几何证明选讲、优选法与试验初步

时间:2019-05-15 07:59:16下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《几何证明选讲、优选法与试验初步》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《几何证明选讲、优选法与试验初步》。

第一篇:几何证明选讲、优选法与试验初步

几何证明选讲、优选法与试验初步

教学目的:了解平行线、相似三角形的判定和性质,了解圆幂定理,了解优选法和独立性检验.教学重点:平行线、相似三角形的判定和性质,圆幂定理的应用,优选法和独立性检验的应用.教学难点:平行线、相似三角形的判定和性质,圆幂定理的应用,优选法和独立性检验的应用.教学方法:点播式

1.相似三角形

(1)平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在任一条(与这组平行线相交的)直线上截得的线段也相等.

(2)平行截割定理:两条直线与一组平行线相交,它们被这组平行线截得的对应线段成比例.

(3)梯形的中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.

(4)相似三角形的判定定理及其推论:①两角对应相等的两个三角形相似;②两边对应成比例且夹角相等的两个三角形相似;③三边对应成比例的两个三角形相似;④如果一条直线与一个三角形的一条边平行,且与三角形的另两边相交,则截得的三角形与原三角形相似.

(5)相似三角形的性质定理:相似三角形的对应线段的比等于相似比,面积比等于相似比的平方.

(6)直角三角形射影定理:直角三角形一条直角边的平方等于该边在斜边上的射影与斜边的乘积,斜边上的高的平方等于两直角边在斜边上射影的乘积.

2.直线与圆的位置关系

(1)圆周角定理及其推论

定理:圆周角的度数等于其所对弧度数的一半.

推论1:同弧(或等弧)所对的圆周角相等.同圆或等圆中,相等的圆周角所对的弧相等. 推论2:半圆(或直径)所对的圆周角等于90°.反之,90°的圆周角所对的弦为直径.

(2)圆的切线

判定定理:过半径外端且与这条半径垂直的直线是圆的切线.

性质定理:圆的切线垂直于经过切点的半径.

切线长定理:从圆外一点引圆的两条切线长相等.

(3)弦切角定理及其推论

定理:弦切角的度数等于对应弦与切线所夹弧度数的一半.

推论:同弧(或等弧)上的弦切角相等,同弧(或等弧)上的弦切角与圆周角相等

(4)相交弦定理:圆的两条相交弦,被交点分成两段的积相等.

(5)割线定理:从圆外一点引圆的两条割线,这点到每条割线与圆的交点的两条线段的积相等.

(6)切割线定理:从圆外一点引圆的一条割线和一条切线,切线长是这点到割线与圆的两个

几何证明选讲、优选法与试验初步

交点的线段长的等比中项.

(7)圆内接四边形的性质和判定

性质定理:圆内接四边形对角互补.

判定定理:如果四边形的对角互补,则此四边形内接于圆.3.优选法

优选法是根据生产和科学研究中的不同问题,利用数学原理,合理安排试验,以最少的试验次数迅速找到最佳点的科学试验方法.

4.单峰函数

如果函数f(x)在区间[a,b]上只有唯一的最大值点(或最小值点)C,而在最大值点(或最小值点)C的左侧,函数单调增加(减少);在点C的右侧,函数单调减少(增加),则称这个函数为区间[a,b]上的单峰函数.我们规定,区间[a,b]上的单调函数也是单峰函数.

5.黄金分割法——0.618法

(1)黄金分割常数:记ω=5-1≈0.618为黄金分割常数. 2

(2)定义:试验方法中,利用黄金分割常数ω确定试点的方法叫做黄金分割法.

(3)试验点的选取原则:

①每次要进行比较的两个试验点,应关于相应试验区间的中心对称;

②每次舍去的区间占舍去前的区间长度的比例数应相同.

(4)试验点的选取方法:设xn表示第n个试验点,存优范围内相应的好点是xm,因素范围的两端分别记为小头和大头,则x1=小+0.618×(大-小);x2=小+大-x1.一般:xn=小+大-xm.可概括为“加两头,减中间”.

6.分数法

(1)定义:优选法中,用渐进分数近似代替ω确定试点的方法叫做分数法.

(2)分数法的最优性:

①在目标函数为单峰的情形,通过n次试验,最多能从(Fn+1-1)个试点中保证找出最佳点,并且这个最佳点就是n次试验中的最优试验点;

②在目标函数为单峰的情形,只有按照分数法安排试验,才能通过n次试验保证从(Fn+1-1)个试点中找出最佳点.

典例分析

【题型1】相似三角形的应用

例题1:如图,以AB=4为直径的圆与△ABC的两边分别交于E,F两点,∠ACB=60°,则EF=________.1解:连接AE,则AE⊥BC,∠CAE=30°,故CE=CA,又因为△ABC∽△EFC,2

CEEF所以=,EF=2.CAAB

【题型2】圆中的比例线段

例题2: 如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且DF=CF=2,AF∶FB∶BE=4∶2∶1.若CE与圆相切,则线段CE的长为________. 解:设AF=4x,BF=2x,BE=x,则由相交弦定理得DF·CF=AF·FB,177即8x2=2,即x2CE2=EB·EA=7x2=CE=442

练习1:已知C点在圆O直径BE的延长线上,CA切圆O于A点,CD是∠ACB的平分线,交AE于点F,交AB于点D.若AB=AC,则AC∶BC=________.解:∵∠B=∠EAC,∠ACE=∠BCA,ACAE∴△ACE∽△BCA,∴.又∵AB=AC,BCAB

ACAE3∴∠B=∠ACB=30°,∴在Rt△ABE=tanB=tan30°.BCAB3

【题型3】圆内接四边形的判定与性质的应用

例题3: 如图,AB是⊙O的直径,CB切⊙O于点B,CD切⊙O于点D,交BA延长线于点E,若ED=3,∠ADE=30°,则△BDC的外接圆的直径为________.

解:连接OD,∠ODB=∠OBD=∠ADE=30°,∴∠AOD=∠ODB+∠OBD=60°.∴△AOD是正三角形.

又O,B,C,D四点共圆,∴∠C=∠AOD=60°.从而∠E=∠OAD-∠ADE=30°,∴BD=DE=3.BD3由正弦定理得△BCD外接圆直径2R==2.sinCsin60°

【题型4】优选法

例题4:某校高二生物研究性学习小组计划进行某种树木种子发芽试验,从相关资料得知该树木种子发芽率试验的试验温度从小到大排列依次为16℃,17℃,18℃,19℃,20℃,21℃,22℃;学习小组决定用分数法对试验温度进行优选.设第一次和第二次试验的温度分别为x1,x2(x1>x2).若第一次试验温度比第二次试验温度效果好,则第三次试验的温度x3=________℃.5解:依题设试验温度范围为(15℃,23℃),由分数法可知x1=15+(23-15)=20(℃),x2=8

15+23-20=18(℃),则x3=18+23-20=21℃

小明为了了解某种农作物在这一周内的生长最适宜温度,他根据分数法进行试验,他的第一试点为x1℃,第二试点为x2℃,且x1>x2,则x2=________.解:选用分数法进行判定,将一周的7个温度按由小到大编号为1,2,…,7,可知x1=0+5-0)=5,x2=0+8-5=3,即x1对应为27℃,x2对应为26℃.8

小结:

教后记:

第二篇:几何证明选讲

几何证明选讲

2007年:

15.(几何证明选讲选做题)如图4所示,圆O的直径AB6,C为圆周上一点,BC3,过C作圆的切线l,过A作l的 垂线AD,垂足为D,则DAC

A

2008年:

15.(几何证明选讲选做题)已知PA是圆O的切线,切点为A,PA=2.AC是圆O的直径,PC与圆O交于B点,PB=1,则圆O的半径R=

4l

2009年:

15.(几何证明选讲选做题)如下图,点A、B、C是圆O上的点,且AB=4,ACB30,则圆O的面积等于

o

2010年:

14.(几何证明选讲选做题)如上图3,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD=

a,点E,F分别为线段AB,AD的中点,则EF=2

2011年:

15.(几何证明选讲选做题)如图,在梯形ABCD中,AB//CAD,B4,CD2,分别为E,F,上的点,且ADBC,

3EF,EFAB

则梯形ABFE与梯形EFCD的面积比为

A

2012年:

15.(几何证明选讲选做题)如图3,直线PB与圆O相切与点B,D是弦AC上的点,PBADBA,若ADm,ACn,则AB

图3

2013年:

15.(几何证明选讲选做题)如图3,在矩形ABCD

中,ABBC3,BEAC,垂足为E,则ED

图3

第三篇:几何证明选讲专题

几何证明选讲

几何证明选讲专题

一、基础知识填空:

1.平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段_________.推论1: 经过三角形一边的中点与另一边平行的直线必______________.推论2: 经过梯形一腰的中点,且与底边平行的直线________________.2.平行线分线段成比例定理:三条平行线截两条直线,所得的________________成比例.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段___________.3.相似三角形的性质定理:相似三角形对应高的比、对应中线的比、对应角平分线的比都等于______;相似三角形周长的比、外接圆的直径比、外接圆的周长比都等于_______________; 相似三角形面积的比、外接圆的面积比都等于____________________;

4.直角三角形的射影定理:直角三角形斜边上的高是______________________的比例中项;两直角边分别是它们在斜边上_______与_________的比例中项.5.圆周角定理:圆上一条弧所对的圆周角等于它所对的____________的一半.圆心角定理:圆心角的度数等于_______________的度数.推论1:同弧或等弧所对的圆周角_________;同圆或等圆中,相等的圆周角所对的弧_______.o推论2:半圆(或直径)所对的圆周角是____;90的圆周角所对的弦是________.弦切角定理:弦切角等于它所夹的弧所对的______________.6.圆内接四边形的性质定理与判定定理:

圆的内接四边形的对角______;圆内接四边形的外角等于它的内角的_____.如果一个四边形的对角互补,那么这个四边形的四个顶点______;如果四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点_________.7.切线的性质定理:圆的切线垂直于经过切点的__________.推论:经过圆心且垂直于切线的直线必经过_______;经过切点且垂直于切线的直线必经过______.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的________.8.相交弦定理:圆内两条相交弦,_____________________的积相等.割线定理:从圆外一点引圆的两条割线,_____________的两条线段长的积相等.切割线定理:从圆外一点引圆的切线和割线,切线长是__________的比例中项.切线长定理:从圆外一点引圆的两条切线,它们的切线长____;

圆心和这点的连线平分_____的夹角.二、经典试题:

1.(梅州一模文)如图所示,在四边形ABCD中,EFFG+=. EF//BC,FG//AD,则D BCAD

C

2.(广州一模文、理)在平行四边形ABCD中,点E在边AB上,且AE:EB=1:2,DE与AC交于

点F,若△AEF的面积为6cm2,则△ABC的面积为

B cm2.

3.(广州一模文、理)如图所示,圆O上

一点C在直径AB上的射影为D,CD=4,BD=8,则圆O的半径等于.

4.(深圳二模文)如图所示,从圆O外一点P 作圆O的割线PAB、PCD,AB是圆O的直径,若PA=4,PC=5,CD=3,则∠CBD=__ 第1页

5.(广东文、理)已知PA是圆O的切线,切点为A,PA=2.AC是圆O的直径,PC与圆O交于点B,PB=1,则圆O的半径R=_______.6.(广东文、理)如图所示,圆O的直径

AB=6,C圆周上一点,BC=3,过C作圆的切线l,过A作l的垂线AD,AD分别与直线l、圆交于点 D、E,则∠DAC=,线段AE的长为

三、基础训练: 1.(韶关一模理)

如图所示,PC切⊙O于

点C,割线

PAB经过圆心O,弦CD⊥AB于 点E,PC=4,PB=8,则CD=________.2.(深圳调研文)如图所示,从圆O外一点A 引圆的切线AD和割线ABC,已知AD=

AC=6,圆O的半径为3,则圆心O到AC的距 离为________.3.(东莞调研文、理)如图所示,圆O上一

点C

在直径AB上的射影为D,CD=4,则圆O的半径等于.

4.(韶关调研理)如图所示,圆O是

△ABC的外接圆,过点C的切线交AB的延长线于点D,CD=AB=BC=3.则BD的长______,AC的长_______.5.(韶关二模理)如图,⊙O′和

⊙O相交于A和B,PQ切⊙O于P,交⊙O′于Q和M,交AB的延长线于N,MN=3,NQ=15,则 PN=______.

6.(广州二模文、理)如图所示, 圆的内接

△ABC的∠C的平分线CD延长后交圆于点E,连接BE,已知BD=3,CE=7,BC=5,则线段.N7.(湛江一模文)如图,四边形ABCD内接

于⊙O,BC是直径,MN切⊙O于A,∠MAB=25则∠D=___.8.(湛江一模理)如图,在△ABC中,D 是AC的中点,E是BD的中点,AE交BC

BF=于F,则

FC

第2页

9.(惠州一模理)如图:EB、EC是⊙O的两

条切线,B、C是切点,A、D是⊙O上两点,如果∠E=460,∠DCF=320,则∠A的度数是.10.(汕头一模理)如图,AB是圆O的直径,直线CE和圆O相切于点C,AD⊥CE于D,若AD=1,∠ABC=300,则圆O的面积是______.11.(佛山一模理)如图,AB、CD是圆O的两条弦,C

且AB是线段CD的中垂线,已知AB=6,CD=25,则线段AC的长度为.

12.已知:如图,在梯形ABCD中,AD∥BC∥EF,E是AB的中点,EF交BD于G,交AC于H.若 AD=5,BC=7,则GH=________.13.如图,圆O上一点C在直径AB上的射影为D.C

AD=2,AC= 25,则AB=____

14.如图,PA是圆的切线,A为切点,PBC是圆的 割线,且PB=

B

1PABC,则的值是________.2PB

15.如图,⊙O的割线PAB交⊙O于A、B两点,割线

PCD经过圆心O,PE是⊙O的切线。已知PA=6,AB=7,PO=12,则PE=____O的半径是_______.3答 案

二、经典试题:

1.1 ;2.72;3.5 ;4.30o;5.;6.30°,3.三、基础训练:

243

.5.3..3.5.4.4,522116..7.115o.8..9.99O.10.4.25

11..12.1.13.10,4.14..15.4, 8.1.第3页

第四篇:几何证明选讲练习题

选修4-1几何证明选讲综合练习题

1.如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O上一点,AE=AC ,DE交AB于点F,且AB2BP4,(1)求PF的长度.(2)若圆F且与圆O内切,直线PT与圆F切于点T,求线段PT的长度。解:(1)连结OC,OD,OE,由同弧对应的圆周角与圆心角之间的关系 结合题中条件弧长AE等于弧长AC可得CDEAOC, 又CDEPPFD,AOCPOCP, 从而PFDOCP,故PFD∽PCO,E A F B 证明:(Ⅰ)AB为切线,AE为割线, AB2ADAE又 ABAC(2)由(1)有

ADAEAC2--------------5分

ADC~ACE

ADAC

又EACDACACAE

ADCACE 又ADCEGF EGFACE GF//AC

PFPD,…………4 PCPO

PCPD1

23.…………6 由割线定理知PCPDPAPB12,故PF

E PO

4(2)若圆F与圆O内切,设圆F的半径为r,因为OF2r1即r

1A

所以OB是圆F的直径,且过P点圆F的切线为PT

2F B

5.如图,⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P,(I)求证:AD∥EC;

(Ⅱ)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长。22.解:(Ⅰ)连接AB,AC是⊙O1的切线,BACD,又BACE,DEAD//EC……………4分(Ⅱ)PA是⊙O1的切线,PD是⊙O1的割线,PA2PBPD,则PT

PBPO248,即PT…………10

2.三角形ABC内接于圆O,P在BC的延长线上,PA切圆O于A,D为AB的中点,PD交AC于E,AE3EC,求

PA

.PC

62PB(PB9)PB3又⊙O2中由相交弦定理,得PAPCBPPE PE4AD是⊙O2的切线,DE是⊙O2的割线,AD2DBDE916,AD12.………………10分

6.如图,已知⊙O和⊙M相交于A,B两点,AD为⊙M的直径,直线BD交⊙O于点C,点G为弧BD中点,连结AG分别交⊙O,BD于点E,F,连结CE,PA2PA2PBPCPB

解析:由PAPCPB,(),

PCPCPC2PC2

过C作CH//AB,交PD于H,因为BDAD,PBBDADAEPA

3,故3 所以有

PCCHCHECPC

GFEF2

(Ⅰ)求证:AGEFCEGD;(Ⅱ)求证:。AGCE2

证明:(I)连结AB,AC,∵AD为M的直径,∴ABD90,3.(本小题满分12分)选修4-1:几何证明选讲如图,已知点C在圆O直径BE的延长线上,CA切圆O于A点,DC是ACB的平分线并交AE于点F,交AB于D点,求ADF的大小。

解:如图,连接AO,因为AC是圆O的切线,则OAC900,因DC是ACB的平分线,又OAOB,设ACDECD1,ABOBAO2,在ABC中,∴AC为O的直径,∴CEFAGD90.…………2分 ∵DFGCFE,∴ECFGDF,∵G为弧BD中点,∴DAGGDF.…………4分 ∵ECBBAG,∴DAGECF,∴CEF∽AGD.…………5分

CEAG

,∴AGEFCEGD.…………6分 EFGD

(II)由(I)知DAGGDF,GG,2221900180012450,而在ADC中,ADF1290,故ADF45° …………10分

∴DFG∽AGD,∴DG2AGGF.………8分

EF2GD2GFEF2

由(I)知,∴.………10分 222

CEAGAGCE

4.如图,AB是⊙O的一条切线,切点为B,ADE,CFD,CGE

都是⊙O的割线,已知ACAB,(Ⅰ)证明:ADAEAC;(Ⅱ)证明:FG//AC。

7.如图,在ABC中,ABC900,以BC为直径的圆O交AC于点D,设E为AB的中点。(1)求证:直线DE为圆O的切线;(2)设CE交圆

O于点F,求证:CDCACFCE。

O,过点A的直线交⊙O于点P,交BC的延长线于10.(本小题满分10分)如图,ABC内接于⊙

点D,且AB2APAD。(1)求证:ABAC;

O的半径为1,(2)如果ABC600,⊙

且P为弧AC的中点,求AD的长。

8.在ABC中,ABAC,过点A的直线与其外接圆交于点P,交BC延长线于点D。

PCPD

(1)求证:;(2)若AC3,求APAD的值。

ACBD

解:(1)CPDABC,DD,DPC~DBA,11.如右上图,ABC是直角三角形,ABC900,以AB为直径的圆O交AC于点E,点D是BC

边的中点,连OD交圆O于点M,(Ⅰ)求证:O,B,D,E四点共圆;(Ⅱ)求证:2DE2DMACDMAB。

D

PCPDPCPD

又ABAC,(5分)

ABBDACBD

(2)ACDAPC,CAPCAP,APC~ACD APAC,AC2APAD9………(10分)

ACAD

9.(本小题满分12分)已知C点在⊙O直径BE的延长线上,CA切⊙O于A点,CD是ACB的平分线且交AE于点F,交AB于点D。(1)求ADF的度数;(2)若ABAC,求

AC的值。

BC

12.如图,ABC的外角EAC的平分线AD交BC的延长线于点D,延长DA交ABC的外接圆于点F,连结FB,FC。

(1)求证:FB2FAFD;

(2)若AB是ABC外接圆的直径,且EAC120,BC6,求线段AD的长。

可以得知△BFC∽△DGC,△FEC∽△GAC.

BFEFBFCFEFCF

∴BFEF.∵G是AD的中点,∴DGAG.∴∴..

DGAGDGCGAGCG

(Ⅱ)连结AO,AB.∵BC是O的直径,∴BAC90°.

在Rt△BAE中,由(Ⅰ)得知F是斜边BE的中点,∴AFFBEF.

∴FBAFAB.又∵OAOB,∴ABOBAO.∵BE是O的切线,∴EBO90°.∵EBOFBAABOFABBAOFAO90°,∴PA是O的切线.

15.如图,⊙O是ABC的外接圆,D是弧AC的中点,BD交AC于E。(I)求证:CD2DEDB。(II)若CDO到AC的距离为1,求⊙O的半径。

AB1,圆O的2

割线MDC交圆O于点D,C,过点M作AM的垂线交直线AD,AC分别于点E,F,证明:(Ⅰ)MEDMCF;(Ⅱ)MEMF3。

13.如图:AB是圆O的直径(O为圆心),M是AB延长线上的一点,且MB证明:(Ⅰ)连接BC得ACB90,所以ACBBMF90,∴B,C,F,M四点共圆,∴CBACFM,又∵CBACDAEDM ∴EDMCFM,在EDM与CFM中可知MEDMCF。6分(Ⅱ)由MEDMCF,得E,F,C,D四点共圆,∴MEMFMDMC,又∵MDMCMBMA3,∴MEMF3。┈┈┈┈┈10分

A

F



C

D

E

16.如图所示,已知PA与O相切,A为切点,PBC为割线,D为O上的点,且AD=AC,AD,M

O

14.如图, 点A是以线段BC为直径的圆O上一点,ADBC于点D,BC相交于点E。(Ⅰ)求证:AP//CD;(Ⅱ)设F为CE上的一点,且EDFP,求证:CEEBFE

EP.过点B作圆O的切线,与CA的延长线相交于点E, 点G是AD的中点,连结CG并延长与BE相交于点F, 延长AF与CB的延长线相交于点P.(Ⅰ)求证:BFEF;

(Ⅱ)求证:PA是圆O的切线;

证明:(Ⅰ)∵BC是O的直径,BE是O的切线,∴EBBC.又∵ADBC,∴AD∥BE.

第五篇:几何证明选讲习题

几何证明选讲

已知正方形ABCD,E、F分别为BC、AB边上的点,且BE=BF,BH⊥CF于H,连结DH.求证:DH⊥EH.已知AD⊥BC于D,AE:ED=CD:BD,DF⊥BE于F,求证:AF⊥CF.已知正方形ABCD,E为对角线AC上一点,AE=3CE,F为AB边中点,求证:DE⊥EF.F

B

如图1,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,BACAGF90,它们的斜边长为2,若△ABC固定不动,△AFG绕点

A旋转,AF,AG与边BC的交点分别为D,E(点D不与点B重合,点E不与点C重合),设BEm,CDn.

(1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明;(2)求m与n的函数关系式,直接写出自变量n的取值范围;

(3)以△ABC的斜边BC所在直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图2).在边BC上找一点D,使BDCE,求出D点的坐标,并通过计算

验证BDCEDE.

(4)在旋转过程中,(3)中的等量关系BDCEDE是否始终成立,若成立,请证明;若不成立,请说明理由.

A

C G

2F 图

1图2

如图甲,在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF. 解答下列问题:

(1)如果AB=AC,∠BAC=90º.

①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为,数量关系为.

F

E

A

E

C

B

图乙

FEC

B图甲

图丙

②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?

(2)如果AB≠AC,∠BAC≠90º,点D在线段BC上运动.

试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?画出相应图形,并说明理由.(画图不写作法)

(3)若AC

=BC=3,在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值.

已知:如图①所示,在△ABC和△ADE中,ABAC,ADAE,BACDAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BECD;②△AMN是等腰三角形.

(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;

△PBD∽△AMN.(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:

C

B

D

B

E

图② A

如图,已知:Rt△ABC中,C90,ACBC2,将一块三角尺的直角顶点与斜边

A 图①

AB的中点M重合,当三角尺绕着点M旋转时,两直角边始终保持分别与边BC,AC交于D,E两点(D,E不与B,A重合).(1)求证:MDME;

(2)求四边形MDCE的面积;

(3)若只将原题目中的“ACBC2”改为“BCa,ACb(ab)”其它都不变,请你探究:MD和ME还相等吗?如果相等,请证明;如果不相等,请求出MD:ME的值.B

D

M

C

E

A

下载几何证明选讲、优选法与试验初步word格式文档
下载几何证明选讲、优选法与试验初步.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    几何证明选讲专题)

    几何证明选讲专题1.了解平行线截割定理,会证直角三角形射影定理.2.会证圆周角定理、圆的切线的判定定理及性质定理.3.会证相交弦定理、圆内接四边形的性质定理与判定定理、切......

    高中数学几何证明选讲

    几何证明选讲1、(佛山市2014届高三教学质量检测(一))如图,从圆O 外一点A引圆的切线AD和割线ABC,已知AD3,AC3,圆O的半径为5,则圆心O 到AC的距离为. 答案:22、(广州市2014届高三1月调研测......

    几何证明选讲训练

    几何证明选讲专题1.如图所示,在四边形ABCD中,EF//BC,FG//AD,则EFFGBCAD1由平行线分线段成比例可知EFAFFGFCEFFGAFFC,所以,1 BCACADACBCADAC2.在平行四边形ABCD中,点E在边AB上,且AE:E......

    几何证明选讲测试题

    几何证明选讲测试题班级姓名一. 选择题1.如图所示,圆O的直径AB=6,C为圆周上一点,BC=3过C作圆的切线l,过A作l的垂线AD,垂足为D,则∠DAC=()A.15B.30C.45D.602.一个圆的两弦相交......

    几何证明选讲--知识点1

    几 何 证 明 选 讲 1.平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段___. 推论1: 经过三角形一边的中点与另一边平行的直线必__......

    高三数学~几何证明选讲

    德智答疑 http://dayi.dezhi.com/shuxue 高三数学~~几何证明选讲1、外接圆的切线证明 [ 高三数学] 题型:探究题问题症结:找不到突破口,请老师帮我理一下思路考查知识点: 圆的切......

    几何证明选讲高考题(新课标)

    i几何证明选讲高考题汇编潢川一中高二数学组1.(2009新课标全国卷) 如图,已知ABC中的两条角平分线AD和CE相交于H,B=60,F在AC上,且AEAF。(I)证明:B,D,H,E四点共圆;(II)证明:CE平分DEF。2.(......

    高考几何证明选讲分析

    几何证明选讲1.(2010·陕西高考理科·T15)如图,已知RtABC的两条直角边AC,BC 的长分别为3cm,4cm,以AC为直径的圆与AB交于点D, 则BDDA【命题立意】本题考查几何证明选做题的解法,属......