第一篇:构造法证明不等式例说
构造法证明不等式例说
【中图分类号】g633.5 【文献标识码】a 【文章编号】
2095-3089(2012)11-0081-01
对于如何解题,g.波利亚曾这样精辟地说过:“解题的成功要靠正确的选择。”在解题中,常规的思考方法是由条件到结论的定向思考,但有些问题按照这样的思维方式来寻求解题途径比较困难,甚至无从下手。在这种情况下,要求我们改变思维方向,换一个角度思考,以找到一条绕过障碍的新途径。构造法思想及其方法就是这种手段。下面举例说明构造法在证明不等式方面的具体应用。
一、构造函数,利用函数性质证明不等式
第二篇:例谈运用构造法证明不等式
例谈运用构造法证明不等式
湖北省天门中学薛德斌
在我们的学习过程中,常遇到一些不等式的证明,看似简单,但却无从下手,很难找到
切入点,几种常用证法一一尝试,均难以凑效。这时我们不妨变换一下思维角度,从不等式的结构和特点出发,在已学过的知识的基础上进行广泛的联想,构造一个与不等式相关的数
学模型,实现问题的转化,从而使不等式得到证明。下面通过举例加以说明。
一、构造向量证明不等式
例1:证明7x2(9x2)9,并指出等号成立的条件。简析与证明:不等式左边可看成7与 x 和2与9x2两两乘积的和,从而联想
到数量积的坐标表示,将左边看成向量a=(,2)与b=(x,又a·b ≤|a|·|b|,所以7x9x2)的数量积,2(9x2)(7)2(2)2x2(9x2)9当且仅当b=λa(λ>0)时等号成立,故由
时,等号成立。x79x22x=,λ=1,即 x =70得:(1-y)(xy3)(2xy6)例2:求证:2221 6
简析与证明:不等式左边的特点,使我们容易联想到空间向量模的坐标表示,将左边看
成a =(1-y , x+y-3 , 2x+y-6)模的平方,又 |a|·|b|≥a·b ,为使 a·b为常数,根据待定系数
法又可构造b=(1 , 2,-1)
222于是|a|·|b|=(1y)(xy3)(2xy6)6
(1-y)·1+(xy3)·2(2xy6()·1)-1 a·b=
222所以(1y)(xy3)(2xy6)61(1-y)(xy3)(2xy6)即
二、构造复数证明不等式
22例
3、xy2221 6x2(1y)2(1x)2y2(1x)2(1y)22
2简析与证明:从不等式左边的结构特点容易联想到复数的模,将左边看成复数Z1=
x+y i , Z2 = x +(1- y)i,Z3 = 1- x +y i,Z4 = 1- x +(1- y)i 模的和,又注意到
Z1+Z2+Z3+Z4=2+2 i,于是由 z1+z2+z3+z4≥z1z2z3z4可得
x2y2x2(1y)2(1x)2y2(1x)2(1y)2222222
此题也可构造向量来证明。
三、构造几何图形证明不等式
例4:已知:a>0、b>0、c>0 ,求证:a2abb2b2bcc2
且仅当a2acc2当111时取等号。bac
简析与证明:从三个根式的结构特点容易联想到余弦定理,于是可构造如下图形:
作OA=a,OB=b,OC=c,∠AOB=∠BOC=60° 如图(1)
则∠AOC=120°,AB=a2abb2,BC=b
2bcc2,AC=a2acc2由几何知识可知:AB+BC≥AC
∴a2abb2+b2bcc2≥a2acc2
当且仅当A、B、C三点共线时等号成立,此时有
111absin60bcsin60acsin120,即22
2ab+bc=ac
故当且仅当111时取等号。bac图(1)
四、构造椭圆证明不等式
例5:求证:42 49x22x3
3简析与证明:49x2的结构特点,使我们联
想到椭圆方程及数形结合思想。
于是令 y49x2(y0),则其图象是椭
x2y
21圆4的上半部分,设y-2x=m,于是只需
49证42m, 因 m为直线y=2x+m在y轴上33图(2)的截距,由图(2)可知:当直线 y = 2 x+m 过点(直线y =2x+m与椭圆上半部分相切时,m有最大值。
由 24,0)时,m有最小值为m=;当33y2xm
229xy4 得:13x2 + 4mx + m2 – 4 = 0
令△= 4(52-9m2)=0 得:m22或m-(33
即m的最大值为424222,故m,即49x2x 33333
五、构造方程证明不等式
例6:设 a1、a2、…an 为任意正数,证明对任意正整数n
不等式(a1 + a2 + … + an)2≤ n(a12+a22+ …+ an2)均成立
简析与证明:原不等式即为 4(a1 + a2 + … + an)2-4n(a12 + a22 + … + an2)≤ 0
由此联想到根的判别式而构造一元二次方程:
(a12+ a22+ … + an2)x 2 + 2(a1 + a2 + … + an)x + n=0(*)
因方程左边=(a1 x + 1)2 +(a2 x + 1)2 + … +(an x + 1)2 ≥ 0
当a1、a2、…an不全相等时,a1 x+
1、a2 x+
1、…an x+1至少有一个不为0,方程(*)左边恒为正数,方程(*)显然无解。
当a1=a2=…=an 时,方程(*)有唯一解 x=1 a
1故△=4(a1 + a2 + … + an)2 - 4n(a12 + a22 + … + an2)≤ 0
即(a1 + a2 + … +an)2 ≤ n(a12 + a22 + … + an2)对任意正整数n均成立
六、构造数列证明不等式
2例7:求证:Cn1+Cn2+…+Cnn >n·
n n-1212n
简析与证明:不等式左边即为 2-1=从而联想到等比数列的求和公式,于是左1
2边=1+2+2+…+ 2 2n-1112=[(1+2n-1)+(2+2n-2)+ …(2n-1+1)≥·n·22n1=n·22n-12
例8:设任意实数a、b均满足| a | < 1,| b | < 1 求证:112 221ab1a1b
简析与证明:不等式中各分式的结构特点与题设联想到无穷等比数列(| q | < 1)各项和公式S=a1112424,则:=(1 + a + a + …)+(1 + b + b + …)221a1b1q1ab=2+(a2 + b2)+(a4 + b4)+ … ≥2+2ab+2 a2 b2 + 2a4b4 + … =
七、构造函数证明不等式
例9:已知| a | < 1,| b | < 1,| c | < 1,求证:ab+bc+ca>-
1简析与证明:原不等式即为:(b+c)a+bc+1>0 ……①
将a看作自变量,于是问题转化为只须证:当-1<a<1时,(b+c)a+bc+1恒为正数。因而可构造函数 f(a)=(b + c)a + bc +1(-1<a<1)
若b + c = 0原不等式显然成立。
若b + c ≠0,则f(a)是a的一次函数,f(a)在(-1,1)上为单调函数
而 f(-1)=- b -c+ bc +1=(1-b)(1-c)>0
f(1)=b+c+bc+1=(1+b)(1+c)>0
∴f(a)>0 即ab+bc+ca>-1
此题还可由题设构造不等式(1+a)(1+b)(1+c)>0
(1-a)(1-b)(1-c)>0
两式相加得:2+2(ab+bc+ca)>0即ab+bc+ca>-1
八、构造对偶式证明不等式
例10:对任意自然数n,求证:(1+1)(1+
简析与证明:设an =(1+1)(1+
构造对偶式:bn = 11)…(1+)> 43n23n1 112583n43n1)…(1+)= ··…·43n21473n53n23693n33n47103n23n1··…,cn = ·… 2583n43n13693n33n1111111,1 3n23n13n23n
即an > bn,an > cn
3∴an> an bn cn
∴an> 11)> n1 3n1,即:(1+1)(1+)…(1+43n2
小结:从以上几例还可以看出:(1)构造法不仅是证明不等式的重要思想方法,也是解不等式,求函数值域或最值的重要思想方法。(2)运用构造法解题,必须对基础知识掌握的非常熟练,必须有丰富的联想和敢于创新的精神。(3)不时机地运用构造法,定能激发和培养学生的探索精神与创新能力。
(本文于2004年在《高中数学教与学》第10期上发表)
第三篇:构造法证明函数不等式
构造法证明函数不等式
1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点.
2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键.
一、移项法构造函数
【例1】已知函数f(x)ln(x1)x,求证:当x1时,恒有11ln(x1)x. x
1二、作差法构造函数证明
【例2】已知函数f(x)的图象的下方.
2312xlnx,求证:在区间(1 ,)上,函数f(x)的图象在函数g(x)x
32三、换元法构造函数证明
【例3】(2007年山东卷)证明:对任意的正整数n,不等式ln(1111)23都成立. nnn
四、从条件特征入手构造函数证明
【例4】若函数yf(x)在R上可导,且满足不等式xf'(x)f(x)恒成立,常数a、b满足ab,求证:af(a)bf(b).
五、主元法构造函数
1x)x,g(x)xlnx. 【例5】已知函数f(x)ln((1)求函数f(x)的最大值;
(2)设0ab,证明:0g(a)g(b)2g(ab)(ba)ln2.
2六、构造二阶导函数证明函数的单调性(二次求导)
【例6】已知函数f(x)aex12x. 2(1)若f(x)在R上为增函数,求a的取值范围;(2)若a1,求证:当x0时,f(x)1x.
七、对数法构造函数(选用于幂指数函数不等式)
【例7】证明:当x0时,(1x)1xe12.
1、(2007年,安徽卷)设a0,f(x)x1ln2x2alnx.
求证:当x1时,恒有xln2x2alnx1.
2、(2007年,安徽卷)已知定义在正实数集上的函数f(x)1x12x2ax,g(x)3a2lnxb,其中2a0,且b 52a3a2lna,求证:f(x)g(x).
23、已知函数f(x)ln(1x) xb,求证:对任意的正数a、b,恒有lnalnb1. 1xa4、(2007年,陕西卷)f(x)是定义在(0 , )上的非负可导函数,且满足xf'(x)f(x)0,对任意正数a、b,若ab,则必有()
A.af(b)bf(a)
B.bf(a)af(b)
C.af(a)f(b)
D.bf(b)f(a)例1【分析】 本题是双边不等式,其右边直接从已知函数证明,左边构造函数11,从其导数入手即可证明. x11x1【解析】由题意得:f(x),∴当1x0时,f(x)0,即f(x)在x1x1g(x)ln(x1)x(1 , 0)上为增函数;当x0时,f(x)0,即f(x)在x(0 , )上为减函数;故函数f(x)的单调递增区间为(1 , 0),单调递减区间(0 , );于是函数f(x)在(1 , )上的最大值为f(x)maxf(0)0,因此,当x1时,f(x)f(0)0,即ln(x1)x0,∴ln(x1)x(右面得证).现证左面,令g(x)ln(x1)11x11,则g(x)22,x1(x1)(x1)x1当x(1 , 0)时,g'(x)0;当x(0 , )时,g'(x)0,即g(x)在x(1 , 0)上为减函数,在x(0 , )上为增函数,故函数g(x)在(1 , )上的最小值为g(x)ming(0)0,110,x1111ln(x1)x. ∴ln(x1)1.综上可知:当x1时,有x1x1∴当x1时,g(x)g(0)0,即ln(x1)【点评】如果f(a)是函数f(x)在区间上的最大(小)值,则有f(x)f(a)(或f(x)f(a)),那么要证不等式,只要求函数的最大值不超过0就可得证.
例2.【分析】函数f(x)的图象在函数g(x)的图象的下方不等式f(x)g(x)在(1 ,)上恒成12212xlnxx3,只需证明在区间(1,)上,恒有x2lnxx3成立,23231设F(x)g(x)f(x),x(1 , ),考虑到F(1)0,要证不等式转化变为:
6立问题,即当x1时,F(x)F(1),这只要证明:g(x)在区间(1 ,)是增函数即可. 【解析】设F(x)g(x)f(x),即F(x)22312xxlnx,321(x1)(2x2x1)(x1)(2x2x1)则F'(x)2xx;当x1时,F'(x)0,从xxx而F(x)在(1,)上为增函数,∴F(x)F(1)
10,∴当x1时,g(x)f(x)0,即6f(x)g(x),故在区间(1,)上,函数f(x)的图象在函数g(x)23x的图象的下方. 3【点评】本题首先根据题意构造出一个函数(可以移项,使右边为零,将移项后的左式设为函数),并利用导数判断所设函数的单调性,再根据函数单调性的定义,证明要证的不等式.读者也可以设F(x)f(x)g(x)做一做,深刻体会其中的思想方法. 例3.【分析】本题是山东卷的第(2)问,从所证结构出发,只需令
1x,则问题转化为:当x0n时,恒有ln(x1)x2x3成立,现构造函数h(x)x3x2ln(x1),求导即可达到证明.
13x3(x1)2 【解析】 令h(x)xxln(x1),则h(x)3x2xx1x1322在x(0 , )上恒正,∴函数h(x)在(0 , )上单调递增,∴x(0 , )时,恒有h(x)h(0)0,即x3x2ln(x1)0,∴ln(x1)x2x3,对任意正整数n,取x1111(0 , ),则有ln(1)23. nnnn【点评】我们知道,当F(x)在[a , b]上单调递增,则xa时,有F(x)F(a).如果f(a)=(a),要证明当xa时,f(x)(x),那么,只要令F(x)=f(x)-(x),就可以利用F(x)的单调增性来推导.也就是说,在F(x)可导的前提下,只要证明F'(x)0即可.
例4.【解析】由已知:xf'(x)f(x)0,∴构造函数F(x)xf(x),则F'(x)xf'(x)f(x)0,从而F(x)在R上为增函数,∵ab,∴F(a)F(b),即af(a)bf(b).
【点评】由条件移项后xf(x)f(x),容易想到是一个积的导数,从而可以构造函数F(x)xf(x),求导即可完成证明.若题目中的条件改为xf(x)f(x),则移项后xf(x)f(x),要想到是一个商的导数的分子,平时解题多注意总结.
例5.【分析】 对于第(2)小问,绝大部分的学生都会望而生畏.学生的盲点也主要就在对所给函数用不上.如果能挖掘一下所给函数与所证不等式间的联系,想一想大小关系又与函数的单调性密切相关,由此就可过渡到根据所要证的不等式构造恰当的函数,利用导数研究函数的单调性,借助单调性比较函数值的大小,以期达到证明不等式的目的.(2)对g(x)xlnx求导,则g'(x)lnx1.在g(a)g(b)2g(数,设F(x)g(a)g(x)2g(ab)中以b为主变元构造函2axaxax),则F'(x)g'(x)2[g()]'lnxln. 222当0xa时,F'(x)0,因此F(x)在(0 , a)内为减函数;当xa时,F'(x)0,因此F(x)在(a , )上为增函数.从而当xa时,F(x)有极小值F(a),∵F(a)0,ba,∴F(b)0,即g(a)g(b)2g(ab)0.又设G(x)F(x)(xa)ln2,则2G'(x)lnxlnaxG'(x)0.ln2lnxln(ax);当x0时,因此G(x)在(0 , )2ab)(ba)ln2. 2上为减函数,∵G(a)0,ba,∴G(b)0,即g(a)g(b)2g(例6.【解析】(1)f'(x)aexx,∵f(x)在R上为增函数,∴f'(x)0对xR恒成立,即axex对xR恒成立;记g(x)xex,则g'(x)exxex(1x)ex;
当x1时,g'(x)0;当x1时,g'(x)0.知g(x)在( , 1)上为增函数,在(1 , )上为减函数,∴g(x)在x1时,取得最大值,即g(x)maxg(1)(2)记F(x)f(x)(1x)ex111,∴a,即a的取值范围是[ , ).
eee12xx1(x0),则F'(x)exx1,2令h(x)F'(x)exx1,则h'(x)ex1;当x0时,h'(x)0,∴h(x)在(0 , )上为增函数,又h(x)在x0处连续,∴h(x)h(0)0,即F'(x)0,∴F(x)在(0 , )上为增函数,又F(x)在x0处连续,∴F(x)F(0)0,即f(x)1x.【点评】当函数取最大(或最小)值时不等式都成立,可得该不等式恒成立,从而把不等式的恒成立问题可转化为求函数最值问题.不等式恒成立问题,一般都会涉及到求参数范围,往往把变量分离后可以转化为mf(x)(或mf(x))恒成立,于是m大于f(x)的最大值(或m小于f(x)的最小值),从而把不等式恒成立问题转化为求函数的最值问题.因此,利用导数求函数最 值是解决不等式恒成立问题的一种重要方法.
例7.【解析】 对不等式两边取对数得(1)ln(1x)11xx,化简为2(1x)ln(1x)2xx2,2(l1x),设辅助函数f(x)2xx22(1x)ln(,f'(x)2x2n1x)(x0)又f''(x)2x0(x0),易知f'(x)在(0 , )上严格单调增加,从而f'(x)f'(0)01x(x0),又由f(x)在[0 , )上连续,且f'(x)0,得f(x)在[0 , )上严格单调增加,∴f(x)f(0)0(x0),即2xx22(1x)ln(1x)0,2xx22(1x)ln(1x),故(1x)11xe1x2(x0).
1、【解析】f(x)12lnx2a2lnx1,∴f(x)0,即f(x),当x1,a0时,不难证明xxx 在(0,)内单调递增,故当x1时,f(x)f(1)0,∴当x1时,恒有xln2x2alnx1.
2、【解析】设F(x)g(x)f(x)12x2ax3a2lnxb,则23a2(xa)(x3a)(x0),∵a0,∴当xa时,F'(x)0,F'(x)x2axx故F(x)在(0 , a)上为减函数,在(a , )上为增函数,于是函数F(x)在(0 , )上的最小值是F(a)f(a)g(a)0,故当x0时,有f(x)g(x)0,即f(x)g(x).
3、【解析】函数f(x)的定义域为(1 , ),f'(x)11x,∴当1x01x(1x)2(1x)2时,f'(x)0,即f(x)在x(1 , 0)上为减函数;当x0时,f'(x)0,即f(x)在x(0 , )上为增函数;因此在x0时,f(x)取得极小值f(0)0,而且是最小值,于是f(x)f(0)0,从而ln(1x)1xa1b1,于是,即ln(1x)1,令1x0,则11x1xbx1aabbf(x)xf'(x)f(x)ln1,因此lnalnb1.
4、0,故【解析】F(x),F'(x)baaxx2f(x)f(a)f(b)af(b)bf(a),故选A. F(x)在(0 , )上是减函数,由ab有xab8
第四篇:构造函数法证明不等式
构造函数法证明不等式
河北省 赵春祥
不等式证明是中学数学的重要内容之一.由于证明不等式没有固定的模式,证法灵活多样,技巧性强,使其成为各种考试命题的热点问题,函数法证明不等式就是其常见题型.即有些不等式可以和函数建立直接联系,通过构造函数式,利用函数的有关特性,完成不等式的证明.
一、构造一元一次函数证明不等式
例1设0<x<1,0<y<1,0<z<1,求证:x(1-y)+y(1-z)+z(1-x)<1.
证明:构造一次函数f(x)= x(1-y)+y(1-z)+z(1-x),整理,得
f(x)=(1-y-z)x+(y+z-yz)其中0<x<1,∵0<x<1,0<y<1,0<z<1,∴-1<1-y-z<1.
⑴当0<1-y-z<1时,f(x)在(0,1)上是增函数,于是
f(x)<f(1)=1-yz<1;
⑵当-1<1-y-z<0时,f(x)在(0,1)上是减函数,于是
f(x)<f(0)= y+z-yz = 1-(1-y)(1-z)<1;
⑶当1-y-z = 0,即y+z = 1时,f(x)= y+z-yz = 1-yz<1.
综上,原不等式成立.
例2已知 | a |<1,| b |<1,| c |<1,求证:abc+2>a+b+c.
证明:构造一次函数f(x)=(bc-1)x+2-b-c,这里,| b |<1,| c |<1,| x |<1,则bc <1. ∵f(1)= 1-bc+2-b-c =(1-bc)+(1-b)+(1-c)>0,f(1)= bc-1+2-b-c =(1-b)(1-c)>0,∵-1<x<1,∴一次函数f(x)=(bc-1)x+2-b-c的图象在x轴上方,这就是说,当| a |<1,| b |<1,| c |<1时,有(bc-1)a+2-b-c>0,即abc+2>a+b+c.
二、构造一元二次函数证明不等式
例3若 a、b、c∈R+,求证:a2+b2+c2≥ab+bc+ca .
证明构造函数f(x)= x2-(b+c)x+b2+c2-bc .
因为 △=(b+c)2-4(b2+c2-bc)=-3(b-c)2≤0,又因为二次项的系数为正数,所以x2-(b+c)x+b2+c2-bc≥0对任意实数恒成立. 以a 替换 x 得:a2-(b+c)a+b2+c2-bc≥0,即 a2+b2+c2≥ab+bc+ ca.
例4已知a、b、c、d、e是满足a+b+c+d+e= 8,a2+b2+c2+d2+e2= 16的实数,求证:0≤e≤
5.证明:构造一元二次函数
f(x)= 4x
+2(a+b+c+d)+a2+b2+c2+d2=(x+a)2+(x+b)2+(x+c)2+(x+d)2≥0,又∵二次项系数为正数,∴△= 4(a+b+c+d)2-16(a2+b2+c2+d2)= 4(8-e)2-16(16-e2)≤0,解之得0≤e≤
165
.
故不等式成立.
三、构造单调函数证明不等式 例5已知 a>0,b>0,求证 :证明: 构造函数f(x)=
x1x
a1a
+
b1b
>
x
ab1ab
.,易证f(x)=
1x
= 1-
1x
当x>0 时单调递增.
∵ a+b+ab>a+b>0,∴ f(a+b+ab)>f(a+b). 故
a1a
+
b1b
=
ab2ab(1a)(1b)
>
abab1abab)
=f(a+b+ab)>f(a+b)=
13n2
13n1
ab1ab
.
例6对任意自然数n 求证:(1+1)(1+
14)·…·(1+
13n2)>3n1.
证明:构造函数f(n)=(1+1)(1+
13n1)·…·(1+3,由
f(n1)f(n)
(1)33n1
=
3n4
=(3n2)
(3n1)(3n4)
>1,∵f(n)>0,∴f(n1)>f(n),即f(n)是自然数集N上的单调递增函数,∴(1+1)(1+
14)·…·(1+
13n2)>33n1.
第五篇:巧用构造法证明不等式
巧用构造法证明不等式
构造法是指在解决数学问题的过程中,为了完成由条件向结论的转化,通过构造辅助元素,架起一座沟通条件和结论的桥梁,从而使问题得到解决。不等式证明是高中数学的一个难点问题,若能巧用构造方法,可以使一些问题化难为易.本文拟用构造法巧证一些不等式问题,仅供参考.一、构造函数证明不等式
若能根据题中条件的特征,巧妙地构造函数,利用函数的图象和性质来证明不等式.例1(2011年安徽高考理科题)(Ⅰ)设x1,y1,证明 111xyxy,xyxy
(Ⅱ)1abc,证明
logablogbclogcalogbalogcblogac.解:∵x1,y1,所以要证明原不等式成立,则只需证
xy(xy)1yx(xy)
2成立.令f(x)yx(xy)2[xy(xy)1](y2y)x2(1y2)xy1 当y1时,则f(x)0,即xy(xy)1yx(xy)2,所以
111xyxy xyxy
111(,1).函数当y1时,二次函数f(x)的图象开口向上,对称轴x22y2
f(x)在[1,)上单调递增,所以
f(x)f(1)y2y1y2y10
所以
111xyxy xyxy
综上,所证明的原不等式成立.(Ⅱ)证明略.二、构造方程证明不等式
由解不等式的经验知,不等式的解的区间的端点就是相应方程的解,所以可以利用方程与不等式的内在联系,构造方程来证明不等式.例2 设实数a,b,c满足
a2bc8a702 2bcbc6a60
求证:1a9.bca28a7证明:由已知得,故可构造关于x的方程:
bc(a1)
x2(a1)xa28a70
所以[(a1)]24(a28a7)0,即a210a90,所以1a9.三、构造三角形证明不等式
若能根据不等式的特征,构造出与不等式相同的几何背景的三角形,通过三角形的性质和几何特征来证明不等式.例3设a,b,c为正实数,求证:
a2abb2b2bcc2c2caa2(abc)证明:由于a2abb2
下图所示.Aa2b22abcos1200,构造三角形ABC,如 D B
使ACb,BCa,ACB1200,则ABa2abb2.作ACB的角平分线交AB于D.令ADC,则ADbBDaa,.sin600sinsin600sin(1800)sin
33ba(ab)
所以AB,BD.由此可得ABADDB.sinsinsin
∵01,所以AB,所以0sin3(ab),即
2a2abb2
同理:b2bcc2(ab)①.23(cb)② 2
(ca)③ 2c2caa2
由①②③得a2abb2b2bcc2c2caa2(abc).四、构造几何体证明不等式
若要证明的不等式与几何体中一些线段的长度有某种内在的关系,可通过构造几何体来证明不等式.例4 已知a,b,c均为正数,且a2b2c21.证明:
a2b2c23(abc)
证明:由a2b2c21,可发现此式与长方体的对角线长的公式有一定联
系.故可构造长方体,使其长宽高分别为a,b,c,且AC11.A
c 1A1 D
1而AB1b2c2a2.在AB1C1中,有AB1B1C1AC1,即
a2a1①
同理有
b2b1②
c2c1③
由①②③得a2b2c23(abc).用构造法证明不等式是一种非常重要的解题方法.运用此方法的关键在于“构造”,可以根据所要证明的不等式的结构特征,合理运用类比、联想等方法,构造出“辅助元素”,使所要证明的不等式化难为易,从而解决问题。