第一篇:17 三角形内角和定理 三角形三个内角的和等于180
三角形内角和定理 三角形三个内角的和等于180°推论1 直角三角形的两个锐角互余推论2 三角形的一个外角等于和它不相邻的两个内角的和推论3 三角形的一个外角大于任何一个和它不相邻的内角全等三角形的对应边、对应角相等
22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等边边边公理(SSS)有三边对应相等的两个三角形全等斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等定理2 到一个角的两边的距离相同的点,在这个角的平分线上角的平分线是到角的两边距离相等的所有点的集合等腰三角形的性质定理 等腰三角形的两个底角相等(即等边对等角)
推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
推论1 三个角都相等的三角形是等边三角形
推论 2 有一个角等于60°的等腰三角形是等边三角形
第二篇:三角形内角和定理教案
9.2三角形内角和 教学案例
学校:野鸡坨镇丁庄子初级中学
学科:数 学
姓名:田 明 时间:2018年5月
9.2 三角形内角和定理 教学案例
一、地位和作用
《三角形内角和》是冀教版义务教育课程标准实验教科书七年级下册第九章第二节第一课时的内容。在这之前,学生已经学习过平行线的性质,平角的定义,为这节课中三角形内角和的推理起了铺垫的作用,这节课也为后边学习多边形的内角和起了一定的奠基作用。三角形内角和在整个初中的教学过程中有重要的作用。
二、教学目标
知识与技能:掌握三角形内角和定理,并初步学会利用辅助线证题,同时培养学生观察、猜想和验证能力。
过程与方法:
1、在评价学生的“说理”过程和水平时不应要求形式化的推理格式,应鼓励学生运用自己的方式说明理由,只要清楚、正确即可。
2、经历实验活动过程,得出三角形内角和定理。
情感态度与价值观:通过对几何问题的演绎推理,体会证明的必要性,培养学生的逻辑推理能力。
教学重点:三角形内角和定理的证明及应用。教学难点:三角内角和的证明方法。
三、教学过程:
(一)引入新课
问题一:三角形一共有几个内角
问题二:老师手有两个三角形,一个是锐角三角形,一个钝角三角形,那么是不是钝角三角形的内角和大于锐角三角形的内角和呢? 问题三:三角形的三个内角有什么关系?
设计意图:,从学生已经掌握的知识出发,明确本节课要研究的内容。
(二)自主探究,验证新知
1、探索
(1)小学我们是如何验证这个结论的?
(2)实物展示台展示,三角形发生变化,但是内角和总是180。
设计意图:让学生动手操作,一方面锻炼动手操作能力,另一方面为下一环节的推理作好准备。
2、引导
(1)前面我们已经学过命题的结构,知道命题由条件和结论组成,并且知道要说明一个命题的正确性需要说理,那么怎么说明三角形的内角和是180呢?(2)
已知:如图,ΔABC.A+∠B+∠C=180
求证:∠
(引导学生思考:那些地方存在着180的角?①平角或邻补角;②平行线间的同旁内角)
(说明理由的过程完全可以由学生自己书写。)
(3)合作交流
是否还有其他的说明理由的方法?
(平角)
(平行线间的同旁内角)
(过边上一点非顶点作)
(从三角形内部一点作)
(三条平行线也可)
设计意图:用多种方法说明三角形的内角和定理。用多种方法说明这一命题的正确性,一方面让学生初步认识说明一个命题正确性可能有多种方法,另一方面让学生确信该命题的正确性。
(4)经过说理,“三角形内角和为180”作为定理得到了充分的证明。几何语言:
(三)例题讲解
例一:如图:
在ΔABC中,∠A=30,∠B=65,求∠C的度数。(让学生尝试解决,教师再规范书写格式)
(四)课堂练习
B=62°24′,∠C=28°52′,求∠A的度数。
1、在ΔABC中,∠
C=36°,∠A与∠B的比是1:2,求∠A,∠B的度数。
2、在ΔABC中,∠ C=42°,∠A=∠B,求∠B的度数。
3、在ΔABC中,∠
(五)课堂小结
1.学习了三角形内角和及其证明方法 2.转化的思想 3.运动的观点
(六)布置作业
教材第105页A组1/2/3.四、板书设计:
9.2三角形的内角和外角
1、三角形内角和定理:三角形的内角和是180。
2、说明理由: 延长BC到点D,作CE∥BA CE∥BA ∴∠1=∠4(两直线平行,内错角相等)
∠2=∠(两直线平行,同位角5相等)∠ 3+∠4+∠5=180°(平角的定义)∴ ∠1+∠2+∠3=180°(等量代换)
3、几何语言: 在ΔABC中
∠A+∠B+∠C=180°
∴
第三篇:《三角形内角和定理》教学设计
人教版七年级下册7.2.1《三角形的内角》教学设计说明
淄博市高青县实验中学
邢春林
人教版七年级下册7.2.1《三角形的内角》教学设计说明
淄博市高青县实验中学
邢春林
一、教材分析
(一)教材的地位和作用 《三角形的内角》内容选自人教实验版九年义务教育七年级下册第七章第二节第一课时。“三角形的内角和等于180°”是三角形的一个重要性质,它揭示了组成三角形的三个角的数量关系,学好它有助于学生理解三角形内角之间的关系,也是进一步学习《多边形内角和》及其它几何知识的基础。此外,“三角形的内角和等于180°”在前两个学段已经知道了,但这个结论在当时是通过实验得出的,本节要用平行线的性质来说明它,说理中引入了辅助线,这些都为后继学习奠定了基础,三角形的内角和定理也是几何问题代数化的体现。
(二)教学目标
基于对教材以上的认识及课程标准的要求,我拟定本节课的教学目标为: 1.知识技能:发现“三角形内角和等于180°”,并能进行简单应用;体会方程的思想;寻求解决问题的方法,获得解决问题的经验。
2.数学思考:通过拼图实践、合作探索、交流,培养学生的逻辑推理、大胆猜想、动手实践等能力。
3.解决问题:会用三角形内角和解决一些实际问题。
4.情感、态度、价值观:在良好的师生关系下,建立轻松的学习氛围,使学生乐于学数学,在数学活动中获得成功的体验,增强自信心,在合作学习中增强集体责任感。通过添置辅助线教学,渗透美的思想和方法教育。
(三)重难点的确立:
1.重点:“三角形的内角和等于180°”结论的探究与应用。
2.难点:三角形的内角和定理的证明方法(添加辅助线)的讨论
二、学情分析
处于这个年龄阶段的学生有能力自己动手,他们乐于尝试、探索、思考、交流与合作,具有分析、归纳、总结的能力,他们渴望体验成功感和自豪感。因而老师有必要给学生充分的自由和空间,同时注意问题的开放性与可扩展性。
基于以上的情况,我确立了本节课的教法和学法:
三、教法、学法
(一)教法
基于本节课内容的特点和七年级学生的心理特征,我采用了“问题情境-建立模型-解释、应用与拓展”的模式展开教学。本节课采用多媒体辅助教学,旨在呈现更直观的形象,提高学生的积极性和主动性,并提高课堂效率。
(二)学法
通过学生分组拼图得出结论,小组分析寻求说理思路,从不同角度去分析、解决新问题,通过基础练习、提高练习和拓展练习发掘不同层次学生的不同能力,从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。
四、教学过程
我是以6个活动的形式展开教学的,活动1是为了创设情境引入课题,激发学生的学习兴趣,活动2是探讨三角形内角和定理的证明,证明的思路与方法是本节的难点,活动3到5是新知识的应用,活动6是整节课的小结提高。
具体过程如下:活动1:首先用多媒体展示情境提出问题1,设计意图是:创设情境,引起学生注意,调动学生学习的积极性,激发学生的学习兴趣,导入新课。在此基础上由学生分组,用事先准备好的三角形拼图发现三角形的内角和等于180°。设计意图是:从丰富的拼图活动中发展学生思维的灵活性,创造性,从活动中获得成功的体验,增强自信心,通过小组合作培养学生合作、交流能力。在合作学习中增强集体责任感。再用多媒体演示两个动画拼图的过程。设计意图:让学生更加形象直观的理解拼图实际上只有两种,一种是折叠,一种是角的拼合,这为下一环节说理中添加辅助线打好基础,从而达到突破难点的目的。
前面通过动手大家都知道了三角形的内角和等于180°这个结论,那么你们是否能利用我们前面所学的有关知识来说明一下道理呢?请看问题2,请各小组互相讨论一下,讨论完后请派一个代表上来说明你们小组的思路[学生的说理方法可能有四种(板书添辅助线的四种可能并用多媒体演示证明方法)]设计的目的:通过添置辅助线教学,渗透美的思想和方法教育,突破本节的难点,了解辅助线也为后继学习打下基础。在说理过程中,更加深刻地理解多种拼图方法。同时让学生上板分析说理过程是为了培养学生的语言表达能力,逻辑思维能力,多种思路的分析是为了培养学生的发散性思维。
通过活动3中问题的解决加深学生对三角形内角和的理解,初步应用新知识,解决一些简单的问题,培养学生运用方程思想解几何问题的能力。
活动4向学生展示分析问题的基本方法,培养学生思维的广阔性、数学语言的表达能力。把问题中的条件进一步简化为学生用辅助线解决问题作好铺垫。同时培养学生建模能力。
活动5通过两上实际问题的解决加深学生对所学知识的理解、应用。培养学生建模的思想及能力。
活动6的设计目的发挥学生主体意识,培养学生语言概括能力。【教学设计说明】
1、《数学课程标准》指出:“本学段(7~9年级)的数学应结合具体的数学内容,采用„问题情境——建立模型——解释、应用与拓展‟的模式展开,让学生经历知识的形成与应用的过程…… ”因此,在本节课的教学中,我不断的创造自主探究与合作交流的学习环境,让学生有充分的时间和空间去动手操作,去观察分析,去得出结论,并体验成功,共享成功.
2、体现自主学习、合作交流的新课程理念.无论是例题还是习题的教学均采用“尝试—交流—讨论”的方式,充分发挥学生的主体性,教师起引导、点拨的作用.
3、结合评价表,对学生的课堂表现进行激励性的评价,一方面有利于调动学生的积极性,另一方面有利于学生进行自我反思。
第四篇:三角形内角和定理教学反思
三角形内角和定理(1)教学反思
“三角形的内角和定理”我们在初一的时候就已经学会运用了,但是这个定理到底如何证明呢?这时,本节的目标就已经明确下来了。证明的过程中,通过课前准备好的三角形道具,让学生通过撕撕拼拼的方法,把三角形的三个内角拼成我们所熟悉的平角或者是同旁内角的关系,辅助线就自然而然的运用到其中。本节的重点和难点也就自然而然地被突破。
课后我认为本节中的成功之处有以下几点:
1、引入简单精炼,给了全体学生的自信心,能使所以学生的注意力迅速地集中到课堂上来;
2、利用拼图的方法来找到“三角形内角和定理”的证明方法的过程中,学生充分地配合,学生的思维得到了最大限度的发挥,而且采用此种方法来引出辅助线在几何中应用,巧妙地分散了本节的重点和难点,事实也证明学生的接受程度很好;
3、教师在多媒体上展示每个三角形都是用三种不同颜色的彩纸拼成的,学生在学习的过程中看起来会更加的清晰、醒目;
4、在本节课的整个流程中,师生之间的配合非常地默契,教师能够关注每一个学生,学生的思维也在短短的45分钟内得到了充分地发散和发挥,通堂的气氛活跃、轻松。
课后我认为本节课中的不足之处:
1、在学生拼图寻求“三角形内角和定理”证明之前的铺垫,有些过快,导致个别学生不太明白这些铺垫对于利用拼图来证明定理时有什么用途;
2、不完全相信学生的能力,比如在学生讨论拼图方法后,让学生到黑板上来展示作品的时候,我似乎不敢距离学生太远,恐怕中间会出现什么差错。而实践证明学生完全是通过自己来完成作品的展示的;
3、还是没有改掉急躁的毛病,一些问题还是急于说出答案,没有给学生们足够的思考时间,这是其一。其二,教师讲得过多,没有把课堂还给学生。
第五篇:三角形的内角和定理教案
三角形的内角和定理
旧市学校 李姿慧
教学目标
1.知识与技能 :
⑴掌握三角形内角和定理的证明。
⑵初步体会添加辅助线证题,培养学生观察、猜想和论证的能力 2.过程与方法 :
经历探索三角形内角和定理的过程,初步体会思维的多样性,给学生渗透化归的数学思想。
3.情感态度与价值观:
通过师生的共同活动,培养学生的逻辑思维能力,进而激发学生的求知欲和学习的 积极主动性。使学生主动探索,敢于实验,勇于发现,合作交流。
教学重点
三角形内角和定理的证明及其简单的应用。
教学难点
在三角形内角和定理的证明过程中如何添加辅助线。
教学用具
多媒体、三角板、学生每人准备一个纸片三角板。
教学过程
一、引入新课
分享小故事:《内角三兄弟之争》
在一个直角三角形里住着三个内角,平时,它们三兄弟非常团结.可是有一天,老二突然不高兴,发起脾气来,它指着老大说:“你凭什么度数最大,我也要和你一样大!”“不行啊!”老大说:“这是不可能的,否则,我们这个家就再也围不起来了„„”“为什么?” 老二很纳闷.同学们,你们知道其中的道理吗?从而引出本节课的课题《三角形的内角和定理》
二、合作探究
1、[师]现在,我们来看两个电脑的动画演示,验证这个结论是不是正确的。
动画演示一 [师]先将△ABC中的∠A通过平移和旋转到如上图所示的位置,再将图中的∠B通过平移到上图所示的位置。
拖动点A,改变△ABC的形状,三角形的三个内角和总等于180°
2.动画演示二
[师]先将三角形纸片(图(1))一角折向其对边,使顶点落在对边上,折线与对边平行(图(2)),然后把另外两角相向对折,使其顶点与已折角的顶点相重合(图(3)(4)。)[师]由电脑的动画演示可知:∠A、∠B、∠C拼成的角总是一个平角,由此得到三角形的三个内角之和等于180°。[让学生直观感受,调动其研究兴趣]
我们通过观察与实验的方法猜想得到的结论不一定正确可靠,要判定一个数学结论正确与否,需要进行有根有据的推理、证明。这就是我们这节课所要研究的内容。
3、定理证明
[师]接下来我们来证明这个命题:三角形的三个内角之和等于180°。这是一个文字命题,证明时需要先做什么呢?
[生]需要先画出图形、根据命题的条件和结论,结合图形写出已知、求证。[有本章前面几节作为基础,学生有能力画图,写已知,求证。] [师]很好!怎样证明呢?[ 联想前面撕角拼角的方法,学生能想到。让学生体会转化的数学思想方法,把新知识化为旧知识。] [生]添加辅助线,延长BC到点D,过点C作CE∥AB,∠A=∠ACE,∠B=∠ECD,进而将三个内角拼成平角。[通过以上分析、研究,让学生讲解依据:根据平行线的性质,利用同位角,内错角把三角形三内角转化为一个平角。使学生亲身参与数学研究的过程,并在过程中体会数学研究的乐趣。] [实验法] 已知:△ABC 求证:∠A+∠B+∠C=180° 证明:延长BC到点D,过点C作CE∥AB
∵CE∥AB
∴∠A=∠ACE(两直线平行,内错角相等)
∠B=∠ECD(两直线平行,同位角相等)
∵∠ACE+∠ECD+∠BCA=180°
∴∠A+∠B+∠BCA=180°(等量代换)
[教师引导,要把三角形三个内角转化为上述两种角,就要在原图形上添加一些线,这些线叫做辅助线,在平面几何里,辅助线常画成虚线,添辅助线是解决问题的重要思想方法。]
4、探究讨论:
五个学生为一组,探索三角形内角和定理的其它证法分析、证明方法。
[师]现在,各组派一名代表说明证明的思路。[学生自己得出的猜想和证明会更让他们乐于接受,而方法也在此过程中渗透给了学生。]
证法1.[生1]过点A作直线PQ∥BC,使三个角凑到“A”处。[通过分析、研究,让不同做法的学生讲解依据。]根据平行线的性质,利用内错角,把三角形三内角转化为一个平角。
证明:过点A作直线PQ∥BC
∵PQ∥BC
∴∠B=∠PAB(两直线平行,内错角相等)
∠C=∠QAC(两直线平行,内错角相等)
∵∠PAB+∠QAC+∠BAC=180°
∴∠B+∠C+∠BAC=180°(等量代换)证法2:[生5]过点A作AD∥BC,有∠C=∠2,将三个内角拼成一对同旁内角。
证明:过点A作射线AQ∥BC
∴∠C=∠QAC(两直线平行,内错角相等)
∠QAC+∠BAC+∠B=180°(两直线平行,同旁内角互补)
∴∠BAC+∠B+∠C=180°(等量代换)3 [师]同学们讨论得真棒。我们由180°联想到一平角等于180°,一对邻补角之和等于180°,两直线平行,同旁内角互补。由此,大家提供了这么多的的证明方法,说明你们能学以致用。接下来,我们做练习以巩固三角形内角和定理。[根据以上几种辅助线的作法,选择一种,师生合作,写出示范性证明过程。其余由学生自主完成证明过程。目的是培养学生的思维能力和推理能力。进一步搞清作辅助线的思路和合乎逻辑的分析方法,充分让学生表述自己的观点,这个过程对培养学生的能力极为重要,依据不充分时,学生可争论,师生共同小结。]
三、例题讲解
【例】在△ABC中,∠A=55°,∠B=25°,求∠C的度数。
变式一:∠A=40°,∠B比∠C大30°,求∠B、∠C的度数。
变式二:∠A的度数是∠B的度数的3倍,∠C比∠B大15°, 求∠A、∠B、∠C的度数。
[学生自主探索,教师巡视、诊断,让学生上台板演,学生辨析,教师小结。] [使学生灵活应用三角形内角和定理。用代数方法解决几何问题(方程思想)是重要的方法。]
四、随堂练习
1.(苏州·中考)△ABC的内角和为()
A.180° B.360° C.540° D.720°
2.在直角三角形ABC中,一个锐角为40°,则另一个锐角是_______°.3.(济宁·中考)若一个三角形三个内角度数的比为2︰3︰4,那么这个三角形是()
A.直角三角形 B.锐角三角形 C.钝角三角形 D.等边三角形
五、师生共同小结
本节课你们收获了什么?
六、课外作业
1.教材课后练习1、2、2.学法大视野第三课时 教学反思
三角形的有关知识是“空间与图形”中最为核心、最为重要的内容,它不仅是最基本的直线型平面图形,而且几乎是研究所有其它图形的工具和基础.而三角形内角和定理又是三角形中最为基础的知识,也是学生最为熟悉且能与小学、中学知识相关联的知识,看似简单,但如果处理不好,会导致学生有厌烦心理。
本节课的教学实现以下特点:
(1)通过折纸与剪纸等操作让学生获得直接经验,然后从学生的直接经验出发,逐步转到符号化处理,最后达到推理论证的要求。(2)充分展示学生的个性,体现“学生是学习的主人”这一主题。
本节课的教学设计经过实际的教学检验,教学设计的不足之处:由于可能学生课前预习不够充分,所以导致课堂上氛围不够,学生提供的三角形内角和定理的证明方法很多超出教师的考虑范围,学生还有一些证明方法,由于时间所限,无法在课内――展示。其次在小组合作交流时有个别后进生没有参与进去,没有真正达到小组合作学习的效果。