第一篇:巧用构造法解不等式问题
巧用构造法解不等式问题
湖州中学黄淑红
数学中有许多相似性,如数式相似,图形相似,命题结论的相似等,利用这些相似性,通过构造辅助模型,促进转化,以期不等式得到证明。可以构造函数、方程、数列、向量、复数和图形等数学模型,针对欲证不等式的结构特点,选择恰当的模型,将不等式问题转化为上述数学模型问题,顺利解决不等式的有关问题。
一、根据不等式特征,构造恰当的初等函数,再根据函数单调性、奇偶性等特征来证明不等式。
例1证明:对于任意的x,y,z(0,1),不等式x(1y)y(1z)z(1x)1成立。
证明设f(x)(1yz)xy(1z)z,显然该函数是以x为主元的一次函数。当x(0,1)时,f(x)是单调函数,且f(0)yyzz(y1)(1z)11, f(1)1yz1.所以,当x(0,1)时,f(x)的最大值小于1,即x(1y)y(1z)z(1x)1 例
2如果(xy1,那么xy0
证明
构造函数f(x)lg(x单调递增。
(xxR).可以证明函数f(x)在R上是奇函数且 y1,f(x)f(y)lg(xlg(y
lg(xy=lg1=0 f(x)f(y),即f(x)f(y)所以xy,即xy0
通过构造函数,利用函数单调性和奇偶性,把一些看似与函数无缘的问题转化为函数问题来解决,思路灵活新颖,简洁巧妙,可出奇制胜。
二、有些不等式分析可知它与数列有关,可构造出相应的数列,再利用数列的单调性来研究。
n(n1)(n1)
2例
3证明不等式对所有正 22
整数n成立。
分析:
是一个与n无关的量,将它与左右两端作差 构造出相应的数列,在利用数列的单调性来研究。
解:
设an3,1n)(N构)造数列xn,令
xnann(n1)(n1)(n2)n(n1)(n1)0,,则xn1xnan1an222
(nN),所以xn1xn,x
n为单调数列,首相x11为最小值。
n(n1)(n1)2
所以xnx110,即an,又令ynan,22
(n1)2(n2)22n3则yn1ynan1an,222
所以yn1yn,y
n为单调递减数列,首相y12为最大项,(n1)2
所以yny120,即an.2
n(n1)(n1)2
an(nN)综上所述,22
用构造单调数列证明不等式,若不等式的一边为和(积)式,则构造数列an,使其通项等于和(积)式与另一端的差(商),然后通过比较法确定数列an的单调性,利用数列的单调性即可使不等式获证。
三、对某些不等式,根据条件和结论,可将其转化为向量形式,利用向量数量积及不等关系mnmn,使问题得到解决。
a2b2c2abc例4已知a,b,cR,求证:a,b,cR bccaab2
证明
设mn,则 22222abc(mn)(abc)2abcm2 bccaab2(abc)2n利用向量虽是一种构造性的证明方法,但它与传统的综合法有很大不同,能避免繁杂的凑配技巧,使证明过程既直观又容易接受。
四、有些不等式若采用通法解很繁琐,用变量替换法又不可行,利用数形结合的思想方法将抽象的式用形表示,则使问题中的各变量关系更具体明确,使问题简明直观。
例
51x
2析本题若转化为不等式组来解很繁琐,利用数形结合的思想方法将抽象的式用形表示,则使问题变得简明直观
解:令yy1x,2
x,问题转化
为它们对应的图象为半圆(x1)2y21(y0)与直线y
(x1)2y21(y0)的图象在y
1x上方时x的范围,如图 218x得x0 25
故原不等式的解为:x0x
85五、一类属函数图象的问题,与求最值结合,利用数形结合是基本的指导思想,但还需结合复合函数求导,使不等式的证明水到渠成。
例6 如图,设曲线yex(x0)在点M(t,et)处的切线l与x轴y轴所围成的三角形面 积为S(t),求(1)切线l的方程;2)求证S(t)2 e
t(1)解: f'(x)(ex)'ex,切线l的斜率为e
故切线l的方程为yetet(xt),即etxyet(t1)0
(2)证明:令y0得xt1,又令x0得ye(t1),t
S(t)11(t1)et(t1)(t1)2et 2
21t'从而S(t)e(1t)(1t).2当t(0,1)时,S'(t)0,当t(1,)时,S'(t)0,S(t)的最大值为S(1)22,即S(t) ee
应用导数法求函数的最值,并结合函数图象,可快速获解,也充分体现了求导法在证明 不等式中的优越性。
证明不等式不但用到不等式的性质,不等式证明的技能、技巧,还要注意到横向结合内容的方方面面.如与数列的结合,与“二次曲线”的结合,与“三角函数”的结合,与“一元二次方程,一元二次不等式、二次函数”这“三个二次”间的互相联系、互相渗透和互相制约,这些也是近年命题的重点.
第二篇:巧用构造法证明不等式
巧用构造法证明不等式
构造法是指在解决数学问题的过程中,为了完成由条件向结论的转化,通过构造辅助元素,架起一座沟通条件和结论的桥梁,从而使问题得到解决。不等式证明是高中数学的一个难点问题,若能巧用构造方法,可以使一些问题化难为易.本文拟用构造法巧证一些不等式问题,仅供参考.一、构造函数证明不等式
若能根据题中条件的特征,巧妙地构造函数,利用函数的图象和性质来证明不等式.例1(2011年安徽高考理科题)(Ⅰ)设x1,y1,证明 111xyxy,xyxy
(Ⅱ)1abc,证明
logablogbclogcalogbalogcblogac.解:∵x1,y1,所以要证明原不等式成立,则只需证
xy(xy)1yx(xy)
2成立.令f(x)yx(xy)2[xy(xy)1](y2y)x2(1y2)xy1 当y1时,则f(x)0,即xy(xy)1yx(xy)2,所以
111xyxy xyxy
111(,1).函数当y1时,二次函数f(x)的图象开口向上,对称轴x22y2
f(x)在[1,)上单调递增,所以
f(x)f(1)y2y1y2y10
所以
111xyxy xyxy
综上,所证明的原不等式成立.(Ⅱ)证明略.二、构造方程证明不等式
由解不等式的经验知,不等式的解的区间的端点就是相应方程的解,所以可以利用方程与不等式的内在联系,构造方程来证明不等式.例2 设实数a,b,c满足
a2bc8a702 2bcbc6a60
求证:1a9.bca28a7证明:由已知得,故可构造关于x的方程:
bc(a1)
x2(a1)xa28a70
所以[(a1)]24(a28a7)0,即a210a90,所以1a9.三、构造三角形证明不等式
若能根据不等式的特征,构造出与不等式相同的几何背景的三角形,通过三角形的性质和几何特征来证明不等式.例3设a,b,c为正实数,求证:
a2abb2b2bcc2c2caa2(abc)证明:由于a2abb2
下图所示.Aa2b22abcos1200,构造三角形ABC,如 D B
使ACb,BCa,ACB1200,则ABa2abb2.作ACB的角平分线交AB于D.令ADC,则ADbBDaa,.sin600sinsin600sin(1800)sin
33ba(ab)
所以AB,BD.由此可得ABADDB.sinsinsin
∵01,所以AB,所以0sin3(ab),即
2a2abb2
同理:b2bcc2(ab)①.23(cb)② 2
(ca)③ 2c2caa2
由①②③得a2abb2b2bcc2c2caa2(abc).四、构造几何体证明不等式
若要证明的不等式与几何体中一些线段的长度有某种内在的关系,可通过构造几何体来证明不等式.例4 已知a,b,c均为正数,且a2b2c21.证明:
a2b2c23(abc)
证明:由a2b2c21,可发现此式与长方体的对角线长的公式有一定联
系.故可构造长方体,使其长宽高分别为a,b,c,且AC11.A
c 1A1 D
1而AB1b2c2a2.在AB1C1中,有AB1B1C1AC1,即
a2a1①
同理有
b2b1②
c2c1③
由①②③得a2b2c23(abc).用构造法证明不等式是一种非常重要的解题方法.运用此方法的关键在于“构造”,可以根据所要证明的不等式的结构特征,合理运用类比、联想等方法,构造出“辅助元素”,使所要证明的不等式化难为易,从而解决问题。
第三篇:巧用构造函数法证明不等式
构造函数法证明不等式
一、构造分式函数,利用分式函数的单调性证明不等式
【例1】证明不等式:|a||b||ab|
1|a||b|≥1|ab|
证明:构造函数f(x)=
x
1x(x≥0)则f(x)=x1x=1-
11x
在0,上单调递增
∵f(|a| + |b|)=
|a||b|1|a||b|f(|a + b|)=|ab|
1|ab|
且|a| + |b|≥|a + b|
∴f(|a| + |b|)≥f(|a + b|)即所证不等式正确。
二、利用分式函数的奇偶性证明不等式
【例2】证明不等式:x12x<x
2(x≠0)证明:构造函数f(x)=x1
2x
x
2(x0)∵f(-x)=-xx-x2x1-2-x22x1x2x12x
[1-(1-2x)]x2x12xx2=f(x)
∴f(x)是偶函数,其图像关于y轴对称。当x>0时,12x
<0,f(x)<0;
当x<0时,-x>0,故f(x)=f(-x)<0 ∴x1-2xx2<0,即x12
x
<x
2三、构造一次函数,利用一次函数的单调性证明不等式
【例3】已知|a|<1,|b|<1,|c|<1,求证:a + b + c<abc + 2。
证明:构造函数f(c)=(1-ab)c + a + b-
2∵|a|<1,|b|<
1∴-1<ab<1,1-ab>0
∴f(c)的(-1,1)上是增函数
∵f(1)=1-ab + a + b-2=a + b–ab-1=a(1b)=(1c)2>4a(a + b + c)。证明:构造函数f(x)=ax2 +(-b + c)x +(a + b + c)(a≠0)
则f(0)=a + b + c,f(1)=2(a + c)
由(a + c)(a + b + c)<0知:f(0)•f(1)<0 ∴f(x)=0有两个不等的实数根。∴△>0,即(bc)2>4a(a + b + c)
【例5】已知实数a,b,c满足a + b + c = 5,a2 + b2 + c
2= 9,求证a,b,c的值都不小于1,又都 不大于21
3。
证明:构造函数f(x)=2x2+ 2(a + b)x + a2 + b2=(x + a)2 +(x + b)2 ≥0
∵2>0
∴△=[2(a+b)]2-4×2×(a2 + b2)≤0
∴△=4(5-c)2-8(9-c2)≤0 ∴(c-1)(3c-7)≤0
∴1≤c≤213
同理可证:1≤a≤21,1≤b≤2133。
【例6】已知a,b,c∈R,证明:a2 + ac + c2 + 3b(a + b + c)≥0,并指出等号何时成立?
证明:令f(a)= a2 +(c + 3b)a + c2 + 3b2
+ 3bc
△=(c + 3b)2-4(c2 + 3b2 + 3bc)=-3(b + c)2
≤0 恒成立 ∵二次项系数1>0
∴f(a)≥0,即 a2 + ac + c2 + 3b(a + b + c)≥0
又当△=0,即b + c = 0时f(a)=(a + b)2
= 0 ∴当且仅当a=-b=c时才能取等号。
⒉利用一元二次方程根的分布证明不等式
【例7】设a + b + c=1,a2 + b2 + c2 =1,且a>b>c,求证:-
13<c<0
证明:∵a + b + c=1
∴a + b =1-c有a2 + b2 + 2ab=1c
∴a,b是方程x2-(1-c)x+c2-c=0的两个实数根
∵a>b>c,故方程有大于c的两个不等的实数根
构造函数f(x)= x2-(1-c)x+c2-c,则有:
(1c)24(c2c)>0
1c>c
2
f(c)>0
∴-1
3<c<0
⒊综合运用判别式法、一元二次方程根的分布证明不等式
【例8】设a,b是两个不等于0的实数,求证:下列不等式中至少有一个成立。aa22b2
2b1,aa22b2
2b1
证明:设f(x)=bx2axb
2(b≠0)
∵△=(-a)2-2b(-b)=a2+2b2>0
∴抛物线与x轴必有两个交点,其横坐标为x=aa22b2
2b
∴f(-1)=b
2af(0)= b
2f(1)= b
2a
⑴当b>0时,f(0)<0
若a>0,则f(-1)>0
∴点A(-1,f(-1))在x轴上方,点B(0,f(0))在x轴下方
∴抛物线与x轴在(-1,0)内必有一个交点,此时有
aa22b2
2b1 若a<0,则f(1)>0 ∴点C(1,f(1))在x轴上方 ∴抛物线与x轴在(0,1)内必有一个交点,此时有 aa22b22b1 ⑵当b<0时,f(0)>0,此时点B在x轴下方,同理可证A点和C点至少有一点 在x轴上方。故两个不等式至少有一个成立。构造函数法证明不等式,关键在于找到能够反映所要证不等式特征的合适的函数,从而就可以利用该函数的性质去证明不等式。
第四篇:构造向量巧解不等式问题
构造向量巧解有关不等式问题
新教材中新增了向量的内容,其中两个向量的数量积有一个性质:ab|a||b|cos(其中θ为向量a与b的夹角),则|,又,则易得到以1cos1ab|||a|||bcos|
下推论:
(1)ab|ab|||;
(2)|ab||a||b|;
(3)当a与b同向时,ab|ab|||;当a与b反向时,ab|a||b|;
(4)当a与b共线时,|ab||a||b|。
下面例析以上推论在解不等式问题中的应用。
一、证明不等式
例1已知a。、bR,ab12证明:设m=(1,1),n,则 2a2b1)
ab
1||2||a12b1
2ab12由性质m n|m||n|,得yz1,求证:xyz例2已知x。
证明:设m=(1,1,1),n=(x,y,z),则 2221
3mnxyz1
||3,|n|xyz
222222 mnm|||||n,得xyz由性质|
22213a2b2c2abcR,求证:例3已知a,b,c。bccaab2
222abc)证明:设m,ab)bccaab
则m nabc
222abc||||2(abc)bcacab
第1页(共4页)
-----------
a2b2c2abc由性质| mn||m||n|,得bccaab2222例4已知a,b为正数,求证:(。ab)(ab)(ab)
证明:设m (a,b),n(a,b),则
33mnab
224442233222||ab,|n|ab
由性质|mn||m||n|,得 222
44422332(ab)(ab)(ab)
dacd。,b,c,dR例5设a,求证:a
证明:设m=(a,b),n=(c,d),则
mnadbc
2222 ||ab||cd222
由性质ab|ab|||,得
222adacd
二、比较大小
Rda例6已知m,n,a,b,c,d
p,q的大小关系为()
A.pqB.pqC.p hkabcd bd |h|manc,|k|mn hk||hk|||得 由性质| bcdman即pq,故选(A) bd mn 三、求最值 例7已知m,n,x,y,且m,那么mx+ny的最大值为na,xybR ()A.2222abB.ab 2C.a2b2 2D.a2b2 解:设p=(m,n),q=(x,y),则 由数量积的坐标运算,得p qmxny 而|| mn||xy 从而有m xnmxy 当p与q同向时,mx+ny取最大值m,故选(A)。nxyb 例8求函数的最大值。x) 解:设,则 x2x),n(1,1)***2 mn2x12x |m|2,|n|2 由性质mn|m||n|,得 x2x2 当 四、求参数的取值范围 113 时时,y2max22x2x yy例9设x,y为正数,不等式x恒成立,求a的取值范围。 yn),(1,1)解:设,则 ||xy||2 由性质mn|m||n|,得 xyxy yy又不等式x恒成立 故有a2 黑龙江省大庆市66中学(163000) 龙源期刊网 http://.cn 巧用逆向构造法 妙解数列型问题 作者:翟美华 来源:《理科考试研究·高中》2013年第01期 对于以上两例,常规方法是用数学归纳法.而本文采用逆向思维,由右式的目标式逆向构造出左式各项,用恒等式①或②,立即获解.第五篇:巧用逆向构造法 妙解数列型问题