第一篇:构造函证不等式
造函证不等式
b-a2
求证:>1-(b>a).(*)
2eb+1x2
证明:令φ(x)=+x-1(x≥0),2e+112e
则φ-
2(e+1)
(e+1)-4e(e-1)=x2x2≥0(仅当x=0时等号成立).
2(e+1)2(e+1)
∴φ(x)在[0,+∞)上单调递增,∴x>0时,φ(x)>φ(0)=0.令x=b-a,即得(*)式,结论得证.
b-ab-a
求证:(b-a)e+(b-a)-2e+2>0.
xx
证明:设函数u(x)=xe+x-2e+2(x≥0),xxx
则u′(x)=e+xe+1-2e,xxxxx
令h(x)=u′(x),则h′(x)=e+e+xe-2e=xe≥0(仅当x=0时等号成立),∴u′(x)单调递增,∴当x>0时,u′(x)>u′(0)=0,∴u(x)单调递增. 当x>0时,u(x)>u(0)=0.b-ab-a
令x=b-a,则得(b-a)e+(b-a)-2e+2>0,a+b与f(b)-f(a)x已知函数f(x)=e,x∈R.设a
f(b)-f(a)a+be-e21.解: f-e=
b-a2b-a
b
a
x
x
x
x
ab
=
eebeae
ba
ba
ab2ab2
e=[eba
ab2
ba2
e
ab2
(ba)]
1x
e-2=0.e
11xx
设函数u(x)=e -u′(x)=e+ee∴u′(x)≥0(仅当x=0时等号成立),∴u(x)单调递增.
当x>0时,u(x)>u(0)=0.b-a令x=e
2∴
ba2
e
ab2
(ba)>0.f(b)-f(a)a+b.b-a2
第二篇:构造函数法证特殊数列不等式
数列不等式求证
题目1:求证1111111+1++…+ln(1n)1++++…+
题目2:求证
题目3:求证234n1234n2n(n1)ln2ln3ln4lnn ln2ln3ln4lnn
234n1
n
构造函数法证特殊数列不等式
题目1:求证12111111+1++…+ln(1n)1++++…+ 34n1234n
(一)构造函数①f(x)ln(1x)
分析:f(x)x(x0)1x1(1x)xx=>0,函数f(x)在(0,+)上单调递增。221x(1x)(1x)
x(x0)1x
1111111,ln(1),ln(1),…… 因而有ln(1)13141112231123ln(1)1nn11n
11111111故:ln(1)+ln(1)+ln(1)+……+ln(1)>+++……+ 123n234n11111即ln(1n)+++……+ 234n1所以当x0时,有f(x)>f(0)=0,即有ln(1x)
(二)构造函数②f(x)ln(1x)x(x0)分析:f(x)x11=<0,函数f(x)在(0,+)上单调递减。1x1x
所以当x0时,有f(x) 233nn 11111111故:ln(1)+ln(1)+ln(1)+……+ln(1)<1++++……+ 123n234n1111即ln(1n)1++++……+ 234n因而有ln(1)1,ln(1),ln(1),……, ln(1) 1112 综上有:12111111ln(1n)1++++…+ +1++…+34n1234n小结:记住函数不等关系㈠ 题目2:求证x (三)构造函数③f(x)lnxx1(x0)x1 1(x1)(x1)x21分析:f(x)=>0,函数f(x)在(0,+)上单调递增。22x(x1)x(x1) x1(x1)x1 211312413,ln3,ln4,…… 因而有ln2213314415 n1lnn n1所以当x1时,有f(x)>f(1)=0,即有lnx 故:ln2ln3ln4lnn> 综上有1234n2n12xxxx……xx= 3456nn1n(n1)2ln2ln3ln4lnnn(n1) x1lnx(x1)x1 ln2ln3ln4lnn1题目3:求证234nn小结:记住函数不等关系㈡)构造函数④f(x)lnx(x1)(x1(注:此函数实质和构造函数二一样)分析:f(x)1=1 x1x<0,函数f(x)在(1,+)上单调递减。x 所以当x1时,有f(x) 因而有ln21,ln32,ln43,……,lnnn1 ln2ln3ln4lnn1234(n2)(n1)n n(n2)(n1)即有ln2ln3ln4lnn234 故有:ln2ln3ln4lnn1234nn 小结:记住函数不等关系㈢lnxx1(x1) 识记重要不等式关系 ln(1x)x(x0)1x ln(1x)x(x0) x x1lnx(x1)x1 lnxx1(x1) 资料由谢老师收集: 了解初中,高中考试信息,做题技巧,解题思路可去谢老师博客http://blog.sina.com.cn/xiejunchao1 运用函数构造法巧证不等式 罗小明(江西省吉水二中331600) 不等式证明方法较多,本文介绍主元、零点、导数法构造函数证明不等式,以飧读者。关键字:函数不等式 不等式的证明是高中数学教学中的一大难点,也是高考、竞赛中的一大热点。本文将不等式证明问题转化为函数问题予以解决,力争突破解题思维,以求解题方法创新。这种解题思路使解答简捷,达到出奇制胜的效果。 一.主元法 例1.已知:a、b、c(1,1),证明:abc2abc 思路:以a为主元构造函数f(a),再由函数单调性可证。 证明:视a为主元构造函数f(a)(bc1)a2bc,此为一次函数。 由a、b、c(1,1)知,f(1)f(a) 又f(1)bc1bc(1b)(1c)0 c 故有f(a)0即abc2ab。 例2.设x、y、z(0,1),证明:x(1y)y(1z)z(1x) 1证明:作f(x)x(1y)y(1z)z(1x) (1yz)xy(1z)z此为关于x的一次函数 由于 f(0)y(1z)z(y1)(1z)11,f(1)1yz1 故有 x(1y)y(1z)z(1x)1 类题演练:设x、y、z(1,1),证明:xyyzzx10 二.零点法 例3.若x、y、z满足xyz1且为非负实数,证明:0xyyzxz2xyz思路:以x、y、z为三个零点,构造三次函数去证。 证明:令f(t)(tx)(ty)(tz),则f(t)t(xyz)t(xyyzxz)txyz 记uxyyzxz2xyz 则u2f()211432727 (1)当x、y、z均不超过 12时,3 (xyz)11111 由于 f()(x)(y)(z) 22223216 故有0u 727 成立。 2(2)当x、y、z只可能有一个大于 1yz 4x 时,不妨设x1 212 由于f()(x)(22 x) (x) 故有u (12 x) (1x)(2xx1) 727 0,0u 727 也成立。 由(1)、(2)知0xyyzxz2xyz 2222 例4.设a、b、c为三角形三边长,若abc1,证明:abc4abc 思路:先用分析法,再以a、b、c为三个零点,构造三次函数去证。证明:由abc1a2b2c24abc12(abbcca)4abc即要证 abbcca2abc 4作f(x)(xa)(xb)(xc),则f(x)x3(abc)x2(abbcca)xabc 由abc1,a、b、c为三角形三边长,有0a、b、c故有f()0abbcca2abc 211 412 所以 abc4abc 222 类题演练:已知:a、b、c、A、B、CR,且有aAbBcCk,证明:aBbCcAk 三.导数法 例5.证明:tanx2sinx3x,x(0, 2) 思路:作辅助函数,利用导数判别函数单调法证之。证明:作辅助函数f(x)tanx2sinx3x,则 f(x) ' 1cosx 2cosx3,记g(x)f(x)有 ' g(x) ' 2sinxcosx 2sinx2sinx(1cosx 1)0,知f'(x)是增函数,又f'(0)0故当x(0,)时,有f(x)0,从而有f(x)f(0)0 ' 所以x(0,),都有tanx2sinx3x 例6.已知:a、b0,p1,1p 1q 1,求证:ab a p p b q q 思路:不妨视b为常量,作辅助函数,再用导数判别函数单调法证之。证明:作f(a) a p p b q q ab,则f(a)a 'p 1b 当bap1时,f(a)是减函数;当bap1时,f(a)是增函数; q q 当bap1时,即当abp时,f(bp)0 故a0,有f(a)0,即ab a p p b q q 类题演练:已知:x、y0,1,求证:(xy)xy 由上述例子,函数构造法证不等式揭示了函数与不等式的内在联系,是二者的完美结合,同时也进一步认识到函数在解决具体问题中的重要作用。参考文献: 姚允龙.数学分析[M].上海:复旦大学出版社,2002 李胜宏,李名德.高中数学竞赛培优教程(专题讲座)[M].杭州:浙江大学出版社,2009 在含有两个或两个以上字母的不等式中,若使用其它方法不能解决,可将一边整理为零,而另一边为某个字母的二次式,这时可考虑用判别式法。一般对与一元二次函数有关或能通过等价转化为一元二次方程的,都可考虑使用判别式,但使用时要注意根的取值范围和题目本身条件的限制。 例1.设:a、b、c∈R,证明:a2acc23b(abc)0成立,并指出等号何时成立。 解析:令f(a)a2(3bc)ac23b23bc ⊿=(3bc)24(c23b23bc)3(bc)2 ∵b、c∈R,∴⊿≤0 即:f(a)0,∴a2acc23b(abc)0恒成立。 当⊿=0时,bc0,此时,f(a)a2acc23ab(ac)20,∴abc时,不等式取等号。 4例2.已知:a,b,cR且abc2,a2b2c22,求证: a,b,c0,。 3abc222解析:2 消去c得:此方程恒成立,a(b2)ab2b10,22abc2∴⊿=(b2)24(b22b1)3b24b0,即:0b4同理可求得a,c0, 34。3② 构造函数逆用判别式证明不等式 对某些不等式证明,若能根据其条件和结论,结合判别式的结构特征,通过构造二项平方和函数:f(x)(a1xb1)2(a2xb2)2(anxbn)2 由f(x)0,得⊿≤0,就可以使一些用一般方法处理较繁琐的问题,获得简捷明快的证明。 例3.设a,b,c,dR且abcd1,求证:4a14b14c14d1﹤6。解析:构造函数: f(x)(4a1x1)2(4b1x1)2(4c1x1)2(4d1x1) 2=8x22(4a14b14c14d1)x4.(abcd1)由f(x)0,得⊿≤0,即⊿=4(4a14b14c14d1)21280.∴4a14b14c14d142﹤6.例4.设a,b,c,dR且abc1,求解析:构造函数f(x)(=(1axa)2(149的最小值。abc2bxb)2(3cxc)2 1492)x12x1,(abc1)abc111由f(x)0(当且仅当a,b,c时取等号),632149得⊿≤0,即⊿=144-4()≤0 abc111149 ∴当a,b,c时,()min36 632abc 构造函数证明不等式 1、利用函数的单调性 +例 5、巳知a、b、c∈R,且a bmb[分析]本题可以用比较法、分析法等多种方法证明。若采用函数思想,构造出与所证不等式密切相关的函数,利用函数的单调性来比较函数值而证之,思路则更为清新。 ax+,其中x∈R,0 bxbx证明:令 f(x)= ∵b-a>0 ba+ 在R上为减函数 bxba+从而f(x)= 在R上为增函数 bx∴y= ∵m>0 ∴f(m)> f(0) ∴ama> bmb例 6、求证:ab1ab≤ ab1ab(a、b∈R) [分析]本题若直接运用比较法或放缩法,很难寻其线索。若考虑构造函数,运用函数的单调性证明,问题将迎刃而解。 [证明]令 f(x)= x,可证得f(x)在[0,∞)上是增函数(证略)1x 而 0<∣a+b∣≤∣a∣+∣b∣ 得 f(∣a+b∣)≤ f(∣a∣+∣b∣) 即: ab1ab≤ ab1ab [说明]要证明函数f(x)是增函数还是减函数,若用定义来证明,则证明过程是用比较法证明f(x1)与f(x2)的大小关系;反过来,证明不等式又可以利用函数的单调性。 2、利用函数的值域 例 7、若x为任意实数,求证:— x11≤≤ 221x2[分析]本题可以直接使用分析法或比较法证明,但过程较繁。联想到函数的值域,于是构造函数f(x)= x11,从而只需证明f(x)的值域为[—,]即可。 1x222x2证明:设 y=,则yx-x+y=0 21x ∵x为任意实数 ∴上式中Δ≥0,即(-1)-4y≥0 1 411得:—≤y≤ 22x11 ∴—≤≤ 21x22 ∴y≤2[说明]应用判别式说明不等式,应特别注意函数的定义域。 另证:类比万能公式中的正弦公式构造三角函数更简单。 例 8、求证:必存在常数a,使得Lg(xy)≤ Lga.lg2xlg2y 对大于1的任意x与y恒成立。 [分析]此例即证a的存在性,可先分离参数,视参数为变元的函数,然后根据变元函数的值域来求解a,从而说明常数a的存在性。若s≥f(t)恒成立,则s的最小值为f(t)的最大值;若 s≤f(t)恒成立,则s的最大值为f(t)的最小值。 22证明:∵lgxlgy > 0(x>1,y>1)∴原不等式可变形为:Lga≥ lgxlgylgxlgy22 2(lgxlgy)2lgxlgy 令 f(x)= == 1222222lgxlgylgxlgylgxlgylgxlgy 而 lgx>0,lgy>0, ∴lgx+lgy ≥ 2lgxlgy > 0 ∴2lgxlgy≤1 22lgxlgy ∴ 1 从而要使原不等式对于大于1的任意x与y恒成立,只需Lga≥2即 a≥10 2即可。 故必存在常数a,使原不等式对大于1的任意x、y恒成立。 3、运用函数的奇偶性 xx<(x≠0)12x2xx 证明:设f(x)=-(x≠0)x122 例 9、证明不等式: xxx2xx ∵f(-x)=-= x+ x122212xxx [1-(1-2)]+ 12x2xx =-x+= f(x)x122 = ∴f(x)的图象关于y轴对称 x ∵当x>0时,1-2<0,故f(x)<0 当x<0时,根据图象的对称性知f(x)<0 故当 x≠0时,恒有f(x)<0 即:xx<(x≠0)x122 [小结]本题运用了比较法,实质是根据函数的奇偶性来证明的,本题也可以运用分类讨论思想。但利用偶函数的轴对称性和奇函数的中心对称性,常能使所求解的问题避免复杂的讨论。 构造一次函数证明不等式一次函数是同学们非常熟悉的函数.由一次函数ykxb的图象可知,如果f(m)0,f(n)0,则对一切x(m,n)均有f(x)0.我们将这一性质称为一次函数的保号性.利用一次函数的保号性可以证明一些不等式.例1 设a、b、c都是绝对值小于1的实数,求证:abbcca1.分析因为abbcca(bc)abc,故可考虑f(x)(bc)x bc1.显然有 f(1)bcbc1(b1)(c1)0 f(1)(bc)bc1(b1)(c1)0 根据保号性知,当1x1时,f(x)0而1a1,故f(a)0,即原不等式获证.例2a、b、c都是小于k的正数,求证:a(kb)b(kc)c(ka)k2.分析 构造一次函数.令Ak2[a(kb)b(kc)c(ka)].因变量较多,可用主元法,把a当作主元,重新整理得: A(bck)abc(bc)kk,2将A看作关于a的一次函数,注意到0ak, 当a0时,Ak2(bc)kbc(kb)(kc)0 当ak时,A(bck)kbc(bc)kk2bc0 这说明,当a0与ak时,函数图象上对应的两点P、Q(横坐 1标分别为0、k)都在x轴上方,由一次函数的保号性可知,当0ak时,Af(a)0 即a(kb)b(k)c(ck)a 2k 例3已知a 1、b 1、c1,求证:abc2abc.分析 首先将不等式化为abc2abc0并整理成功之路 (bc1)a2bc0 可将其看成是关于a的一次式.证明:构造函数f(x)(bc1)x2bc,这里b 1、c 1、x1,则bc1.因为f(1)1bc2bc(1bc)(1b)(1c)0 f(1)bc12bc(1b)(1c)0 所以,一次函数f(x)(bc1)x2bc,当x(1,1)时,图象在x轴的上方.这就是说,当a 1、b 1、c1时,有(bc1)a2bc0,即abc2abc.从上例的证明可以看出,构造一次函数证明不等式时,可按下列步骤进行: ⑴将不等式先移项使右边为零; ⑵将不等号左边的式子整理成关于某一未知数x的一次式f(x)0; ⑶根据x的取值范围(m,n),确定f(m)与f(n)的符号,确定当x(m,n)时f(x)的符号进而证得不等式.构造一次函数证明不等式,其实质是将一个不等式的证明问题转化为确定解析式某个变量在两个特殊值处的符号问题,从而收到了以简驭繁的效果.第三篇:运用函数构造法巧证不等式
第四篇:构造函数证明不等式
第五篇:构造一次函数证明不等式