第一篇:苏教版必修5 11.1.2正弦定理 教案
.11.1正弦定理(2)
一、课题:正弦定理(2)
二、教学目标:1.掌握正弦定理和三角形面积公式,并能运用这两组公式求解斜三角形,解决实际问题;
2.熟记正弦定理abc2R(R为ABC的外接圆的半 sinAsinBsinC
径)及其变形形式。
三、教学重点:正弦定理和三角形面积公式及其应用。
四、教学难点:应用正弦定理和三角形面积公式解题。
五、教学过程:
(一)复习:
1.正弦定理:在一个三角形中各边和它所对角的正弦比相等,abc2R(R为ABC的外接圆的半径); sinAsinBsinC
1112.三角形面积公式:SABCbcsinAacsinBabsinC. 222 即:
(二)新课讲解:
1.正弦定理的变形形式:
①a2RsinA,b2RsinB,c2RsinC;
2.利用正弦定理和三角形内角和定理,可解决以下两类斜三角形问题:
(1)两角和任意一边,求其它两边和一角;
(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角。
一般地,已知两边和其中一边的对角解斜三角形,有两解或一解(见图示)。C aaB1 B 2abc,sinB,sinC; 2R2R2R③sinA:sinB:sinCa:b:c. ②sinABabsinAbsinAababab一解两解一解一解
3.正弦定理,可以用来判断三角形的形状,其主要功能是实现三角形边角关系的转化: 例如,判定三角形的形状时,经常把a,b,c分别用2RsinA,2RsinB,2RsinC来替代。
4.例题分析:
例1在ABC中,1 AB2 sinAsinB的()
A.1只能推出2B.2只能推出1 C.
1、2可互相推出D.
1、2不可互相推出
解:在ABC中,ABab2RsinA2RsinBsinAsinB,因此,选C.
说明:正弦定理可以用于解决ABC中,角与边的相互转化问题。
例2在ABC中,若lgalgclgsinB,且B为锐角,试判断此三角形的形状。解
:由lgalgclgsinB,得:sinB
B450B90,2asinA①
c2sinC2
将A135CC2sin(135C)。
∴sinCsinCcosC,∴cosC0,故C90,
A45,∴ABC是等腰直角三角形。
说明:(1)判断三角形的形状特征,必须深入研究边与边的大小关系:是否两边相等?是否三边相等?还要研究角与角的大小关系:是否两角相等?是否三角相等?有无直角?有无钝角?
(2)此类问题常用正弦定理(或将学习的余弦定理)进行代换、转化、化简、运算,揭示出边与边,或角与角的关系,或求出角的大小,从而作出正确的判断。
例3某人在塔的正东方沿南60西的道路前进40米后,望见塔在东北方向上,若沿途测得
塔的最大仰角为30,求塔高。
D解:如图,由题设条件知:CAB1906030,ABC451453015,
北 C
∴ACB180BACABC1803015135,又∵AB40米,在ABC中,B
AC40
,sin15sin135
40sin15
30)1),∴AC
sin13
5在图中,过C作AB的垂线,设垂足E,则沿AB测得塔的最大仰角是CED,∴CED30,在RtABC中,ECACsinBACACsin301),
在RtDCE中,塔高CDCEtanCED1)tan30
10(3(米).
3例4如图所示,在等边三角形中,ABa,O为中心,过O的直线交AB于M,交AC
于N,求
1的最大值和最小值。OM2ON
2解:由于O为正三角形ABC的中心,∴AO
设MOA,则
,MAONAO,6A
2,在AON中,由正弦定理得: 3
OMOA,∴OM,
sinMAOsin[()]sin()
M
N
B
在
AOM中,由正弦定理得:ON
sin()
6,1112121222
[sin()sin()](sin),2222
OMONa66a223∵,∴sin1,33
41118
故当时取得最大值,2OM2ON2a2
2311152
所以,当,or时sin,此时取得最小值. 222
334OMONa
∴
六、课练:《
七、课堂小结:1.正弦定理能解给出什么条件的三角形问题?
2.由于有三角形面积公式,故解题时要注意与三角形面积公式及三角形外
接圆直径联系在一起。
八、作业:
1.在ABC中,已知atanBbtanA,试判断这个三角形的形状;
222
2.在ABC中,若sinA2sinBcosC,sinAsinBsinC,试判断ABC的形状。
第二篇:必修⑤《1.1.1正弦定理》教案
必修⑤《1.1.1 正弦定理》教学设计
龙游县横山中学 黄建金
教材分析
正弦定理是必修⑤第一章开篇内容,在已有知识的基础上,进一步对三角形边角关系的研究,发现并掌握三角形中更准确的边角关系。通过给出的实际问题,并指出解决问题的关键在于研究三角形中的边、角关系,从而引导学生产生探索愿望,激发学生学习的兴趣。在教学过程中,要引导学生自主探究三角形的边角关系,先由特殊情况发现结论,再对一般三角形进行推导证明,并引导学生分析正弦定理可以解决两类关于解三角形的问题:
(1)知两角一边,解三角形;
(2)知两边和一边对角,解三角形。
学情分析
学生在学习了基本初等函数和三角恒等变换的基础上,探究三角形边角的量化关系,得出正弦定理。学生对现实问题比较感兴趣,用现实问题出发激起学生的学习兴趣,驱使学生探索研究新知识的欲望。
教学目标
1.知识与技能:
(1)引导学生发现正弦定理的内容,探索证明正弦定理的方法;
(2)简单运用正弦定理解三角形、初步解决某些与测量和几何计算有关的实际问题
2.过程与方法:
(1)通过对定理的探究,培养学生发现数学规律的思维方法与能力;
(2)通过对定理的证明和应用,培养学生独立解决问题的能力和体会分类讨论和数形结合的思想方法.3.情感、态度与价值观:
(1)通过对三角形边角关系的探究学习,经历数学探究活动的过程,体会由特殊到一般再由一般到特殊的认识事物规律,培养探索精神和创新意识;
(2)通过本节学习和运用实践,体会数学的科学价值、应用价值,学习用数学的思维方式解决问题、认识世界,进而领会数学的人文价值、美学价值,不断提高自身的文化修养. 教学重点、难点
教学重点:正弦定理的推证与运用。
教学难点:正弦定理的推证;解决问题时可能有两解的情形。
教学过程
一、结合实例,导入新课
出示灵山江的图片。
问:如何能够实现不上塔顶而知塔高,不过河而知河宽?
二、观察特例,提出猜想[讨论]
(1)认识三角形中的6个元素,并复习“大角对大边,小角对小边”知识。
问1 :构成一个三角形最基本的要素有哪些?(同时在黑板上画出三个不同类型的三角形)问2:在三角形中,角与对边之间有怎样的数量关系?(大边对大角,小边对小角)
(2)观察直角三角形,提出猜想
问:能否用一个等式把这种关系精确地表示出来?
在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中的角与边的等式关系。如图,在RtABC中,设BC=a,AC=b,AB=c,根据锐角三角函数中正弦函数的定义,有a
sinA,bsinB,又sinC1c,则ac
sinAb
sinBsinCc
从而在直角三角形ABC中,a
sinAb
sinBc
sinC问:这种关系在锐角三角形中能否成立?
三、证明猜想,得出定理[探究] C(1)化归思想,把锐角三角形转化为直角三角形证明。
首先,证明当ABC是锐角三角形时的情况。证法如下:
设边AB上的高是CD(目的是把斜三角形转化为直角三角形),根据任意角三角函数的定义,有CD=asinBbsinA,则a
sinAb
sinB,同理可得cbsinCsinB,从而abcsinAsinBsinC
其次,提问当ABC是钝角三角形时,以上关系式仍然成立?(由学生课后自己推导)最后提问:还有其它证明方法吗?(向量方法)
(2)向量思想,把代数问题转化为向量问题证明。
由于涉及边长问题,从而可以考虑用向量来研究这问题。
证明:过点A作单位向量jACCB,由向量的加法可得 ABAC
jABj(ACCB·
则)
jABjACjCB
∴jAB
cos900A0jCBcos
900C
a∴csinAasinC,即c Abc同理,过点C作jBC,可得
ab
从而sinAsinBc
sinC
(3)得出定理,细说定理
从上面的研探过程,和证明可得以下定理:
正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即ab
sinAsinBc
sinC
四、定理运用,解决实例
例1.在 △ABC 中,已知 A30,B45,a2 cm,求C、b及c
解:根据三角形内角和定理,C1800(AB)180(3045)105
a2sinBsin4522(cm); sinAsin30
a2sinCsin10562(cm)csinAsin30根据正弦定理,b
说明:
1、学生讲出解题思路,老师板书以示解题规范。
2、已知三角形的几个元素,求其他元素的过程叫作解三角形。
3、解题时利用定理的变形aksinA,bksinB,cksinC更易解决问题。
例2.在 △ABC中,已知 a6cm,b6cm,A30,解三角形。
解:根据正弦定理,sinAsin303sinB(?B角一定是锐角吗?还有可能是什么角?如何判定?)b63a6
2因为00<B<1800,所以,B=60或120 oo
⑴ 当B=60时,C180(AB)180(3060)90,o
ca6sinCsin9012(cm)sinAsin30
⑵ 当B=120时,C180(AB)180(30120)30,o
ca6sinCsin306(cm)sinAsin30
说明:
1.让学生讲解题思路,其他同学补充说明,目的是要求学生注意分类讨论思想(可能有两解)。
2.求角时,为了使用方便正弦定理还可以写成sinAsinBsinCabc
3.用正弦定理的解题使用的题型:边角成对已知(1第一类:已知任意两角及其一边;
第二类:已知任意两边与其中一边的对角。对+1个),五、活学活用,当堂训练
练习1在ABC中,已知下列条件,解三角形。
(说明:可以让学生上黑板扮演或通过实物投影解题的规范和对错。)
(1)A45,C30,c10cm,(2)a20,b11,B30
练习2:[合作与探究]:某人站在灵山江岸边樟树B处,发现对岸发电厂A处有一棵大树,如何求出A、B两点间的距离?(如图)
六、回顾课堂,尝试小结
①本节课学习了一个什么定理?
②该定理使用时至少需要几个条件?
七、学有所成,课外续学
1、课本第10页习题1.1A组1、2题
2.思考题:在ABC中,a
sinA
bsinBcsinCk(k>o),这个k与ABC的外接圆半径R有什么关系?
3八、板书设计
第三篇:《正弦定理》教案
《正弦定理》教学设计
一、教学目标分析
1、知识与技能:通过对锐角三角形中边与角的关系的探索,发现正弦定理;掌握正弦定理的内容及其证明方法;能利用正弦定理解三角形以及利用正弦定理解决简单的实际问题。
2、过程与方法:让学生从实际问题出发,结合以前学习过的直角三角形中的边角关系,引导学生不断地观察、比较、分析,采取从特殊到一般以及合情推理的方法发现并证明正弦定理,使学生体会完全归纳法在定理证明中的应用;让学生在应用定理解决问题的过程中更深入的理解定理及其作用。
3、情感态度与价值观:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,发现并证明正弦定理。从发现与证明的过程中体验数学的探索性与创造性,让学生体验成功的喜悦,激发学生的好奇心与求知欲。培养学生处理解三角形问题的运算能力和探索数学规律的推理能力,并培养学生坚忍不拔的意志、实事求是的科学态度和乐于探索、勇于创新的精神。
二、教学重点、难点分析
重点:通过对锐角三角形边与角关系的探索,发现、证明正弦定理并运用正弦定理解决一些简单的三角形度量问题。
难点:①正弦定理的发现与证明过程;②已知两边以及其中一边的对角解三角形时解的个数的判断。
三、教法与学法分析
本节课是教材第一章《解三角形》的第一节,所需主要基础知识有直角三角形的边角关系,三角函数相关知识。在教法上,根据教材的内容和编排的特点,为更有效的突出重点,突破难点,教学中采用探究式课堂教学模式,首先从学生熟悉的锐角三角形情形入手,设计恰当的问题情境,将新知识与学生已有的知识建立起密切的联系,通过学生自己的亲身体验,使学生经历正弦定理的发现过程,激发学生的求知欲,调动学生主动参与的积极性,引导学生尝试运用新知识解决新问题,即在教学过程中,让学生的思维由问题开始,通过猜想的得出、猜想的探究、定理的推导等环节逐步得到深化。教学过程中鼓励学生合作交流、动手实践,通过对定理的推导、解读、应用,引导学生主动思考、总结、归纳解答过程中的内在规律,形成一般结论。在学法上,采用个人探究、教师讲解,学生讨论相结合的方法,让学生在问题情境中学习,自觉运用观察、类比、归纳等思想方法,体验数学知识的内在联系,重视学生自主探究,增强学生由特殊到一般的数学思维能力,形成实事求是的科学态度和严谨求真的学习习惯。
四、学情分析
对于高一的学生来说,已学的平面几何,解直角三角形,三角函数等知识,有一定观察分析、解决问题的能力,但对前后知识间的联系、理解、应用有一定难度,因此思维灵活性受到制约。同时,由于学生目前还没有学习习近平面向量,因此,对于正弦定理的证明方法——向量法,本节课没有涉及到。根据以上特点,教师恰当引导,提高学生学习主动性,多加以前后知识间的联系,带领学生直接参与分析问题、解决问题并品尝劳动成果的喜悦。
五、教学工具
多媒体课件
六、教学过程 创设情境,导入新课
兴趣是最好的老师。如果一节课有个好的开头,那就意味着成功了一半。上课一开始,我先提出问题:
工人师傅的一个三角形模型坏了,只剩下如图所示的部分,AB的长为1m,但他不知道AC和BC的长
是多少而无法去截料,你能告诉师傅这两边的长度吗? 教师:请大家思考,看看能否用过去所学过的知识解决
这个问题?(约2分钟思考后学生代表发言)学生活动一:
(教师提示)把这个实际问题抽象为数学模型——那就是“已知三角形中的两角及夹边,求另外两边的长”,本题是通过三角形中已知的边和角来求未知的边和角的这个过程,我们把它习惯上叫解三角形,要求边的长度,过去的做法就是把未知的边必须要放在直角三角形中,利用勾股定理或三角函数进行求解,即本题的思路是:“把一般三角形转化为直角三角形”,也就是要“作高”。
学生:如图,过点A作BC边上的高,垂直记作D
然后,首先利用题目中的已知数据求出角C的大小,接着把题目中的相关数据和角C的值代入上述等式,即可求出b,即AC的值,然后可利用AC、AB、角B、角C的值和三角函数知识可分别求出CD和BD的长度,把所求出的CD和BD的长度相加即可求出BC的长度。教师:这位同学的想法和思路非常好,简直是一位天才
(同时再一次回顾该同学具体的做法)
教师:能否像求AC的方法一样对BC进行求解呢? 学生:可以
教师:那么具体应该怎么做呢?
学生:过点B向AC作高,垂直记作E,如图:
接下来,只需要将相关的数据代入即可求出BC的长度 教师:总结学生的做法
通过作两条高线后,即可把AC、BC的长度用已知的边和角表示出来
接下来,只需要将题目中的相关数据代入,本题便迎刃而解。定理的发现:
oo教师:如果把本题目中的有关数据变一下,其中A=50,B=80大家又该怎么做
呢?
学生1:同样的做法(仍得作高)
学生2:只需将已知数据代入上述等式即可求出两边的长度 教师:还需要再次作高吗? 学生:不用
教师:对于任意的锐角三角形中的“已知两角及其夹边,求其他两边的长”的问
题是否都可以用上述两个等式进行解决呢? 学生:可以
教师:既然这两个等式适合于任意的锐角三角形,那么我们只需要记住这两个
等式,以后若是再遇见锐角三角形中的这种问题,直接应用这两个等式 并进行代入求值即可。
教师:大家看看,这两个等式的形式是否容易记忆呢? 学生:不容易
教师:能否美化这个形式呢?
学生:美化之后可以得到:
(定理)
教师:锐角三角形中的这个结论,到底表达的是什么意思呢? 学生:在锐角三角形中,各边与它所对角的正弦的比相等
教师:那么锐角三角形中的这个等式能否推广到任意三角形中呢?那么接下来就
让我们分别来验证一下,看看这个等式在直角三角形和钝角三角形中是否 成立。定理的探索:
教师:大家知道,在直角三角形ABC中:若 则:
所以:
故:
即: 在直角三角形中也成立
教师:那么这个等式在钝角三角形中是否成立,我们又该如何验证呢?请大家思考。
学生活动二:验证
教师(提示):要出现sinA、sinB的值
必须把A、B放在直角三角形中
即就是要作高(可利用诱导公式将
在钝角三角形中是否成立
转化为)
学生:学生可分小组进行完成,最终可由各小组组长
汇报本小组的思路和做法。(结论成立)
教师:我们在锐角三角形中发现有这样一个等式成立,接下来,用类比的方法对
它分别在直角三角形和钝角三角形中进行验证,结果发现,这个等式对于
任意的直角三角形和任意的钝角三角形都成立,那么我们此时能否说:“这
个等式对于任意的三角形都成立”呢? 学生:可以
教师:这就是我们这节课要学习的《正弦定理》(引出课题)定理的证明
教师:展示正弦定理的证明过程
证明:(1)当三角形是锐角三角形时,过点A作BC边
上的高线,垂直记作D,过点B向AC作高,垂直记作E,如图:
同理可得:
所以易得
(2)当三角形是直角三角形时;
在直角三角形ABC中:若 因为:
所以:
故:
即:
(3)当三角形是钝角三角形时(角C为钝角)
过点A作BC边上的高线,垂直记作D
由三角形ABC的面积可得 即:
故:
所以,对于任意的三角形都有
教师:这就是本节课我们学习的正弦定理(给出定理的内容)
(解释定理的结构特征)
思考:正弦定理可以解决哪类问题呢? 学生:在一个等式中可以做到“知三求一” 定理的应用
教师:接下来,让我们来看看定理的应用(回到刚开始的那个实际问题,用正弦
定理解决)(板书步骤)
成立。
随堂训练
学生:独立完成后汇报结果或快速抢答
教师:上述几道题目只是初步的展现了正弦定理的应用,其实正弦定理的应用相
当广泛,那么它到底可以解决什么问题呢,这里我送大家四句话:“近测
高塔远看山,量天度海只等闲;古有九章勾股法,今看三角正余弦.”
以这四句话把正弦定理的广泛应用推向高潮)
课堂小结:
1、知识方面:正弦定理:
2、其他方面:
过程与方法:发现
推广
猜想
验证
证明
(这是一种常用的科学研究问题的思路与方法,希望同学们在今
后的学习中一定要注意这样的一个过程)
数学思想:转化与化归、分类讨论、从特殊到一般
作业布置: ①书面作业:P52
②查找并阅读“正弦定理”的其他证明方法(比如“面积法”、“向量法”等)
③思考、探究:若将随堂训练中的已知条件改为以下几种情况,结果如何?
板书设计:
1、定理:
2、探索:
3、证明:
4、应用:
检测评估:
第四篇:正弦定理教案
正弦定理教案
教学目标:
1.知识目标:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
2.能力目标:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。
3.情感目标:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
教学重点:正弦定理的探索和证明及其基本应用。
教学难点:已知两边和其中一边的对角解三角形时判断解的个数。
教学过程:
一、复习引入
创设情境:
【师】:世界闻名的巴黎埃菲尔铁塔,比其他的建筑高出很多。如果只提供测角仪和皮尺,你能测出埃菲尔铁塔的高度吗?
【生】:可以先在离铁塔一段距离的地方测出观看铁塔的仰角,再测出与铁塔的水平距离,就可以利用三角函数测出高度。
【创设情境总结】:解决上述问题的过程中我们将距离的问题转化为角,进而转化为三角函数的问题进行计算。这个实际问题说明了三角形的边与角有紧密的联系,边和角甚至可以互相转化,这节课我们就要从正弦这个侧面来研究三角形边角的关系即正弦定理。
二、新课讲解
【师】:请同学们回忆一下,在直角三角形中各个角的正弦是怎么样表示的?
【生】:在直角三角形ABC中,sinAab,sinB,sinC1 cc
abc,c,c,也就是说在Rt△ABCsinAsinBsinC【师】:有没有一个量可以把三个式子联系起来? 【生】:边c可以把他们联系起来,即c
中abc sinAsinBsinC
【师】:对,很美、很对称的一个式子,用文字来描述就是:“在一个直角三角形中,各边与
它所对角的正弦比相等”,那么在斜三角形中,该式是否也成立呢?让我们在几何画板中验证一下,对任意的三角形ABC是不是都有“各边与它所对角的正弦比相等”成立?
【师】:通过验证我们得到,在任意的三角形中都有各个边和他所对的角的正弦值相等。
在上面这个对称的式子中涉及到了三角形三个角的正弦,因此我们把它称为正弦定理,即我们今天的课题。
【师】:直观的印象并不能代替严格的数学证明,所以,只是直观的验证是不够的,那能不
能对这个定理给出一个证明呢?
【生】:可以用三角形的面积公式对正弦定理进行证明:S1111absinCacsinBbcsinA,然后三个式子同时处以abc就可以得222
2到正弦定理了。
【师】:这是一种很好的证明方法,能不能用之前学过的向量来证明呢?答案是肯定的。怎
么样利用向量只是来证明正弦定理呢?大家观察,这个式子涉及到的是边和角,即向量的模和夹角之间的关系。哪一种运算同时涉及到向量的夹角和模呢?
(板书:证法二,向量法)
【生】:向量的数量积ababcos
【师】:先在锐角三角形中讨论一下,如果把三角形的三边看做向量的话,则容易得到三角
形的三个边向量满足的关系:ABBCAC,那么,和哪个向量做数量积呢?还
有数量积公式中提到的是夹角的余弦,而我们要得是夹角的正弦,这个又怎么转化?(启发学生得出通过做点A的垂线根据诱导公式来得到)
【生】:做A点的垂线
【师】:那是那条线的垂线呢?
【生】:AC的垂线
【师】:如果我们做AC垂线上的一个单位向量j,把向量j和上面那个式子的两边同时做数
cos(90A)cos(90C)cos90,化简000
即可得到csinAasinC,即acbc,同理可以得到。即在sinAsinCsinBsinC
锐角三角形ABC中有每条边和它所对的角的正弦值相等这个结论。
【师】:如果△ABC是钝角三角形呢?又怎么样得到正弦定理的证明呢?不妨假设∠A是钝
角,那么同样道理如果我们做AC垂线上的一个单位向量j,把向量j和上面那个式
子ABBCAC的两边同时做数量积运算就可以得到
00jABcos(C90)jBCcos(90C)jACcos900,化简即可得到csinAasinC,即acbc,同理可以得到。即在钝角三角sinAsinCsinBsinC
形ABC中也有每条边和它所对的角的正弦值相等这个结论。
【师】:经过上面的证明,我们用两种方法得到了正弦定理的证明,并且得到了正弦定理对
于直角、锐角、钝角三角形都是成立的。
【师】:大家观察一下正弦定理的这个式子,它是一个比例式。对于一个比例式来说,如果
我们知道其中的三项,那么就可以根据比例的运算性质得到第四项。因此正弦定理的应用主要有哪些呢?
【生】:已知三角形的两边一其中一边的对角求另外一边的对角,或者两角一边求出另外一
边。
【师】:其实大家如果联系三角形的内角和公式的话,其实只要有上面的任意一个条件,我们都可以解出三角形中所有的未知边和角。下面我们来看正弦定理的一些应用。
三、例题解析
【例1】优化P101例
1分析:直接代入正弦定理中运算即可
absinAsinB
csinA10sin45
asinCsin30
bcsinBsinC
B180(AC)180(4530)105
csinB10sin105b205sinCsin30总结:本道例题给出了解三角形的第一类问题(已知两角和一边,求另外两边和一
角,因为两个角都是确定的的,所以只有一种情况)
【课堂练习1】教材P144练习1(可以让学生上台板演)
【随堂检测】见幻灯片
四、课堂小结
【师】:本节课的主要内容是正弦定理,即三角形ABC中有每条边和它所对的角的正弦值相等。写成数学式子就是abc。并且一起研究了他的证明方法,利用它解决sinAsinBsinC
了一些解三角形问题。对于正弦定理的证明主,要有面积法和向量法,其实对于正弦定理的证明,还有很多别的方法,有兴趣的同学下去之后可以自己去了解一下。
五、作业布置
世纪金榜P86自测自评、例
1、例
2板书设计:
六、教学反思
第五篇:必修5 正弦定理1
必修51.1.1正弦定理(学案)
【学习要求】
1.发现并掌握正弦定理及证明方法。
2.会初步应用正弦定理解斜三角形.
3.三角形的面积公式
【学习过程】
1.正弦定理证明方法:(1)定义法(2)向量法(3法四:法一:(等积法)在任意斜△ABC当中,S△ABC=absinCacsinBbcsinA.两边同除以abc即得:
法三:(外接圆法)
如图所示,∠A=∠D,∴CD2R.同理2R ==.可将正弦定理推广为:abc== =2R(R为△ABC外接圆半sinAsinBsinC12121212abc==.sinAsinBsinC径).2.正弦定理:在一个三角形中,各边与它所对角的正弦的比相等,都
等于这个三角形的外接圆的直径,即
注意:正弦定理本质是三个恒等式:
三角形的元素:a,b,c,,,C
已知三角形的几个元素求其他元素的过程叫解三角形。
3.定理及其变形 :(1)sinA:sinB:sinC=a:b:c;
abcabc(2)====2R; sinAsinBsinCsinAsinBsinC
(3)a=2RsinA,;b=_2RsinB ;c=2RsinC;
abc(4)sinA=;sinB=;sinC=.2R2R2R
4.正弦定理可以解决的问题:
(1)_已知两角和任意一边,求其他两边和一角;(唯一解)abc=== 2RsinAsinBsinCabcbac,, =.sinAsinCsinCsinBsinCsinB
(2)已知两边和其中一边的对角,求其他的边和两角.(常见:大一小二)
5.常用面积公式:
对于任意ABC,若a,b,c为三角形的三边,且A,B,C为三边的对角,则三角形的面积为:
111①SABC_____ha(ha表示a边上的高).②SABCabsinCacsinB____________ 22
2例1:在ABC中,已知A45,B30,c10,求b.例2:在ABC中,已知A45,a2,b2,求B
例3:在ABC中,已知B45,a,b2,求A,C和c
总结:(1)已知两角和任意一边,求解三角形时,注意结合三角形的内角和定理求出已知边的对角;应用正弦定理时注意边与角的对应性
(2)应用正弦定理时注意边与角的对应性;注意由sinC求角C时,讨论角C为锐角或钝角的情况.例4不解三角形,判断下列三角形解的个数.
(l)a=5,b=4,A=120(2)a =7,b=l4,A= 150(3)a =9,b=l0,A= 60(4)c=50,b=72,C=135练习:
1、在△ABC中,一定成立的是
A、acosAbcosBB、asinAbsinBC、asinBbsinAD、acosBbcosA
2.在△ABC中,若∠A:∠B:∠C=1:2:3,则a:b:c3.已知在△ABC中,a=10,∠A=60°,b=10,则cosB=___________.4.在△ABC中,已知a2,b2,A30,解三角形。
5.(1)在ABC中,已知b,B600,c1,求a和A,C
(2)ABC中,c,A450,a2,求b和B,C
6.在△ABC中,若∠A=60,∠B=45,a求△ABC的面积。00