第一篇:4-1 几何证明选讲”简介
“4-1 几何证明选讲”简介
人民教育出版社 章建跃
几何证明是培养学生逻辑推理能力的最好载体,迄今为止还没有其他课程能够替代几何的这种地位。另外,几何证明过程包含着大量的直观、想象、探究和发现的因素,这对培养学生的创新意识也非常有利。本专题从复习相似图形的性质入手,证明一些反映圆与直线关系的重要定理,并通过对圆锥曲线性质的进一步探索,提高学生空间想象能力、几何直观能力和运用综合几何方法解决问题的能力。
一、内容与要求
1.复习相似三角形的定义与性质,了解平行截割定理,证明直角三角形射影定理。
2.证明圆周角定理、圆的切线的判定定理及性质定理。
3.证明相交弦定理、圆内接四边形的性质定理与判定定理、切割线定理。
4.了解平行投影的含义,通过圆柱与平面的位置关系,体会平行投影;证明平面与圆柱面的截线是椭圆(特殊情形是圆)。
5.通过观察平面截圆锥面的情境,体会圆锥曲线的来历,并能证明交线为椭圆时的一些几何性质(如椭圆的焦点、准线、离心率e,等等。)
二、内容安排及说明
1.本专题分三讲,共18课时,具体分配如下(供参考):
第一讲 相似三角形的判定及有关性质约6课时
第二讲 直线与圆的位置关系约8课时
第三讲 圆锥曲线性质的探讨约3课时
学习总结报告约1课时
2.知识框图
3.对内容安排的说明
上述内容的安排,注重了知识系统性与逻辑性.第一、二、三讲的内容相对独立,每一讲的内容自成体系,都依托于自身的逻辑起点而展开:第一讲以“平行线分线段成比例定理”为起点,给出相似三角形定义后,逐步讨论相似三角形的判定定理、性质定理等等,其中,基本数学思想是比例及其性质的应用;第二讲以“圆周角定理”和“圆的切线概念”为起点,采用从特殊到一般的思想方法,得出圆内接四边形的性质和判定定理的猜想及其证明,圆的切线的性质和判定的有关定理;第三讲以“平行射影”为起点,充分利用图形直观,对圆锥曲线的性质进行讨论,用综合几何的方法认识圆锥曲线,这是以往教材中没有涉及的内容.
同时,三者之间又有紧密的逻辑联系。例如,在讨论“与圆有关的比例线段”(相交弦定理、割线定理、切割线定理)时,用到了相似三角形的判定定理;证明第三讲中的定理
1、定理2时,用到了切线长定理.这样就形成了一个系统的知识体系.这个系统中的知识点,由逻辑关系相互关联而形成紧密的联系.
三、编写中考虑的几个问题
几何证明是培养学生逻辑思维能力的一条重要途径.围绕训练学生逻辑思维能力、发展空间想像能力的目标,本专题在编写过程中着重考虑了如下几个问题。
1.突出数学思想方法的渗透和理解
本专题中的主要数学思想方法包括:特殊化思想方法、化归思想方法、分类思想方法、运动变化思想方法,涉及到观察、实验、猜想等合情推理的方法,也涉及到演绎推理、反证
法、同一法等逻辑推理的方法.
我们知道,数学思想方法内涵于数学概念、公式、法则、定理、定义、公理等之中,是一种隐性知识。数学思想方法的教学讲究的是以知识为载体,在知识的教学过程中渗透与领悟、形成和发展.所以,在本专题内容的编写过程中,精心设计了数学思想方法的逐步渗透和理解过程。
例如,在“平行线等分线段定理”“平行线分线段成比例定理”的讨论中,教科书安排了如下过程:
首先,通过一组实例,采用“操作确认”的方法,让学生在观察、测量的基础上用合情推理发现结论,得出猜想.这个过程渗透了从特殊到一般、化归等方法。
在获得“平行线等分线段定理”的猜想后,又分如下步骤进行证明:先讨论特殊情形——直线构成平行四边形;再讨论一般情形——将一般情形化归为特殊情形。
在获得“等分”情形下的证明后,再推广到“非等分”,即“成比例”的情形。而“平行线分线段成比例定理”的证明采用“非等分”化归谓“等分”的方法。
上述过程,渗透了如下思想方法:先猜后证,猜想的获得应用了“从特殊到一般”的思想方法;化归——先解决特殊位置关系下的证明,再把其他情形化归道特殊情形上。在内容的安排上,使合情推理与逻辑推理相得益彰,以使教材更加符合学生的认知规律。
又如,“弦切角定理”貌似简单,但它蕴含了非常丰富的数学思想方法的教育素材,教科书对此进行了充分挖掘。教科书先用运动变化的思想,从圆内接四边形运动到极端情形(有两个顶点重合),由“圆内接四边形的外角等于它的内对角”猜想“弦切角等于它所夹的弧所对的圆周角”;获得猜想后,应用分类思想,把弦切角分为三类(以弦过圆心为分界点),先证明弦过圆心时命题成立,再把其他两种情形化归为弦过圆心时的情形。可以看到,在弦切角定理的内容展开过程中,渗透和明确了运动变化思想、特殊化思想、分类讨论思想、化归思想。这样一个定理的学习可以使学生接触和体会到如此众多的思想方法,说明弦切角定理内涵的数学思想方法的丰富性,它在数学思想方法教育中的地位的重要性。
2.强调知识的发生发展过程,培养学生的数学探究能力
我们知道,正确的数学结论的形成一般都需要经历“发现”和“证明”两个主要阶段,这两个阶段都具有“过程性”。为此,教科书在几何定理的引入和证明中都突出了其发生发展过程。教科书在融合知识的发生发展过程和学生的认知过程的基础上,通过展示“过程”,引导学生领悟定理产生的背景,经历知识发展的过程,从而提高学生观察问题、提出问题和解决问题的能力,培养学生的数学探究能力。
例如,圆内接四边形的性质与判定定理,教科书安排了这样的过程:首先通过“思考”,类比“任意三角形都有外接圆”,提出“任意四边形是否都有外接圆”的问题,再引导学生从正方形、矩形等特殊四边形出发,考察内接于圆的四边形会有怎样的共同特征,从而得出圆内接四边形性质的猜想和证明。在得出性质定理后,再考察其逆命题是否成立,即证明圆内接四边形的判定定理。在证明过程中,应用分类思想对对角互补的四边形与圆的位置关系进行讨论,在每一种情形中都运用了反证法。这一过程的展示与以往教科书的编写有很大的不同:首先,知识的发生是在类比“任意三角形都有外接圆”而提出的,做到了自然而水到渠成;其次,从性质到判定,因为有较多的条件可以使用,使学生容易发现四边形内接于圆时的特征,再考察其“逆定理”——判定定理,就有更好的方向了,这就使认知台阶适合于学生的已有认知基础;再次,性质定理的考察中,运用了从特殊到一般的思路,因为正方形、矩形等特例中包含了更强、更突出的信息,使学生更容易发现相应的特点,为圆内接四边形性质的发现奠定了很好的基础,再推广到一般情形就容易了;第四,因为判定定理的证明中要同时用到分类讨论和反证法,这对学生来说比较困难,因此教科书采取启发式讲授法,先讲解定理的证明,再归纳总结思想方法;最后,让学生独立证明判定定理的推论。可以相信,在教科书的引导下,学生能够比较牢固地掌握圆内接四边形的判定定理和性质定理。
3.加强推理能力的培养
由于义务教育阶段在几何证明方面的要求降低,所以他们的推理能力的发展需要通过本专题的学习进行适当加强。如何在不进行大运动量的推理训练的前提下,用“课程标准”规定的内容训练学生的推理技能,提高他们的推理能力,也是教材编写过程中重点考虑的一个问题。
这里的“推理”即包含逻辑推理,也包含合情推理。众所周知,学习几何的主要目的之一是对学生进行比较严格的逻辑演绎法训练,还要使他们学会使用综合性的思维方法。几何问题的处理,不仅要用到许多几何概念、定理等专门知识,而且还要用到各种不同的推理形式、思维策略,还要使用“添加辅助线”之类的技巧性较高的方法。在几何学习中,除了运用逻辑推理以外,还要应用观察、比较、类比、直觉、猜想、归纳、概括等合情推理。所以集合学习中的思维是综合性的。也是如此,使得几何学习具有特殊的魅力,在培养学生推理能力中发挥了很重要的作用。
为了培养学生的推理能力,教科书采取了如下措施:
首先,加强几何定理的产生过程,使合情推理的成分得到有效渗透,使学生在得到几何定理的猜想中训练合情推理能力;
其次,给出证明几何定理的严格的逻辑推理过程的示范,让学生有学习和模仿的范例;
再次,及时总结推理方法,概括推理思想,如分析法、综合法、反证法、同一法等,以及分类思想、化归思想、猜想与证明、从特殊到一般等等。
总之,本专题一方面在几何定理的呈现上突出过程性和探究性,让学生体会定理发现过程中的合情推理方法;另一方面在定理的证明、例题乃至一些习题中,积极渗透逻辑推理与合情推理相结合的思想,使学生有更多的机会应用综合思维进行推理的训练。
4.加强几何直观能力的培养
几何学有几何直观作为基础,因此,发现和证明几何定理需要依赖图形直观,而且学生的几何直观(空间想象)能力也能在这个过程中得到锻炼和提高。
为了培养学生的几何直观能力,教科书采取了如下几条措施:
首先,强调在直观图形背景中的直观思考,给学生提供观察图形、建立联系、获得几何定理猜想的基础。例如,在学习习近平行线等分线段定理时,首先给出一组图形,通过直观可以明显感知到“等分”的特征,从而为形成猜想打下基础。
其次,强调运动变化过程中的图形直观,引导学生观察运动过程中图形的不变性。例如,在“与圆有关的比例线段”中,通过平移、旋转等,观察图形变化过程中的特征,把相交弦定理、割线定理、切割线定理、切线长定理等统一在图形的变化过程中,不仅获得了定理,而且形成了联系,使学生建立起结构功能良好的“与圆有关的比例线段”的认知结构。
再次,在从平面到空间的推广过程中,通过图形的变异提供图形直观的机会,加强空间想象能力的培养。例如,在熟悉了平行线分线段成比例定理后,引导学生观察它的“空间推广图形”,其目的就是要求学生观察、想象出空间两条直线“共面”和“异面”两种可能位置关系对“等比”的影响。这个过程对学生的几何直观和空间想象能力的培养是很有好处的。
四、教学建议
1.把握教学要求,控制教学难度
本专题的教学目的是通过证明一些反映圆与直线关系的重要定理,以及对圆锥曲线性质的探索,提高学生空间想像能力、几何直观能力和运用综合几何方法解决问题的能力,并不是要对几何证明进行全面的复习和提高,因此,教学中一定要注意控制难度,不在几何难题上做文章。应当把重点放在引导学生探索教科书中给出的平行截割定理、直角三角形射影定理、圆周角定理、圆的切线的判定定理及性质定理、相交弦定理、圆内接四边形的性质定理与判定定理、切割线定理等几何定理的探究和证明上,使学生通过这些定理的探究,进一步学习几何证明的基本方法,培养数学能力。
2.加强“过程性”,使数学思想方法的学习和数学能力培养落在实处
“过程性”包含几何定理的发现过程和证明过程两个方面。一般来说,几何教学中教师比较习惯直接给出命题让学生证明,或教师给出定理的证明而让学生通过模仿进行定理的应用。这样虽然能使学生知道定理的证明方法,学生也能独立地解答一些几何题,但是他们对定理中蕴含的数学思想方法的体会将受到局限。前已指出,数学定理,特别是那些处于核心地位的数学定理,蕴含了丰富的数学思想和方法,让学生充分地经历它们的发生过程,不仅要求他们进行逻辑演绎而得出定理的证明,而且要使他们有独立发现定理的机会,对于学生掌握数学思想方法、提高分析和解决问题的能力,都是至关重要的。所以,在本专题的教学中,要注意根据教科书安排的学习线索,使学生有机会经历定理的发现过程和证明过程,并要适时地引导学生总结和概括相应的思想方法。特别要注意在“研究什么问题”和“如何研究这些问题”上多做引导。一定要避免为了让学生多做几个几何证明题而忽视定理的发现过程的做法。
第二篇:几何证明选讲专题
几何证明选讲
几何证明选讲专题
一、基础知识填空:
1.平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段_________.推论1: 经过三角形一边的中点与另一边平行的直线必______________.推论2: 经过梯形一腰的中点,且与底边平行的直线________________.2.平行线分线段成比例定理:三条平行线截两条直线,所得的________________成比例.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段___________.3.相似三角形的性质定理:相似三角形对应高的比、对应中线的比、对应角平分线的比都等于______;相似三角形周长的比、外接圆的直径比、外接圆的周长比都等于_______________; 相似三角形面积的比、外接圆的面积比都等于____________________;
4.直角三角形的射影定理:直角三角形斜边上的高是______________________的比例中项;两直角边分别是它们在斜边上_______与_________的比例中项.5.圆周角定理:圆上一条弧所对的圆周角等于它所对的____________的一半.圆心角定理:圆心角的度数等于_______________的度数.推论1:同弧或等弧所对的圆周角_________;同圆或等圆中,相等的圆周角所对的弧_______.o推论2:半圆(或直径)所对的圆周角是____;90的圆周角所对的弦是________.弦切角定理:弦切角等于它所夹的弧所对的______________.6.圆内接四边形的性质定理与判定定理:
圆的内接四边形的对角______;圆内接四边形的外角等于它的内角的_____.如果一个四边形的对角互补,那么这个四边形的四个顶点______;如果四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点_________.7.切线的性质定理:圆的切线垂直于经过切点的__________.推论:经过圆心且垂直于切线的直线必经过_______;经过切点且垂直于切线的直线必经过______.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的________.8.相交弦定理:圆内两条相交弦,_____________________的积相等.割线定理:从圆外一点引圆的两条割线,_____________的两条线段长的积相等.切割线定理:从圆外一点引圆的切线和割线,切线长是__________的比例中项.切线长定理:从圆外一点引圆的两条切线,它们的切线长____;
圆心和这点的连线平分_____的夹角.二、经典试题:
1.(梅州一模文)如图所示,在四边形ABCD中,EFFG+=. EF//BC,FG//AD,则D BCAD
C
2.(广州一模文、理)在平行四边形ABCD中,点E在边AB上,且AE:EB=1:2,DE与AC交于
点F,若△AEF的面积为6cm2,则△ABC的面积为
B cm2.
3.(广州一模文、理)如图所示,圆O上
一点C在直径AB上的射影为D,CD=4,BD=8,则圆O的半径等于.
4.(深圳二模文)如图所示,从圆O外一点P 作圆O的割线PAB、PCD,AB是圆O的直径,若PA=4,PC=5,CD=3,则∠CBD=__ 第1页
5.(广东文、理)已知PA是圆O的切线,切点为A,PA=2.AC是圆O的直径,PC与圆O交于点B,PB=1,则圆O的半径R=_______.6.(广东文、理)如图所示,圆O的直径
AB=6,C圆周上一点,BC=3,过C作圆的切线l,过A作l的垂线AD,AD分别与直线l、圆交于点 D、E,则∠DAC=,线段AE的长为
三、基础训练: 1.(韶关一模理)
如图所示,PC切⊙O于
点C,割线
PAB经过圆心O,弦CD⊥AB于 点E,PC=4,PB=8,则CD=________.2.(深圳调研文)如图所示,从圆O外一点A 引圆的切线AD和割线ABC,已知AD=
AC=6,圆O的半径为3,则圆心O到AC的距 离为________.3.(东莞调研文、理)如图所示,圆O上一
点C
在直径AB上的射影为D,CD=4,则圆O的半径等于.
4.(韶关调研理)如图所示,圆O是
△ABC的外接圆,过点C的切线交AB的延长线于点D,CD=AB=BC=3.则BD的长______,AC的长_______.5.(韶关二模理)如图,⊙O′和
⊙O相交于A和B,PQ切⊙O于P,交⊙O′于Q和M,交AB的延长线于N,MN=3,NQ=15,则 PN=______.
6.(广州二模文、理)如图所示, 圆的内接
△ABC的∠C的平分线CD延长后交圆于点E,连接BE,已知BD=3,CE=7,BC=5,则线段.N7.(湛江一模文)如图,四边形ABCD内接
于⊙O,BC是直径,MN切⊙O于A,∠MAB=25则∠D=___.8.(湛江一模理)如图,在△ABC中,D 是AC的中点,E是BD的中点,AE交BC
BF=于F,则
FC
第2页
9.(惠州一模理)如图:EB、EC是⊙O的两
条切线,B、C是切点,A、D是⊙O上两点,如果∠E=460,∠DCF=320,则∠A的度数是.10.(汕头一模理)如图,AB是圆O的直径,直线CE和圆O相切于点C,AD⊥CE于D,若AD=1,∠ABC=300,则圆O的面积是______.11.(佛山一模理)如图,AB、CD是圆O的两条弦,C
且AB是线段CD的中垂线,已知AB=6,CD=25,则线段AC的长度为.
12.已知:如图,在梯形ABCD中,AD∥BC∥EF,E是AB的中点,EF交BD于G,交AC于H.若 AD=5,BC=7,则GH=________.13.如图,圆O上一点C在直径AB上的射影为D.C
AD=2,AC= 25,则AB=____
14.如图,PA是圆的切线,A为切点,PBC是圆的 割线,且PB=
B
1PABC,则的值是________.2PB
15.如图,⊙O的割线PAB交⊙O于A、B两点,割线
PCD经过圆心O,PE是⊙O的切线。已知PA=6,AB=7,PO=12,则PE=____O的半径是_______.3答 案
二、经典试题:
1.1 ;2.72;3.5 ;4.30o;5.;6.30°,3.三、基础训练:
243
.5.3..3.5.4.4,522116..7.115o.8..9.99O.10.4.25
11..12.1.13.10,4.14..15.4, 8.1.第3页
第三篇:几何证明选讲
几何证明选讲
2007年:
15.(几何证明选讲选做题)如图4所示,圆O的直径AB6,C为圆周上一点,BC3,过C作圆的切线l,过A作l的 垂线AD,垂足为D,则DAC
A
2008年:
15.(几何证明选讲选做题)已知PA是圆O的切线,切点为A,PA=2.AC是圆O的直径,PC与圆O交于B点,PB=1,则圆O的半径R=
图
4l
2009年:
15.(几何证明选讲选做题)如下图,点A、B、C是圆O上的点,且AB=4,ACB30,则圆O的面积等于
o
2010年:
14.(几何证明选讲选做题)如上图3,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD=
a,点E,F分别为线段AB,AD的中点,则EF=2
2011年:
15.(几何证明选讲选做题)如图,在梯形ABCD中,AB//CAD,B4,CD2,分别为E,F,上的点,且ADBC,
3EF,EFAB
则梯形ABFE与梯形EFCD的面积比为
A
2012年:
15.(几何证明选讲选做题)如图3,直线PB与圆O相切与点B,D是弦AC上的点,PBADBA,若ADm,ACn,则AB
图3
2013年:
15.(几何证明选讲选做题)如图3,在矩形ABCD
中,ABBC3,BEAC,垂足为E,则ED
图3
第四篇:几何证明选讲专题)
几何证明选讲专题1.了解平行线截割定理,会证直角三角形射影定理.2.会证圆周角定理、圆的切线的判定定理及性质定理.3.会证相交弦定理、圆内接四边形的性质定理与判定定理、切割线定理.一、基础知识填空:
1.平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段 推论1: 经过三角形一边的中点与另一边平行的直线必______________.推论2: 经过梯形一腰的中点,且与底边平行的直线________________.2.平行线分线段成比例定理:三条平行线截两条直线,所得的________________成比例.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段___________.3.相似三角形的性质定理:相似三角形对应高的比、对应中线的比、对应角平分线的比都等于______;相似三角形周长的比、外接圆的直径比、外接圆的周长比都等于_________________; 相似三角形面积的比、外接圆的面积比都等于____________________;
4.直角三角形的射影定理:直角三角形斜边上的高是______________________的比例中项;两直角边分别是它们在斜边上_______与_________的比例中项.5.圆周角定理:圆上一条弧所对的圆周角等于它所对的____________的一半.圆心角定理:圆心角的度数等于_______________的度数.推论1:同弧或等弧所对的圆周角_________;同圆或等圆中,相等的圆周角所对的弧_______.推论2:半圆(或直径)所对的圆周角是____;90o的圆周角所对的弦是________.弦切角定理:弦切角等于它所夹的弧所对的______________.6.圆内接四边形的性质定理与判定定理:
圆的内接四边形的对角______;圆内接四边形的外角等于它的内角的_____.如果一个四边形的对角互补,那么这个四边形的四个顶点______;如果四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点_________.7.切线的性质定理:圆的切线垂直于经过切点的__________.推论:经过圆心且垂直于切线的直线必经过_______;经过切点且垂直于切线的直线必经过______.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的________.8.相交弦定理:圆内两条相交弦,_____________________的积相等.割线定理:从圆外一点引圆的两条割线,_____________的两条线段长的积相等.切割线定理:从圆外一点引圆的切线和割线,切线长是__________的比例中项.切线长定理:从圆外一点引圆的两条切线,它们的切线长____;圆心和这点的连线平分_____的夹角.二、经典试题:
1.(梅州一模文)如图所示,在四边形ABCD中,EF//BC,FG//AD,则
EFBC+FG
AD
= D
2.(广州一模文、理)在平行四边形ABCD中,点E在边AB上,且AE:EB=1:2,DE与AC交于
点F,若△AEF的面积为6cm2,则△ABC的面积为
2. B
第1页
3.(广州一模文、理)如图所示,圆O上
一点C在直径AB上的射影为D,CD=4,BD=8,则圆O的半径等于.
4.(深圳二模文)如图所示,从圆O外一点P 作圆O的割线PAB、PCD,AB是圆O的直径,若PA=4,PC=5,CD=3,则∠CBD=__
5.(广东文、理)已知PA是圆O的切线,切点为A,PA=2.AC是圆O的直径,PC与圆O交于点B,PB=1,则圆O的半径R=_______.6.(广东文、理)
如图所示,圆O的直径
AB=6,C圆周上一点,BC=3,过C作圆的切线l,过A作l的垂线
AD,AD分别与直线l、圆交于点 D、E,则∠DAC=,线段AE的长为
三、基础训练:
1.(韶关一模理)如图所示,PC切⊙O于
点C,割线PAB经过圆心O,弦CD⊥AB于
点E,PC=4,PB=8,则CD=________.2.(深圳调研文)如图所示,从圆O外一点A
引圆的切线AD和割线ABC,已知AD=,AC=6,圆O的半径为3,则圆心O到AC的距 离为________.3.(东莞调研文、理)如图所示,圆O上一
点C在直径AB上的射影为D,CD=4,则圆O的半径等于.
4.(韶关调研理)如图所示,圆O是
△ABC的外接圆,过点C的切线交AB的延长线于点D,CD=AB=BC=3.则BD的长______,AC的长_______.
5.(韶关二模理)如图,⊙O′和
⊙O相交于A和B,PQ切⊙O于P,交⊙O′于Q和M,交AB的延长线于N,MN=3,NQ=15,则 PN=______.
6.(广州二模文、理)如图所示, 圆的内接
△ABC的∠C的平分线CD延长后交圆于点E,连接BE,已知BD=3,CE=7,BC=5,则线段
N 7.(湛江一模文)如图,四边形ABCD内接
于⊙O,BC是直径,MN切⊙O于A,∠MAB=250,则∠D=___.8.(湛江一模理)如图,在△ABC中,D 是AC的中点,E是BD的中点,AE交BC
D
于F,则
BFFC=.9.(惠州一模理)如图:EB、EC是⊙O的两 条切线,B、C是切点,A、D是⊙O上两点,如果∠E=460,∠DCF=320,则∠A的度数是.C
10.(汕头一模理)如图,AB是圆O的直径,直线CE和圆O相切于点C,AD⊥CE于D,若AD=1,∠ABC=300,则圆O的面积是______.11.(佛山一模理)如图,AB、CD是圆O的两条弦,且AB是线段CD的中垂线,已知AB=6,CD=2,则线段AC的长度为. C
12.已知:如图,在梯形ABCD中,AD∥BC∥EF,E是AB的中点,EF交BD于G,交AC于H.若
AD=5,BC=7,则GH=________.BC
13.如图,圆O上一点C在直径AB上的射影为D.AD=2,AC= 2,则AB=______,CD=_____.14.如图,PA是圆的切线,A为切点,PBC是圆的第2页
割线,且PB=12BC,则PA
PB的值是________.15.如图,⊙O的割线PAB交⊙O于A、B两点,割线
PCD经过圆心O,PE是⊙O的切线。已知PA=6,AB=7,PO=12,则PE=____⊙O
3的半径是_______.答 案
二、经典试题:
1.1 ;2.72;3.5 ;4.30o;5.;6.30°,3.三、基础训练:
1.245.3.5.4.4,2.5.3.6.21
5.7.115o.8.12.9.99O.10.4.11.30.12.1.13.10,4.14.3.15.4, 8.1.如图4所示,圆O的直径AB=6,C为圆周上一点,BC=3过C作 圆的切线l,过A作l的垂线AD,垂足为D,则∠DAC =()A.15B.30C.45D.60
2.在RtABC中,CD、CE分别是斜边AB上的高和中线,是该图中共有x个三角形与ABC相似,则x()A.0B.1C.2 D.33.一个圆的两弦相交,一条弦被分为12cm和18cm两段,另一弦被分为3:8,则另一弦的长为()A.11cmB.33cmC.66cmD.99cm
4.如图,在ABC和DBE中,ABDBBCBEACDE53,若ABC与
DBE的周长之差为10cm,则ABC的周长为()A.20cmB.254cmC.50
cm D.25cm
E 第4题图 5.O的割线PAB交O于A,B两点,割线PCD经过圆心,已知
PA6,PO12,AB2
2,则O的半径为()
A.4B
.6C.612.如图,用与底面成30角的平面截圆柱得一椭圆截线, D.8
6.如图,AB是半圆O的直径,点C在半圆上,CDAB于点D, 且AD3DB,设COD,则tan2
=()
A.13
B.1C.4D.3
7.在ABC中,D,E分别为AB,AC上的点,且DE//BC,ADE的面积是2cm2,梯形
DBCE的面积为6
cm,则DE:BC的值为()
A.B.1:2C.1:3D.1:
48.半径分别为1和2的两圆外切,作半径为3的圆与这两圆均相切,一共可作()个.A.2B.3C.4D.5 9.如图甲,四边形ABCD是等腰梯形,AB//CD.由4个这样的 等腰梯形可以拼出图乙所示的平行四边形, 则四边形ABCD中A度数为()
第9题图
A.30B.45C.60D.75
10.如图,为测量金属材料的硬度,用一定压力
把一个高强度钢珠压向该种材料的表面,在材料表面 留下一个凹坑,现测得凹坑直径为10mm,若所 用钢珠的直径为26 mm,则凹坑深度为()
A.1mmB.2 mmC.3mmD.4 mm
第10题图
11.如图,设P,Q为ABC内的两点,且AP2AB1
5AC,AQ=
23AB+1
AC,则
ABP的面积与ABQ的面积之比为()
1A.5B.45C.11
4D.3
第11题图
第3页
则该椭圆的离心率为()A.1
B
2.3C.2
D.非上述结论 第12题图
13.一平面截球面产生的截面形状是_______;它截圆柱面所产生的截面形状是
________
14.如图,在△ABC中,AB=AC,∠C=720,⊙O过A、B两点且与BC相切于点B,与AC
O
D
交于点D,连结BD,若BC=51,则AC=B
C
第 15.如图,14 题图
AB为O的直径,弦AC、BD交于点P,若AB3,CD1,则sinAPD=16.如图为一物体的轴截面图,则图中R的值是
第15题图
第16题图
17.如图:EB,EC是O的两条切线,B,C是切点,A,D是
O上两点,如果E46,
DCF32,试求A的度数.18.如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O
上一点,AEAC,DE交AB于点F,且AB2BP4,求PF的长度.E
A FB O
C
D
P
第18题图
第17题图 19.已知:如右图,在等腰梯形ABCD中,AD∥BC,AB=DC,过点D作AC的平行线DE,交BA的延长线于点E.
求证:(1)△ABC≌△DCB(2)DE·DC=AE·BD.
20.如图,△ABC中,AB=AC,AD是中线,P为AD上一点,CF∥AB,BP延长线交AC、CF于E、F,求证: PB2=PE•PF.
E
C
第19题图
第20题图
21.如图,A是以BC为直径的O上一点,ADBC于点D,过点B作圆O的切线,与CA的延长线相交于点E,G 是AD的中点,连结CG并延长与BE相交于 点F,延长AF与CB的延长线相交于点P.C
(1)求证:BFEF;(2)求证:PA是O(3)若FGBF,且O的半径长为求BD第21题图
第4页
22.如图1,点C将线段AB分成两.
部分,如果ACABBC
AC,那么称点C为线段AB的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割
线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为SS11,S2,如果SS2
S,那么称直线l为该图形的黄1
金分割线.(1)研究小组猜想:在△ABC中,若点D为AB边上的黄金分割点(如图2),则直线CD是△ABC的黄金分割线.你认为对吗?为什么?
(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?
(3)研究小组在进一步探究中发现:过点C任作一条直线交AB于点E,再过点D作直线DF∥CE,交AC于点F,连接EF(如图3),则直线EF也是△ABC的黄金分割线.请你说明理由.(4)如图4,点E是ABCD的边AB的黄金分割点,过点E作EF∥AD,交DC于点F,显然直线EF是ABCD的黄金分割线.请你画一条ABCD的黄金分割线,使它不经过ABCD各边黄金分割点.第22题图
第五篇:几何证明选讲习题
几何证明选讲
已知正方形ABCD,E、F分别为BC、AB边上的点,且BE=BF,BH⊥CF于H,连结DH.求证:DH⊥EH.已知AD⊥BC于D,AE:ED=CD:BD,DF⊥BE于F,求证:AF⊥CF.已知正方形ABCD,E为对角线AC上一点,AE=3CE,F为AB边中点,求证:DE⊥EF.F
B
如图1,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,BACAGF90,它们的斜边长为2,若△ABC固定不动,△AFG绕点
A旋转,AF,AG与边BC的交点分别为D,E(点D不与点B重合,点E不与点C重合),设BEm,CDn.
(1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明;(2)求m与n的函数关系式,直接写出自变量n的取值范围;
(3)以△ABC的斜边BC所在直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图2).在边BC上找一点D,使BDCE,求出D点的坐标,并通过计算
验证BDCEDE.
(4)在旋转过程中,(3)中的等量关系BDCEDE是否始终成立,若成立,请证明;若不成立,请说明理由.
A
C G
2F 图
1图2
如图甲,在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF. 解答下列问题:
(1)如果AB=AC,∠BAC=90º.
①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为,数量关系为.
F
E
A
E
C
B
图乙
FEC
B图甲
图丙
②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?
(2)如果AB≠AC,∠BAC≠90º,点D在线段BC上运动.
试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?画出相应图形,并说明理由.(画图不写作法)
(3)若AC
=BC=3,在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值.
已知:如图①所示,在△ABC和△ADE中,ABAC,ADAE,BACDAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BECD;②△AMN是等腰三角形.
(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;
△PBD∽△AMN.(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:
C
B
D
B
E
图② A
如图,已知:Rt△ABC中,C90,ACBC2,将一块三角尺的直角顶点与斜边
A 图①
AB的中点M重合,当三角尺绕着点M旋转时,两直角边始终保持分别与边BC,AC交于D,E两点(D,E不与B,A重合).(1)求证:MDME;
(2)求四边形MDCE的面积;
(3)若只将原题目中的“ACBC2”改为“BCa,ACb(ab)”其它都不变,请你探究:MD和ME还相等吗?如果相等,请证明;如果不相等,请求出MD:ME的值.B
D
M
C
E
A