第一篇:《初中几何证明题解题手册——思路.方法.辅助线添加》目录1
目录
平面几何证明题的基本思路及方法
中考几何题证明一般思路
初中数学辅助线的添加类型
初中几何基本图形辅助线添加七字歌诀
初中几何基本图形辅助线添加七字歌诀完全解读
第一章简单空间图形的认识
第二章三角形与全等三角形
§2.1全等三角形的判定定理歌诀§2.2巧用角平分线判定三角形全等§2.3巧用某边中点判定三角形全等§2.4巧用垂直平分线判定三角形全等
第三章四边形
§3.1平行四边形
§3.2梯形
第四章解直角三角形
第五章图形的相似
§5.1相似三角形
§5.2比例线段
第六章与圆相关的知识
§6.1弧、弦、圆心角、圆周角§6.2垂直于弦的直径
§6.3圆的切线性质定理的应用
第七章
第八章
第九章 §6.4圆的切线的判定 §6.5圆中直角三角形的构造 §6.6多边形与圆 §6.7两圆相切性质定理的应用 §6.8两圆相交性质定理的应用 初中数学抛物线与几何专题揭密 中考数学动态几何专题集结号 中考实验与操作专题强化营
第二篇:初中几何证明题思路及做辅助线总结
中考几何题证明思路总结
一、证明两线段相等
1.两全等三角形中对应边相等。
2.同一三角形中等角对等边。
3.等腰三角形顶角的平分线或底边的高平分底边。
4.平行四边形的对边或对角线被交点分成的两段相等。
5.直角三角形斜边的中点到三顶点距离相等。
6.线段垂直平分线上任意一点到线段两段距离相等。
7.角平分线上任一点到角的两边距离相等。
8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。
二、证明两角相等
1.两全等三角形的对应角相等。
2.同一三角形中等边对等角。
3.等腰三角形中,底边上的中线(或高)平分顶角。
4.两条平行线的同位角、内错角或平行四边形的对角相等。
5.同角(或等角)的余角(或补角)相等。
6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。
三、证明两直线平行
1.垂直于同一直线的各直线平行。
2.同位角相等,内错角相等或同旁内角互补的两直线平行。
3.平行四边形的对边平行。
4.三角形的中位线平行于第三边。
5.梯形的中位线平行于两底。
6.平行于同一直线的两直线平行。
7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。
四、证明两直线互相垂直
1.等腰三角形的顶角平分线或底边的中线垂直于底边。
2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。
3.在一个三角形中,若有两个角互余,则第三个角是直角。
4.邻补角的平分线互相垂直。
5.一条直线垂直于平行线中的一条,则必垂直于另一条。
6.两条直线相交成直角则两直线垂直。
7.利用到一线段两端的距离相等的点在线段的垂直平分线上。
8.利用勾股定理的逆定理。
9.利用菱形的对角线互相垂直。
10.在圆中平分弦(或弧)的直径垂直于弦。
11.利用半圆上的圆周角是直角。
五、证明线段的和、差、倍、分
1.作两条线段的和,证明与第三条线段相等。
2.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段。
3.利用一些定理(三角形的中位线、含30度的直角三角形、直角三角形斜边上的中线、三角形的重心、相似三角形的性质等)。
六、证明角的和、差、倍、分
1.作两个角的和,证明与第三角相等。
2.作两个角的差,证明余下部分等于第三角。
3.利用角平分线的定义。
4.三角形的一个外角等于和它不相邻的两个内角的和。
第一讲:如何做几何证明题
【例题精讲】
【专题一】证明线段相等或角相等
两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。
【例1】已知:如图所示,中,C90,ACBC,ADDB,AECF。ABC 求证:DE=DF
【巩固】如图所示,已知为等边三角形,延长BC到D,延长BA到E,并且使AEABC=BD,连结CE、DE。
求证:EC=ED
【例2】已知:如图所示,AB=CD,AD=BC,AE=CF。求证:∠E=∠F
FBCAEDBCDAEAEDCFB 【专题二】证明直线平行或垂直
在两条直线的位置关系中,平行与垂直是两种特殊的位置。证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”来证。
【例3】如图所示,设BP、CQ是的内角平分线,AH、AK分别为A到BP、CQ的ABC垂线。
求证:KH∥BC
BCQKAPH【例4】已知:如图所示,AB=AC,∠。A90,AEBF,BDDC
求证:FD⊥ED
【专题三】证明线段和的问题
(一)在较长线段上截取一线段等一较短线段,证明其余部分等于另一较短线段。(截长法)【例5】如图,四边形ABCD中,AD∥BC,点E是AB上一个动点,若∠B=60°,AB=BC,且∠DEC=60°; 求证:BC=AD+AE
AEFBDCADEBC【巩固】已知:如图,在中,,∠BAC、∠BCA的角平分线AD、CE相ABCB60交于O。
求证:AC=AE+CD
(二)延长一较短线段,使延长部分等于另一较短线段,则两较短线段成为一条线段,证明该线段等于较长线段。(补短法)
【例6】 已知:如图7所示,正方形ABCD中,F在DC上,E在BC上,。EAF4
5求证:EF=BE+DF
【专题四】证明几何不等式:
【例7】已知:如图所示,在中,AD平分∠BAC,ABAC。ABC 求证:B DDC
【拓展】中,于D,求证:A BAC90,ADBCDABACBCABC
BDCABEAODCADFBECABDC14
基本图形的辅助线的画法
1.三角形问题添加辅助线方法
方法1:有关三角形中线的题目,常将中线加倍。含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。
方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。
方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理。
方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段。
2.平行四边形中常用辅助线的添法
平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:
(1)连对角线或平移对角线:
(2)过顶点作对边的垂线构造直角三角形
(3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线
(4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。
(5)过顶点作对角线的垂线,构成线段平行或三角形全等.3.梯形中常用辅助线的添法
梯形是一种特殊的四边形。它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决。辅助线的添加成为问题解决的桥梁,梯形中常用到的辅助线有:
(1)在梯形内部平移一腰。(2)梯形外平移一腰(3)梯形内平移两腰(4)延长两腰
(5)过梯形上底的两端点向下底作高(6)平移对角线
(7)连接梯形一顶点及一腰的中点。(8)过一腰的中点作另一腰的平行线。(9)作中位线
当然在梯形的有关证明和计算中,添加的辅助线并不一定是固定不变的、单一的。通过辅助线这座桥梁,将梯形问题化归为平行四边形问题或三角形问题来解决,这是解决问题的关键。
第三篇:初中几何证明题思路总结
几何题证明思路总结
几何证明题重点考察的是学生的逻辑思维能力,能通过严密的“因为”、“所以”逻辑将条件一步步转化为所要证明的结论。这类题目出法相当灵活,不像代数计算类题目容易总结出固定题型的固定解法,而更看重的是对重要模型的总结、常见思路的总结。所以本文对中考中最常出现的若干结论做了一个较为全面的思路总结。
一、证明两线段相等
1.线段中点的定义。
2.线段垂直平分线上任意一点到线段两段距离相等。
3.角平分线上任一点到角的两边距离相等。
4.两全等三角形中对应边相等。
5.同一三角形中等角对等边(等腰三角形两腰相等)。
6.等腰三角形顶角的平分线或底边的高平分底边。
7.等边三角形的三边都相等。
8.直角三角形斜边的中点到三顶点距离相等。
9.过三角形一边的中点且平行于另一边的直线分第三边所成的线段相等。
10.平行四边形的两组对边分别相等,对角线互相平分。
11.菱形的四条边都相等。
12.等腰梯形的两腰相等。
13.垂径定理及其推论。
14.圆心角定理及其推论。
15.圆外一点引圆的两条切线,两条切线长相等。
16.两圆的内(外)公切线的长相等。
17.等量代换:等于同一线段的两条线段相等。
18.等量加等量,其和相等。
19.等量减等量,其差相等。
20.等量的同倍量相等。
21.等量的同分量相等。
22.比例线段的比例(分数)换算。(知识清单P275)
二、证明两角相等
1.角平分线的定义。
2.对顶角相等。
3.两条平行线的同位角相等,内错角相等。
4.同角(或等角)的余角(或补角)相等。
5.全等三角形的对应角相等。
6.相似三角形的对应角相等。
7.等腰三角形两底角相等:同一三角形中等边对等角。
8.等腰三角形中,底边上的中线(或高)平分顶角。
9.平行四边形的对角相等。
10.矩形的四个角都相等。
11.等腰梯形同一底上的两底角相等。
12.同弧或等弧(同弦或等弦)所对的圆心角相等,圆周角相等。
13.弦切角等于它所夹的弧对的圆周角。/
314.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。
15.圆的内接四边形的外角等于内对角。
16.等量代换:等于同一角的两个角相等。
17.等量加等量,其和相等。
18.等量减等量,其差相等。
19.等量的同倍量相等。
20.等量的同分量相等。
三、证明两直线平行
1.平行线定义:在同一平面内,不相交的两条直线叫做平行线。
2.垂直于同一直线的各直线平行。
3.平行于同一直线的两直线平行。
4.同位角相等,内错角相等或同旁内角互补的两直线平行。
5.平行四边形的对边平行。
6.三角形的中位线平行于第三边。
7.梯形的中位线平行于两底。
8.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。
四、证明两直线互相垂直
1.定义:两条直线相交成直角则两直线垂直。
⑴证夹角为90°.⑵证二直线的夹角与一直角相等。
⑶将夹角分成两个角,证明两角互余。
⑷证明二直线的夹角是直角三角形的直角。
2.一条直线垂直于平行线中的一条,则必垂直于另一条。
3.到线段两端的距离相等的点在线段的垂直平分线上。
4.邻补角的平分线互相垂直。
5.等腰三角形的顶角平分线或底边的中线垂直于底边。
6.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。
7.在一个三角形中,若有两个角互余,则第三个角是直角。
8.利用勾股定理的逆定理。
9.利用菱形的对角线互相垂直。
10.在圆中平分弦(或弧)的直径垂直于弦。
11.利用半圆上的圆周角是直角。
五、证明线段的和、差、倍、分
1.作两条线段的和,证明与第三条线段相等。(补短法)
2.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段。(截长法)
3.延长短线段为其二倍,再证明它与较长的线段相等。
4.取长线段的中点,再证其一半等于短线段。
5.利用一些定理(三角形的中位线、含30度的直角三角形、直角三角形斜边上的中线、三角形的重心、相似三角形的性质、等腰三角形的性质等)。
六、证明角的和、差、倍、分
1.作两个角的和,证明与第三角相等。
2.作两个角的差,证明余下部分等于第三角。
3.利用角平分线的定义。
4.三角形的一个外角等于和它不相邻的两个内角的和(等腰三角形顶角的外角等于底角的2倍)。
七、证明两线段不等
1.同一三角形中,大角对大边。
2.垂线段最短。
3.三角形两边之和大于第三边,两边之差小于第三边。
4.在两个三角形中有两边分别相等而夹角不等,则夹角大的第三边大。
5.同圆或等圆中,弧大弦大,弦心距小。
6.全量大于它的任何一部分。
八、证明两角不等
1.同一三角形中,大边对大角。
2.三角形的外角大于和它不相邻的任一内角。
3.在两个三角形中有两边分别相等,第三边不等,第三边大的,两边的夹角也大。
4.同圆或等圆中,弧大则圆周角、圆心角大。
5.全量大于它的任何一部分。
九、证明比例式或等积式
1.利用相似三角形对应线段成比例。
2.利用内外角平分线定理。
3.平行线截线段成比例。
4.直角三角形中的比例中项定理即射影定理。
5.与圆有关的比例定理--相交弦定理、切割线定理及其推论。
6.利用比利式或等积式化得。
以上九项是中考几何证明题中最常出现的内容,只要掌握了对应的方法,再根据题目中的条件进行合理选择,攻克难题不再是梦想!
第四篇:初中数学几何证明题作辅助线的技巧
人说几何很困难,难点就在辅助线。初中数学几何证明题辅助线怎么画?
辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。平行四边形出现,对称中心等分点。梯形里面作高线,平移一腰试试看。平行移动对角线,补成三角形常见。证相似,比线段,添线平行成习惯。等积式子比例换,寻找线段很关键。
斜边上面作高线,比例中项一大片。半径与弦长计算,弦心距来中间站。
圆上若有一切线,切点圆心半径连。切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆。如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。若是添上连心线,切点肯定在上面。要作等角添个圆,证明题目少困难。辅助线,是虚线,画图注意勿改变。假如图形较分散,对称旋转去实验。基本作图很关键,平时掌握要熟练。解题还要多心眼,经常总结方法显。切勿盲目乱添线,方法灵活应多变。分析综合方法选,困难再多也会减。虚心勤学加苦练,成绩上升成直线。几何证题难不难,关键常在辅助线;知中点、作中线,中线处长加倍看;
底角倍半角分线,有时也作处长线;
公共角、公共边,隐含条件须挖掘; 全等图形多变换,旋转平移加折叠; 中位线、常相连,出现平行就好办; 四边形、对角线,比例相似平行线;梯形问题好解决,平移腰、作高线;两腰处长义一点,亦可平移对角线;正余弦、正余切,有了直角就方便;特殊角、特殊边,作出垂线就解决;实际问题莫要慌,数学建模帮你忙;圆中问题也不难,下面我们慢慢谈;弦心距、要垂弦,遇到直径周角连;切点圆心紧相连,切线常把半径添;两圆相切公共线,两圆相交公共弦;切割线,连结弦,两圆三圆连心线;基本图形要熟练,复杂图形多分解;以上规律属一般,灵活应用才方便。
第五篇:初中几何证明题思路
学习总结:中考几何题证明思路总结
几何证明题重点考察的是学生的逻辑思维能力,能通过严密的“因为”、“所以”逻辑将条件一步步转化为所要证明的结论。这类题目出法相当灵活,不像代数计算类题目容易总结出固定题型的固定解法,而更看重的是对重要模型的总结、常见思路的总结。所以本文对中考中最常出现的若干结论做了一个较为全面的思路总结。
一、证明两线段相等
1.两全等三角形中对应边相等。
2.同一三角形中等角对等边。
3.等腰三角形顶角的平分线或底边的高平分底边。
4.平行四边形的对边或对角线被交点分成的两段相等。
5.直角三角形斜边的中点到三顶点距离相等。
6.线段垂直平分线上任意一点到线段两段距离相等。
7.角平分线上任一点到角的两边距离相等。
8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。
9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。
10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。
11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。
12.两圆的内(外)公切线的长相等。
13.等于同一线段的两条线段相等。
二、证明两角相等
1.两全等三角形的对应角相等。
2.同一三角形中等边对等角。
3.等腰三角形中,底边上的中线(或高)平分顶角。4.两条平行线的同位角、内错角或平行四边形的对角相等。5.同角(或等角)的余角(或补角)相等。6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。
7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。
8.相似三角形的对应角相等。
9.圆的内接四边形的外角等于内对角。10.等于同一角的两个角相等
三、证明两直线平行
1.垂直于同一直线的各直线平行。
2.同位角相等,内错角相等或同旁内角互补的两直线平行。
3.平行四边形的对边平行。
4.三角形的中位线平行于第三边。
5.梯形的中位线平行于两底。
6.平行于同一直线的两直线平行。
7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。
四、证明两直线互相垂直
1.等腰三角形的顶角平分线或底边的中线垂直于底边。
2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。
3.在一个三角形中,若有两个角互余,则第三个角是直角。
4.邻补角的平分线互相垂直。
5.一条直线垂直于平行线中的一条,则必垂直于另一条。
6.两条直线相交成直角则两直线垂直。
7.利用到一线段两端的距离相等的点在线段的垂直平分线上。
8.利用勾股定理的逆定理。
9.利用菱形的对角线互相垂直。
10.在圆中平分弦(或弧)的直径垂直于弦。
11.利用半圆上的圆周角是直角。
五、证明线段的和、差、倍、分
1.作两条线段的和,证明与第三条线段相等。
2.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段。
3.延长短线段为其二倍,再证明它与较长的线段相等。
4.取长线段的中点,再证其一半等于短线段。
5.利用一些定理(三角形的中位线、含30度的直角三角形、直角三角形斜边上的中线、三角形的重心、相似三角形的性质等)。
六、证明角的和、差、倍、分
1.作两个角的和,证明与第三角相等。
2.作两个角的差,证明余下部分等于第三角。
3.利用角平分线的定义。
4.三角形的一个外角等于和它不相邻的两个内角的和。
七、证明两线段不等
1.同一三角形中,大角对大边。
2.垂线段最短。
3.三角形两边之和大于第三边,两边之差小于第三边。
4.在两个三角形中有两边分别相等而夹角不等,则夹角大的第三边大。
5.同圆或等圆中,弧大弦大,弦心距小。
6.全量大于它的任何一部分。
八、证明两角不等
1.同一三角形中,大边对大角。
2.三角形的外角大于和它不相邻的任一内角。
3.在两个三角形中有两边分别相等,第三边不等,第三边大的,两边的夹角也大。
4.同圆或等圆中,弧大则圆周角、圆心角大。
5.全量大于它的任何一部分。
九、证明比例式或等积式
1.利用相似三角形对应线段成比例。2.利用内外角平分线定理。3.平行线截线段成比例。4.直角三角形中的比例中项定理即射影定理。
5.与圆有关的比例定理--相交弦定理、切割线定理及其推论。
6.利用比利式或等积式化得。
以上九项是中考几何证明题中最常出现的内容,只要掌握了对应的方法,再根据题目中的条件进行合理选择,攻克难题不再是梦想!