高考数学:近年高考题型分布与答题策略【冲刺版】

时间:2019-05-15 13:46:21下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高考数学:近年高考题型分布与答题策略【冲刺版】》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高考数学:近年高考题型分布与答题策略【冲刺版】》。

第一篇:高考数学:近年高考题型分布与答题策略【冲刺版】

一、考试命题的四个基本点

1.在基础中,考能力,这主要体现在选择题和填空题。

2.在综合中,考能力,主要体现在后三道大题。3.在应用中,考能力,在选择填空中,会出现一、二道大众数学的题目,在大题中有一道应用题。

4.在新型题中,考能力。这“四考能力”,围绕的中心就是考查数学思想方法。

二、考试命题的题型特点1.选择题

(1)概念性强:数学中的每个术语、符号,乃至习惯用语,往往都有明确具体的含义,这个特点反映到选择题中,表现出来的就是试题的概念性强。试题的陈述和信息的传递,都是以数学的学科规定与习惯为依据,绝不标新立异。

(2)量化突出:数量关系的研究是数学的一个重要的组成部分,也是数学考试中一项主要的内容。在高考的数学选择题中,定量型的试题所占的比重很大。而且,许多从形式上看为计算定量型选择题,其实不是简单或机械的计算问题,其中往往蕴涵了对概念、原理、性质和法则的考查,把这种考查与定量计算紧密地结合在一起,形成了量化突出的试题特点。

(3)充满思辨性:这个特点源于数学的高度抽象性、系统性和逻辑性。作为数学选择题,尤其是用于选择性考试的高考数学试题,只凭简单计算或直观感知便能正确作答的试题不多,几乎可以说并不存在。绝大多数的选择题,为了正确作答,或多或少总是要求考生具备一定的观察、分析和逻辑推断能力,思辨性的要求充满题目的字里行间。

(4)形数兼备:数学的研究对象不仅是数,还有图形,而且对数和图形的讨论与研究,不是孤立开来分割进行,而是有分有合,将它辨证统一起来。这个特色在高中数学中已经得到充分的显露。因此,在高考的数学选择题中,便反映出形数兼备这一特点,其表现是:几何选择题中常常隐藏着代数问题,而代数选择题中往往又寓有几何图形的问题。因此,数形结合与形数分离的解题方法是高考数学选择题的一种重要且有效的思想方法与解题方法。

(5)解法多样化:与其他学科比较,“一题多解”的现象在数学中表现突出。尤其是数学选择题,由于它有备选项,给试题的解答提供了丰富的有用信息,有相当大的提示性,为解题活动展现了广阔的天地,大大地增加了解答的途径和方法。常常潜藏着极其巧妙的解法,有利于对考生思维深度的考查。

2.填空题

填空题和选择题同属客观性试题,它们有许多共同特点:其形态短小精悍,考查目标集中,答案简短、明确、具体,不必填写解答过程,评分客观、公正、准确等等。不过填空题和选择题也有质的区别。首先,表现为填空题没有备选项,因此,解答时既有不受诱误的干扰之好处,又有缺乏提示的帮助之不足,对考生独立思考和求解,在能力要求上会高一些,长期以来,填空题的答对率一直低于选择题的答对率,也许这就是一个重要的原因。其次,填空题的结构,往往是在一个正确的命题或断言中,抽去其中的一些内容(既可以是条件,也可以是结论),留下空位,让考生独立填上,考查方法比较灵活。在对题目的阅读理解上,较之选择题,有时会显得较为费劲。当然并非常常如此,这将取决于命题者对试题的设计意图。填空题的考点少,目标集中,否则,试题的区分度差,其考试信度和效度都难以得到

保证。这是因为:填空题要是考点多,解答过程长,影响结论的因素多,那么对于答错的考生便难以知道其出错的真正原因。有的可能是一窍不通,入手就错了,有的可能只是到了最后一步才出错,但他们在答卷上表现出来的情况一样,得相同的成绩,尽管它们的水平存在很大的差异。

3.解答题

解答题与填空题比较,同属提供型的试题,但也有本质的区别。首先,解答题应答时,考生不仅要提供出最后的结论,还得写出或说出解答过程的主要步骤,提供合理、合法的说明;填空题则无此要求,只要求填写结果,省略过程,而且所填结果应力求简练、概括和准确。其次,试题内涵,解答题比起填空题要丰富得多。解答题的考点相对较多,综合性强,难度较高。解答题成绩的评定不仅看最后的结论,还要看其推演和论证过程,分情况评定分数,用以反映其差别,因而解答题命题的自由度,较之填空题大得多。

四、如何突破120分

由于,基础题中,考查学生的能力,所以要注重解题的速度和方法,能在30分钟左右,完成全部的选择填空题,这是夺取高分的关键。第二段是解答题的前三题,分值不到40分。这样前两个阶段的总分在110分左右。第三段是最后“三难”题,分值不到40分。“三难”题并不全难,难点的分值只有12分到18分,平均每道题只有4分到6分。首先,应在“三难”题中夺得12分到20分,剩下最难的步骤分在努力争取。这是根据试卷的深层结构做出的最佳解题策略。所以,只做选择,填空和前三道大题是不够全面的,因为,后“三难”题中的容易部分比前面的基础部分还要容易,所以我们应该志在必得。在复习的时候,根据自己的情况,如果基础较好那首先争取选择,填空前三道大题得满分。然后,再提高解答“三难”题的能力,争取“三难”题得分20分到30分,这样,你的总分就可以超过130分,向145分冲刺。

五、理想的得分计划

最后,数学老师建议,在平时练习时,要求自己做选择填空题时,时间要控制在一分钟一道题,要学会巧算和巧解。选择填空题和前3道解答题都是数学基础分,后3道题不是只做第一问的问题,而应该猜想评分标准,按步骤由前向后争取高分,要用“猪八戒拱地”的精神对付难题,由前边向后边拱,往往能先拱到4分,再往前拱能拱到8分一直到10分,最后剩下2分、4分得不到就算了,因为后边属于难点的分值,需要天才才能做得满分。

心儿、

第二篇:高考数学答题策略与技巧

虽然高考已经进入倒计时,但只要按部就班不慌不乱地进行知识梳理,就可以沉稳地迎接高考的到来。下面给大家分享一些关于高考数学答题策略与技巧,希望对大家有所帮助。

一、历年高考数学试卷的启发

1.试卷上有参考公式,80%是有用的,它为你的解题指引了方向;

2.解答题的各小问之间有一种阶梯关系,通常后面的问要使用前问的结论。如果前问是证明,即使不会证明结论,该结论在后问中也可以使用。当然,我们也要考虑结论的独立性;

3.注意题目中的小括号括起来的部分,那往往是解题的关键;

二、答题策略选择

1.先易后难是所有科目应该遵循的原则,而数学卷上显得更为重要。一般来说,选择题的后两题,填空题的后一题,解答题的后两题是难题。当然,对于不同的学生来说,有的简单题目也可能是自己的难题,所以题目的难易只能由自己确定。一般来说,小题思考1分钟还没有建立解答方案,则应采取“暂时性放弃”,把自己可做的题目做完再回头解答;

2.选择题有其独特的解答方法,首先重点把握选择支也是已知条件,利用选择支之间的关系可能使你的答案更准确。切记不要“小题大做”。注意解答题按步骤给分,根据题目的已知条件与问题的联系写出可能用到的公式、方法、或是判断。虽然不能完全解答,但是也要把自己的想法与做法写到答卷上。多写不会扣分,写了就可能得分。

三、答题思想方法

1.函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。

2.如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;

3.面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是……;

4.选择与填空中出现不等式的题目,优选特殊值法;

5.求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;

6.恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;

7.圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;

8.求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);

9.求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;

10.三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;

11.数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;

12.立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;

13.导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;

14.概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;

15.三选二的三题中,极坐标与参数方程注意转化的方法,不等式题目注意柯西与绝对值的几何意义,平面几何重视与圆有关的知积,必要时可以测量;

16.遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;

17.注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;

18.绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;

19.与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;

20.关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。

四.每分必争

1.答题时间共120分,而你要答分数为150分的考卷,算一算就知道,每分钟应该解答1分多的题目,所以每1分钟的时间都是重要的。试卷发到手中首先完成必要的检查(是否有印刷不清楚的地方)与填涂。之后剩下的时间就马上看试卷中可能使用到的公式,做到心中有数。用心算简单的题目,必要时动一动笔也不是不行(你是写名字或是写一个字母没有人去区分)。

2.在分数上也是每分必争。你得到89分与得到90分,虽然只差1分,但是有本质的不同,一个是不合格一个是合格。高考中,你得556分与得557分,虽然只差1分,但是它决定你是否可以上重本线,关系到你的一生。所以,在答卷的时候要精益求精。对选择题的每一个选择支进行评估,看与你选的相似的那个是不是更准确?填空题的范围书写是不是集合形式,是不是少或多了一个端点?是不是有一个解应该舍去而没舍?解答题的步骤是不是按照公式、代数、结果的格式完成的,应用题是不是设、列、画(线性归化)、解、答?根据已知条件你还能联想到什么?把它写在考卷上,也许它就是你需要的关键的1分,为什么不去做呢?

3.答题的时间紧张是所有同学的感觉,想让它变成宽松的方法只有一个,那就是学会放弃,准确的判断把该放弃的放弃,就为你多得1分提供了前提。

4.冷静一下,表面是耽误了时间,其实是为自己赢得了机会,可能创造出奇迹。在头脑混乱的时候,不防停下来,喝口水,深吸一口气,再慢慢呼出,就在呼出的同时,你就会得到灵感。

5.题目分析受挫,很可能是一个重要的已知条件被你忽略,所以重新读题,仔细读题才能有所发现,不能停留在某一固定的思维层面不变。联想你做过的类似的题目的解题方法,把不熟悉的转化为你熟悉的也许就是成功。

6.高考只是人生的重要考试之一,其实人生是由每一分钟组成的。把握好人生的每一分钟才能真正把握人生。高考就是广州三模罢了,其实真正的高考是在你生活的每1分钟里。

第三篇:高考数学高分答题策略

根据高考数学的特点,怎样来参加考试及在考试过程中如何正常发挥水平乃至高水平发挥,这除了基本功面外,更重要的一点是考试的“技艺战术”问题,即考试的策略问题。那么接下来给大家分享一些关于高考数学高分答题策略,希望对大家有所帮助。

高考数学高分答题策略

(1)注意审题。把题目多读几遍,弄清这个题目求什么,已知什么,求、知之间有什么关系,把题目搞清楚了再动手答题。

(2)答题顺序不一定按题号进行。可先从自己熟悉的题目答起,从有把握的题目入手,使自己尽快进入到解题状态,产生解题的激情和欲望,再解答陌生或不太熟悉的题目。若有时间,再去拼那些把握不大或无从下手的题。这样也许能超水平发挥。

(3)数学选择题大约有70%的题目都是直接法,要注意对符号、概念、公式、定理及性质等的理解和使用,例如函数的性质、数列的性质就是常见题目。

(4)挖掘隐含条件,注意易错易混点,例如集合中的空集、函数的定义域、应用性问题的限制条件等。

(5)方法多样,不择手段。高考试题凸现能力,小题要小做,注意巧解,善于使用数形结合、特值(含特殊值、特殊位置、特殊图形)、排除、验证、转化、分析、估算、极限等方法,一旦思路清晰,就迅速作答。不要在一两个小题上纠缠,杜绝小题大做,如果确实没有思路,也要坚定信心,“题可以不会,但是要做对”,即使是“蒙”也有25%的胜率。

(6)灵活机动,由于高考题量大,且实行“分段评分”,所以考生必须作心理换位,从平时做作业的“全做全对”要求,转到立足于完成部份题目的部份上来,并积极争取“分段得分”。即合理应用数学解题策略,使所掌握的知识能充分表示出来,并转化为得分点,比如:分解分步的解题策略;引理或中途点的解题策略;以退求进的解题策略;正难则反的解策略;从特殊到一般的解题策略等解题技术,使得进可以全题解决,退可以分段得分。

如何学高中数学

高中数学的学习上最重要的就是培养自身的数学思维能力,在数学题的解题过程中要善于进行思考,对于解题方法上要不断地摸索,找出最适合自己的数学解题方法。遇到比较困难的数学题上我们可以自己先进行独立思考一段时间不要先急着向老师询问,自己看看能不能理解一些。实在觉得费劲脑汁也不能够解答的问题再向老师提问。

我们在学习数学的过程中,需要提高自信心,在做数学题之前不要总想着自己数学基础差做不出这道数学题,要想着自己可以解答出来这道数学题的正确答案,给予自己正确的心理暗示,让自己在数学解题过程具有一定的自信心,这样才能够提高自己在数学学习上的兴趣。

高中数学离不开大量的习题训练,我们必须要通过大量的数学习题提高自己,在做数学题中整理好解答数学题的相关思路,一旦我们做数学题的数量上多了,很多数学解题技巧上我们也可以摸索出来,这对于数学成绩的提升上的也是很有优势的,通过做数学题,我们可以及时看到自己的容易犯的解题错误有哪些,再进行数学成绩上的提升。

牢牢掌握住数学基础概念,对于高中数学上的基础概念上不需要你想背诵一些文科知识点那样完全背诵下来,但是你看到这个数学知识点出题时,你是需要知道他具体的意思什么的,这对于你在答题上也是非常重要的。

高中数学开窍的方法有哪些

第一,你要掌握各种应试技巧,其实高考数学题型每年就考那几种,只要你掌握了这几类题的应试技巧,基本很难不涨分的。

第二,总结高考常见题型。在网上把你们省份近5年的高考真题下载下来,然后仔细深刻的研究。举个例子,线性规划问题,基本年年都考,这类题有没有一些特殊方法呢,能够快速解题呢,当然是有的。这就需要你去研究去总结了。我们当地市重点火箭班的一个高三小孩,17分钟答完所有选择填空,而且正确率百分之百,你觉得他是正常做出来的吗?你觉得他没有什么技巧吗?

第三,吃好睡好。每晚睡觉不要超过12点,不要相信高中数学能凭一股蛮力就能学好,那是初中数学。既然如此,莫不如早点休息睡好觉,然后第二天精精神神的学习。吃饭一定要吃好,这个不解释,我们啥时候都要吃好,因为民以食为天。

第四篇:高考数学知识点与题型归纳

河南省高中数学知识点总结

1.对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。

如 :集合Ax|ylgx,By|ylgx,C(x,y)|ylgx,A、B、C中元素各表示什么?

.进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。

注重借助于数轴和文氏图解集合问题。

空集是一切集合的子集,是一切非空集合的真子集。

如 :集合Ax|x2x30,Bx|ax1213

若BAa,则实数的值构成的集合为

(答:1,0,)

3.注意下列性质:

(1)集合a,a,„„,a的所有子集的个数是2;12nn2)若ABABA,ABB;

(3)德摩根定律:

CABCACB,CABCACBUUUUUU

4.你会用补集思想解决问题吗?(排除法、间接法)

如 :已知关于x的不等式0的解集为M,若3M且5M,求实数a2的取值范围。

ax5xaa·35(∵3M,∴203a

a·55∵5M,∴205a5a1,9,25)3.可以判断真假的语句叫做命题,逻辑连接词有“或”(),“且”()和“非”().pq为真,当且仅当p、q均为真

若pq为真,当且仅当p、q至少有一个为真

p为真,当且仅当p为假

6.命题的四种形式及其相互关系是什么?

(互为逆否关系的命题是等价命题。)

原命题与逆否命题同真、同假;逆命题与否命题同真同假。

7.对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?

(一对一,多对一,允许B中有元素无原象。)

8.函数的三要素是什么?如何比较两个函数是否相同?

(定义域、对应法则、值域)

9.求函数的定义域有哪些常见类型?

例:函数yx4x的定义域是2lgx3

(答:0,22,33,4)

10.如何求复合函数的定义域? 

如 :函数f(x)的定义域是a,b,ba0,则函数F(x)f(x)f(x)的定义域是_____________。

(答:a,a)

11.求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?

如:fx1exx,求f(x).tx1,则t0

xt

1∴

∴ ft()et12t122f(xe)x1x0

∴ 2x1

212.反函数存在的条件是什么?

(一一对应函数)

求反函数的步骤掌握了吗?

(①反解x;②互换x、y;③注明定义域)

1xx0:求函数f(x)的反函数

如 2xx0x1x1答:f()x)

(xx0

113.反函数的性质有哪些?

①互为反函数的图象关于直线y=x对称;

②保存了原来函数的单调性、奇函数性;

③设yf(x)的定义域为A,值域为C,aA,bC,则f(a)=bf(b)a

 ff(a)f(b)a,ff(b)(fa)b1111

14.如何用定义证明函数的单调性?

(取值、作差、判正负)

如何判断复合函数的单调性?

(yf(u),u(x),则yf(x)(外层)(内层)

当 内、外层函数单调性相同时f(x)为增函数,否则f(x)为减函数。):求ylogx2x的单调区间

如 122

2(设uxxu2,由0则0x22logu,ux1,如图:

且 112 u O 1 2 x

x(0,1]时,u,又logu,∴y

当 12x[1,2)时,u,又logu,∴y

当 12

∴„„)

15.如何利用导数判断函数的单调性?

区间a,b内,若总有f'(x)0则f(x)为增函数。(在个别点上导数等于

在 零,不影响函数的单调性),反之也对,若f'(x)0呢?

3:已知a0,函数f(x)xax在1,上是单调增函数,则a的最大

值是()

A.0 B.1 2 C.2 D.3

aa令fx'()3xa3xx0

(33x

则aa或x 33a3已知f(x)[在1,)上为增函数,则1,即a 由

∴a的最大值为3)

16.函数f(x)具有奇偶性的必要(非充分)条件是什么?

(f(x)定义域关于原点对称)

若 f(x)f(x)总成立f(x)为奇函数函数图象关于原点对称

若 f(x)f(x)总成立f(x)为偶函数函数图象关于y轴对称

注意如下结论:

(1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。

(2)若f(x)是奇函数且定义域中有原点,则f(0)0。xa·2a2

如 :若f(x)x为奇函数,则实数a2

1(∵f(x)为奇函数,xR,又0R,∴f(0)00a·2a20,∴)a1

即021x2如:f(x)为定义在(1,1)上的奇函数,当x()0,1时,f(x),又 x41求f(x)在1,1上的解析式。x2

(令x1,0,则x0,1,fx()x41xx22f(x)为奇函数,∴f(x)x

又 x4114xx(1,0)2x01x4f()00,∴fx())

又 x2x0,1x41

17.你熟悉周期函数的定义吗?

若存在实数T(T0),在定义域内总有fxTf(x),则f(x)为周期

(函数,T是一个周期。)

如:若fxaf(x),则 

(答:f(x)是周期函数,T2a为f(x)的一个周期)

又 如:若f(x)图象有两条对称轴xa,xb

即 f(ax)(fax)(,fbx)(fbx)

则 f(x)是周期函数,2ab为一个周期

如:

18.你掌握常用的图象变换了吗?

(x)与f(x)的图象关于y轴对称

f(x)与f(x)的图象关于x轴对称

f(x)与f(x)的图象关于原点对称

f

f(x)与f(x)的图象关于直线yx对称1(x)与f(2ax)的图象关于直线xa对称

f(x)与f(2ax)的图象关于点(a,0)对称

f

yf(x)图象

将yf(xa)b上移b(b0)个单位

yf(xa)b下移b(b0)个单位

注意如下“翻折”变换:

yf(xa)左移a(a0)个单位

yf(xa)右移a(a0)个单位

f(x)f(x)f(x)f(|x|)

如 :f(x)logx12出及ylogx1yxlog1的图象

作 22 y y=log2x O 1 x

19.你熟练掌握常用函数的图象和性质了吗?

(k<0)y(k>0)y=b O’(a,b)O x x=a

1)一次函数:ykxbk0

(

(2)反比例函数:yk0推广为ybk0是中心O'()a,b的双曲线。

24acbb2

(3)二次函数yaxbxca0ax图象为抛物线42aa2kxkxa2b4acbb点坐标为,对称轴x

顶 a4a2a224acb口方向:a0,向上,函数y

开 min4a24acb0,向下,y

a max4a

应用:①“三个二次”(二次函数、二次方程、二次不等式)的关系——二次方程 axbxc0,0时,两根x、x为二次函数yaxbxc的图象与x轴122 的两个交点,也是二次不等式axbxc0(0)解集的端点值。

②求闭区间[m,n]上的最值。

③求区间定(动),对称轴动(定)的最值问题。

④一元二次方程根的分布问题。

0b 如 :二次方程axbxc0的两根都大于kka2fk()0 y(a>0)O k x1 x2 x

一 根大于k,一根小于kf(k)04)指数函数:,yaa01a

(5)对数函数ylogxa01,a

(a

由图象记性质!

(注意底数的限定!)

x y y=ax(a>1)(01)1 O 1 x(0

6)“对勾函数”yxk0

(

利用它的单调性求最值与利用均值不等式求最值的区别是什么?

kx y k O k x

20.你在基本运算上常出现错误吗?

指 数运算:a1(a0),a(a0)p

aa(a0),amnnmmn0p1a1nma(a0)数运算:logM·NlogMlogNM0,N0

对 aaa

logaM1logaMlogaN,loganMlogaM Nnlogx

对 数恒等式:aaxc数换底公式:logblogblogb

对 maaalogblogacnnm

21.如何解抽象函数问题?

(赋值法、结构变换法)

如:(1)xR,f(x)满足f(xy)f(x)f(y),证明f(x)为奇函数。

先令xy0f(0)0再令yx,„„)

2)xR,f(x)满足f(xy)f(x)f(y),证明f(x)是偶函数。

先令xytf(t)(tf)(t·t)

(ft()ft()f(t)f(t)

∴ f()tf(t)„„)

3)证明单调性:f(x)fxxx„„

(221

222.掌握求函数值域的常用方法了吗?

(二次函数法(配方法),反函数法,换元法,均值定理法,判别式法,利用函数单调性法,导数法等。)



如求下列函数的最值:

(1)y2x3134x

()2y2x4 x322x

(3)x3,yx(4)yx49x设x3cos,0,(5)y4x,x(01,]

23.你记得弧度的定义吗?能写出圆心角为α,半径为R的弧长公式和扇形面积公式吗?

(l·R,S扇29x11l·R·R2)22 R 1弧度 O R

24.熟记三角函数的定义,单位圆中三角函数线的定义

inMP,cosOM,tanAT

s

y T B S P α O M A x

:若0,则sin,cos,tan的大小顺序是

又如:求函数y812cosx的定义域和值域。

2∵12cosx)12sinx0

(2

∴sinx2,如图:2

∴ 2kx2kkZ,0y12

25.你能迅速画出正弦、余弦、正切函数的图象吗?并由图象写出单调区间、对称点、对称轴吗? 54

4inx1,cosx s

y ytgx x    O  22

称点为k,0,kZ

对 sinx的增区间为2k,2kkZ

y 222

减 区间为2k,2kkZ2

2图 象的对称点为k,0,对称轴为xkkZ

yx cos的增区间为2k,2kkZ

减 区间为2k,22kkZ

图 象的对称点为k,0,对称轴为xkkZ322

y tanx的增区间为k,kkZ226.正弦型函数y=Asinx+的图象和性质要熟记。或yAcosx

(1)振幅|A|,周期T

2||

若 fxA,则xx为对称轴。00fx0,则x,0为对称点,反之也对。

若 00

(2)五点作图:令x依次为0,,2,求出x与y,依点(x,y)作图象。3223)根据图象求解析式。(求A、、值)

(x)01图列出

如 (x)22条件组求、值

正切型函数yAtanx,T ||

27.在三角函数中求一个角时要注意两个方面——先求出某一个三角函数值,再判定角的范围。

如 :cosx,x,求x值。

(∵x,∴x,∴x,∴x)

28.在解含有正、余弦函数的问题时,你注意(到)运用函数的有界性了吗?

如:函数ysinxsin|x|的值域是 6223237551326636412x0时,y2sinx2,2,x0时,y0,∴y2,2)

29.熟练掌握三角函数图象变换了吗?

(平移变换、伸缩变换)

平移公式:

x'xha(h,k)

(1)点P(x,y)P'(x',y'),则y'yk平移至

(2)曲线f(x,y)0沿向量a(h,k)平移后的方程为f(xh,yk)0:函数y2sin2x1的图象经过怎样的变换才能得到ysinx的 如 图象?

41横坐标伸长到原来的2倍y2sin2x1y2sin2x(424上平移1个单位4 2sinx1y2sinx1y2sinx4左平移个单位12 ysinx)纵坐标缩短到原来的倍

30.熟练掌握同角三角函数关系和诱导公式了吗?

:1sincossectantan·cotcos·sectan

如 22224sincos0„„称为1的代换。

2k·”化为的三角函数——“奇变,偶不变,符号看象限”,“

2“奇”、“偶”指k取奇、偶数。

如:costansin21

又如:函数y

A.正值或负值 9746

sintan,则y的值为

coscotB.负值

C.非负值

D.正值

sinsin2sincos1cos

(y20,∵0)coscossin1cossin

31.熟练掌握两角和、差、倍、降幂公式及其逆向应用了吗?

理解公式之间的联系:

s insincoscossinsins22incos令令22coscossinsincos2cossin costantantan22 2cos112sin 1tan·tantan2

2tan 21tan 1cos22 1cos22sin22cos

sinbcosabsin,tan

a 22baincos2sin

s 34in3cos2sin

s 

应用以上公式对三角函数式化简。(化简要求:项数最少、函数种类最少,分母中不含三角函数,能求值,尽可能求值。)

具体方法:

1)角的变换:如,„„

(

(2)名的变换:化弦或化切

(3)次数的变换:升、降幂公式

(4)形的变换:统一函数形式,注意运用代数运算。

222:已知,1tan,求tan2的值。

如 sincos1cos223sincoscos1 1,∴tan2sin22sin

2又tan(由已知得:221tantan3

1∴ tan2tan2)2181tan·tan1·32

32.正、余弦定理的各种表达形式你还记得吗?如何实现边、角转化,而解斜三角形?

222bca

余 弦定理:abc2bccosAAcos2bc22

2(应用:已知两边一夹角求第三边;已知三边求角。)

a2RAsinabc

正 弦定理:2Rb2RsinBsinAsinBsinCc2RCsin S a·bsinC2

∵ ABC,∴ABC

∴sinABsinC,sin

如ABC中,2sin

(1)求角C;2c

(2)若ab,求cos2Acos2B的值。2222ABCcos 22ABcos2C1 2

((1)由已知式得:1cosAB21cosC12ABC,∴2cosCcosC10

2cosC或cosC1(舍)

∴ 120C,∴C

又32212232222sinA2sinBsinCsin

343cos2A1cos2B

142)由正弦定理及abc得:

(∴ cos2Acos2B)

33.用反三角函数表示角时要注意角的范围。

反 正弦:arcsinx,,x113422余弦:arccosx0,,x1,1

反 正切:arctanx,xR

34.不等式的性质有哪些?

22c0acbc

(1)ab,c0acbc

(2)ab,cdacbd

(3)ab0,cd0acbd

(4)ab0,ab0nn

(5)ab0ab,abnn11ab11ab6)|x|aa0axa,|x|axa或xa

(:若,0则下列结论不正确的是()

A.ab222 B.abb11ab.|||||abab|

C

答案:C

35.利用均值不等式:

abD.2 baab22

a b2aba,bR;;ab2abab求最值时,你是否注22 意到“a,bR”且“等号成立”时的条件,积(ab)或和(ab)其中之一为定值?(一正、二定、三相等)

注意如下结论:

22abab2ababab,R 22ab且仅当ab时等号成立。

当 bcabbccaa,bR

a

当 且仅当abc时取等号。

a b0,m0,n0,则222bbmana1 aambnb 如:若x0,23x的最大值为

x

(设y23x22122434x且仅当3x,又x0,∴x时,y243)

当 max

又 如:x2y1,则24的最小值为

(∵222222,∴最小值为22)

36.不等式证明的基本方法都掌握了吗?

(比较法、分析法、综合法、数学归纳法等)

并注意简单放缩法的应用。

如 :证明1„222(1x2yx2y14x233xy11231n111111„„1„„ 222122323nn1n1111111„„223n1n

122)n7.解分式不等式aa0的一般步骤是什么?

(移项通分,分子分母因式分解,x的系数变为1,穿轴法解得结果。)

38.用“穿轴法”解高次不等式——“奇穿,偶切”,从最大根的右上方开始 f(x)g(x)

:x1x1x20

如 2

339.解含有参数的不等式要注意对字母参数的讨论

如 :对数或指数的底分a1或0a1讨论

40.对含有两个绝对值的不等式如何去解?

(找零点,分段讨论,去掉绝对值符号,最后取各段的并集。)

例 如:解不等式|x3|x1(解集为x|x)1.会用不等式|a||b||ab||a||b|证明较简单的不等问题

如 :设f(x)xx13,实数a满足|xa|1

求 证:f(x)f(a)2(|a|1)

证明:| f(x)(fax)||(x13)(aa13)|22212|(xa)(xa1)|(|xa|1)

|xax||a1||xa1|

|x||a|1

又 |x||a||xa|1,∴|x||a|1f(x)(fa)2|a|22|a|1

∴ 

(按不等号方向放缩)

42.不等式恒成立问题,常用的处理方式是什么?(可转化为最值问题,或“△”问题)

:af(x)恒成立af(x)的最小值

如 f(x)恒成立af(x)的最大值

a f(x)能成立af(x)的最小值

a

如:对于一切实数x,若x3x2a恒成立,则a的取值范围是

设ux3x2,它表示数轴上到两定点2和3距离之和

(325,∴5a,即a

5u min者:x3x2x3x255,∴a)

或 

43.等差数列的定义与性质

定义:aad(d为常数),aan1d

n1nn1

等 差中项:x,A,y成等差数列2Axy

前n项和Snaannn1 1nnad212

性 质:a是等差数列n1)若mnpq,则aaaa;

(mnpq

(2)数列a,a,kab仍为等差数列;2n12nn

S,SS,SS„„仍为等差数列;n2nn3n2n3)若三个数成等差数列,可设为ad,a,ad;

m2m14)若a,b是等差数列S,T为前n项和,则;

(nnnnaSbTm2m1

(5)a为等差数列Sanbn(a,b为常数,是关于n的常数项为nn20的二次函数)

2S 的最值可求二次函数Sanbn的最值;或者求出a中的正、负分界nnn项,即:

当 a0,d0,解不等式组得S达到最大值时的n值。可1na0na0n1a0n

当 a0,d0,由得S达到最小值时的n值。可1na0n1

如 :等差数列a,S18,aaa3,S1,则nnnnn1n2

3(由aaa33a3,∴a1nn1n2n1n1S

又3aa113·33a1,∴a

222311naanaa·n31S1n2n18

∴ n222n27)

44.等比数列的定义与性质 n1义:q(q为常数,q0),aaq

定 n1aann 等 比中项:x、G、y成等比数列Gxy,或Gxy2na(q1)1n

前 n项和:S(要注意!)aqn11(q1)1q

性 质:a是等比数列n1m)若npqa,则·aa·a

(mnpq

(2)S,SS,SS„„仍为等比数列nn2n3n2n5.由S求a时应注意什么?nn

(n1时,aS,n2时,aSS)11nnn

146.你熟悉求数列通项公式的常用方法吗?

例如:(1)求差(商)法

11122211时,a215,∴a1 解:n 112111

n 2时,aa„„a2n152122n1n12221

 12得:a2nn

2如 :a满足aa„„a2n51n12n2n

∴a2 nn114(n1)a

∴ nn12(n2)[练习]

列a满足SSa,a4,求a

数 nnn1n11n

(注意到an1Sn1Sn代入得:53Sn14 SnnS4,∴S是等比数列,S4

又 1nn2时,aSS„„3·4

n nnn1n1

(2)叠乘法

n1

例 如:数列a中,a3,,求an1nana1nn

解:aa2n1a2a3n1n1·„„·„„,∴

aa3na1a2n121n3n

又a3,∴a1n

(3)等差型递推公式

由 aaf(n),aa,求a,用迭加法nn110nn2时,aa(2)21faaf(3)32

两边相加,得:„„„„aa(n)nn1f

a af(2)f(3)„„f(n)n1

∴ aaf(23)(f)„„f(n)n0[练习]

数 列a,a1,a3an2,求an1nn1nn1a1)

(n3

(4)等比型递推公式

a cadc、d为常数,c0,c1,d0nn

1可 转化为等比数列,设axcaxnn112nacac1x

 nn1

令(c1)xd,∴xd c1a是首项为,ac为公比的等比数列

∴ n1d1cdc1a

∴nddn1a·c 1c1c1dnd1c c1c1aa

∴n1[练习]

数 列a满足a9,3aa4,求an1n1nn4

(a8n3

(5)倒数法 n1 1)如:a1,a

例1n12an,求a na2nn

由已知得:2111a

a2a2an1nn

∴1an111 an2为等差数列,1,公差为

 1an1a1121n1·n1

 

∴an1an11222 n1

47.你熟悉求数列前n项和的常用方法吗?

例如:(1)裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。

:a是公差为d的等差数列,求

如n1 aak1kk1n

解:由n11111d0 adaa·adkkkak1kk1an1111

∴ aadaak1kkk11kk1

1111111„„daaaaaa1223nn1111daa1n1

[练习]

和:1

求111„„

12123123„„n

(a„„„„,S2)nn

(2)错位相减法:

1n1

若 a为等差数列,b为等比数列,求数列ab(差比数列)前n项nnnn 和,可由SqS求S,其中q为b的公比。nnnn

如 :Sx123x4x„„nx1n

x ·Sx2x3x4x„„n1xnx2n234n1n23n1

 12:11xSxx„„xnxn2n1n1xnx

x 1时,Snnn21x1xnn1

x 1时,S123„„nn

2(3)倒序相加法:把数列的各项顺序倒写,再与原来顺序的数列相加。

Saa„„aan12n1n 相加Saa„„aannn121Saaaa„„aa„„n1n2n11n[练习]

2x111 已知f(x),则f(1)f(2)ff(3)ff(4)f 22341x221x1x由fx()f1(22221xx1x1x11x1x2原式f(1)f(2)ff(3)ff(4)f

∴ 

121314111113)22

48.你知道储蓄、贷款问题吗?

△零存整取储蓄(单利)本利和计算模型:

若每期存入本金p元,每期利率为r,n期后,本利和为:

p1rp12r„„p1nrpnr„„等差问题

S nnn12

△若按复利,如贷款问题——按揭贷款的每期还款计算模型(按揭贷款——分期等额归还本息的借款种类)

若贷款(向银行借款)p元,采用分期等额还款方式,从借款日算起,一期(如一年)后为第一次还款日,如此下去,第n次还清。如果每期利率为r(按复利),那么每期应还x元,满足

p()1rx1rx1r„„x1rxnnn11r1r1

 xx11rrn1n

2∴xpr1rn1rn1

p——贷款数,r——利率,n——还款期数

49.解排列、组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。

(1)分类计数原理:Nmm„„m12n

(mi为各类办法中的方法数)

分 步计数原理:Nm·m„„m12n

(m为各步骤中的方法数)i

(2)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一

m 列,叫做从n个不同元素中取出m个元素的一个排列,所有排列的个数记为A.nnn1n2„„nm1

Anmn!mn nm!定:0!

1规

(3)组合:从n个不同元素中任取m(m≤n)个元素并组成一组,叫做从n个不

m 同元素中取出m个元素的一个组合,所有组合个数记为C.nmnn1„„nm1An!n

C mm!m!nm!Ammn定:C1

规 n04)组合数性质:

C,CCC,CC„„C

2C nnnnn1nnn

50.解排列与组合问题的规律是: mnmmm1m01nn

相邻问题捆绑法;相间隔问题插空法;定位问题优先法;多元问题分类法;至多至少问题间接法;相同元素分组可采用隔板法,数量不大时可以逐一排出结果。

如:学号为1,2,3,4的四名学生的考试成绩

x89,90,91,92,93,(i1,2,3,4)且满足xxxx,i123

4则这四位同学考试成绩的所有可能情况是()

A.24 B.15 C.12 D.10

解析:可分成两类: 1)中间两个分数不相等,(有 C5(种)

5(2)中间两个分数相等

x xxx1234

相同两数分别取90,91,92,对应的排列可以数出来,分别有3,4,3种,∴有10种。

∴共有5+10=15(种)情况

51.二项式定理

(ab)CaCabCab„Cab„Cbnnnnn

二 项展开式的通项公式:TCab(r0,1„„n)r1n

C 为二项式系数(区别于该项的系数)n

性质:

(1)对称性:CCr0,1,2,„„,nnn

(2)系数和:CC„C2nnn

C CCC„CC„2nnnnnn

(3)最值:n为偶数时,n+1为奇数,中间一项的二项式系数最大且为第 135024n101nnn0n1n12n22rnrrnnrnrrrrnrn21项,二项式系数为C;n为奇数时,()n1为偶数,中间两项的二项式 n2nn1n122系数最大即第项及第1项,其二项式系数为CC nn2211n1n1:在二项式x1的展开式中,系数最小的项系数为(用数字

如 表示)∵n=11

∴ 共有12项,中间两项系数的绝对值最大,且为第6或第7项

由 Cx(1),∴取r5即第6项系数为负值为最小:11

 CC4261111

又 如:12xaaxax„„axxR,则***465122r11rr aaaaaa„„aa(用数字作答)01020302004

(令x0,得:a10

令 x1,得:aa„„a1022004

∴ 原式2003aaa„„a2003112004)0012004

52.你对随机事件之间的关系熟悉吗?

(1)必然事件,P)1,不可能事件,P()02)包含关系:AB,“A发生必导致B发生”称B包含A。

A B

3)事件的和(并):AB或AB“A与B至少有一个发生”叫做A与B

(的和(并)。

4)事件的积(交):A·B或AB“A与B同时发生”叫做A与B的积。

(5)互斥事件(互不相容事件):“A与B不能同时发生”叫做A、B互斥。

A·B

(6)对立事件(互逆事件):

A不发生”叫做A发生的对立(逆)事件,A

A A,AA

(7)独立事件:A发生与否对B发生的概率没有影响,这样的两个事件叫做相互独立事件。

与B独立,A与B,A与B,A与B也相互独立。

A

53.对某一事件概率的求法:

分清所求的是:(1)等可能事件的概率(常采用排列组合的方法,即

()A

PA包含的等可能结果m n一次试验的等可能结果的总数

(2)若A、BP互斥,则ABP(A)P(B)

(3)若A、B相互独立,则PA·BPA·PB

(4)P(A)1P(A)

(5)如果在一次试验中A发生的概率是p,那么在n次独立重复试验中A恰好发生

kkk次的概率:P(k)Cp1p nnnk

如:设10件产品中有4件次品,6件正品,求下列事件的概率。

(1)从中任取2件都是次品;

C224

P 1215C10

(2)从中任取5件恰有2件次品;

23CC1046

P 2521C10

(3)从中有放回地任取3件至少有2件次品;

解析:有放回地抽取3次(每次抽1件),∴n=103

而至少有2件次品为“恰有2次品”和“三件都是次品”

∴ mC·4643223C·4·644

∴ P33125102213

(4)从中依次取5件恰有2件次品。

解析:∵一件一件抽取(有顺序)

∴ nAm,CAA10456223CAA10456

∴ P4521A105223

分清(1)、(2)是组合问题,(3)是可重复排列问题,(4)是无重复排列问题。

54.抽样方法主要有:简单随机抽样(抽签法、随机数表法)常常用于总体个数较少时,它的特征是从总体中逐个抽取;系统抽样,常用于总体个数较多时,它的主要特征是均衡成若干部分,每部分只取一个;分层抽样,主要特征是分层按比例抽样,主要用于总体中有明显差异,它们的共同特征是每个个体被抽到的概率相等,体现了抽样的客观性和平等性。

55.对总体分布的估计——用样本的频率作为总体的概率,用样本的期望(平均值)和方差去估计总体的期望和方差。

要熟悉样本频率直方图的作法:

(1)算数据极差xx;maxmin

(2)决定组距和组数;

(3)决定分点;

(4)列频率分布表;

(5)画频率直方图。

中,频率小长方形的面积组距×

其本平均值:xxx„„x

样 12n频率组距1n1222 样 本方差:Sxxxx„„xx12nn

如:从10名女生与5名男生中选6名学生参加比赛,如果按性别分层随机抽样,则组成此参赛队的概率为____________。

42C10C5)

(6C1

556.你对向量的有关概念清楚吗?

(1)向量——既有大小又有方向的量。

(2)向量的模——有向线段的长度,||a

(3)单位向量|a|1,a00a|a|

(4)零向量0,|0|0长度相等5)相等的向量ab

(方向相同

在此规定下向量可以在平面(或空间)平行移动而不改变。

(6)并线向量(平行向量)——方向相同或相反的向量。

规定零向量与任意向量平行。

b ∥a(b0)存在唯一实数,使ba

(7)向量的加、减法如图: 



O AOBOC

O AOBBA

(8)平面向量基本定理(向量的分解定理)

e,e是平面内的两个不共线向量,a为该平面任一向量,则存在唯一12实数对、,使得aee,e、e叫做表示这一平面内所有向量 12121212的一组基底。

(9)向量的坐标表示

i,j是一对互相垂直的单位向量,则有且只有一对实数x,y,使得 axiyj,称(x,y)为向量a的坐标,记作:ax,y,即为向量的坐标表示。

axy,bx,y

设 1122abxyy,yxy,xy

则,11121122ax,yx,y

1111 Ax,y,Bx,y

若 1122ABxx,yy

则 212122ABxxyy,A、B两点间距离公式

|| 21

2157.平面向量的数量积

(1)a·b|a|·|b|cos叫做向量a与b的数量积(或内积)。为向量a与b的夹角,0,

B  b O  a

D A

数量积的几何意义:

·b等于|a|与b在a的方向上的射影|b|cos的乘积。

a

(2)数量积的运算法则

a·bb·a

(ab)ca·cb·c

② 

③ a·bx,y·x,yxxyy11221212

注 意:数量积不满足结合律(a·b)·ca·(b·c)

(3)重要性质:设ax,y,bx,y1122

① a⊥ba·b0x·xy·y01212

② a∥ba·b|a|·|b|或a·b|a|·|b|

 ab(b0,惟一确定)

 xyxy01221

③ a||axy,|a·b|||a·||b

④cos[练习] 222121xxyya·b1212 2222xy·xy|a|·|b|1122

(1)已知正方形ABCD,边长为1,ABa,BCb,ACc,则|abc|

答案:22 

(2)若向量ax,1,b4,x,当x

答案:2 时a与b共线且方向相同

3)已知a、b均为单位向量,它们的夹角为60,那么|a3b|

(答案:158.线段的定比分点 oPx,y,Px,y,分点Px,y,设P、P是直线l上两点,P点在设 11122212 l上且不同于P、P,若存在一实数,使PPPP,则叫做P分有向线段1212 PP所成的比(0,P在线段PP内,0,P在PP外),且121212xxxx1212xx12,P为PP中点时, 12yyyy212y1y12:ABC,Ax,y,Bx,y,Cx,y

如 1122331 则ABC重心G的坐标是xxxyy3y123,3

3※.你能分清三角形的重心、垂心、外心、内心及其性质吗?

59.立体几何中平行、垂直关系证明的思路清楚吗?

平行垂直的证明主要利用线面关系的转化:

线∥线线∥面面∥面

 线⊥线线⊥面面⊥面判定性质线∥线线⊥面面∥面

线面平行的判定:

∥b,b面,aa∥面

a

a b 

线面平行的性质:

 ∥面,面,ba∥b

三垂线定理(及逆定理):

A⊥面,AO为PO在内射影,a面,则

P

a⊥OAa⊥PO;a⊥POa⊥AO

线面垂直:

P O a

⊥b,a⊥c,b,c,bcOa⊥

a

a O α b c

面面垂直:

a ⊥面,a面⊥

面 ⊥面,l,a,aa⊥l⊥ α a l β

⊥面,b⊥面ab∥

a

面 ⊥a,面⊥a∥ a b 

60.三类角的定义及求法

(1)异面直线所成的角θ,0°<θ≤90°

(2)直线与平面所成的角θ,0°≤θ≤90°

=0时,b∥或b

 o

(3)二面角:二面角l的平面角,0180oo

(三垂线定理法:A∈α作或证AB⊥β于B,作BO⊥棱于O,连AO,则AO⊥棱l,∴∠AOB为所求。)

三类角的求法:

①找出或作出有关的角。

②证明其符合定义,并指出所求作的角。

③计算大小(解直角三角形,或用余弦定理)。[练习]

(1)如图,OA为α的斜线OB为其在α内射影,OC为α内过O点任一直线。

证 明:coscos·cos A θ O β B C D α

(为线面成角,∠AOC=B,∠OC=)

(2)如图,正四棱柱ABCD—A1B1C1D1中对角线BD1=8,BD1与侧面B1BCC1所成的为30°。

①求BD1和底面ABCD所成的角;

②求异面直线BD1和AD所成的角;

③求二面角C1—BD1—B1的大小。

D1 C1 A1 B1 H G D C A B

(①arcsin;②60;③arcsin)

(3)如图ABCD为菱形,∠DAB=60°,PD⊥面ABCD,且PD=AD,求面PAB与面PCD所成的锐二面角的大小。

P F D C A E B 34o63

(∵AB∥DC,P为面PAB与面PCD的公共点,作PF∥AB,则PF为面PCD与面PAB的交线„„)

61.空间有几种距离?如何求距离?

点与点,点与线,点与面,线与线,线与面,面与面间距离。

将空间距离转化为两点的距离,构造三角形,解三角形求线段的长(如:三垂线定理法,或者用等积转化法)。

如:正方形ABCD—A1B1C1D1中,棱长为a,则:

(1)点C到面AB1C1的距离为___________;

(2)点B到面ACB1的距离为____________;

(3)直线A1D1到面AB1C1的距离为____________;

(4)面AB1C与面A1DC1的距离为____________;

(5)点B到直线A1C1的距离为_____________。

D C A B D1 C1 A1 B1

62.你是否准确理解正棱柱、正棱锥的定义并掌握它们的性质?

正棱柱——底面为正多边形的直棱柱

正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。

正棱锥的计算集中在四个直角三角形中:

R tSOB,RtSOE,RtBOE和RtSBE

它们各包含哪些元素?

S C·h'(C——底面周长,h'为斜高)正棱锥侧12底面积×高

V 锥

63.球有哪些性质?

(1)球心和截面圆心的连线垂直于截面r13R2d2

(2)球面上两点的距离是经过这两点的大圆的劣弧长。为此,要找球心角!

(3)如图,θ为纬度角,它是线面成角;α为经度角,它是面面成角。

(4)S球4R,V球24R3

3(5)球内接长方体的对角线是球的直径。正四面体的外接球半径R与内切球半径r之比为R:r=3:1。

如:一正四面体的棱长均为2,四个顶点都在同一球面上,则此球的表面 积为()

A.3B.4C.33D.6

答案:A

64.熟记下列公式了吗?

(1)l直线的倾斜角0,,ktany2y1,x1x2

x2x12

P1x1,y1,P2x2,y2是l上两点,直线l的方向向量a1,k

(2)直线方程:

点斜式:yy0kxx0(k存在)

斜截式:ykxb

截距式:xy1 ab

一般式:AxByC0(A、B不同时为零)

(3)点Px0,y0到直线l:AxByC0的距离dAx0By0CAB22

(4)l1到l2的到角公式:tank2k1

1k1k l1与l2的夹角公式:tank2k1

1k1k2

65.如何判断两直线平行、垂直?

A1B2A2B1l1∥l2

A1C2A2C1

k1k2l1∥l2(反之不一定成立)

A1A2B1B20l1⊥l2

·k1l⊥l

k 121

266.怎样判断直线l与圆C的位置关系?

圆心到直线的距离与圆的半径比较。

直线与圆相交时,注意利用圆的“垂径定理”。

67.怎样判断直线与圆锥曲线的位置?

联立方程组关于x(或y)的一元二次方程“”0相交;0相切;0相离

68.分清圆锥曲线的定义

椭圆PFPF2a,2a2cFF1212

第 一定义双曲线PFPF2a,2a2cFF1212抛物线PFPK

第二定义:ePFPKc a

0e1椭圆;e1双曲线;e1抛物线

y

b O F1 F2 a x a2x c

22xy

221ab0

ab

abc 222

22xy1a0,b0

22 ab

ab

c222 e>1 e=1 P 0

x2y2x2y2 69.与双曲线221有相同焦点的双曲线系为220

abab

70.在圆锥曲线与直线联立求解时,消元后得到的方程,要注意其二次项系数是否为零?△≥0的限制。(求交点,弦长,中点,斜率,对称存在性问题都在△≥0下进行。)

弦 长公式PP1kxxxx4121212221k12yy4yy

1212

2

71.会用定义求圆锥曲线的焦半径吗?

如:

y P(x0,y0)K F1 O F2 x l

x2y2

221

ab2PFa2e,PFexexa

200PKcFexa

P 10 y A P2 O F x P1 B

y 2pxp02

通径是抛物线的所有焦点弦中最短者;以焦点弦为直径的圆与准线相切。

72.有关中点弦问题可考虑用“代点法”。

如 :椭圆mxny1与直线y1x交于M、NM两点,原点与N中点连2m线的斜率为,则的值为2n

答案:

m2 n

273.如何求解“对称”问题?

(1)证明曲线C:F(x,y)=0关于点M(a,b)成中心对称,设A(x,y)为曲线C上任意一点,设A'(x',y')为A关于点M的对称点。

(由a,bx'2ax,y'2by)xx'yy'22要证明A'2ax,2by也在曲线C上,即f(x')y'

只 2)点A、A'关于直线l对称

(kk1AA'·l

 AA'中点坐标满足l方程AA'⊥lAA'中点在l上

xrcos74.圆xyr的参数方程为(为参数)

yrsin222xacosx2y

2椭圆221的参数方程为(为参数)

abybsin

75.求轨迹方程的常用方法有哪些?注意讨论范围。

(直接法、定义法、转移法、参数法)

76.对线性规划问题:作出可行域,作出以目标函数为截距的直线,在可行域内平移直线,求出目标函数的最值。

第五篇:高考数学题证明题型答题技巧

在线1对1 家教网

三好网中小学辅导http://www.xiexiebang.com

一、合情推理

1.归纳推理是由部分到整体,由个别到一般的推理,在进行归纳时,要先根据已知的部分个体,把它们适当变形,找出它们之间的联系,从而归纳出一般结论;

2.类比推理是由特殊到特殊的推理,是两类类似的对象之间的推理,其中一个对象具有某个性质,则另一个对象也具有类似的性质。在进行类比时,要充分考虑已知对象性质的推理过程,然后类比推导类比对象的性质。

二、演绎推理

演绎推理是由一般到特殊的推理,数学的证明过程主要是通过演绎推理进行的,只要采用的演绎推理的大前提、小前提和推理形式是正确的,其结论一定是正确,一定要注意推理过程的正确性与完备性。

三、直接证明与间接证明

直接证明是相对于间接证明说的,综合法和分析法是两种常见的直接证明。综合法一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法(或顺推证法、由因导果法)。分析法一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判下载更多初中英语学习绝密复习总结资料,请关注微信账号:初中英语 chuzhongyingyu,中考 zhongkao010 打开微信搜索关注一下账号你就可获取!在线1对1 家教网

三好网中小学辅导http://www.xiexiebang.com

定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法。

间接证明是相对于直接证明说的,反证法是间接证明常用的方法。假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立,这种证明方法叫做反证法。

四、数学归纳法

数学上证明与自然数N有关的命题的一种特殊方法,它主要用来研究与正整数有关的数学问题,在高中数学中常用来证明等式成立和数列通项公式成立。

下载更多初中英语学习绝密复习总结资料,请关注微信账号:初中英语 chuzhongyingyu,中考 zhongkao010 打开微信搜索关注一下账号你就可获取!

下载高考数学:近年高考题型分布与答题策略【冲刺版】word格式文档
下载高考数学:近年高考题型分布与答题策略【冲刺版】.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高考题型与考点

    高考解题方法一.现代文中的12种题型解析 1.含义题: (1)指代型:找出转化句(2)种差+属概念(3)句子意思+言外之意,言外之意=主旨+哲理+写作对象+情感 2.梳理全文信息: (1)传统题:(a)文本中的主要......

    高考数学题型全归纳

    2010-2016高考理科数学题型全归纳 题型1、集合的基本概念 题型2、集合间的基本关系 题型3、集合的运算 题型4、四种命题及关系 题型5、充分条件、必要条件、充要条件的判断......

    高考历史解答题题型及解题技巧

    在高考试题中,历史解答题常常以六种题型出现:叙述型、综合型、说明型、比较型、评述型和开放型。下面我们就一一介绍六中题型考法,以及答题技巧有哪些~六种题型1.叙述型从历史......

    高考散文题型分析及答题要点

    高考散文题型分析及答题要点 一.读懂散文 概述:形散而神不散,这是散文的重要特点。所谓“形散”,是指散文选取材料十分广泛自由,不受时间和空间的限制;组织材料,结构成篇自由;表现方......

    高考理综科目答题技巧与策略

    高考理综科目答题技巧与策略一、 合理分配考试时间 高考与其说是考能力,不如说是考时间。对于部分同学,要敢于舍弃一部分题目。要“动笔就有分,做到有效答题。”因此合理分配时......

    2018考研数学各大题型答题策略

    2018考研数学各大题型答题策略 来源:智阅网 考研数学对于很多同学来说是个让人"又爱又恨"的科目,因为一旦数学拉开差距,那势必会拥有绝对性的优势,所以大家一定要重视数学......

    高考60天的复习冲刺策略

    高考50天的复习冲刺策略 距离2014年高考还有60天的时间了,在冲刺的阶段,继续保持旺盛的精力,让成绩再次提高! 力戒浮躁,合理规划。 步骤/方法 1、制定计划 计划要针对自己的弱项,......

    高考数学最后冲刺大题

    高考数学最后冲刺大题汇编(高分必备) 1. 三角函数 (1) 求值:主要考角的变换(配角,二倍角正逆两用,齐次式,角度相对性) (2) 图像性质:降幂公式、辅助角公式、五点作图(方法)、四大性质、有范......