采购供应材料物资,不仅是在采购总量和品种规格上完成计划,而且应在采购时间、供应进度上符合计划要求。采购供应不及时,也会延误生产,待料停工,影响生产计划的完成,因此材料供应的及时性和均衡性也是在分析时应加以重视的方面。3.2 材料采购与库存量配合的分析提示
企业的材料物资采购,无论从计划安排还是实际组织采购,都要密切注意库存物资的动态,与库存储备的变化相配合,经济合理地组织采购。分析时就是要查明这种配合是否有效,有没有脱节的现象,以及由此引起的不良后果。
关于材料物质库存储备量的确定,是企业物流管理的关键之处。库存量少,会担心发生供应中临时短缺影响生产需求,库存量过大又会带来库存管理和资金占用的负面作用。合理的库存储备,要根据生产需要结合采购周期来规定,最常用的方法是规定每种材料物资的最低储备量和最高储备量。
最低储备量就是通常说的保险储备量。这是企业为了防备物资采
材料与能源利用情况分析
编号:
购运输误期而建立的物资储备,当某种库存材料物资的实际储存量接近保险储备时,就是企业应立即组织采购此种材料物资的信号,否则就将影响生产需要。
最高储备量是由材料物资采购周期决定的库存储备量。当某种材料购进入库时,实际库存储量达到了最高储备量时,就是应当立即停止该种物资采购的信号,如果继续采购,就会造成材料物资的积压,将会带来不良的后果。
3.3 材料物资采购成本的分析提示
材料物资采购成本,就是企业购入材料物资时所支付的买价和运杂费用的总和。企业的材料物资采购供应工作应当努力减少采购成本,以便为降低产品成本和提高经济效益创造条件。
企业所需的材料物资,可以有多种来源。在组织订货时,应当“货比三家”,多方调查,掌握市场信息,比质比价,择优选购。同时,不同供货地点和运输方式,均会造成采购成本上的差异,在能保证材料质量,价格适宜的条件下,应当就近采购,应尽量避免或减少材料在运输途中的损耗,注意加强包装,减少中转环节。4.材料使用情况分析
材料使用合理,用同样原材料可以生产更多的产品。使用不合理,则会少生产产品,而且由此发生的损失浪费,直接影响企业的经济效益。因此分析企业材料物资供应情况,也必须结合研究原材料的使用情况。
4.1 原材料消耗定额管理
材料与能源利用情况分析
编号:
企业一般应当为生产的产品制定原材料消耗定额,即单位产品允许的原材料消耗量,以作为控制领发和使用原材料的依据,同时它也是企业生产经营中的一项重要考核指标。
原材料消耗定额在制定时应要有科学性,不能偏高或偏低,否则不仅在对消耗的控制上不能发挥作用,而且进行分析时,也不能反映真实问题。对消耗定额执行情况的检查分析,主要是将原材料实际消耗的数量与消耗定额比较,发现差异,寻找原因。
原材料实际消费量与消费定额之间的差异,一般受下列因素的影响:①原材料的质量和规格;②工艺和操作方法;③生产中的产品废品率;④生产过程中对领入材料的管理;⑤原材料的综合利用。在分析单位产品原材料消耗量时,应当对不同时期的动态变化进行分析,与同行业进行对比分析,这就更有利于找差距、查原因,改进工作。
4.2 材料利用率
材料利用率,就是已作为产品实体的材料数量与投入的原材料数量之间的比例。计算公式为:
材料利用率=产品的原材料重量/投入原材料重量×100% 材料利用率的高低,反映着材料充分利用的程度,也反映着生产废品的情况。因为生产废品,就减少了合格产量,按合格品数量计算耗用的原材料重量,亦相应减少,材料利用率也就降低。4.3 产品收得率
材料与能源利用情况分析
编号:
也可以运用产品收得率指标,它也可以说明原材料的利用效果。产品收得率,就是投入一定量的原材料,和所得到的产品数量的比例,即:
产品收得率=产品产量/投入原材料数量×100% 产品收得率高,即投入一定量的原材料所得到的产量多,也就意味着原材料的节约。产品收得率指标的倒数,也就是单位产品耗用材料数量。因此,产品收得率的高低,既反映产品原材料单耗的增加或减少,也反映着投入一定量原材料,能获得的产量的增加或减少。5.原材料综合利用分析
开展原材料综合利用,是节约材料物资,提高经济效益的重要途径。因此在分析企业材料利用时,也要研究企业原材料综合利用工作的开展情况,挖掘综合利用原材料的潜力,促使企业大力发展原材料综合利用事业,不断提高经济效益。
综合利用除了充分利用“三废”(废气、废水、废渣)以外,也要注意原材料本身有效成分的充分利用。原材料综合利用的程度和经济效益,可以用以下指标来说明。5.1 单位原材料提供的产值
原材料的有效成分利用越充分,其生产的产品品种就越多,产值就越大,因此通过单位原材料提供的产值变化,就可以观察和分析原材料的综合利用情况。同一企业不同时期、同一行业不同企业用这个指标的对比,就能了解企业综合利用原材料事业的发展,以及同先进企业比较的差距,从而促使企业加强这方面的工作。
材料与能源利用情况分析
编号:
5.2 边角余料、下脚废料利用率
就是将生产加工过程中产生的边角余料、下脚废料的数量和被利用的数量相比较,以观察其利用的情况。计算公式为:
废料利用率=利用的边角废料数量/产生的边角废料总量×100%
5.3 主副产品产值比
就是将“三废”生产的产品价值,或生产过程中直接回收的副产品价值,同生产的主产品价值相比较,即:
主副产品产值比=副产品价值/主产品价值×100% 主副产品产值比的提高,说明综合利用原材料事业的发展。同类企业这一指标的比较,也可以反映企业之间综合利用原材料的差距。6.能源利用情况分析
能源包括各种燃料和电力(亦称动力)。分析燃料、动力的消耗首先要考察企业燃料、动力的用途,然后再根据燃料、动力耗用量的变动和构成来进行研究,对非生产耗用数量的增加,或其所占比重提高,应当注意研究原因,对燃料、动力的损耗,如燃料保管中的短缺、电力供应中的线路损失等,更应及时分析,查明原因。
分析能源利用效果,要根据生产的特点,利用不同的指标进行考核。主要有以下一些指标: 6.1 单位能源生产的产量
例如每单位用电量所生产的产量,其构成形式如下:
每单位用电量的产量=产品总产量/产品耗用电量
材料与能源利用情况分析
编号:
采取节电措施,就可以用较少的电力,生产较多的产品,给企业带来较好的经济效益。
6.2 单位产品用电量(或用燃料量)这个指标的一般构成形式为:
单位产品用电(或燃料)=产品总用电(或燃料)数量/产品总产量
单位产品用电(或燃料)减少,就意味着能源总消耗量的减少,就可以降低产品的燃料动力成本。6.3 每千元产值用电(或燃料)量
在对全厂的燃料、动力利用效果进行综合考察时,就可以利用此项指标,它的一般构成形式为:
千元产值用电(或燃料)量=产品总用电(或燃料)量/总产值
这个指标的产值单位,是可以任意决定的,例如也可以用百元产值、万元产值等等。
以上指标在分析中,都是要将实际数与计划数或上期数相比较,或与同行业相比较,确定企业燃料、动力利用效果的差异,然后从生产技术上和管理上寻找原因。
第二篇:能源利用与环境保护
环境概论
能源利用与环境保护
——煤炭利用过程的节能减排潜力研究
绪论
随着生产力的不断发展,环境问题已成为人们共同面临的挑战。煤炭在燃烧过程中会产生二氧化硫等有毒气体和二氧化碳等温室气体,这些气体的排放,会加重雾霾天气的形成并影响全球气候变暖,严重威胁着人类的生存和发展。经济的快速发展使得能源的需求不断增加,2012年我国煤炭消费量占能源消费总量的比重为66.6%,说明我国是一个以煤炭为主的能源国家,并且据有关部门预测,在未来很长一段时间内,我国以煤炭为主的能源结构仍将继续存在[1]。为了满足经济发展的需要,我国的煤炭产量逐年增加,从1978到2012年,煤炭的生产总量从44127.31万吨标准煤增长到253863.72万吨标准煤,煤炭工业在我国的国民经济建设中发挥着重要作用。然而,煤炭在促进经济发展的同时,带来了严重的环境污染。煤炭在开采过程中,会产生矿井水等工业废水,矿井水排出会破坏周围的生活环境和污染河流;煤炭开采后,如果不及时填充采空区,会造成地表沉陷,损害矿区的地表植被,加剧水土流失;煤炭在生产和燃烧过程中,也会产生瓦斯和其他有害气体、煤矸石、煤灰等工业固体废物。煤矸石含碳量低,平均每采10吨煤,就会产生1.5吨的煤矸石,长期堆积会引起自燃。另外,煤炭在燃烧过程中,会产生细小颗粒物,加速雾霾天气的出现次数,直接影响社会可持续发展和人们的身体健康。早在2012年底我国政府发布的《重点区域大气污染防治“十二五规划”》提出重点解决PM2.5污染问题,严格控制主要污染物新增排放量,并提出与2010年相比,到2015年京津冀、长三角、珠三角区域PM2.5浓度下降6%的目标。2013年9月《大气污染防治行动计划》的正式发布,更是明确了通过5年改善全国空气质量、较大幅度减少重污染天气的目标。这些充分显示了当前我国的环境污染问题开始变得严重,尤其是2013年入冬以来,雾霾天气越来越频繁,持续时间也越来越长。当前,煤炭燃烧带来的二氧化碳排放占我国能源总碳排放的80%以上,二氧化硫排放占我国二氧化硫总排放量的90%以上,氮氧化物约为50%,对环境尤其是大气环境造成了深远的影响[2]。
2011年3月全国人大通过的《国民经济和社会发展第十二个五年规划纲要》,将应对气候变化正式纳入了中长期规划。该《纲要》将单位GDP能源消耗量、单位GDP二氧化碳分别降低16%、17%,主要污染物排放明显减少,其中SO2、NOX排放分别减少8%、10%等作为约束性指标,并提出控制温室气体排放、加强应对气候变化方面的国际合作等任务。2012年3月国家发改委发布《煤炭工业发展“十二五”规划》,提出鼓励发展大型煤化工和煤炭转化技术,煤层气抽采综合利用,煤气共采、煤矸石综合利用等,大力发展洁净煤技术。因此,如何实现我国的碳减排承诺,改善环境污染,是我国政府和煤炭企业不得不面对的问题。
本文从煤炭利用方面进行研究,分析我国的煤炭资源在利用过程中对废气、二氧化硫、烟尘粉尘造成的影响程度和因果关系,并且提出改善环境问题的实现路径是节能减排,研究了煤炭利用节能减排的潜力。因此,研究煤炭利用的环境影响和节能减排潜力,对于实现我国的碳减排承诺,解决环境污染问题,积极发展煤炭技术和碳减排技术,促进我国经济的持续快速发展有着重要的意义。
环境概论
原理:
本文是煤炭利用的节能减排潜力研究,文中以火电行业为例介绍我国燃煤行业煤炭利用环节的能耗现状,通过燃煤发电能耗指标、燃煤供电能耗指标分析火电行业的国内外能耗差距,并推算我国燃煤行业在煤炭利用环节可以节约多少标准煤,减少多少CO2、SO2以及烟尘粉尘,分析我国燃煤行业的节能减排潜力,为解决环境问题提供了实现路径;
煤炭利用的节能减排潜力研究:以火电行业和钢铁行业为例
火电行业的能耗现状
二十一世纪以来,我国电力行业发展迅速,电力装机容量增长很快,在表4.1中可以看出,我国的火电装机容量占整个装机容量的70%以上,虽然近几年有所下降,但是2012年仍然达到71.55%。在表4.2中可以看出,我国的火电发电量占总发电量的比重一直在80%以上,直到2012年才下降到78.57%。2013年我国发电量为53975.9亿千瓦小时,火电为42358.7亿千瓦时,占我国发电量的78.48%。与此同时我国发电装机容量首次超过美国成为世界第一,达到124738万千瓦,其中火电装机容量86238万千瓦,占总发电装机容量的69.14%。因此,了解我国火力发电的能耗处于什么水平,节能减排潜力有多大,是火力发电节能工作者不能回避的问题[3],也是煤炭高效利用工作者不能回避的问题。
代百乾等通过灰色系统GM(1.1)模型对我国火电煤耗、二氧化碳、二氧化硫的排放前景进行预测,发现我国火力发电行业有巨大的减排潜力[4]。汤庆合认为煤电的能源消耗高、单位电力的二氧化碳排放系数最大,由于不需要消耗化石燃料,核电和可再生能源发电在低碳经济发展中受到欢迎。而黄毅诚指出通过改变电源结构,发展核电、水电、风电等,降低燃煤发电占总发电量的比例,可以降低二氧化碳排放量,但是考虑到我国“富煤、少气、缺油”的能源特点,燃煤发电在今后相当一段时间内仍将占主力地位,因此当前应该降低发电煤耗,实现用现有的煤多发电。当前我国的电源结构包括水电、火电、核电、风电,以火电为主,而在火电中包括燃煤发电、燃油发电、燃气发电,以燃煤发电为主。但是燃煤电厂的大量存在给环境带来了巨大的压力,为了适应节能减排的政策要求,各地针对小火电纷纷实施有计划的关停政策,监管部门鼓励建设超临界、超超临界大容量、高效能燃煤机组,同时鼓励电厂脱硫等环保项目。
火电行业的能耗比较
从1990年以来,随着大容量机组的持续增加、小火电机组的关停和节能管理技术的实施,我国的火力发电煤耗水平正在逐年下降,图4.2可以看出二十几年来我国6000kw及以上火电厂发电供电煤耗在大幅度下降,1990年发电煤耗为392克标准煤/千瓦时,2012年发电煤耗为305克标准煤/千瓦时,降低幅度为87克标准煤/千瓦时,降低率为22.19%。同样供电煤耗也从1990年的427克标准煤/千瓦时降到326克标准煤/千瓦时,降低幅度为101克标准煤/千瓦时,降低率为23.65%。根据中国电力企业联合会统计,2013年我国火电机组供电煤耗将达到321克标准煤/千瓦小时。这与我国的节能降耗政策分不开,与我国电力企业燃煤发电技术的改进分不开。
尽管我国的燃煤发电能耗在降低,但是与国外相比还是存在很大的差距,尤
环境概论
其是与日本的发电煤耗相比,2012年我国的发电煤耗为305克标准煤/千瓦时,在表4.3中可以看到,日本的发电煤耗为295克标准煤/千瓦时,相差10克标准煤/千瓦时,这说明我国与日本在发电煤耗方面存在一定的差距,我国的煤炭利用率比较低。
图 1 1990-2012年我国的发电供电煤耗率
表 1 日本发电供电煤耗
火电行业的节能潜力 发电煤耗是指发电厂每生产1kwh的电能所消耗的标准煤量。发电厂生产的电能,自身需要消耗掉一部分,剩余的才供给用户。为此,供电煤耗是指发电厂每供出1kwh电能所消耗的标准煤量。根据原电力工业部《火力发电厂按入炉煤量正平衡计算发供电煤耗的方法》规定:煤耗是考核机组运行性能最主要的指标之一,火电厂发供电煤耗统一以入炉煤计算煤量和入炉煤机械取样分析低位发热量为基础,按正平衡计算。反平衡计算煤耗的结果,可以用来分析机组运行的不足,为机组性能改善提供依据。以下为发电煤耗和供电煤耗的公式:
第一种:正平衡煤耗的计算
式中:
表示发电标准煤耗,单位为克每千瓦时(g/kwh); b f 表示统计期内耗用标准煤量,单位为吨(t); B b 表示统计期内发电量,单位为千瓦时(kwh);W f
由于火力发电燃料主要是煤、油和气等,因此火力发电供电煤耗率又可按以
环境概论
下公式计算:
式中:
b f表示发电标准煤耗,单位为克每千瓦时(g/kwh);
c表示电厂效率,单位为百分数(%)
在我国,发电煤耗是指6000kw及以上的火力发电煤耗,2012年我国6000kw及以上的火电发电量为39160.03亿千瓦时,其中各个部分的发电量见表4.4,发电煤耗为305克标准煤/千瓦时,所以火电消耗的煤炭为119438.09万吨标准煤,而2012年燃煤发电消耗的煤炭是114770万吨标准煤,占全部火电标准煤的96.09%。《行业节能减排技术与能耗考核》书中提到2010年我国火电厂的供电标准限额为389克标准煤/千瓦时,供电标准定额为330克标准煤/千瓦时,按照2010年6000kw及以上火力发电的厂用电率6.33%计算得到发电限额为364.38克标准煤/千瓦时,发电定额为309.11克标准煤/千瓦时。千瓦时。为此,可以得出以下结论:
(1)2012年我国的发电煤耗未超过我国2010年的发电限额和发电定额,而2010年我国的发电煤耗为312克标准煤/千瓦时,超过了我国的发电定额,这说明我国的发电煤耗水平和发电利用效率在不断提高,同时说明我国火电厂“上大压小”的政策实施效果明显,为此,我国政府应该综合考虑实际情况制定我国各年的发电标准煤限额。
(2)我国的发电煤耗与日本相比,二者相差10克标准煤/千瓦小时,这说明我国与日本的燃煤发电技术存在一定的差距,我国的节能潜力较大。在发电量一定的情况下,如果按照2012年日本的先进水平进行测算,那么我国可以节约3916万吨标准煤,其中在燃煤发电环节可以节约3762.89万吨标准煤。
表 2
2011和2012年我国6000千瓦以上的火电发电量
环境概论
火电行业的减排潜力
根据王佳在博士论文《中国地区碳不平等:测度及影响因素》提到的对CO2的估计方法,本文估计了由于煤炭消费所产生的CO2。主要考虑了《中国能源统计年鉴》中的原煤、洗精煤、其他洗煤、型煤,由于“我国能源平衡表(实物量)”中,“终端能源消费量”没有包括火力发电、供热等环节的能源消费,而“可供本地区消费的能源消费量”会重复计算一次能源生产加工的产品,因此,本文采取了“终端能源消费量”“火力发电”“供热”及“平衡差额”的加总。二氧化碳的计算公式如下:
式中:
CE为煤炭消费的CO2排放总量; 为第j种煤炭的消费量。A j 煤炭的CO2排放系数见下表:
表 3 煤炭的CO2排放系数
通过计算可以得到2012年二氧化碳的排放量为582384.2万吨。同时2012年我国二氧化硫的排放量为2117.63万吨,烟粉尘排放量为1235.77万吨,煤炭消费量为240913.51万吨标准煤,为此,在发电量一定的情况下,如果按照2012年日本的先进水平进行测算,那么可以减少9096.41万吨二氧化碳排放量,减少33.08万吨二氧化硫排放量,减少19.30万吨烟粉尘排放量。
另外,值得注意的是,不同容量的发电机组燃煤能耗的水平不同,发电机组容量越大,发电煤耗越低,为此火电行业要鼓励建立大容量机组,关停小容量机组。而且根据反平衡计算公式(4-4),提高电厂效率可以降低发电煤耗率。电力是关系国民经济的重要基础产业,如果燃煤发电的比例过大,一方面会受制于煤炭资源,影响电力供应安全;另一方面不利于我国减排工作的展开。所以,在电力工业稳定发展的前提下,要合理优化电源结构,逐步降低燃煤发电在电力工业的比例。
结论
通过燃煤发电能耗指标进行测算,结果表明我国与国际先进水平(本文为日本)相差10克标准煤/千瓦小时,在2012年发电量一定的情况下,如果我国火电行业能耗达到国际先进水平,那么我国在燃煤发电环节可以节约3762.89万吨标准煤,减少9096.41万吨二氧化碳排放量,减少33.08万吨二氧化硫排放量,减少19.30万吨烟粉尘排放量。
因此,通过本章的分析说明,我国煤炭利用环节的节能减排潜力较大,通过能源技术创新,如果将我国燃煤行业的煤炭利用效率提高到国际先进水平,可以有效达到节能减排的目的。
环境概论
创新之处
本文的创新之处主要有:
(1)通过计量模型定量分析了煤炭利用对大气污染的影响关系,发现我国煤炭消费每增加1单位,废气增加0.52单位、二氧化硫增加0.09单位、烟粉尘增加0.90单位,煤炭利用对环境存在较大的影响关系。
(2)通过对比分析,指出了我国高耗能产业的节能空间。本文以火电行业为例,发现我国能耗与国外先进能耗标准存在较大的差距,不仅分析了差距有多大,而且按照国际先进标准测算出我国在产量既定的情况下,按国外标准可以有效节约的煤炭消耗量和减少的排放量。
(3)提出了通过能源技术创新,进行能源结构调整和提高煤炭利用率双管齐下的能源政策。本文分析了煤炭利用对环境的影响和煤炭利用的节能减排潜力,发现煤炭利用对环境存在较大的影响,为此需要进行能源结构调整,提高煤炭资源利用效率。
结论(可行性)
本文研究了煤炭利用的环境影响以及节能减排潜力,得到如下结论:
(1)煤炭利用对我国的环境污染造成了影响,尤其体现在大气污染方面。通过分析表明:我国煤炭消费与废气、煤炭消费与二氧化硫、煤炭消费与烟粉尘均存在长期均衡关系。通过面板模型估计发现,我国煤炭消费每增加1单位,废气增加0.52单位,二氧化硫增加0.09单位,烟粉尘增加0.90单位,虽然煤炭消费对环境污染的影响系数并不大,但是每年的煤炭消费量基数比较大,所以累积的环境影响也会增加。在因果关系中,我国存在煤炭消费到废气的单向因果关系,存在煤炭消费与二氧化硫的双向因果关系。因此,说明煤炭利用对环境存在较大的影响和存在因果关系,煤炭的不合理利用对大气污染造成了很大的影响,甚至加重了雾霾天气。
(2)通过煤炭利用环节的能源技术创新,可以实现节能减排,进而达到减少环境污染的目的。本文以火电行业为例,参考这行业的国外先进能耗标准,测算出我国在产量既定的情况下,按照国外标准可以有效节约的煤炭消耗量,进而可以实现减少排放的目的。说明我国在煤炭利用环节还有较大的节能减排潜力。
(3)改善我国环境污染的出路在于调整能源结构和提高能源利用效率两方面。通过研究发现,我国的煤炭利用对环境污染存在因果关系,通过火电行业和钢铁行业为例对燃煤行业进行能耗分析发现如果将我国燃煤行业的煤炭利用效率提高到国际先进水平,同样可以达到降低环境污染和节能减排的目的。因此,为了提高我国的空气质量以及兑现2020年的碳减排承诺,我国在逐步调整能源结构,减少煤炭利用的同时,可以大力发展洁净煤技术,提高煤炭资源的利用效率。
政策建议(意义)
结合本文的结论,为我国政府制定环境措施提供一些政策建议:
(1)调整能源结构,减少煤炭利用总量。我国是以煤炭为主要能源的国家,煤炭在能源结构中所占比重大约为70%,然而煤炭在开发利用过程中,会产生大量的工业废水,污染周围的河流,煤炭燃烧会向大气中排放大量的有害物质,如二氧化硫、二氧化碳等,而且本文分析也证明了我国煤炭消费与废气、煤炭消费与二氧化硫、煤炭消费与烟粉尘之间均存在长期均衡关系,煤炭消费数量越多,环境概论
环境污染越严重,甚至危害到人们的身体健康。想要减轻和改善环境问题,需要调整能源消费结构,减少煤炭使用量,提高水电、风电和核电等清洁能源的比重。清洁能源的特点在于促进经济发展的同时,不会造成环境污染。因此,政府需要加强清洁能源的开发力度,引导企业贯彻实施清洁能源开发政策,提高企业使用清洁能源的积极性,从而降低煤炭利用的总量。
(2)加强技术开发,提高煤炭利用效率。针对我国的煤炭行业,要建立以企业为主体,政府引导的研发模式,提高研发资金使用效率,通过退税或补贴政策提高企业自主研发的积极性,鼓励企业积极研发新的技术,通过技术开发提高煤炭利用效率。同时吸收国内外优秀人才,大力攻克燃煤技术的难点,不定期学习、引进、借鉴日本等国外先进的技术和经验,如洁净煤技术、整体煤气联合气化技术、超超临界发电技术、二氧化碳捕获与封存技术等,通过技术创新不断降低煤炭消费过程中的能耗水平,以较少的投入实现较高的产出、较低的碳排放。
(3)淘汰落后产能,降低煤炭单耗水平。2012年我国的煤炭消费量为352647.07万吨,高耗煤行业煤炭消费量为292033.97万吨,占全国煤炭消费量的82.81%,然而我国的高耗煤行业的能耗与国际先进水平存在一定差距,存在能源消耗较高,浪费现象严重的问题,为了满足高耗煤行业的需求,尤其是电力、钢铁行业的需求,除了要优化能源消费结构,提高煤炭利用效率,政府还需要淘汰落后产能,鼓励改进脱硫脱硝技术,加快智能电厂的推广和应用,降低我国燃煤行业的煤炭单耗水平,实施优胜劣汰制度。通过提高燃煤行业的发电效率,鼓励低热值煤发电,逐步减少碳排放。
参考文献
[1]齐晓燕,郭丕斌.煤炭低碳化技术创新研究进展综述[J].科技管理研究,2014(4):211-215 [2]吴越涛,苗韧.我国煤炭绿色消费的若干思路[J].中国能源,2013,35(11):14-17.[3]杨勇平,杨志平,徐钢,等.中国火力发电能耗状况及展望[J].中国电机工程学报,2013, 33(23):1-11.[4]代百乾,张忠孝,王婧,等.我国火力发电节煤和CO2/SO2减排潜力的探讨[J].节能技术,2008(3):163-167.
第三篇:能源利用状况分析报告
坚持科学发展、节能降耗、求真务实,建设节约型企业
2006-2008年能源利用状况分析报告
回顾和总结三年来的节能工作情况,明确了十一五节能目标和工作重点,安排部署了节能工作任务,动员和带领全体员工树立和落实科学发展观。以节能降耗为第一要务,以搞好环境保护为第一使命,以创造安全、平稳、和谐为第一责任,以提高全员素质为第一目标。抓住机遇、真抓实干,为实现恒昌持续有效协调发展而努力奋斗,为创造恒昌美好的明天而努力拼搏,为实现社会发展,公司、个人双赢而努力。
2006-2008年,在节能领导小组的正确领导下,公司认真分析节能形势,积极采取各种措施,圆满完成了三年的节能目标任务。
一、狠抓产品质量,减少加工能耗损失,确保节能目标的实现。
三年来全体员工共同努力下,通过职工培训、岗位大比武、岗位竞赛、班与班之间赛产量、赛质量,并且对产量、质量第一的班组进行了奖励,而且月月兑现,对个人技能操作比赛获得名次的进行了奖励。通过比赛,赛出了质量,赛出了势气,赛出了好的作风,人人都苦练本领,学技术,熟料28天强度平均52.2MPa,fCaO合格率增加,水泥掺合材最高达到26.06%,年平均达到21.77%,而且强度符合国家标准,创历史最高。通过分质堆放,入库搭配使用我们生产的32.5级及42.5级水泥 1
深受客户青睐。在质量上我们严格过程质量管理,提高每一道工序质量又是我们一项措施。我们在使用电石灰、电石渣时,因每天的吨位不一样,给我们工艺配料造成了极大的困难,我们采取勤检测、多观察,工艺加强监督,确保了产品质量,真正做到了以人为本,人定胜天,每道工序都必须确保质量,上道工序保下道工序的原则。生料车间年在确保下一道工序质量方面做得非常好,真正做到了有令必行,有禁必止。工艺上及时分析化验判定各半成品质量,并分质堆放管理,有效地防止因上道工序质量波动,影响下道工序质量。同时工艺上对违反工艺纪律的进行了严肃查处和批评,有效地防止了质量事故的发生,确保了“尔宾”牌水泥在宜宾的地位。
二、狠抓原料进厂管理,确保能源消耗目标得到有效控制。为了确保产品质量,我们从源头入手,狠抓原燃材料进厂质量,实行按质论价,对不合格品坚决拒收,有效地保证了产品质量。三年共拒收石灰石50车,共扣250车次357.5吨;煤20车,共扣80车次217.3吨;页岩40车次25吨,煤渣200车次70吨。为寻求合格、合适、合理的原材料、废渣,我们跑遍了宜宾所有厂矿取样、检测、实验,最后用到生产中去。
三、狠抓生产管理,确保能源消耗得到有效控制。
三年来,我们始终坚持节能降耗不动摇,牢固树立科学才能发展生产力,管理才能出效益的原则来指导生产。针对固定成本费用增加,零配件、电价、原材料等上涨实际情况,我们
着重放在了优选掺合材、综合利用工业废渣上。
在优化成本、节能降耗方面,严格按照以人为本,严细管理,突出重点,依靠科学实验,寻找适用的、优质的、具有活性的掺合材降低生产成本。
1、利用废渣配制生产,降低生产成本,在2007年7月份经公司管委研究成立了攻关组,采用炉渣作原料,利用其活性取消晶种并且利用其热值,在一线成功使用并且收到了很好的效果,降低配煤3-5%,每吨生料原料成本节约10元/吨以上。随后在二、三线也成功使用,每月节约20-30万元。2007年生料二、三线坚持使用电石灰和一线使用炉渣。全年煤耗下降
1.27%。
2、加强对进厂煤的管理,实行车车检验,经过多人取样破碎,有效杜绝了人情样。严格控制了进厂煤质量,有效地杜绝了掺假煤入厂。对发现掺假煤我们一是拒收,二是没收,三是罚款,有效地控制了以次充好带来不必要的经济损失。
3、为了提高产品质量,降低生产成本,化验室全年共安排科研实验150组,探索出利用矿渣、铁粉、电石渣、粉煤灰、黑渣、墨石匹配生产32.5级水泥。在保证质量的前提下,提高了掺合材的掺量,提高了水泥的比表面积和出磨安定性合格率。仅掺合材就节约上百万元。
4、为了节约成本,各车间机修自己制作提升机挖斗、链扳机斗。水泥车间自己制作提升机一台,皮运机一台。生料车间自己制作回转筛一台。立窑自己制作单管一台,收尘两台。
2006-2008年大的技改50项,小的技改15项。
5.2008年通过各种试验,生料车间采用掺入节煤剂使立窑车间的热值由原来的650大卡降为630大卡的配比.6.2008年还投入了200多万元对水泥车间进行了大的改造,增加了台直径2.6*13M的管磨机,使水泥的生产总量有了增加,而且实行了错峰用电,仅这一项每年为公司节约上百万元.四、通过加强机电设备管理来实现节能降耗
“攻于善其事,必先利其器”这是我们抓生产搞设备管理必须遵循的一个原则,否则将事倍功半,也可能劳而无功。
3年机电计划检修电器66项,机修278项,大小技改63项,大修70项。有的设备老化磨损严重,突发故障较多,而且大修增加,我们除每月26号检修外,还对存在问题较多的设备进行了大修更换。
在生产过程中根据暴露出来的问题,我们尽量安排在高峰时段检修,在整个检修过程中,生料组织抢修比较好,领导始终在现场,检修时间短,组织得力。水泥车间最差,时间拖得最长,主要是领导思想观念不对头,指挥不得力,管理不到位,职工办事推三阻四,拖拉现象严重。机修管理差,配件废铁随处可见,管理力度不够,会议内容传达不畅,执行力不够。机电车间检查监督不到位,只知道一起抢修而忘了自己的身份,自己既是战斗员又是指挥员。在这里值得我们学习的是生料车间机修、电工团结协作,团队精神好,师傅带徒弟带得好,该
车间只要停机,机、电人员都在检查保养设备。在运行中发现问题,及时处理并报告,设备故障低,电器设备事故少,电机烧坏最少,特别是电工班对工作认真负责,在班组挖潜增效,在三大车间收入最高,节约最多,班组团结可靠。
节能工作存在的不足
公司对节能工作非常重视,能源管理组织机构和制度比较完善,利用效率较高。但是,由于节能管理人员不足,管理机构和制度尚未健全,能源计量管理工作尚不够细化,仍在着节约潜力,可以从以下几个方面进行改进。
1、定额考核不够细化,需进一步完善节能管理的体系建设,使企业能源管理工作更上一层楼。
2、尽快完善对各工序及主要耗能设备的二级和三级计量仪表的配置,建立并完善细化产品能耗考核指标体系,实施分级考核,强化能源统计工作,完善各种能源消耗统计报表,细化对工序及产品的能耗考核。
3、加快对配电系统的电效改造,采用变频调速技术对重负荷运行的破碎机、风机等进行节能技术改造,以降低电力消耗。
4、按照绿色照明的要求,对照明系统进行节能改造,以降低电力消耗。
5、车间自动化水平较低,大都采用人工操作,人工调节相关设备,在一定程度上造成人力资源浪费,成本增加,效率低下,对车间进行相关自动控制改造。
6、进一步提高职工节能意识,完善能源管理制度与管理机构,加强对职工进行节能宣传与培训。
7、继续改进生产工艺,采用一些先进技术。
8、规定、细化公司的节能中、长期规划,并制定相应的措施保障规划落实,以保证公司的可持续发展。
9、进一步研究生产工艺配方加大矿化剂使用效率。
节能工作经验与体会
1、领导重视,科学决策
节能工作取得的成绩,与公司领导层的高度重视是分不开的。公司制定了节能方针、节能目标,而且重大节能措施都是领导亲自抓,确保节能工作落到实处。
2、注重培训、全员参与
节能管理培训是增强员工节能意识,提高节能技术的有效途径,公司对车间副主任以上中层管理人员进行了节能法律法规培训,并进行考核。对重点耗能岗位员工和班组长进行节能知识培训,组织重点节能岗位员工进行节能比赛,对优胜者进行奖励,激发了全员参与节能的热情。
恒昌建材公司将在国家各级节能行政主管部门的指导下,努力借鉴各同行单位先进经验,结合公司实际,坚定不移地走节能减排之路,致力于提高企业资源综合利用效率,生产技术水平和整体竞争力,以期取得良好经济效益、社会效益,为构建节约型社会而努力奋斗。
四川省宜宾恒昌建材有限责任公司
二OO九年五月
第四篇:能源利用与环境污染调查报告
课题名称:能源利用与环境污染调查报告
课题的由来:
现在世界上的能源供应量已经为数不多了,我们必须在能源枯竭之前开发新的能源,所以我们要知道能源的发展史,这样才可能找到新能源。而且,光这样是不行的,如果能源的污染太严重的话,恐怕还没等能源枯竭,地球早已成为混球一个。所以我们要在开发新能源的同时保护能源。正因为这样,我们选择了这个课题。
关键字:能量利用 环境污染
内容提要:能源的分类及优缺点、能源的利用及造成的污染、防治污染的措施。
课题研究内容(调查报告):
一、什么是能源
“能源”这一术语,过去人们谈论得很少,正是两次石油危机使它成了人们议论的热点。那么,究竟什么是“能源”呢?关于能源的定义,目前约有20种。例如:《科学技术百科全书》说:“能源是可从其获得热、光和动力之类能量的资源”;《大英百科全书》说:“能源是一个包括着所有燃料、流水、阳光和风的术语,人类用适当的转换手段便可让它为自己提供所需的能量”;《日本大百科全书》说:“在各种生产活动中,我们利用热能、机械能、光能、电能等来作功,可利用来作为这些能量源泉的自然界中的各种载体,称为能源”;我国的《能源百科全书》说:“能源是可以直接或经转换提供人类所需的光、热、动力等任一形式能量的载能体资源。”可见,能源是一种呈多种形式的,且可以相互转换的能量的源泉。确切而简单地说,能源是自然界中能为人类提供某种形式能量的物质资源。
二、能源的分类及优缺点
三、人类能源利用及发展阶段
小水电:我国西部地区的小水电资源十分丰富,根据最新水能资源复查结果,全国小水电资源技术可开发量为1.25亿千瓦。目前我国小水电的开发量为20%左右,预计到2030年,我国小水电资源将开发完毕,届时可以形成1亿千瓦的装机水平。
太阳能资源:我国太阳能资源的利用主要用于城乡居民的热水供应,目前有太阳能热水器5000多万平方米,2020年和2050年分别可以达到2亿平方米和5亿平方米,分别可以替代1200亿千瓦时和3000亿千瓦时,替代高峰电力8000万千瓦和2亿千瓦。
生物质能源:我国的生物质能源主要有农业废弃物、森林和林产品剩余物和城市生活垃圾等。农业废弃物资源分布广泛,其中作物秸秆年产量超过6亿吨,农产品加工和畜牧业废弃物理论上可以产生沼气近800亿立方米。
四、能源利用造成哪些环境污染
陕北石油现已探明储量十一亿吨,是中国重要的能源基地,陕西省也成为原油产量增长最快的省区之一。随着陕北石油资源开发力度的不断加大,石油开采、运输、加工、销售等过程中造成的环境污染和生态破坏日趋严重。二000年以来,陕北由于输油管线腐蚀穿孔、断裂造成的环境污染事故达五十一起。
五、污染对人类生活的严重影响
有一家农药厂、两家化工厂的江苏省盐城市阜宁县古河镇洋桥村村民,成天闻怪味,井水不能喝,自来水有农药味。三年来,喝着发臭的河水,闻着刺鼻的农药味,村里已有20余位村民因癌症离开了人世,今年又有近10人被确诊为癌症,现正在医院治疗。该村靠近农药厂、化工厂的五组、六组、七组因癌症不治去世的人数已占到这三个组三年来自然死亡人数的70%„„曾是蓝天清水的淮河,如今却是鱼虾绝代的地方。奎河是淮河的重要支流,其岸边的安徽省宿州市杨庄乡,是污染最大的受害者。今年3月,杨庄乡卫生防疫站对全乡5年内因癌症死亡人口进行排摸,结果在16个靠近奎河的行政村,患各种消化道疾病和癌症的人数明显高于其他村,三年来杨庄乡因癌症死亡的人达到千分之13„„3月18日,在朝阳医院门诊楼的大厅里,30余位来自承德兴隆县孤山子乡沙坡峪村的村民神情焦急,27名儿童依偎在他们怀中,有的面色苍白,有的因肚子疼、头疼而哭泣。这些村民称,他们是孩子的父母,孩子都在他们村小学上学。3月15日,很多小学生在学校突然“中毒”,重者昏迷、口吐白沫,轻者头疼。这些家长怀疑,村小学附近的铅锌厂是孩子们“中毒“的“罪魁祸首„„
六、发现身边的能源污染现象
延长县郭旗乡王仓村,虽然距离石油泄漏已经数日,但在田地里依然能够看到,不少种植了农作物的田地还残留着石油浸过的痕迹,很多玉米苗由于石油的浸泡已变成灰黑色,田地里数位村民正在用铁锨将已被污染的土层挖出。据村民们介绍,5月30日,一场大雨席卷延长县。大雨过后,村里30多亩田地被混杂着雨水的石油污染,不少农作物死亡,村民们顺着水印发现原来是村旁的七里村油矿一处选油点的石油泄漏造成的。至于污染程度有多深,村民们说法不一,有的称土地一两年无法种植作物;有的则称污染并不严重。一位李姓村民称,由于选油点的排污设施不力,每逢下雨,就会有少量漏油随着雨水流至田间,只是“从没有这次这么严重”。
七、防治由此引起的环境污染的具体措施
加快污染源治理步伐,加速污水处理设施建设,加大流域生态保护和建设力度甘肃省环保部门表示,除加快重点污染源治理步伐外,还将加快城市生活污水处理工程和配套管网建设,保证七里河———安宁、白银、临夏三大污水处理厂今年内建成投运;同时,加大沿黄城市垃圾集中处理管理力度,尽快解决兰州市油污干管安全隐患,确保城市安全;年内将国营四七一厂、五○四厂等企业污水接入西新线排水管道;加大流域生态保护和建设力度,科学调配黄河水量,确保黄河稀释自净能力;建设水质自动监测信息网络系统,提高环境监管水平。
八、对于当今社会的能源问题,我们国家应该大力加强能源保护力度,提高能源利用率。让我们从我做起、从现在做起、从点滴小事做起,加强环境保护,争做环境保护的主人。使能源利用与环境保护于一体,保护环境,节约资源。
第五篇:国内外生物质能源利用现状与发展趋势分析(2011)
全球生物制造市场价值
生物质能是指蕴藏在生物质中的能量,具有挥发性和炭活性高,N、S含量低,灰分低,燃烧过程二氧化碳零排放的特点。
发展非粮生物质能源不仅不影响粮食安全,还能有效利用废弃资源,替代传统化石能源,促进环保和节能减排,目前各国正加紧生物能源特别是先进生物燃料上的开发与投入。
非粮生物能源原料主要来自农林有机废弃物,包括秸秆、畜禽粪便、林业剩余物等,以及利用边际性土地种植的能源植物,包括甜高粱、木薯、木本油料植物、灌木林等。在发展可再生能源对化石能源的替代上,以生物质能源担纲主角是世界潮流。
根据EL Insights于2010年9月发布的报告,从2010年到2015年,全球生物制造市场预计将从5 729亿美元增加至6 937亿美元,相当于在此期间的复合年增长率(CAGR)为
3.9%。
在今后几年,生物质在生物发电、生物燃料和生物产品部门应用领域将大幅增长,生物质发电的市场价值将从2010年450亿美元增加到2020年530亿美元。按照生物质发电发电协会(Biomass Power Association,BPA)的统计,生物质工业每年产生500万KWh的电力,为美国1.8万人创造了就业机会。
据EL Insights预测,美国对可再生能源运输的研究和开发给予的补贴,到2020年将可大幅降低对进口石油的依赖。欧盟将需要3 000万~4 000万公顷的农作物才能满足对生物燃料的需求,预计发展中国家到2020年主食价格将会上涨15%。同时,植物废弃物和城市生活垃圾转化成生物燃料有望得到更多发展。
典型国家生物质能源发展趋势
美国国会于2008年5月通过一项包括加速开发生物质能源的法案,要求到2018年后,把从石油中提炼出来的燃油消费量减少20%,代之以生物燃油。据《2010年美国能源展望》,到2035年美国可用生物燃料满足液体燃料总体需求量增长,乙醇占石油消费量的17%,使美国对进口原油的依赖在未来25年内下降至45%。2009~2035年美国非水电可再生能源资源将占发电量增长的41%,其中生物质发电占比最大为49.3%。
据欧洲EurObserv公司于2010年12月发布的统计报告,2009年欧洲从固体生物质生产的一次能源又创新高,再次达到7 280万吨油当量,比2008年增长3.6%。统计表明,欧洲成员国2008年从固体生物质生产的一次能源比2007年增长2.3%,即增长达150万吨油当量。这一增长尤其来自生物质发电,比2007年提高10.8%,增长5.6 TWh。来自固体生物质发电的增长尤为稳定,自2001年以来年均增长率为14.7%,从20.8 TWh增长到2009年62.2 TWh。2009年这一生产的大多数即62.5%,来自于联产设施。欧盟生物质基电力生产自2001年以来翻了二番,从2001年20.3 TWh增长到2008年57.4TWh。
瑞典是世界上道路交通最不依赖于化石燃料的国家之一,据报道,2009年,瑞典政府批准了一项计划,到2020年将使可再生能源达到该国能源消费总量的50%。此外,该国旨
在到2030年使其运输部门完全不依赖于进口化石燃料。根据瑞典生物能源协会(Swedish Bioenergy Association)统计,瑞典从生物质产生的总的能源消费在2000~2009年期间已从88 TWh增加至115 TWh。而在此期间内,基于石油产品的使用量已从142 TWh减少至112 TWh。至2009年,生物质已超过石油,成为第一位的能源来源,占瑞典能源消费总量的32%。据预测,生物质能的消费在2011年将继续再 增长10%。
在瑞典,生物质供热发电1030亿度,占全国能源消费总量的16.5%,占供热能源消费总量的68.5%。瑞典首都斯德哥尔摩清洁能源轿车约10万辆,包括使用乙醇的车、使用生物燃气车和混合动力车,占轿车总量的11%。瑞典计划到2020年在交通领域全部使用生物燃料,率先进入后石油时代。
欧洲委员会于2010年5月表示,已采取积极步骤来改善欧盟的生物废弃物管理,并以此取得大的环境和经济效益。生物可降解花草、厨房和食品废弃物等每年产生的城市生活垃圾为8 800万吨,对环境有可能造成重大的影响。但它也可作为可再生能源和循环再用的材料。来自生物废弃物主要的环境威胁是生成甲烷,它是一种温室气体。如果生物法处理废弃物实现最大化,就可大大地避免温室气体排放,估算到2020年可相当于1 000万吨二氧化碳当量。分析指出,欧盟运输业2020年可再生能源目标约1/3将可望通过使用来自生物废弃物的生物气体来得以满足。
英国生物质生产商和出口商公司非洲可再生能源公司(AfriRen)于2010年12月宣布,进军非洲大陆开发生物质能,该公司与非洲领先的农业集团SIFCA旗下的GRE公司签订长期生物质供应合同,GRE公司拥有2.1万人,营业收入为6亿欧元。AfriRen公司与合作伙伴将初期投资1 600万美元,为欧洲生物质购买商创建一个平台。欧洲目前进口的几乎所有生物质都来自于美洲,AfriRen公司将采用最新的技术在非洲开发可再生能源项目。AfriRen公司旨在成为非洲最大的生物质生产商,预计仅从其在加纳的作业,自2011年起每年就可出口12万吨木屑,木屑符合欧洲生物质规格和可持续性标准。这是AfriRen公司第一个项目,该公司已与SIFCA旗下的加纳橡胶Estates公司签约8年合同,从他们在Takoradi附近的橡胶树种植区出口木屑生物质。
丹麦正准备在全国前5大城市,逐步减少并淘汰燃煤发电站,要求发电站进行技术改造,使用生物燃料替代煤和燃油,作为城市生产和生活的主要能源来源。
巴西所有汽油中都强制加入了25%的乙醇,2010年起所有普通柴油中生物柴油的比例也达到5%,提前三年进入B5时代。凭借生物能源这张王牌,巴西政府表示有信心实现到2020年减排36%的目标。
印度于2004年开始了石油和农业领域的“无声革 命”,制订了2011年全国运输燃料中必须添加10%乙醇的法令。
中国生物质能具有突出优势
我国拥有丰富的生物质能资源,据测算,我国理论生物质能资源为50亿吨左右标准煤,是目前中国总能耗的4倍左右。在可收集的条件下,中国目前可利用的生物质能资
源主要是传统生物质,包括农作物秸秆、薪柴、禽畜粪便、生活垃圾、工业有机废渣与废水等。据1998~2003年的统计数据估算(《中国统计摘要》、《中国农村能源年鉴(1998)-1999版)》,我国的可开发生物质资源总量为7亿吨左右(农作物秸秆约3.5亿吨,占50%上),折合成标煤约为3.5亿吨,全部利用可以减排8.5亿吨二氧化碳,相当于2007年全国二氧化碳排放量的1/8。由此可见,生物质能作为唯一可存储的可再生能源,具有分布广、储量大的特点,且为碳中性,加强对生物质能源的开发利用,有助于节能减排,是实现低碳经济的重要途径。
国家林业局植树造林司表示,国家正在组织编制《全国林业生物质能源发展规划(2011~2020年)》,规划提出到2020年,我国能源林面积将达到2 000万公顷;每年转化的林业生物质能可替代2 025万吨标煤的石化能源,占可再生能源的比例达到3%。我国现有森林面积1.95亿公顷,林业生物质总量超过180亿吨,其中可作为生物质能源资源的有三类:一是木质燃料资源,包括薪炭林、灌木林和林业“三剩物”等,总量约3亿吨/年;二是木本油料资源,我国种子含油率超过40%以上的植物有154种,麻疯树、油桐、黄连木、文冠果、油茶等树种面积约420万公顷,果实产量约559万吨;三是木本淀粉类资源,我国栎类果实橡子产量约2 000万吨,可生产燃料乙醇近500万吨。
今后我国将积极促进出台优惠政策,鼓励群众和社会各界投资发展能源林。同时鼓励林业生物质能源企业,建立一定规模的原料基地。将企业的原料林基地作为原料供应的基本保障,原料林基地供应的原料应占到企业年生产需求的50%。
我国还将与法国开发署合作开展“中法生物柴油合作项目”建设。积极推广试点示范企业建设经验,树立典型样板,大力发展林业生物质能源。
我国发展林业生物质能源目前还处于起初阶段,发展规模还较小,建设进度慢,在资金投入、鼓励政策措施、生产技术上需要完善。目前,我国共批准生物质发电项目100个左右,建成30多个,年总发电量40万千瓦;而目前美国每年生产成型燃料60万吨左右,日本26万吨左右。我国还没有生产出以林业油料作物为原料的生物柴油;美国和欧盟国家生物柴油年产量超过100万吨和250万吨。
新型原料的培育、产品的综合利用、高效低成本的转化技术将成为我国“十二五”时期生物质能技术三大发展趋势。生物质能技术发展的总趋势,一是原料供应从以传统废弃物为主向新型资源选育和规模化培育发展,二是高效、低成本转化技术与生物燃料产品高值利用始终是未来技术发展核心,三是生物质全链条综合利用是实现绿色、高效利用的有效方式。“十二五”时期生物质能科技重点任务包括:微藻、油脂类、淀粉类、糖类、纤维类等能源植物等新型生物质资源的选育与种植,生物燃气高值化制备及综合利用,农业废弃物制备车用生物燃气示范,生物质液体燃料高效制备与生物炼制,规模化生物质热转化生产液体燃料及多联产技术,纤维素基液体燃料高效制备,生物柴油产业化关键技术研究,万吨级的成型燃料生产工艺及国产化装备,生物基材料及化学品的制备炼制技术等。