高考数学复习迎战手册:夯实基础 建构知识网络(写写帮推荐)

时间:2019-05-15 13:07:56下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高考数学复习迎战手册:夯实基础 建构知识网络(写写帮推荐)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高考数学复习迎战手册:夯实基础 建构知识网络(写写帮推荐)》。

第一篇:高考数学复习迎战手册:夯实基础 建构知识网络(写写帮推荐)

一、夯实基础知识

高考数学题中容易题、中等题、难题的比重为3∶5∶2,即基础题占80%,难题占20%。无论是一轮、二轮,还是三轮复习都把“三基”即基础知识、基本技能、基本思想方法作为重中之重,死握一些难题的做法非常危险!也只有“三基”过关,才有能力去做难题。

二、建构知识网络

数学教学的本质,是在数学知识的教学中,把大量的数学概念、定理、公式等陈述性知识,让学生在主动参与、积极构建的基础上,形成越来越有层次的数学知识网络结构,使学生体验整个学习过程中所蕴涵的数学思想、数学方法,形成解决问题的产生方式,因此,在高考复习中,在夯实基础知识的基础上,把握纵横联系,构建知识网络。在加强各知识块的联系之后,抓主干知识,理清框架。

三、注重通性通法

近几年的高考题都注重对通性通法的考查,这样避开了过死、过繁和过偏的题目,解题思路不依赖特殊技巧,思维方向多、解题途径多、方法活、注重发散思维的考查。在复习中千万不要过多“玩技巧”,过多的用技巧,会使成绩好的学生“走火入魔”,成绩差的学生“信心尽失”。

四、提高运算能力

运算能力是最基础的能力。由于高三复习时间紧、任务重,老师和学生都不重视运算能力的培养,一个问题,看一看知道怎样解就行了。这是我们高三学生运算能力差的直接原因。其实,运算的合理性、正确性、简捷性、时效性对学生考试成绩的好坏起到至关重要的作用。因此,运算能力要进一步加强,让学生自己体悟运算的重要性和书写的规范性。同时,在运算中不断地反思自己解题过程的合理性,转化的等价性等等。

五、答题严谨规范

学生答题存在许多小错误,太多的小错误,累积起来影响了最后的成绩。在复习中和试卷的评讲中,要不厌其烦告诫学生,注重推理的完整性,特别是“立体几何”中的推理过程;注意数学符号的严格性,以及字迹工整、如何涂改,在规定范围内答题每年都要向学生讲明白,养成严谨规范的作风。

第二篇:2013高考语文复习攻略 夯实基础“对症”复习才有效

2013高考语文复习攻略 夯实基础“对症”复习才有效 随着倒计时牌上的时间越来越少,针对语文学科的备考,考生们应该做些什么才能在前一阶段复习打下的基础上进一步提升自己呢?

在一模检测中,不少考生在语文学科上表现出以下问题:

1.基础知识不够扎实,在模棱两可之间丢分。

2.方法思路不够清晰,在似是而非之间丢分。

3.考场心态不够健康,在张皇失措之间丢分。

如果考生认真给自己的试卷做一个分析,就会发现,这些原本可以不丢的分,每科都很容易找出5~10分。这是一个非常大而且容易实现的上升空间,是在短时间内可以迅速弥补的。实验中学范例

一.提高多少分心中要有数

往年的模拟考试在出题难度上通常表现出这样的规律:“一模难,二模易,三模体现新信息”。但今年各区的模拟题在出题难度上却做了一定的调整,要求“贴近高考难度”。近几年,天津市语文高考试卷的难度基本呈现出逐年降低的趋势,尤其是2012年,可以说达到了近年来难度系数的最低点。所以,这次各区一模试题的难度普遍不高,学生的绝对分数相对往年则显得较为乐观。这对增强学生在最后阶段的复习信心有很好的积极作用,但也不能盲目乐观。现在除了分数,更应关注的是考试中反映出来的知识上的漏洞、方法上的缺陷。现在既要明确自己语文总分目标,又要将总分具体拆解到各个部分,明确分目标,做到有的放矢。比如,平时考试100分左右的考生,可以将高考目标定在110分,略高于平时水平,也不要盲目虚高。同时,要拆分出分目标,制定出每一部分要达到的基本分数线。例如将分目标拆解为:选择题最多错4个,争取得24分以上;主观题力保35分;作文做到审准题意,结构清晰,有一定的论据论述,争取44分以上。这样,最后的基准得分是103分。再找出自己较容易提分的地方重点突破,在第二轮复习中多下功夫,并注意减少过失性丢分,最终向110分靠近。有了明确的目标,复习起来思路清晰,有着力点,往往会有明显的提分效果。文章来源:安徽教育考试网。

第三篇:文科数学怎么复习1强化“三基”,夯实基础

1.强化“三基”,夯实基础

所谓“三基”就是指基础知识、基本技能和基本的数学思想方法,从近几年的高考数学试题可见“出活题、考基础、考能力”仍是命题的主导思想。因而在复习时应注意加强“三基”题型的训练,不要急于求成,好高骛远,抓了高深的,丢了基本的。

考生要深化对“三基”的理解、掌握和运用,高考试题改革的重点是:从 “知识立意”向“能力立意”转变,考试大纲提出的数学学科能力要求是:能力是指思维能力、运算能力、空间想象能力以及实践能力和创新意识。

新课标提出的数学学科的能力为:数学地提出问题、分析问题和解决问题的能力,数学探究能力,数学建模能力,数学交流能力,数学实践能力,数学思维能力。

考生复习基础知识要抓住本学科内各部分内容之间的联系与综合进行重新组合,对所学知识的认识形成一个较为完整的结构,达到“牵一发而动全身”的境界。

强化基本技能的训练要克服“眼高手低”现象,主要在速算、语言表达、解题、反思矫正等方面下功夫,尽量不丢或少丢一些不应该丢失的分数。

要注重基本数学思想方法在日常训练中的渗透,逐步提高学生的思维能力。

夯实解题基本功。高考复习的一个基本点是夯实解题基本功,而对这个问题的一个片面做法是,只抓解题的知识因素,其实,解题的效益取决于多种因素,其中最基本的有:解题的知识因素、能力因素、经验因素、非智力因素。学生在答卷中除了知识性错误之外,还有逻辑性错误和策略性错误和心理性错误。

数学高考历来重视运算能力,运算要熟练、准确,运算要简捷、迅速,运算要与推理相结合,要合理,并且在复习中要有意识地养成书写规范,表达准确的良好习惯。

第四篇:2014届湖州市高考历史复习研讨会:研究高考,夯实基础,提高复习效率

研究高考,夯实基础,提高复习效率

——参加2014届湖州市高考历史复习研讨会之反思

长兴华盛高级中学 夏如娥

湖州市高三历史复习研讨活动2013年10月31日~11月1 日在练市中学举行。本次教研活动的主要议题是围绕提高高三历史复习的有效性而展开的。

一、研究高考。

研究高考的阅卷。通过复习教学生更好掌握基础知识、提高能力,但这一切最终是要通过学生的文字表达来呈现的,就是我们通常所说的通过试卷来完成的,因此,高考怎么阅卷,怎样的文字表达能得到评卷老师的肯定,怎样的表述与参考答案符合,怎样的术语是题目所要求的,这就要求我们研究高考的阅卷:德清三中薛晓梅老师的《从阅卷看高考复习的目标要求》,介绍了2013年38题和39题的各小题的得分情况,尽管高考阅卷尺度很宽松,但学生得分仍然不高,学生基础知识很不扎实。薛晓梅老师最后提出了建议高考力图体现通,逐步实现了专题式命题向通史式命题转型;评价、评述、说明类试题出现,辨证思维习惯和多元评价能力培养;重视基本学习能力之养成;进行适应性强化训练;特别指出强化基础知识的重要性,特别强调默写和监督、抽背。最后强调高三教师提升专业素养,开拓自身的学术的视野。菱湖中学刘丽琴老师的《阅卷回来话高考》,对阅卷的流程、方法,得分的尺度、书写的要求进行了详细介绍,阅卷教师任务重,几乎六秒阅一份,特别强调书写清晰、抓关键词,做材料题目注意解题技巧,提出了三定法,定向词、定法词和定位词。答题要有章法,用术语。最后强调了回归教材,夯实基础;注重解题方法培养;培养学生历史素养。魏老师在总结特别强调学生记忆能力培养。德清一中高建峰老师的《我看浙江五年非选择题》的讲座,对浙江2009年实行新高考以来的主观题进行了深入的量化的分析和解读,从格式的稳定、内容的稳定以及设问的稳定三个方面作了细致的分析。最后提出建议:给学生布置的练习题要有选择性和针对性,题目材料要以三则为限,每则材料以百字左右为限,设问以三问为限,以文字材料为主。迎合高考需要,符合学生实际;其次,帮助学生形成知识网络,遵循历史发展的时序性;重视历史观教育;重视解题方法培养,提出了“倒读正做,逐句概括”方法。

二、落实基础知识和提升学科素养 历史基础知识的落实是取得高考好成绩的前提,对于这一点与会的每位成员都是特别强调的。认真落实读、记。读——精读教材。认真细致地阅读,不留死角。通过阅读,使全面、系统、准确、牢固地掌握历史基本理论。识记基础知识是历史基础知识落实的关键性问题之一,也是大家深感头痛的问题。学不好历史,一个重要原因就是记不住。长兴中学的陈宇老师和安吉高中郑守兵老师都提出了学案导学,通过学案强化基础知识。大家甚至形成共识,让学生默写就成了大家比较看好的虽低级但效果明显的方法之一。我在高三教学实践中意识到指导学生如何看书是一个很重要的问题。

强化主干知识。何谓历史学科的主干知识?即在历史现象中最能反映历史发展趋势和本质特征,集中反映人类文明演进的历史进程,总揽全局,纲举目张。主要包括有关重要的历史人物及其主要的作为和影响,重大的历史事实的发生、发展及其影响,优秀的文明成果及其主要作用等。

强化练习与讲评。本次研讨会上,大家一致以为适当的训练和精道的讲评也是历史高考复习的有效途径。本次活动中,参加阅卷回来的老师,对近几年高考有所研究分析的高建峰老师以及从事2013届高三教学的教师们,都在自己的发言中作为经验提到了强化训练的重要。但是我们应该如何正确把握训练的密度、深度和强度,如何做到讲评的针对性和时效性,恐怕还是值得探讨的一个重要话题。长兴中学陈宇老师强调提高试题质量,用心打磨试题,做到考点不重复、角度不重复、难度要有度、向高考靠拢。

三、提高历史课堂教学品质

我听了长兴华盛高级中学刘祖波老师《物质生活和社会习俗的变迁》和练市中学方玉兰老师《战后资本主义世界经济体系的形成》两节课,我深受启发,如何提高历史课堂教学品质是我们经常要思考的问题,我觉得应该有这几个策略:亲近历史策略;创设情境策略;解决问题策略;关注细节策略反思教学策略。提高历史课堂教学品质的关键就是引导学生学习历史的兴趣,使其热爱历史,在历史中升华自己,然后达到情感、态度、价值观的高度。

本次高三历史复习研讨活动内容充实丰富,安排紧凑,受益非浅,对提高高三历史教学有效性有很强的指导性。

第五篇:XX届高考数学复数知识导航复习教案

XX届高考数学复数知识导航复习教案

本资料为woRD文档,请点击下载地址下载全文下载地址第十五章 复 数高考导航考试要求重难点击命题展望

1.理解复数的基本概念、复数相等的充要条件.2.了解复数的代数表示法及其几何意义.3.会进行复数代数形式的四则运算.了解复数的代数形式的加、减运算及其运算的几何意义.4.了解从自然数系到复数系的关系及扩充的基本思想,体会理性思维在数系扩充中的作用.本章重点:1.复数的有关概念;2.复数代数形式的四则运算.本章难点:运用复数的有关概念解题.近几年高考对复数的考查无论是试题的难度,还是试题在试卷中所占比例都是呈下降趋势,常以选择题、填空题形式出现,多为容易题.在复习过程中,应将复数的概念及运算放在首位.知识网络15.1 复数的概念及其运算

典例精析

题型一 复数的概念【例1】如果复数是实数,则实数m=

;在复平面内,复数对应的点位于第 象限;复数z=3i+1的共轭复数为=

.【解析】=m2-m+i是实数⇒1+m3=0⇒m=-1.因为==1-i,所以在复平面内对应的点为,位于第四象限.因为z=1+3i,所以=1-3i.【点拨】运算此类题目需注意复数的代数形式z=a+bi,并注意复数分为实数、虚数、纯虚数,复数的几何意义,共轭复数等概念.【变式训练1】如果z=为纯虚数,则实数a等于A.0

B.-1

c.1

D.-1或1在复平面内,复数z=对应的点位于A.第一象限

B.第二象限

c.第三象限

D.第四象限【解析】设z=xi,x≠0,则xi=⇔1+ax-i=0⇔⇔或故选D.z===-1-i,该复数对应的点位于第三象限.故选c.题型二 复数的相等【例2】已知复数z0=3+2i,复数z满足z·z0=3z+z0,则复数z=

;已知=1-ni,其中m,n是实数,i是虚数单位,则m+ni=

;已知关于x的方程x2+x+2+ki=0有实根,则这个实根为

,实数k的值为

.【解析】设z=x+yi,又z0=3+2i,代入z·z0=3z+z0得=3+3+2i,整理得+i=0,则由复数相等的条件得解得所以z=1-.由已知得m==+i.则由复数相等的条件得所以m+ni=2+i.设x=x0是方程的实根,代入方程并整理得由复数相等的充要条件得解得或所以方程的实根为x=或x=-,相应的k值为k=-2或k=2.【点拨】复数相等须先化为z=a+bi的形式,再由相等得实部与实部相等、虚部与虚部相等.【变式训练2】设i是虚数单位,若=a+bi,则a+b的值是A.-

B.-2

c.2

D.若i=b+i,其中a,b∈R,i为虚数单位,则a+b=

.【解析】c.==,于是a+b=+=2.3.2+ai=b+i⇒a=1,b=2.题型三 复数的运算【例3】若复数z=-+i,则1+z+z2+z3+…+zXX=

;设复数z满足z+|z|=2+i,那么z=

.【解析】由已知得z2=--i,z3=1,z4=-+i=z.所以zn具有周期性,在一个周期内的和为0,且周期为3.所以1+z+z2+z3+…+zXX=1+z++…+=1+z=+i.设z=x+yi,则x+yi+=2+i,所以解得所以z=+i.【点拨】解时要注意x3=1⇔=0的三个根为1,ω,其中ω=-+i,=--i,则1+ω+ω2=0,1++2=0,ω3=1,3=1,ω·=1,ω2=,2=ω.解时要注意|z|∈R,所以须令z=x+yi.【变式训练3】复数+等于A.B.c.-

D.已知复数z=+XX,则复数z等于A.0

B.2

c.-2i

D.2i【解析】D.计算容易有+=.A.总结提高复数的代数运算是重点,是每年必考内容之一,复数代数形式的运算:①加减法按合并同类项法则进行;②乘法展开、除法须分母实数化.因此,一些复数问题只需设z=a+bi代入原式后,就可以将复数问题化归为实数问题来解决.第十六章 几何证明选讲高考导航考试要求重难点击命题展望

1.了解平行线截割定理.2.会证明并应用直角三角形射影定理.3.会证明并应用圆周角定理,圆的切线的判定定理及性质定理,并会运用它们进行计算与证明.4.会证明并应用相交弦定理、圆内接四边形的性质定理与判定定理、切割线定理,并会运用它们进行几何计算与证明.5.了解平行投影的含义,通过圆柱与平面的位置关系了解平行投影;会证明平面与圆柱面的截线是椭圆.6.了解下面的定理.定理:在空间中,取直线l为轴,直线l′与l相交于点o,其夹角为α,l′围绕l旋转得到以o为顶点,l′为母线的圆锥面,任取平面π,若它与轴l的交角为β,则:①β>α,平面π与圆锥的交线为椭圆;②β=α,平面π与圆锥的交线为抛物线;③β<α,平面π与圆锥的交线为双曲线.7.会利用丹迪林双球证明上述定理①的情形:当β>α时,平面π与圆锥的交线为椭圆.8.会证明以下结果:①在7.中,一个丹迪林球与圆锥面的交线为一个圆,并与圆锥的底面平行.记这个圆所在的平面为π′.②如果平面π与平面π′的交线为m,在6.①中椭圆上任取点A,该丹迪林球与平面π的切点为F,则点A到点F的距离与点A到直线m的距离比是小于1的常数e.9.了解定理6.③中的证明,了解当β无限接近α时,平面π的极限结果.本章重点:相似三角形的判定与性质,与圆有关的若干定理及其运用,并将其运用到立体几何中.本章难点:对平面截圆柱、圆锥所得的曲线为圆、椭圆、双曲线、抛物线的证明途径与方法,它是解立体几何、平面几何知识的综合运用,应较好地把握.本专题强调利用演绎推理证明结论,通过推理证明进一步发展学生的逻辑推理能力,进一步提高空间想象能力、几何直观能力和综合运用几何方法解决问题的能力.第一讲与第二讲是传统内容,高考中主要考查平行线截割定理、直角三角形射影定理以及与圆有关的性质和判定,考查逻辑推理能力.第三讲内容是新增内容,在新课程高考下,要求很低,只作了解.知识网络

6.1 相似三角形的判定及有关性质 典例精析题型一 相似三角形的判定与性质【例1】如图,已知在△ABc中,D是Bc边的中点,且AD=Ac,DE⊥Bc,DE与AB相交于点E,Ec与AD相交于点F.求证:△ABc∽△FcD;若S△FcD=5,Bc=10,求DE的长.【解析】因为DE⊥Bc,D是Bc的中点,所以EB=Ec,所以∠B=∠1.又因为AD=Ac,所以∠2=∠AcB.所以△ABc∽△FcD.过点A作Am⊥Bc,垂足为点m.因为△ABc∽△FcD,Bc=2cD,所以=2=4,又因为S△FcD=5,所以S△ABc=20.因为S△ABc=Bc·Am,Bc=10,所以20=×10×Am,所以Am=4.又因为DE∥Am,所以=,因为Dm=Dc=,Bm=BD+Dm,BD=Bc=5,所以=,所以DE=.【变式训练1】如右图,在△ABc中,AB=14cm,=,DE∥Bc,cD⊥AB,cD=12cm.求△ADE的面积和周长.【解析】由AB=14cm,cD=12cm,cD⊥AB,得S△ABc=84cm2.再由DE∥Bc可得△ABc∽△ADE.由=2可求得S△ADE=cm2.利用勾股定理求出Bc,Ac,再由相似三角形性质可得△ADE的周长为15cm.题型二 探求几何结论【例2】如图,在梯形ABcD中,点E,F分别在AB,cD上,EF∥AD,假设EF做上下平行移动.若=,求证:3EF=Bc+2AD;若=,试判断EF与Bc,AD之间的关系,并说明理由;请你探究一般结论,即若=,那么你可以得到什么结论?【解析】过点A作AH∥cD分别交EF,Bc于点G、H.因为=,所以=,又EG∥BH,所以==,即3EG=BH,又EG+GF=EG+AD=EF,从而EF=+AD,所以EF=Bc+AD,即3EF=Bc+2AD.EF与Bc,AD的关系式为5EF=2Bc+3AD,理由和类似.因为=,所以=,又EG∥BH,所以=,即EG=BH.EF=EG+GF=EG+AD=+AD,所以EF=Bc+AD,即EF=mBc+nAD.【点拨】在相似三角形中,平行辅助线是常作的辅助线之一;探求几何结论可按特殊到一般的思路去获取,但结论证明应从特殊情况得到启迪.【变式训练2】如右图,正方形ABcD的边长为1,P是cD边上中点,点Q在线段Bc上,设BQ=k,是否存在这样的实数k,使得以Q,c,P为顶点的三角形与△ADP相似?若存在,求出k的值;若不存在,请说明理由.【解析】设存在满足条件的实数k,则在正方形ABcD中,∠D=∠c=90°,由Rt△ADP∽Rt△QcP或Rt△ADP∽Rt△PcQ得=或=,由此解得cQ=1或cQ=.从而k=0或k=.题型三 解决线的位置或数量关系【例3】如图,在四边形ABcD中,△ABc△BAD,求证:AB∥cD.【证明】由△ABc≌△BAD得∠AcB=∠BDA,所以A、B、c、D四点共圆,所以∠cAB=∠cDB.再由△ABc≌△BAD得∠cAB=∠DBA,所以∠DBA=∠cDB,即AB∥cD.【变式训练3】如图,AA1与BB1相交于点o,AB∥A1B1且AB=A1B1,△AoB的外接圆的直径为1,则△A1oB1的外接圆的直径为

.【解析】因为AB∥A1B1且AB=A1B1,所以△AoB∽△A1oB1因为两三角形外接圆的直径之比等于相似比.所以△A1oB1的外接圆直径为2.总结提高1.相似三角形的判定与性质这一内容是平面几何知识的重要组成部分,是解题的工具,同时它的内容渗透了等价转化、从一般到特殊、分类讨论等重要的数学思想与方法,在学习时应以它们为指导.相似三角形的证法有:定义法、平行法、判定定理法以及直角三角形的HL法.相似三角形的性质主要有对应线的比值相等,对应角相等,面积的比等于相似比的平方.2.“平行出相似”“平行成比例”,故此章中平行辅助线是常作的辅助线之一,遇到困难时应常考虑此类辅助线.16.2 直线与圆的位置关系和圆锥曲线的性质典例精析题型一 切线的判定和性质的运用【例1】如图,AB是⊙o的直径,Ac是弦,∠BAc的平分线AD交⊙o于点D,DE⊥Ac,交Ac的延长线于点E,oE交AD于点F.求证:DE是⊙o的切线;若=,求的值.【解析】证明:连接oD,可得∠oDA=∠oAD=∠DAc,所以oD∥AE,又AE⊥DE,所以DE⊥oD,又oD为半径,所以DE是⊙o的切线.过D作DH⊥AB于H,则有∠DoH=∠cAB,=cos∠DoH=cos∠cAB==,设oD=5x,则AB=10x,oH=2x,所以AH=7x.由△AED≌△AHD可得AE=AH=7x,又由△AEF∽△DoF可得AF∶DF=AE∶oD=,所以=.【变式训练1】已知在直角三角形ABc中,∠AcB=90°,以Bc为直径的⊙o交AB于点D,连接Do并延长交Ac的延长线于点E,⊙o的切线DF交Ac于点F.求证:AF=cF;若ED=4,sin∠E=,求cE的长.【解析】方法一:设线段FD延长线上一点G,则∠GDB=∠ADF,且∠GDB+∠BDo=,所以∠ADF+∠BDo=,又因为在⊙o中oD=oB,∠BDo=∠oBD,所以∠ADF+∠oBD=.在Rt△ABc中,∠A+∠cBA=,所以∠A=∠ADF,所以AF=FD.又在Rt△ABc中,直角边Bc为⊙o的直径,所以Ac为⊙o的切线,又FD为⊙o的切线,所以FD=cF.所以AF=cF.方法二:在直角三角形ABc中,直角边Bc为⊙o的直径,所以Ac为⊙o的切线,又FD为⊙o的切线,所以FD=cF,且∠FDc=∠FcD.又由Bc为⊙o的直径可知,∠ADF+∠FDc=,∠A+∠FcD=,所以∠ADF=∠A,所以FD=AF.所以AF=cF.因为在直角三角形FED中,ED=4,sin∠E=,所以cos∠E=,所以FE=5.又FD=3=Fc,所以cE=2.题型二 圆中有关定理的综合应用【例2】如图所示,已知⊙o1与⊙o2相交于A、B两点,过点A作⊙o1的切线交⊙o2于点c,过点B作两圆的割线,分别交⊙o1、⊙o2于点D、E,DE与Ac相交于点P.求证:AD∥Ec;若AD是⊙o2的切线,且PA=6,Pc=2,BD=9,求AD的长.【解析】连接AB,因为Ac是⊙o1的切线,所以∠BAc=∠D,又因为∠BAc=∠E,所以∠D=∠E,所以AD∥Ec.方法一:因为PA是⊙o1的切线,PD是⊙o1的割线,所以PA2=PB·PD,所以62=PB·,所以PB=3.在⊙o2中,由相交弦定理得PA·Pc=BP·PE,所以PE=4.因为AD是⊙o2的切线,DE是⊙o2的割线,所以AD2=DB·DE=9×16,所以AD=12.方法二:设BP=x,PE=y.因为PA=6,Pc=2,所以由相交弦定理得PA·Pc=BP·PE,即xy=12.①因为AD∥Ec,所以=,所以=.②由①②可得或,所以DE=9+x+y=16.因为AD是⊙o2的切线,DE是⊙o2的割线,所以AD2=DB·DE=9×16,所以AD=12.【变式训练2】如图,⊙o的直径AB的延长线与弦cD的延长线相交于点P,E为⊙o上一点,DE交AB于点F,且AB=2BP=4.求PF的长度;若圆F与圆o内切,直线PT与圆F切于点T,求线段PT的长度.【解析】连接oc,oD,oE,由同弧对应的圆周角与圆心角之间的关系,结合题中已知条件可得∠cDE=∠Aoc.又∠cDE=∠P+∠PFD,∠Aoc=∠P+∠ocP,从而∠PFD=∠ocP,故△PFD∽△Pco,所以=.由割线定理知Pc·PD=PA·PB=12,故PF===3.若圆F与圆o内切,设圆F的半径为r,因为oF=2-r=1,即r=1,所以oB是圆F的直径,且过点P的圆F的切线为PT,则PT2=PB·Po=2×4=8,即PT=2.题型三 四点共圆问题【例3】如图,圆o与圆P相交于A、B两点,圆心P在圆o上,圆o的弦Bc切圆P于点B,cP及其延长线交圆P于D,E两点,过点E作EF⊥cE,交cB的延长线于点F.求证:B、P、E、F四点共圆;若cD=2,cB=2,求出由B、P、E、F四点所确定的圆的直径.【解析】证明:连接PB.因为Bc切圆P于点B,所以PB⊥Bc.又因为EF⊥cE,所以∠PBF+∠PEF=180°,所以∠EPB+∠EFB=180°,所以B,P,E,F四点共圆.因为B,P,E,F四点共圆,且EF⊥cE,PB⊥Bc,所以此圆的直径就是PF.因为Bc切圆P于点B,且cD=2,cB=2,所以由切割线定理cB2=cD·cE,得cE=4,DE=2,BP=1.又因为Rt△cBP∽Rt△cEF,所以EF∶PB=cE∶cB,得EF=.在Rt△FEP中,PF==,即由B,P,E,F四点确定的圆的直径为.【变式训练3】如图,△ABc是直角三角形,∠ABc=90°.以AB为直径的圆o交Ac于点E,点D是Bc边的中点.连接oD交圆o于点m.求证:o,B,D,E四点共圆;2DE2=Dm·Ac+Dm·AB.【证明】连接BE,则BE⊥Ec.又D是Bc的中点,所以DE=BD.又oE=oB,oD=oD,所以△oDE≌△oDB,所以∠oBD=∠oED=90°,所以D,E,o,B四点共圆.延长Do交圆o于点H.因为DE2=Dm·DH=Dm·=Dm·Do+Dm·oH=Dm·+Dm·,所以2DE2=Dm·Ac+Dm·AB.总结提高1.直线与圆的位置关系是一种重要的几何关系.本章在初中平面几何的基础上加以深化,使平面几何知识趋于完善,同时为解析几何、立体几何提供了多个理论依据.2.圆中的角如圆周角、圆心角、弦切角及其性质为证明相关的比例线段提供了理论基础,为解决综合问题提供了方便,使学生对几何概念和几何方法有较透彻的理解.第十七章 坐标系与参数方程高考导航 考试要求重难点击命题展望

一、坐标系1.了解在平面直角坐标系中刻画点的位置的方法,理解坐标系的作用.2.了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.3.能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.4.能在极坐标系中给出简单图形的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,体会在用方程刻画平面图形时选择适当坐标系的意义.5.了解在柱坐标系、球坐标系中刻画空间点的位置的方法,并与空间直角坐标系中刻画点的位置的方法相比较,体会它们的区别.二、参数方程1.了解参数方程,了解参数的意义.2.分析直线、圆和圆锥曲线的几何性质,选择适当的参数写出它们的参数方程.3.了解平摆线和渐开线的生成过程,并能写出它们的参数方程.4.了解其他摆线的生成过程;了解摆线在实际中应用的实例;了解摆线在刻画行星运动轨道中的作用.本章重点:1.根据问题的几何特征选择坐标系;坐标法思想;平面直角坐标系中的伸缩变换;极坐标系;直线和圆的极坐标方程.2.根据问题的条件引进适当的参数,写出参数方程,体会参数的意义;分析直线、圆和圆锥曲线的几何性质,选择适当的参数写出它们的参数方程.本章难点:1.对伸缩变换中点的对应关系的理解;极坐标的不唯一性;曲线的极坐标方程.2.根据几何性质选取恰当的参数,建立曲线的参数方程.坐标系是解析几何的基础,为便于用代数的方法研究几何图形,常需建立不同的坐标系,以便使建立的方程更加简单,参数方程是曲线在同一坐标系下不同于普通方程的又一种表现形式.某些曲线用参数方程表示比用普通方程表示更加方便.本专题要求通过坐标系与参数方程知识的学习,使学生更全面地理解坐标法思想;能根据曲线的特点,选取适当的曲线方程表示形式,体会解决问题中数学方法的灵活性.高考中,参数方程和极坐标是本专题的重点考查内容.对于柱坐标系、球坐标系,只要求了解即可.知识网络17.1 坐标系典例精析题型一 极坐标的有关概念【例1】已知△ABc的三个顶点的极坐标分别为A,B,c,试判断△ABc的形状,并求出它的面积.【解析】在极坐标系中,设极点为o,由已知得∠AoB=,∠Boc=,∠Aoc=.又|oA|=|oB|=5,|oc|=4,由余弦定理得|Ac|2=|oA|2+|oc|2-2|oA|·|oc|·cos∠Aoc=52+2-2×5×4·cos=133,所以|Ac|=.同理,|Bc|=.所以|Ac|=|Bc|,所以△ABc为等腰三角形.又|AB|=|oA|=|oB|=5,所以AB边上的高h==,所以S△ABc=××5=.【点拨】判断△ABc的形状,就需要计算三角形的边长或角,在本题中计算边长较为容易,所以先计算边长.【变式训练1】点A在条件:①ρ>0,θ∈下极坐标为

,②ρ<0,θ∈下极坐标为

;点P与曲线c:ρ=cos的位置关系是

.【解析】;.点P在曲线c上.题型二 直角坐标与极坐标的互化【例2】⊙o1和⊙o2的极坐标方程分别为ρ=4cosθ,ρ=-4sinθ.把⊙o1和⊙o2的极坐标方程化为直角坐标方程;求经过⊙o1和⊙o2交点的直线的直角坐标方程.【解析】以极点为原点,极轴为x轴正半轴,建立直角坐标系,且两坐标系取相同单位长.因为x=ρcosθ,y=ρsinθ,由ρ=4cosθ,得ρ2=4ρcosθ,所以x2+y2=4x,即x2+y2-4x=0为⊙o1的直角坐标方程.同理,x2+y2+4y=0为⊙o2的直角坐标方程.由解得或即⊙o1,⊙o2的交点为和两点,故过交点的直线的直角坐标方程为x+y=0.【点拨】互化的前提条件:原点对应着极点,x轴正向对应着极轴.将互化公式代入,整理可以得到.【变式训练2】在极坐标系中,设圆ρ=3上的点到直线ρ=2的距离为d,求d的最大值.【解析】将极坐标方程ρ=3化为普通方程x2+y2=9,ρ=2可化为x+y=2.在x2+y2=9上任取一点A,则点A到直线的距离为d==,它的最大值为4.题型三 极坐标的应用【例3】过原点的一动直线交圆x2+2=1于点Q,在直线oQ上取一点P,使P到直线y=2的距离等于|PQ|,用极坐标法求动直线绕原点一周时点P的轨迹方程.【解析】以o为极点,ox为极轴,建立极坐标系,如右图所示,过P作PR垂直于直线y=2,则有|PQ|=|PR|.设P,Q,则有ρ0=2sinθ.因为|PR|=|PQ|,所以|2-ρsinθ|=|ρ-2sinθ|,所以ρ=±2或sinθ=±1,即为点P的轨迹的极坐标方程,化为直角坐标方程为x2+y2=4或x=0.【点拨】用极坐标法可使几何中的一些问题得到很直接、简单的解法,但在解题时关键是极坐标要选取适当,这样可以简化运算过程,转化为直角坐标时也容易一些.【变式训练3】如图,点A在直线x=5上移动,等腰△oPA的顶角∠oPA为120°,求点P的轨迹方程.【解析】取o为极点,x正半轴为极轴,建立极坐标系,则直线x=5的极坐标方程为ρcosθ=5.设A,P,因为点A在直线ρcosθ=5上,所以ρ0cosθ0=5.①因为△oPA为等腰三角形,且∠oPA=120°,而|oP|=ρ,|oA|=ρ0以及∠PoA=30°,所以ρ0=ρ,且θ0=θ-30°.②把②代入①,得点P的轨迹的极坐标方程为ρcos=5.题型四平面直角坐标系中坐标的伸缩变换【例4】定义变换T:可把平面直角坐标系上的点P变换成点P′.特别地,若曲线m上一点P经变换公式T变换后得到的点P′与点P重合,则称点P是曲线m在变换T下的不动点.若椭圆c的中心为坐标原点,焦点在x轴上,且焦距为2,长轴顶点和短轴顶点间的距离为2.求椭圆c的标准方程,并求出当tanθ=时,其两个焦点F1、F2经变换公式T变换后得到的点F1′和F2′的坐标;当tanθ=时,求中的椭圆c在变换T下的所有不动点的坐标.【解析】设椭圆c的标准方程为+=1,由椭圆定义知焦距2c=2⇒c=,即a2-b2=2.①又由已知得a2+b2=4,②故由①、②可解得a2=3,b2=1.即椭圆c的标准方程为+y2=1,且椭圆c两个焦点的坐标分别为F1和F2.对于变换T:当tanθ=时,可得设F1′和F2′分别是由F1和F2的坐标经变换公式T变换得到.于是即F1′的坐标为;又即F2′的坐标为.设P是椭圆c在变换T下的不动点,则当tanθ=时,有⇒x=3y,由点P∈c,即P∈c,得+y2=1⇒因而椭圆c的不动点共有两个,分别为和.【变式训练4】在直角坐标系中,直线x-2y=2经过伸缩变换

后变成直线2x′-y′=4.【解析】总结提高1.平面内一个点的极坐标有无数种表示方法.如果规定ρ>0,0≤θ<2π,那么除极点外,平面内的点可用唯一的极坐标表示;反之也成立.2.熟练掌握几种常用的极坐标方程,特别是直线和圆的极坐标方程.17.2 参数方程典例精析题型一 参数方程与普通方程互化【例1】把下列参数方程化成普通方程:

.【解析】所以5x2+4xy+17y2-81=0.由题意可得所以①2-②2得-=4,所以-=1,其中x>0.【变式训练1】把下列参数方程化为普通方程,并指出曲线所表示的图形.【解析】x2=2,-≤x≤,图形为一段抛物线弧.x=1,y≤-2或y≥2,图形为两条射线.x2+y2-3y=0,图形是一个圆,但是除去点.-=1,图形是双曲线.题型二 根据直线的参数方程求弦长【例2】已知直线l的参数方程为,曲线c的极坐标方程为ρ2cos2θ=1.求曲线c的普通方程;求直线l被曲线c截得的弦长.【解析】由曲线c:ρ2cos2θ=ρ2=1,化成普通方程为x2-y2=1.①方法一:把直线参数方程化为标准参数方程.②把②代入①得2-2=1,整理得t2-4t-6=0.设其两根为t1,t2,则t1+t2=4,t1t2=-6.从而弦长为|t1-t2|====2.方法二:把直线的参数方程化为普通方程为y=,代入x2-y2=1,得2x2-12x+13=0.设l与c交于A,B,则x1+x2=6,x1x2=,所以|AB|=·=2=2.【变式训练2】在直角坐标系xoy中,直线l的参数方程为,若以o为极点,x轴正半轴为极轴建立极坐标系,则曲线c的极坐标方程为ρ=cos,求直线l被曲线c所截的弦长.【解析】将方程化为普通方程为3x+4y+1=0.将方程ρ=cos化为普通方程为x2+y2-x+y=0.表示圆心为,半径为r=的圆,则圆心到直线的距离d=,弦长=2=2=.题型三 参数方程综合运用【例3】已知曲线c1:

,c2:

.化c1,c2的方程为普通方程,并说明它们分别表示什么曲线;若c1上的点P对应的参数为t=,Q为c2上的动点,求PQ中点m到直线c3:距离的最小值.【解析】c1:2+2=1,c2:+=1.c1是以为圆心,1为半径的圆;c2是以坐标原点为中心,焦点在x轴,长半轴长是8,短半轴长是3的椭圆.当t=时,P,Q,故m.c3为直线x-2y-7=0,m到c3的距离d=|4cosθ-3sinθ-13|,从而cosθ=,sinθ=-时,d取最小值.【变式训练3】在平面直角坐标系xoy中,曲线c1的参数方程为,以坐标原点o为极点,x轴的正半轴为极轴建立极坐标系,得曲线c2的极坐标方程为ρ=2cosθ-4sinθ.化曲线c1、c2的方程为普通方程,并说明它们分别表示什么曲线;设曲线c1与x轴的一个交点的坐标为P,经过点P作曲线c2的切线l,求切线l的方程.【解析】曲线c1:+=1;曲线c2:2+2=5.曲线c1为中心是坐标原点,焦点在x轴上,长半轴长是4,短半轴长是2的椭圆;曲线c2为圆心为,半径为的圆.曲线c1:+=1与x轴的交点坐标为和,因为m>0,所以点P的坐标为.显然切线l的斜率存在,设为k,则切线l的方程为y=k.由曲线c2为圆心为,半径为的圆得=,解得k=,所以切线l的方程为y=.总结提高1.在参数方程与普通方程互化的过程中,要保持化简过程的同解变形,避免改变变量x,y的取值范围而造成错误.2.消除参数的常用方法有:①代入消参法;②三角消参法;③根据参数方程的特征,采用特殊的消参手段.3.参数的方法在求曲线的方程等方面有着广泛的应用,要注意合理选参、巧妙消参.

下载高考数学复习迎战手册:夯实基础 建构知识网络(写写帮推荐)word格式文档
下载高考数学复习迎战手册:夯实基础 建构知识网络(写写帮推荐).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐