第一篇:全等三角形证明写理由
全等三角形证明
1.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C
证明:延长AB到,使AE=,连接DE
∵AD平分∠BAC
∴∠EAD=∠CAD()
∵AE=AC,AD=AD
∴△AED≌△ACD()
∴∠E=∠C()
∵AC=AB+BD∴AE=AB+BD()
∵AE=AB+BE∴BD=BE()
∴∠BDE=∠E
∵∠ABC=∠E+∠BDE∴∠ABC=2∠E
∴∠ABC=2∠C
2. 已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE
证明: 在AE上取F,使EF=EB,连接CF
∵CE⊥AB∴∠CEB=∠CEF=90°()
∵EB=EF,CE=CE,∴△CEB≌△CEF()
∴∠B=∠CFE
∵∠B+∠D=180°,∠CFE+∠CFA=180°
∴∠D=∠CFA()
∵AC平分∠BAD∴∠DAC=∠FAC
∵AC=AC
∴△ADC≌△AFC()∴AD=AF
∴AE=AF+FE=AD+BE
3.如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。求证:BC=AB+DC。证明:在BC上截取BF=AB,连接EF
∵BE平分∠ABC
∴∠ABE=∠FBE
又∵BE=BE
∴⊿ABE≌⊿FBE()
∴∠A=∠BFE
∵AB//CD
∴∠A+∠D=180º()
∵∠BFE+∠CFE=180º∴∠D=∠CFE()
又∵∠DCE=∠FCE,CE平分∠BCCE,CE=CE
∴⊿DCE≌⊿FCE()
∴CD=CF∴BC=BF+CF=AB+CD
4.已知:AB=CD,∠A=∠D,求证:∠B=∠C
证明:设线段AB,CD所在的直线交于E,(当AD
∴AE=DE而AB=CD∴BE=CE()
∴△BEC是等腰三角形∴∠B=∠C.()
5. 如图,在△ABC中,BD=DC,∠1=∠2,求证:AD⊥BC. 证明:延长AD至BC于点E,∵BD=DC∴△BDC是等腰三角形()
∴∠DBC=∠DCB()
又∵∠1=∠2∴∠DBC+∠1=∠DCB+∠2()
即∠ABC=∠ACB∴△ABC是等腰三角形()
∴AB=AC
在△ABD和△ACD中
∵ AB=AC(),∠1=∠2(),BD=DC()
∴△ABD≌△ACD()∴∠BAD=∠CAD
∵ AB=AC∴AE是BC边上的)
∴AE⊥BC即AD⊥BC
6. 如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC。求证:(1)EC=BF;(2)EC⊥BF
证明:(1)∵AE⊥AB,AF⊥AC,∴∠BAE=∠CAF=90°()
∴∠BAE+∠BAC=∠CAF+∠BAC()
即∠EAC=∠BAF,E 在△ABF和△AEC中,∵AE=AB,∠EAC=∠BAF,AF=AC,∴△ABF≌△AEC()∴EC=BF;
C(2)如图,根据(1),△ABF≌△AEC,∴∠AEC=∠ABF,∵AE⊥AB,∴∠BAE=90°,∴∠AEC+∠ADE=90°,∵∠ADE=∠BDM()∴∠ABF+∠BDM=90°()在△BDM中,∵∠BMD=180°-∠ABF-∠BDM=180°-90°=90°,∴EC⊥BF.
7.如图:BE⊥AC,CF⊥AB,BM=AC,CN=AB。求证:(1)AM=AN;(2)AM⊥AN。
证明:(1)∵BE⊥AC,CF⊥AB ∴∠ABM+∠BAC=90°,∠ACN+∠BAC=90° ∴∠ABM=∠CAN()∵BM=AC,CN=AB
∴△ABM≌△NAC()∴AM=AN(2)∵△ABM≌△NAC()∴∠BAM=∠N
∵∠N+∠4=90°∴∠3+∠4=90°即∠MAN=90°∴AM⊥AN
8.△ABC是等腰直角三角形,∠ACB=90°,AD是BC边上的中线,过C作AD的垂线,交AB于点E,交AD于点F,求证:∠ADC=∠BDE. 证明:作CG⊥AB于G,交AD于H, ∵ △ABC是等腰直角三角形,∠ACB=90°
∴∠ACH=45º,∠BCH=45º ∵∠CAH=90º-∠CDA, ∠BCE=90º-∠CDA ∴∠CAH=∠BCE()
又∵AC=CB, ∠ACH=∠B=45º ∴△ACH≌△CBE()∴CH=BE又∵∠DCH=∠B=45º, CD=DB
∴△CFD≌△BED()∴∠ADC=∠BDEEB
第二篇:全等三角形证明
全等三角形的证明
1.翻折
如图(1),BOC≌EOD,BOC可以看成是由EOD沿直线AO翻折180得到的;
旋转
如图(2),COD≌BOA,COD可以看成是由BOA绕着点O旋转180得到的;
平移
如图(3),DEF≌ACB,DEF可以看成是由ACB沿CB方向平行移动而得到的。
2.判定三角形全等的方法:
(1)边角边公理、角边角公理、边边边公理、斜边直角边(直角三角形中)公理
(2)推论:角角边定理
3.注意问题:
(1)在判定两个三角形全等时,至少有一边对应相等;
(2)不能证明两个三角形全等的是,a: 三个角对应相等,即AAA;b :有两边和其中一角对应相等,即SSA。
一、全等三角形知识的应用
(1)证明线段(或角)相等
例1:如图,已知AD=AE,AB=AC.求证:BF=FC
(2)证明线段平行
例2:已知:如图,DE⊥AC,BF⊥AC,垂足分别为E、F,DE=BF,AE=CF.求证:AB∥CD
(3)证明线段的倍半关系,可利用加倍法或折半法将问题转化为证明两条线段相等
例3:如图,在△ ABC中,AB=AC,延长AB到D,使BD=AB,取AB的中点E,连接CD和CE.求证:CD=2CE
例4 如图,△ABC中,∠C=2∠B,∠1=∠2。求证:AB=AC+CD.
.
例5:已知:如图,A、D、B三点在同一条直线上,CD⊥AB,ΔADC、ΔBDO为等腰Rt三角形,AO、BC的大小关系和位置关系分别如何?证明你的结论。
例6.如图,已知C为线段AB上的一点,ACM和CBN都是等边三角形,AN和CM相交于F点,BM和CN交于E点。求证:CEF是等边三角形。
N
M
FE
C
A B
第三篇:全等三角形证明
全等三角形证明
1、已知CD∥AB,DF∥EB,DF=EB,问AF=CE吗?说明理由。
CA2、已知∠E=∠F,∠1=∠2,AB=CD,问AE=DF吗?说明理由。
F3、已知,点C是AB的中点,CD∥BE,且CD=BE,问∠D=∠E吗?说明理由。
4、已知AB=CD,BE=DF,AE=CF,问AB∥CD吗?
A B
C
第四篇:初一全等三角形证明
全等三角形1.三角形全等的判定一(SSS)
1.如图,AB=AD,CB=CD.△ABC与△ADC全等吗?为什么?
2.如图,C是AB的中点,AD=CE,CD=BE.
求证△ACD≌△CBE.
3.如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF. 求证∠A=∠D.
4.已知,如图,AB=AD,DC=CB.求证:∠B=∠D。
B
5.如图, AD=BC, AB=DC, DE=BF.BE=DF.求证:∠E=∠F
A
DCBF
2.三角形全等的判定二(SAS)
1.如图,AC和BD相交于点O,OA=OC,OB=OD.求证DC∥AB.
2.如图,△ABC≌△ABC,AD,AD分别是△ABC,△ABC的对应边上的中线,AD与AD有什么关系?证明你的结论.
3.如图,已知AC⊥AB,DB⊥AB,AC=BE,AE=BD,试猜想线段CE与DE的大小与位置关系,并证明你的结论.
E B
4.已知:如图,AD∥BC,AD=CB,求证:△ADC≌△CBA.
CB
5.已知:如图AD∥BC,AD=CB,AE=CF。求证:△AFD≌△CEB.
AC
6.已知,如图,AB=AC,AD=AE,∠1=∠2。求证:△ABD≌△ACE. AE D
3~4.三角形全等的判定三、四(ASA、AAS)
1.如图,点B,F,C,E在一条直线上,FB=CE,AB∥ED,AC∥FD.求证AB=DE,AC=DF.
2.如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2.5cm,DE=1.7cm. 求BE的长.
3.已知,D是△ABC的边AB上的一点,DE交AC于点E,DE=FE,FC∥AB。求证:AE=CE。
E
DB
4.已知:如图 , 四边形ABCD中 , AB∥CD , AD∥BC.求证:△ABD≌△CDB
5.如图, AD∥BC, AB∥DC, MN=PQ.求证:DE=BE.3 QDPA
6.如图, 在ABC中, ∠A=90°, BD平分B, DE⊥BC于E, 且BE=EC,(1)求∠ABC与∠C的度数;
(2)求证:BC=2AB.07.如图,四边形ABCD中, (2)求证:E是CD的中点; (3)求证:AD+BC=AB.8.如图, 在△ABC中, AC⊥BC, CE⊥AB于E, AF平分∠CAB交CE于点F, 过F作FD∥ BC交AB于点D.求证:AC=AD.C 3eud教育网http://50多万教学资源,完全免费,无须注册,天天更新! 全等三角形的证明 1、已知:(如图)AD∥BC,AD=CB,求证:△ADC≌△CBA。 B C2、已知:如图AD∥BC,AD=CB,AE=CF。求证:△AFD≌△CEB。AC3、已知,如图,AB=AC,AD=AE,∠1=∠2。求证:△ABD≌△ACE。 A C ED4、已知,如图,点B、F、C、E在同一条直线上,FB=CE,AB∥ED,AC∥FD。求证:AB=DE,AC=DF。 E B F C5、已知,D是△ABC的边AB上的一点,DE交AC于点E,DE=FE,FC∥AB。求证:AE=CE。 E D B C 6、已知,如图,AB=AD,DC=CB,求证:∠B=∠D。 B 3eud教育网 http://教学资源集散地。可能是最大的免费教育资源网! A 全等三角形的证明 2、已知:(如图)AD∥BC,AD=CB,求证:△ADC≌△CBA。 B C2、已知:如图AD∥BC,AD=CB,AE=CF。求证:△AFD≌△CEB。AC3、已知,如图,AB=AC,AD=AE,∠1=∠2。求证:△ABD≌△ACE。 C 1 B ED4、已知,如图,点B、F、C、E在同一条直线上,FB=CE,AB∥ED,AC∥FD。求证:AB=DE,AC=DF。 E B F C5、已知,D是△ABC的边AB上的一点,DE交AC于点E,DE=FE,FC∥AB。求证:AE=CE。 E D B C 6、已知,如图,AB=AD,DC=CB,求证:∠B=∠D。 B A第五篇:全等三角形的证明