第一篇:几何证明选讲答案
几何选讲答案
1解.由弦切角定理得DCAB60,又ADl,故DAC30, 故选B.2解.2个:ACD和CBD,故选C.3解.设另一弦被分的两段长分别为3k,8k(k0),由相交弦定理得3k8k1218,解得k3,故所求弦长为3k8k11k33cm.故选B.4解.利用相似三角形的相似比等于周长比可得答案D.5解.设圆O半径为r,由割线定理有6(6
故选D.6解.设半径为r,则AD
r,BDr,由CD2ADBD得CD
7解.ADE
22)(12r)(12r),解得r8.3,从而
2,故tan
,选A.23
B.8解.一共可作5个,其中均外切的2个,均内切的1个,一外切一内切的2个,故选D.9解.6A360,从而A60,选A.222
10解.依题意得OAAMOM,从而OM故CM13121mm,选A.21
11解.如图,设AMAB,ANAC,55
ABC,利用面积比等于相似比的平方可得答案
则APAMAN.由平行四边形法则知NP//AB,所以同理可得
ABQ1ABP4.故,选B.ABC4ABQ5
1ABPAN
=,5ABCAC
12解.用平面截圆柱,截线椭圆的短轴长为圆柱截面圆的直径,弄清了这一概念,考虑椭圆所在平面与底面成30角,则离心率esin30.故选A.13解.圆;圆或椭圆.14解.由已知得BDADBC,BC2CDAC(ACBC)AC, 解得AC2.15解.连结AD,则sinAPD
AD,又CDPAP
BAP,12
PD
CD1
,所以sinAPD.PABA330
16解.由图可得R2()2(180135R)2,解得R25.17解.连结OB,OC,AC,根据弦切角定理,可得
ABACCAD(180E)DCF673299.2E
18解.连结OC,OD,OE,由同弧对应的圆周角与圆心角
从而cosAPD
之间的关系结合题中条件AEAC可得CDEAOC, 又CDEPPFD,AOCPC,从而PFDC,故PFD
PCO,∴
F B PFPD, PCPO
由割线定理知PCPDPAPB12,故PF
PCPD12
3.PO4
19证明:(1)∵四边形ABCD是等腰梯形,∴AC=DB ∵AB=DC,BC=CB,∴△ABC≌△BCD
(2)∵△ABC≌△BCD,∴∠ACB=∠DBC,∠ABC=∠DCB ∵AD∥BC,∴∠DAC=∠ACB,∠EAD=∠ABC
∵ED∥AC,∴∠EDA=∠DAC∴∠EDA=∠DBC,∠EAD=∠DCB
∴△ADE∽△CBD ∴DE:BD=AE:CD,∴DE·DC=AE·BD.20解.连结PC,易证PCPB,ABPACP
∵CF//AB ∴FABP,从而FACP 又EPC为CPE与FPC的公共角, 从而CPEFPC,∴
CPPE
FPPC
∴PC2PEPF 解答用图
又PCPB, ∴PB2PEPF,命题得证
21解.(1)证明:∵BC是O的直径,BE是∴EBBC.又∵ADBC,∴AD∥BE易证△BFC∽△DGC,△FEC∽△GAC. ∴
BFCFEFCFBFEF
.∴. DGCGAGCGDGAG
∵G是AD的中点,∴DGAG.∴BFC
(2)证明:连结AO,AB.∵BC是O
在Rt△BAE中,由(1),知F是斜边BE的中点,∴AFFBEF.∴FBAFAB.又∵OAOB,∴ABOBAO. ∵BE是O的切线,∴EBO90°.
∴PA是O的切∵EBOFBAABOFABBAOFAO90°,线.
(3)解:过点F作FHAD于点H.∵BDAD,FHAD,∴FH∥BC.
由(1),知FBABAF,∴BFAF.
由已知,有BFFG,∴AFFG,即△AFG是等腰三角形.
∵FHAD,∴AHGH
.∵DGAG,∴DG2HG,即
HG1
. DG2
∵FH∥BD,BF∥AD,FBD90°BDFH.,∴四边形BDHF是矩形,FHFGHG
,即CDCGDG
∵FH∥BC,易证△HFG∽△DCG.∴
H1G. D2G
BD
CDFGCG
∵圆O的半径长为
∴∴
BC.
解
得
∴FG
BD
.
BDBD
CDBCBDFG
∴BDFH.∵CG1
.
2HG1
,DG2
CG.∴CF3FG. 2
在Rt△FBC中,∵CF3FG,BFFG,由勾股定理,得
B.
C
CFBF
.∴FG3. ∴(3FG)2FG22.解得FG3(负值舍去)
HG.易证△AFC≌△DHC,[或取CG的中点H,连结DH,则CG2∴FGHG,故CG2FG∥F,B易知,CF3FG.由GD△CD∽△G
C,B∴
CDCG2FG2
.
CBCF3FG3
由得
,解得BDRt△CFB中,由勾股定理,3.](3FG)2FG22,∴FG3(舍去负值)
22解.(1)直线CD是△ABC的黄金分割线.理由如下:设△ABC的边AB
上的高为h.
SBDhSADh△ADC,△BDC,S△ABCABh,所以
222
BDS△ADCADS△BDC,S△ADCAD S△ABCAB
又因为点D为边AB的黄金分割点,所以有
ADBD
.因此ABAD
S△ADCS△
S△ABCS△
BDC
.
ADC
所以,直线CD是△ABC的黄金分割线.(2)因为三角形的中线将三角形分成面积相等的两部分,此时
s1s21
s1s2s,即,所以三角形的中线不可能是该三角形
ss12的黄金分割线.(3)因为DF∥CE,∴△DEC和△FCE的公共边CE上的高也相等,所以有S△DECS△FCE
设直线EF与CD交于点G. 所以S△DGE
M
M
S△FGC.
所以S△ADCS四边形AFGDS△FGC
S四边形AFGDS△DGES△AEF,(第22题答图1)
(第22题答图2)
S△BDCS四边形BEFC.
S△AEFS四边形BEFCS△ADCS△BDC
又因为,所以S.SS△ABCS△ADC△ABC△AEF
因此,直线EF也是△ABC的黄金分割线.
(4)画法不惟一,现提供两种画法;
画法一:如答图1,取EF的中点G,再过点G作一条直线分别交
ABCD的黄金分割线. AB,DC于M,N点,则直线MN就是
画法二:如答图2,在DF上取一点N,连接EN,再过点F作
ABCD的黄FM∥NE交AB于点M,连接MN,则直线MN就是
金分割线.
第二篇:几何证明选讲
几何证明选讲
2007年:
15.(几何证明选讲选做题)如图4所示,圆O的直径AB6,C为圆周上一点,BC3,过C作圆的切线l,过A作l的 垂线AD,垂足为D,则DAC
A
2008年:
15.(几何证明选讲选做题)已知PA是圆O的切线,切点为A,PA=2.AC是圆O的直径,PC与圆O交于B点,PB=1,则圆O的半径R=
图
4l
2009年:
15.(几何证明选讲选做题)如下图,点A、B、C是圆O上的点,且AB=4,ACB30,则圆O的面积等于
o
2010年:
14.(几何证明选讲选做题)如上图3,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD=
a,点E,F分别为线段AB,AD的中点,则EF=2
2011年:
15.(几何证明选讲选做题)如图,在梯形ABCD中,AB//CAD,B4,CD2,分别为E,F,上的点,且ADBC,
3EF,EFAB
则梯形ABFE与梯形EFCD的面积比为
A
2012年:
15.(几何证明选讲选做题)如图3,直线PB与圆O相切与点B,D是弦AC上的点,PBADBA,若ADm,ACn,则AB
图3
2013年:
15.(几何证明选讲选做题)如图3,在矩形ABCD
中,ABBC3,BEAC,垂足为E,则ED
图3
第三篇:几何证明选讲专题
几何证明选讲
几何证明选讲专题
一、基础知识填空:
1.平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段_________.推论1: 经过三角形一边的中点与另一边平行的直线必______________.推论2: 经过梯形一腰的中点,且与底边平行的直线________________.2.平行线分线段成比例定理:三条平行线截两条直线,所得的________________成比例.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段___________.3.相似三角形的性质定理:相似三角形对应高的比、对应中线的比、对应角平分线的比都等于______;相似三角形周长的比、外接圆的直径比、外接圆的周长比都等于_______________; 相似三角形面积的比、外接圆的面积比都等于____________________;
4.直角三角形的射影定理:直角三角形斜边上的高是______________________的比例中项;两直角边分别是它们在斜边上_______与_________的比例中项.5.圆周角定理:圆上一条弧所对的圆周角等于它所对的____________的一半.圆心角定理:圆心角的度数等于_______________的度数.推论1:同弧或等弧所对的圆周角_________;同圆或等圆中,相等的圆周角所对的弧_______.o推论2:半圆(或直径)所对的圆周角是____;90的圆周角所对的弦是________.弦切角定理:弦切角等于它所夹的弧所对的______________.6.圆内接四边形的性质定理与判定定理:
圆的内接四边形的对角______;圆内接四边形的外角等于它的内角的_____.如果一个四边形的对角互补,那么这个四边形的四个顶点______;如果四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点_________.7.切线的性质定理:圆的切线垂直于经过切点的__________.推论:经过圆心且垂直于切线的直线必经过_______;经过切点且垂直于切线的直线必经过______.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的________.8.相交弦定理:圆内两条相交弦,_____________________的积相等.割线定理:从圆外一点引圆的两条割线,_____________的两条线段长的积相等.切割线定理:从圆外一点引圆的切线和割线,切线长是__________的比例中项.切线长定理:从圆外一点引圆的两条切线,它们的切线长____;
圆心和这点的连线平分_____的夹角.二、经典试题:
1.(梅州一模文)如图所示,在四边形ABCD中,EFFG+=. EF//BC,FG//AD,则D BCAD
C
2.(广州一模文、理)在平行四边形ABCD中,点E在边AB上,且AE:EB=1:2,DE与AC交于
点F,若△AEF的面积为6cm2,则△ABC的面积为
B cm2.
3.(广州一模文、理)如图所示,圆O上
一点C在直径AB上的射影为D,CD=4,BD=8,则圆O的半径等于.
4.(深圳二模文)如图所示,从圆O外一点P 作圆O的割线PAB、PCD,AB是圆O的直径,若PA=4,PC=5,CD=3,则∠CBD=__ 第1页
5.(广东文、理)已知PA是圆O的切线,切点为A,PA=2.AC是圆O的直径,PC与圆O交于点B,PB=1,则圆O的半径R=_______.6.(广东文、理)如图所示,圆O的直径
AB=6,C圆周上一点,BC=3,过C作圆的切线l,过A作l的垂线AD,AD分别与直线l、圆交于点 D、E,则∠DAC=,线段AE的长为
三、基础训练: 1.(韶关一模理)
如图所示,PC切⊙O于
点C,割线
PAB经过圆心O,弦CD⊥AB于 点E,PC=4,PB=8,则CD=________.2.(深圳调研文)如图所示,从圆O外一点A 引圆的切线AD和割线ABC,已知AD=
AC=6,圆O的半径为3,则圆心O到AC的距 离为________.3.(东莞调研文、理)如图所示,圆O上一
点C
在直径AB上的射影为D,CD=4,则圆O的半径等于.
4.(韶关调研理)如图所示,圆O是
△ABC的外接圆,过点C的切线交AB的延长线于点D,CD=AB=BC=3.则BD的长______,AC的长_______.5.(韶关二模理)如图,⊙O′和
⊙O相交于A和B,PQ切⊙O于P,交⊙O′于Q和M,交AB的延长线于N,MN=3,NQ=15,则 PN=______.
6.(广州二模文、理)如图所示, 圆的内接
△ABC的∠C的平分线CD延长后交圆于点E,连接BE,已知BD=3,CE=7,BC=5,则线段.N7.(湛江一模文)如图,四边形ABCD内接
于⊙O,BC是直径,MN切⊙O于A,∠MAB=25则∠D=___.8.(湛江一模理)如图,在△ABC中,D 是AC的中点,E是BD的中点,AE交BC
BF=于F,则
FC
第2页
9.(惠州一模理)如图:EB、EC是⊙O的两
条切线,B、C是切点,A、D是⊙O上两点,如果∠E=460,∠DCF=320,则∠A的度数是.10.(汕头一模理)如图,AB是圆O的直径,直线CE和圆O相切于点C,AD⊥CE于D,若AD=1,∠ABC=300,则圆O的面积是______.11.(佛山一模理)如图,AB、CD是圆O的两条弦,C
且AB是线段CD的中垂线,已知AB=6,CD=25,则线段AC的长度为.
12.已知:如图,在梯形ABCD中,AD∥BC∥EF,E是AB的中点,EF交BD于G,交AC于H.若 AD=5,BC=7,则GH=________.13.如图,圆O上一点C在直径AB上的射影为D.C
AD=2,AC= 25,则AB=____
14.如图,PA是圆的切线,A为切点,PBC是圆的 割线,且PB=
B
1PABC,则的值是________.2PB
15.如图,⊙O的割线PAB交⊙O于A、B两点,割线
PCD经过圆心O,PE是⊙O的切线。已知PA=6,AB=7,PO=12,则PE=____O的半径是_______.3答 案
二、经典试题:
1.1 ;2.72;3.5 ;4.30o;5.;6.30°,3.三、基础训练:
243
.5.3..3.5.4.4,522116..7.115o.8..9.99O.10.4.25
11..12.1.13.10,4.14..15.4, 8.1.第3页
第四篇:几何证明选讲练习题
选修4-1几何证明选讲综合练习题
1.如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O上一点,AE=AC ,DE交AB于点F,且AB2BP4,(1)求PF的长度.(2)若圆F且与圆O内切,直线PT与圆F切于点T,求线段PT的长度。解:(1)连结OC,OD,OE,由同弧对应的圆周角与圆心角之间的关系 结合题中条件弧长AE等于弧长AC可得CDEAOC, 又CDEPPFD,AOCPOCP, 从而PFDOCP,故PFD∽PCO,E A F B 证明:(Ⅰ)AB为切线,AE为割线, AB2ADAE又 ABAC(2)由(1)有
ADAEAC2--------------5分
ADC~ACE
ADAC
又EACDACACAE
ADCACE 又ADCEGF EGFACE GF//AC
PFPD,…………4 PCPO
PCPD1
23.…………6 由割线定理知PCPDPAPB12,故PF
E PO
4(2)若圆F与圆O内切,设圆F的半径为r,因为OF2r1即r
1A
所以OB是圆F的直径,且过P点圆F的切线为PT
2F B
5.如图,⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P,(I)求证:AD∥EC;
(Ⅱ)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长。22.解:(Ⅰ)连接AB,AC是⊙O1的切线,BACD,又BACE,DEAD//EC……………4分(Ⅱ)PA是⊙O1的切线,PD是⊙O1的割线,PA2PBPD,则PT
PBPO248,即PT…………10
2.三角形ABC内接于圆O,P在BC的延长线上,PA切圆O于A,D为AB的中点,PD交AC于E,AE3EC,求
PA
.PC
62PB(PB9)PB3又⊙O2中由相交弦定理,得PAPCBPPE PE4AD是⊙O2的切线,DE是⊙O2的割线,AD2DBDE916,AD12.………………10分
6.如图,已知⊙O和⊙M相交于A,B两点,AD为⊙M的直径,直线BD交⊙O于点C,点G为弧BD中点,连结AG分别交⊙O,BD于点E,F,连结CE,PA2PA2PBPCPB
解析:由PAPCPB,(),
PCPCPC2PC2
过C作CH//AB,交PD于H,因为BDAD,PBBDADAEPA
3,故3 所以有
PCCHCHECPC
GFEF2
(Ⅰ)求证:AGEFCEGD;(Ⅱ)求证:。AGCE2
证明:(I)连结AB,AC,∵AD为M的直径,∴ABD90,3.(本小题满分12分)选修4-1:几何证明选讲如图,已知点C在圆O直径BE的延长线上,CA切圆O于A点,DC是ACB的平分线并交AE于点F,交AB于D点,求ADF的大小。
解:如图,连接AO,因为AC是圆O的切线,则OAC900,因DC是ACB的平分线,又OAOB,设ACDECD1,ABOBAO2,在ABC中,∴AC为O的直径,∴CEFAGD90.…………2分 ∵DFGCFE,∴ECFGDF,∵G为弧BD中点,∴DAGGDF.…………4分 ∵ECBBAG,∴DAGECF,∴CEF∽AGD.…………5分
∴
CEAG
,∴AGEFCEGD.…………6分 EFGD
(II)由(I)知DAGGDF,GG,2221900180012450,而在ADC中,ADF1290,故ADF45° …………10分
∴DFG∽AGD,∴DG2AGGF.………8分
EF2GD2GFEF2
由(I)知,∴.………10分 222
CEAGAGCE
4.如图,AB是⊙O的一条切线,切点为B,ADE,CFD,CGE
都是⊙O的割线,已知ACAB,(Ⅰ)证明:ADAEAC;(Ⅱ)证明:FG//AC。
7.如图,在ABC中,ABC900,以BC为直径的圆O交AC于点D,设E为AB的中点。(1)求证:直线DE为圆O的切线;(2)设CE交圆
O于点F,求证:CDCACFCE。
O,过点A的直线交⊙O于点P,交BC的延长线于10.(本小题满分10分)如图,ABC内接于⊙
点D,且AB2APAD。(1)求证:ABAC;
O的半径为1,(2)如果ABC600,⊙
且P为弧AC的中点,求AD的长。
8.在ABC中,ABAC,过点A的直线与其外接圆交于点P,交BC延长线于点D。
PCPD
(1)求证:;(2)若AC3,求APAD的值。
ACBD
解:(1)CPDABC,DD,DPC~DBA,11.如右上图,ABC是直角三角形,ABC900,以AB为直径的圆O交AC于点E,点D是BC
边的中点,连OD交圆O于点M,(Ⅰ)求证:O,B,D,E四点共圆;(Ⅱ)求证:2DE2DMACDMAB。
D
PCPDPCPD
又ABAC,(5分)
ABBDACBD
(2)ACDAPC,CAPCAP,APC~ACD APAC,AC2APAD9………(10分)
ACAD
9.(本小题满分12分)已知C点在⊙O直径BE的延长线上,CA切⊙O于A点,CD是ACB的平分线且交AE于点F,交AB于点D。(1)求ADF的度数;(2)若ABAC,求
AC的值。
BC
12.如图,ABC的外角EAC的平分线AD交BC的延长线于点D,延长DA交ABC的外接圆于点F,连结FB,FC。
(1)求证:FB2FAFD;
(2)若AB是ABC外接圆的直径,且EAC120,BC6,求线段AD的长。
可以得知△BFC∽△DGC,△FEC∽△GAC.
BFEFBFCFEFCF
∴BFEF.∵G是AD的中点,∴DGAG.∴∴..
DGAGDGCGAGCG
(Ⅱ)连结AO,AB.∵BC是O的直径,∴BAC90°.
在Rt△BAE中,由(Ⅰ)得知F是斜边BE的中点,∴AFFBEF.
∴FBAFAB.又∵OAOB,∴ABOBAO.∵BE是O的切线,∴EBO90°.∵EBOFBAABOFABBAOFAO90°,∴PA是O的切线.
15.如图,⊙O是ABC的外接圆,D是弧AC的中点,BD交AC于E。(I)求证:CD2DEDB。(II)若CDO到AC的距离为1,求⊙O的半径。
AB1,圆O的2
割线MDC交圆O于点D,C,过点M作AM的垂线交直线AD,AC分别于点E,F,证明:(Ⅰ)MEDMCF;(Ⅱ)MEMF3。
13.如图:AB是圆O的直径(O为圆心),M是AB延长线上的一点,且MB证明:(Ⅰ)连接BC得ACB90,所以ACBBMF90,∴B,C,F,M四点共圆,∴CBACFM,又∵CBACDAEDM ∴EDMCFM,在EDM与CFM中可知MEDMCF。6分(Ⅱ)由MEDMCF,得E,F,C,D四点共圆,∴MEMFMDMC,又∵MDMCMBMA3,∴MEMF3。┈┈┈┈┈10分
A
F
C
D
E
16.如图所示,已知PA与O相切,A为切点,PBC为割线,D为O上的点,且AD=AC,AD,M
O
14.如图, 点A是以线段BC为直径的圆O上一点,ADBC于点D,BC相交于点E。(Ⅰ)求证:AP//CD;(Ⅱ)设F为CE上的一点,且EDFP,求证:CEEBFE
EP.过点B作圆O的切线,与CA的延长线相交于点E, 点G是AD的中点,连结CG并延长与BE相交于点F, 延长AF与CB的延长线相交于点P.(Ⅰ)求证:BFEF;
(Ⅱ)求证:PA是圆O的切线;
证明:(Ⅰ)∵BC是O的直径,BE是O的切线,∴EBBC.又∵ADBC,∴AD∥BE.
第五篇:几何证明选讲习题
几何证明选讲
已知正方形ABCD,E、F分别为BC、AB边上的点,且BE=BF,BH⊥CF于H,连结DH.求证:DH⊥EH.已知AD⊥BC于D,AE:ED=CD:BD,DF⊥BE于F,求证:AF⊥CF.已知正方形ABCD,E为对角线AC上一点,AE=3CE,F为AB边中点,求证:DE⊥EF.F
B
如图1,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,BACAGF90,它们的斜边长为2,若△ABC固定不动,△AFG绕点
A旋转,AF,AG与边BC的交点分别为D,E(点D不与点B重合,点E不与点C重合),设BEm,CDn.
(1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明;(2)求m与n的函数关系式,直接写出自变量n的取值范围;
(3)以△ABC的斜边BC所在直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图2).在边BC上找一点D,使BDCE,求出D点的坐标,并通过计算
验证BDCEDE.
(4)在旋转过程中,(3)中的等量关系BDCEDE是否始终成立,若成立,请证明;若不成立,请说明理由.
A
C G
2F 图
1图2
如图甲,在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF. 解答下列问题:
(1)如果AB=AC,∠BAC=90º.
①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为,数量关系为.
F
E
A
E
C
B
图乙
FEC
B图甲
图丙
②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?
(2)如果AB≠AC,∠BAC≠90º,点D在线段BC上运动.
试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?画出相应图形,并说明理由.(画图不写作法)
(3)若AC
=BC=3,在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值.
已知:如图①所示,在△ABC和△ADE中,ABAC,ADAE,BACDAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BECD;②△AMN是等腰三角形.
(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;
△PBD∽△AMN.(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:
C
B
D
B
E
图② A
如图,已知:Rt△ABC中,C90,ACBC2,将一块三角尺的直角顶点与斜边
A 图①
AB的中点M重合,当三角尺绕着点M旋转时,两直角边始终保持分别与边BC,AC交于D,E两点(D,E不与B,A重合).(1)求证:MDME;
(2)求四边形MDCE的面积;
(3)若只将原题目中的“ACBC2”改为“BCa,ACb(ab)”其它都不变,请你探究:MD和ME还相等吗?如果相等,请证明;如果不相等,请求出MD:ME的值.B
D
M
C
E
A