2014高考数学文复习方案 二轮作业手册(新课标·通用版)专题限时集:第3A讲 不等式与线性规划 Word版含解析专题

时间:2019-05-15 08:03:53下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2014高考数学文复习方案 二轮作业手册(新课标·通用版)专题限时集:第3A讲 不等式与线性规划 Word版含解析专题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2014高考数学文复习方案 二轮作业手册(新课标·通用版)专题限时集:第3A讲 不等式与线性规划 Word版含解析专题》。

第一篇:2014高考数学文复习方案 二轮作业手册(新课标·通用版)专题限时集:第3A讲 不等式与线性规划 Word版含解析专题

专题限时集训(三)A

[第3讲 不等式与线性规划]

(时间:30分钟)

1.函数f(x)=3-x

x-12()

A.[-3,3]B.[33]

C.(1 D.[-,1)∪(1,x-2x2.已知集合A=x0,x∈N,B={x|1≤2≤16,x∈Z},则A∩B=()x

A.(1,2)B.[0,2]C.{0,1,2}D.{1,2}

0≤x≤1,3.已知实数x,y满足x-y≤2,则z=2x-3y的最大值是()

x+y≤2,A.-6B.-1C.6D.4

x≤0,4.若A为不等式组y≥0,表示的平面区域,则当实数a从-2连续变化到0时,动直

y-x≤2

线x+y=a扫过A中部分的区域的面积为()

31A.B.C.2D.1 42

5.已知关于x的不等式ax2+2x+b>0(a≠0)的解集是错误!,且a>b,则错误!的最小值是

()

A.2 2B.2C.2D.1

6.在如图X3-1所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x为

______m.7.若直线ax-by+1=0平分圆C+1=0的周长,则ab的取值范围是

()

11-∞,B.-∞ A.48

110,D.0,C.482x+y-2≥0,8.设变量x,y满足约束条件x-2y+4≥0,则目标函数z=3x-2y的最小值为()

x-1≤0,A.-6B.-4C.2D.4

0≤x≤1,9.已知点P(x,y)满足则点Q(x+y,y)构成的图形的面积为()

0≤x+y≤2,A.1B.2

C.3D.4

-1≤x+y≤1,1

10.设实数x,y满足则点(x,y)在圆面x2+y2≤()

-1≤x-y≤1,π

A.8πB.43πC.4

πD.2

11.某旅行社租用A,B两种型号的客车安排900名客人旅行,A,B两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且B型车不能多于A型车7辆,则租金最少为()

A.31 200元B.36 000元C.36 800元D.38 400元

x≤2,

12.不等式组y≥0,表示的平面区域的面积是________.

y≤x-1

x-y+3≥0,

13.已知变量x,y满足约束条件-1≤x≤1,则z=x+y的最大值是________.

y≥1,a2

14.设常数a>0,若9x+a+1对一切正实数x成立,则a的取值范围为________.

x

专题限时集训(三)A

3-x≥0,1.D [解析] 由题意知3≤x3且x≠1.x-1≠0,x-2)2.D [解析] 集合A={x0,x∈N}={1,2},B={x|1≤2x≤16,x∈Z}=

x 

{0,1,2,3,4},所以A∩B={1,2}.

3.C [解析] 画图可知,四个角点分别是A(0,-2),B(1,-1),C(1,1),D(0,2),可知zmax=zA=

6.4.D [解析] A区域为(-2,0),(0,0),(0,2)形成的直角三角形,其面积为2,则直线x+y=a从(-2,0)开始扫过,扫到区域一半时停止,所以扫过A中部分的区域的面积为1.5.A [解析] 由已知可知方程ax2+2x+b=0(a≠0)有两个相等的实数解,故Δ=0,即ab=1.a2+b2(a-b)2+2ab22

=(a-b)+a>b,所以(a-b)+2

2.a-b(a-b)(a-b)(a-b)

6.20 [解析] ADE与△ABC相似,设矩形的S△ADE40-y2x(40-y)x+y2

另一边长为y,则,所以y=40-x,又有xy≤==400成40S△ABC402立,当且仅当x=40-x时等号成立,则有x=20,故其边长x为20 m.7.B [解析] 依题意知直线ax-by+1=0过圆C的圆心(-1,2),即a+2b=1,由1=

a+2b≥2 2abab,故选B.8

3z

8.B [解析] 作出不等式组对应的可行域如图所示,由z=3x-2y得y=x-由图像可

3z

知当直线y=x-C(0,2)时,直线的截距最大,而此时z=3x-2y最小,最小值为-

4.0≤u-v≤1,9.B [解析] 令x+y=u,y=v,则点Q(u,v)满足在uOv平面内画出点

0≤u≤2,

Q(u,v)

-1≤x+y≤1,10.B [解析] 不等式组表示的可行域是边长为2的正方形,所以S

-1≤x-y≤1

=2.x2+y2≤且圆的面积为πr2=π,所以点(x,y)在圆面x2+y2≤内

2221

π2

部的概率为=24

11.C [解析] 根据已知,设需要A型车x辆,B型车y辆,则根据题设,有

y-x≤7,x≥0,y≥0,画出可行域,求出三个顶点的坐标分别为A(7,14),B(5,12),C(15,6),36x+60y=900,目标函数(租金)为k=1600x+2400y,如图所示,将点B的坐标代入其中,即得租金的最小值,即k=1600×5+2400×12=36 800(元).

x+y≤21,1112.[解析] 不等式组表示的可行域如图中阴影所示,故面积为×1×1.222

13.5 [解析] z=x+y在点C

14.15∞[解析] 6a≥a+1a≥15

.

第二篇:2014高考数学文复习方案 二轮作业手册(新课标·通用版)专题限时集:第9讲 等差数列、等比数列

专题限时集训(九)

[第9讲 等差数列、等比数列]

(时间:45分钟)

1.一个由正数组成的等比数列,5倍,则此数列的公比为()

A.1B.2

C.3D.4

2.若Sn是等差数列{an}的前n项和,且S8-S4=12,则S12的值为()

A.64B.44

C.36D.22

3.在正项等比数列{an}中,已知a3·a5=64,则a1+a7的最小值为()

A.64B.32

C.16D.8

4.设{an}为等差数列,公差d=-2,Sn为其前n项和,若S11=S10,则a1=()

A.18B.20

C.22D.24

5.在各项都为正数的等比数列{an}中,a1=2,a6=a1a2a3,则公比q的值为()

A.23

C.2D.3

6.公差不为零的等差数列{an

}的第2,3,6项构成等比数列,则这三项的公比为()

A.1B.2

C.3D.4

7.已知等差数列{an}的前n项和为n1313=13,则a1=()

A.-14B.13

C.-12D.-11

8.已知数列{an}是公差为2的等差数列,且a1,a2,a5成等比数列,则数列{an}的前5项和S5=()

A.20B.30

C.25D.40

9.已知等比数列{an}中,各项均为正数,前n项和为Sn,且4a3,a5,2a4成等差数列,若a1=1,则S4=()

A.7B.8

C.15D.16

10.已知等差数列{an}的首项a1=1,前三项之和S3=9,则数列{an}的通项公式an=________.

11.已知等差数列{an}的公差为-2,a3是a1与a4的等比中项,则数列{an}的前n项和Sn=________.

12.已知{an}为等比数列,a2+a3=1,a3+a4=-2,则a5+a6+a7=________.

13.在数列{an}和等比数列{bn}中,a1=0,a3=2,bn=2an+1(n∈N*).

(1)求数列{bn}及{an}的通项公式;

(2)若cn=an·bn,求数列{cn}的前n项和Sn.14.数列{an}中,a1=3,an+1=an+cn(c是常数,n=1,2,3,…),且a1,a2,a3成公比不为1的等比数列.

(1)求c的值;

(2)求数列{an}的通项公式.

-15.等比数列{cn}满足cn+1+cn=10·4n1(n∈N*),数列{an}的前n项和为Sn,且an=log2cn.(1)求an,Sn;

1(2)数列{bn}满足bn=Tn为数列{bn}的前n项和,是否存在正整数m(m>1),使得4Sn-1

T1,Tm,T6m成等比数列?若存在,求出所有m的值;若不存在,请说明理由.

专题限时集训(九)

1.B [解析] 设此数列的公比为q,根据题意得q>0且q≠1,由

5a1(1-q2),解得q=2.1-q

122.C [解析] 由S8-S4=12得a5+a8=a6+a7=a1+a12=6,则S12(a1+a12)=36.2

3.C [解析] 由a3·a5=64可得a1·a7=64,则a1+a7≥2 1a7=16.4.B [解析] 由S11=S10得,a11=0,即a1+(11-1)×(-2)=0,得a1=20.5.C [解析] a1q5=(a1q)3,q2=a21,因为各项均为正数,所以q=a1=2.6.C [解析] 由(a1+2d)2=(a1+d)(a1+5d)得d=-2a1,因此可罗列该数列的前6项为a1,-a1,-3a1,-5a1,-7a1,-9a1,则公比为3.13(a1+a13)7.D [解析] 在等差数列中,S13=13,得a1+a13=2,即a1=2-a13=22

-13=-11,选D.8.C [解析] 由数列{an}是公差为2的等差数列,得an=a1+(n-1)·2,又因为a1,a2,2a5成等比数列,所以a1·a5=a22,即a1·(a1+8)=(a1+2),解得a1=1,所以S5=5a1+

5×(5-1)·d=5×1+20=25.2

9.C [解析] 由4a3+2a4=2a5得q2(q2-q-2)=0,由题意知q=2,则S4=1+2+4+8=15.3(a1+a3)10.2n-1 [解析] 由=S3,得a3=5,故d=2,an=1+(n-1)×2=2n-1.2

11.-n+9n [解析] 由2a1(1-q4)1-q=a23=a1·a4n(n-1)可得a1=-4d=8,故Sn=8n+×(-2)=2

-n2+9n.12.24 [解析] 由a2+a3=1,a3+a4=-2得q=-2,由a2+a2q=1,得a2=-1,因此a5+a6+a7=8-16+32=24.13.解:(1)方法一,依题意b1=2,b3=23=8,设数列{bn}的公比为q,由bn=2an+1>0,可知q>0.由b3=b1·q2=2·q2=8,得q2=4,又q>0,则q=2,--故bn=b1qn1=2·2n1=2n,又由2an+1=2n,得an=n-1.(2)依题意cn=(n-1)·2n.-Sn=0·21+1·22+2·23+…+(n-2)·2n1+(n-1)·2n,①

+则2Sn=0·22+1·23+2·24+…+(n-2)·2n+(n-1)·2n1,②

①-②得

-Sn=2+2+…+2-(n-1)·2

+23nn+1=22-2n+11-2-(n-1)·2n1,++即-Sn=-4+(2-n)·2n1,故Sn=4+(n-2)·2n1.bn+1方法二,(1)依题意{bn}为等比数列,则=q(常数),bn

由bn=2an+1>0,可知q>0.由2an+1+1

2an+12an+1-an=q,得an+1-an=log2q(常数),故{an}为等差数列.

设{an}的公差为d,由a1=0,a3=a1+2d=0+2d=2,得d=1,故an=n-1.(2)同方法一.

14.解:(1)a1=3,a2=3+c,a3=3+3c,∵a1,a2,a3成等比数列,∴(3+c)2=3(3+3c),解得c=0或c=3.当c=0时,a1=a2=a3,不符合题意,舍去,故c=3.(2)当n≥2时,由a2-a1=c,a3-a2=2c,…,an-an-1=(n-1)c,n(n-1)则an-a1=[1+2+…+(n-1)]c2

33又∵a1=3,c=3,∴an=3+n(n-1)=(n2-n+2)(n=2,3,…). 22

3当n=1时,上式也成立,∴an2-n+2). 2

15.解:(1)因为c1+c2=10,c2+c3=40,所以公比q=4,--由c1+4c1=10,得c1=2,cn=2·4n1=22n1,-所以an=log222n1=2n-1.Sn=a1+a2+…+an=log2c1+log2c2+…+log2cn=log2(c1·c2·…·cn)=log2(21·23·…·22n-1++…+2n-1))=log22(13=n2.111-1(2)由(1)知bn=22n-12n+1,4n-12

111111n于是Tn=[(1-)+()+…+()]=.23352n-12n+12n+1

假设存在正整数m(m>1),使得T1,Tm,T6m成等比数列,则 m216m4m2-7m-2=0,2m+1=3×12m+1

1解得m=-或m=2.4

*由m∈N,m>1,得m=2.因此存在正整数m=2,使得T1,Tm,T6m成等比数列.

第三篇:2014高考数学文复习方案 二轮作业手册(新课标·通用版)专题限时集:第17讲 统计与统计案例 Word版含解析

专题限时集训(十七)

[第17讲 统计与统计案例]

(时间:45分钟)

1.某同学学业水平考试的9-1所示,则根据茎叶图可知该同

学的平均分为()

A.79B.80

C.81D.8

22.已知回归直线斜率的估计值为1.23,样本点的中心为点(4,5),则回归直线的方程为

()

^^A.y=1.23x+4B.y=1.23x+

5^^C.y=1.23x+0.08D.y=0.08x+1.2

33.根据一组样本数据(x1,y1),(x2,y2),…,(xn,yn)的散点图分析存在线性相关关系,^求得其回归方程y=0.85x-85.7,则在样本点(165,57)处的残差为()

A.54.55B.2.45C.3.45D.111.55

4.已知x与y之间的几组数据如下表:

^则y与x的线性回归方程y=bx+a必过点()

A.(1,2)B.(2,6)

315C.24D.(3,7)

5.甲、乙两名运动员在某项测试中的6次成绩的茎叶图如图X17-

2所示,x1,x2分别表示甲、乙两名运动员这项测试成绩的平均数,s1,s2分别表示甲、乙两名运动员这项测试成绩的标准差,则有()

图X17-2

A.x

1>x

2,s1s2

C.x1=x2,s1=s2D.x1=x2,s1

个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()

A.08B.07C.02D.01

7.某社区对该区所辖的老年人是否需要特殊照顾进行了一项分性别的抽样调查,针对男性老年人和女性老年人需要特殊照顾和不需要特殊照顾得出了一个2×2的列联表,并计算得出k=4.350,则下列结论正确的是()

A.有95%的把握认为该社区的老年人是否需要特殊照顾与性别有关 B.有95%的把握认为该社区的老年人是否需要特殊照顾与性别无关 C.该社区需要特殊照顾的老年人中有95%是男性 D.该地区每100名老年人中有5个需要特殊照顾

8.一个样本容量为20的样本数据,它们组成一个公差不为0的等差数列{an},若a3=8且前4项和S4=28,则此样本的平均数和中位数分别是()

A.22,23B.23,22 C.23,23D.23,24

9.样本(x1,x2,…,xn)的平均数为x,样本(y1,y2,…,ym)的平均数为y(x≠y).若样

本(x1,x2,…,xn,y1,y2,…,ym)的平均数z=αx+(1-α)y,其中0<α

关系为()

A.nm

C.n=mD.不能确定

10.某地区高中学校分三类,A类学校共有学生2000人,B类学校共有学生3000人,C类学校共有学生4000人.若采取分层抽样的方法抽取900人,则A类学校中应抽取学生________人.

11.从某项综合能力测试中抽取50人的成绩,统计如下表,则这50人成绩的方差为________.

12.12342,且标准差等于1,则这组数据为________.

13.某产品的广告费用

x与销售额y的统计数据如下表:

根据上表可得回归方程y=bx+a中的b为7.根据此模型,当预报广告费用为10万元时,销售额为________万元.

率不超过________.

附:K2=

(a+b)(c+d)(a+c)(b+d)

n(ad-bc)2

15.随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图X17-3所示.

(1)根据茎叶图判断哪个班的平均身高较高;(2)计算甲班样本的方差.

-3

16.一家商场为了确定营销策略,进行了投入促销费用x和商场实际销售额y的试验,得到如下四组数据.

(1)的线性相关性;

^^^

(2)求出x,y之间的回归直线方程y=bx+a;

(3)若该商场计划营销额不低于600万元,则至少要投入多少万元的促销费用?

专题限时集训(十七)

-12+12+1+9+9-8-7-2-2

1.B [解析] 80+80.9

^^^

2.C [解析] 回归直线y=bx+a经过样本中心点,所以5=1.23×4+a,解得a=0.08,^

故回归直线方程是y=1.23x+0.08.^

3.B [解析] 把x=165代入回归方程得y=0.85×165-85.7=54.55,所以残差为57-54.55=2.45.0+1+2+330+2+6+715^^

4.C [解析] 因为x=,y=,所以线性回归方程y=bx+

4244

315^

a必过点2,4.5.D [解析] 由样本中数据可知x1=15,x2=15,由茎叶图得s1

8.C [解析] 设公差为d,则a1+2d=8且4a1+6d=28,解得a1=4,d=2,所以中位数是

a10+a1119S19

a1+d=4+19=23,平均数是a1+d=23.22202

nx+myn9.A [解析] 由题意知,样本(x1,…,xn,y1,…,ym)的平均数为z=m+nn+m

mnm1n1+y,且z=αx+(1-α)y,所以α=1-α=又因为0<α<,所以0<,2n+mm+nm+nn+m2解得n

10.200 [解析] 高中生共有9000人,抽取900人,抽取比例为A类学校中应

9000

抽学生人数为2000×=200.1050+20+45+30+581

11.[解析] ∵x==3,∴s2=[(x1-x)2+(x2-x)2+…+(xn-x)2]=550n18×(10×22+5×12+15×12+5×22)=.505

12.1,1,3,3 [解析] 不妨设x1≤x2≤x3≤x4,且x1,x2,x3,x4∈N*,则s=(x1-2)2+(x2-2)2+(x3-2)2+(x4-2)2]=1,即(x1-2)2+(x2-2)2+(x3-2)24

+(x4-2)2=4.又因为平均数和中位数都为2,所以x4≤3,则只能取x1=x2=1,x3=x4=3.故这组数据为1,1,3,3.^

13.73.5 [解析] x=4.5,y=35,则a=35-7×4.5=3.5,所以y=7×10+3.5=73.5.30×(12×8-2×8)230

14.0.050 [解析] ∵K==4.2857>3.841,∴错误的概率不超

714×16×20×10

过0.050.15.解:(1)由茎叶图可知,在160~179之间的身高数据显示乙班平均身高应高于甲班,而其余数据可直接看出身高的均值是相等的,因此乙班平均身高应高于甲班.

(2)由题意知甲班样本的均值为

158+162+163+168+168+170+171+179+179+182x=170,10

故甲班样本的方差为[(158-170)2+(162-170)2+(163-170)2+(168-170)2+(168-

170)2+(170-170)2+(171-170)2+(179-170)2+(179-170)2+(182-170)2]=57.2.16.解:(1)如图所示,从散点图上可以看出两个变量具有较好的线性相关性.

2+3+5+6100+200+300+400

(2)因为x==4,y==250,44则

=4+1+1+4=10,(xi-x)(yi-y)=(-2)×(-150)+(-1)×(-50)+1×50+2×150=700,^

所以b=

700

=70,10

^^

a=y-bx=250-70×4=-30.^

故所求的回归直线方程为y=70x-30.600+30

(3)由题意得70x-30≥600,即x≥70=9,所以若该商场计划营销额不低于600万元,则至少要投入9万元的促销费用.

第四篇:2014高考数学文复习方案 二轮作业手册(新课标·通用版)专题限时集:第8讲 三角恒等变换与解三角形

专题限时集训(八)

[第8讲 三角恒等变换与解三角形]

(时间:45分钟)

π31.已知α∈π,sin αtan 2α=()52

24242424A.B.C.-D.- 725257

312.=()cos 10°sin 170°

A.4B.2C.-2D.-4

1π3.已知sin αα∈0,则sin 2α=()3222 24 24 2A.B.-C.D.-3399

4.若△ABC的三个内角满足sin A∶sin B∶sin C=4∶5∶7,则△ABC()

A.一定是锐角三角形

B.一定是直角三角形

C.一定是钝角三角形

D.可能是锐角三角形,也可能是钝角三角形

5.在△ABC中,内角A,B,C所对的边分别是a,b,c,若C=120°,c,则()

A.a>bB.a

C.a=bD.a与b的大小关系不能确定

6.在△ABC中,内角A,B,C所对的边分别为a,b,c,若a=7,b=5,c=8,则△ABC的面积等于()

A.10B.10 3

C.20D.20 3

7.在△ABC中,内角A,B,Cb,c,若a6,b=2,且1+2cos(B+C)=0,则△ABC的BC边上的高等于()

6A.22

6+23+1 22

8.已知△ABC中,三个内角A,B,C所对的边分别为a,b,c,若△ABC的面积为S,且2S=(a+b)2-c2,则tan C等于()

34A.B.43

43CD.- 34

29.在△ABC中,a,b,c分别是内角A,B,C所对的边,若b=1,c3,C=π,3

则S△ABC=________.

3510.设△ABC的内角A,B,C所对的边分别为a,b,c且cos Acos Bb=3,513C.则c=________.

11.△ABC中,a,b,c分别是内角A,B,C所对的边,若(2a+c)·cos B+b·cos C=0,则B的值为________.

π

12.在△ABC中,已知内角A=,边BC=2 3.设内角B=x,周长为y,则y=f(x)的最大值是________.

π

13.已知函数f(x)=2 3sin xcos x+2cos2x+m在区间0,上的最大值为2.3

(1)求常数m的值;

(2)在△ABC中,内角A,B,C所对的边分别为a,b,c,若f(A)=1,sin B=3sin C,△3

ABC的面积为a.AA

π-+14.在△ABC中,内角A,B,C所对的边分别为a,b,c,且f(A)=2cos 22

AAsin2cos2.22

(1)求函数f(A)的最大值;

(2)若f(A)=0,C=a=6,求b的值.

15.在△ABC中,内角A,B,C所对的边分别为a,b,c,cos B5

(1)求cos(A+C)的值;

π

(2)求sinB的值;

6→→

(3)若BA·BC=20,求△ABC的面积.

专题限时集训(八)

π343

1.D [解析] 因为α∈,π,sin α=cos α=-,tan α=-.所以tan 2

5542

-32×2tan α424

α22731-tanα1-

4

2.D [解析]

3131

-=-=

cos 10°sin 170°cos 10°sin 10°

3sin 10°-cos 10°sin 10°cos 10°

2sin(10°-30°)2sin(-20°)-2sin 20°

4,故选D.1sin 10°cos 10°sin 10°cos 10°°2

π

3.D [解析] ∵α∈(-0),∴cos α=sin 2α=2sin αcos α=-9

122 1--3

16k2+25k2-49k21

4.C [解析] 由正弦定理可设a=4k,b=5k,c=7k,则cos C=<0,52·4k·5k因此三角形为钝角三角形.

5.C [解析] 因为sin 120°=3sin A,所以sin A=,则A=30°=B,因此a=b.249+25-641

6.B [解析] 因为cos C,sin C72×7×5

=10 3.314 3=所以S=×7×5×49727

π136

7.C [解析] 由1+2cos(B+C)=0得cos A=sin A,A=2233

2π5π22ππ2

=,sin B=B=C因此BC边上的高为2×sin C=2×sin+=2(sin B24122466+221×)=2222

8.C [解析] 由2S=(a+b)2-c2得2S=a2+b2+2ab-c2,即2×absin C=a2+b2+2ab

222a+b-cabsin C-2absin C2222

-c,则absin C-2ab=a+b-c,又因为cos C=1,所以

2ab2ab2

C2tan

22×2sin CCCCC4

cos C+1=,即2cos2=sin,所以=2,即tan C==.2222223C1-21-tan

bc119.[解析] 因为b

sin3

ππ2ππ11

=2,由B是三角形的内角知,B=,于是A=π-=S△ABC=bcsin A=×3

663622

13×.24

1435410.[解析] 因为cos A=cos Bsin A=,55135

12aba313

sin B=由正弦定理得=,即a=.由余弦定理得b2=a2+c2-

13sin Asin B4125

513

16914

2accos B,即9c2-2c,解得c=(负值舍去).

2552π

11.[解析] 由正弦定理可将(2a+c)cos B+bcos C=0转化为2sin A·cos B+sin C·cos

B+sin Bcos C=0,即2sin Acos B+sin(B+C)=0,得2sin Acos B+sin A=0,又由A为△ABC2π1

内角,可知sin A≠0,则cos B=-,则B.23

π2π

12.6 3 [解析] △ABC的内角和A+B+C=π,由A=,B>0,C>0得0

33BC2 3BC2π

用正弦定理知AC=·sin x=4sin x,AB==4sinx.因为y=

sin Asin A3π

sin

3AB+BC+AC,所以y=4sin x+4sin2π2ππ

+2 3,即y=4 3sinx++2 3

3x0

ππππ5ππ

π

13.解:(1)f(x)=2 3sin x·cos x+2cos2x+m=2sin(2x+)+m+1.6ππ5ππ

因为x∈0,所以2x+∈,.6663πππ5π

因为函数y=sin t在区间,上是增函数,在区间,上是减函数,6226

πππππ

所以当2x+,即x=时,函数f(x)在区间0,上取到最大值.此时,f(x)max=f62636=m+3=2,得m=-1.π

(2)因为f(A)=1,所以2sin2A+=1,6ππ1

即sin2A+=,解得A=0(舍去)或A=.362abc

因为sin B=3sin C,=,所以b=3c.①

sin Asin Bsin C

π3 33 311

因为△ABC的面积为S△ABCbcsin A=bcsinbc=3.②

42234

由①和②解得b=3,c=1.π

因为a2=b2+c2-2bc·cos A=32+12-2×3×1×

所以a=7.πAAAA

14.解:(1)f(A)=2cos+sin2-cos2=sin A-cos A2sinA.22224ππ3π

因为0

ππ3π

当AA时,f(A)取得最大值,且最大值为2.424ππ

(2)由题意知f(A)=2sinA=0,所以sinA=0.44ππ3πππ

又知-

5π7ππ

因为C=A+B=B=.12123

π6·sin

3abasin B

由,得ab===3.sin Asin Bsin Asin A

15.解:(1)在△ABC中,∵A+B+C=π,∴A+C=π-B.44

∵cos B,∴cos(A+C)=cos(π-B)=-cos B=-.55

42342(2)在△ABC中,∵cos B=sin B=1-cosB1-5

55πππ33143 3+4

∴sin(B+=sin Bcos+cos Bsin.666522510→→→→

(3)∵BA·BC=20,即|BA|·|BC|cos B=20,∴c·a·=20,即ac=25.11315

∴△ABC的面积S△ABC=acsin B×25×=2252

第五篇:高考二轮复习数学理配套讲义3 不等式与线性规划

微专题3 不等式与线性规划

2018·全国卷Ⅰ·T13·线性规划求最值

2018·全国卷Ⅱ·T14·线性规划求最值

2018·北京高考·T8·线性规划区域问题

2018·浙江高考·T15·不等式的解法

2017·全国卷Ⅰ·T14·线性规划求最值

1.不等式作为高考命题热点内容之一,多年来命题较稳定,多以选择、填空题的形式进行考查,题目多出现在第5~9或第13~15题的位置上,难度中等,直接考查时主要是简单的线性规划问题,关于不等式性质的应用、不等式的解法以及基本不等式的应用,主要体现在其工具作用上。

2.若不等式与函数、导数、数列等其他知识交汇综合命题,难度较大。

考向一

不等式的性质与解法

【例1】(1)已知a>b>0,则下列不等式中恒成立的是()

A.a+>b+

B.a+>b+

C.>

D.>ab

(2)已知函数f

(x)=(ax-1)(x+b),若不等式f

(x)>0的解集是(-1,3),则不等式f

(-2x)<0的解集是()

A.∪

B.C.∪

D.解析(1)因为a>b>0,所以<,根据不等式的性质可得a+>b+,故A正确;对于B,取a=1,b=,则a+=1+=2,b+=+2=,故a+>b+不成立,故B错误;根据不等式的性质可得<,故C错误;取a=2,b=1,可知D错误。故选A。

(2)由f

(x)>0的解集是(-1,3),所以a<0,且方程f

(x)=(ax-1)(x+b)=0的两根为-1和3,所以所以a=-1,b=-3,所以f

(x)=-x2+2x+3,所以f

(-2x)=-4x2-4x+3,由-4x2-4x+3<0,得4x2+4x-3>0,解得x>或x<-。故选A。

答案(1)A(2)A

解不等式的策略

(1)一元二次不等式:先化为一般形式ax2+bx+c>0(a>0),再结合相应二次方程的根及二次函数图象确定一元二次不等式的解集。

(2)含指数、对数的不等式:利用指数、对数函数的单调性将其转化为整式不等式求解。

变|式|训|练

1.(2018·北京高考)能说明“若a>b,则<”为假命题的一组a,b的值依次为________。(答案不唯一)

解析 由题意知,当a=1,b=-1时,满足a>b,但是>,故答案可以为1,-1。(答案不唯一,满足a>0,b<0即可)

答案 1,-1(答案不唯一)

2.(2018·浙江高考)已知λ∈R,函数f

(x)=当λ=2时,不等式f

(x)<0的解集是________。若函数f

(x)恰有2个零点,则λ的取值范围是________。

解析 若λ=2,则当x≥2时,令x-4<0,得2≤x<4;当x<2时,令x2-4x+3<0,得1

(x)<0的解集为(1,4)。令x-4=0,解得x=4;令x2-4x+3=0,解得x=1或x=3。因为函数f

(x)恰有2个零点,结合函数的图象(图略)可知1<λ≤3或λ>4。

答案(1,4)(1,3]∪(4,+∞)

考向二

基本不等式及其应用

【例2】(1)(2018·天津高考)已知a,b∈R,且a-3b+6=0,则2a+的最小值为________。

(2)已知a>b,且ab=1,则的最小值是______。

解析(1)由a-3b+6=0,得a=3b-6,所以2a+=23b-6+≥2=2×2-3=,当且仅当23b-6=,即b=1时等号成立。

(2)==a-b+≥2,当且仅当a-b=时取得等号。

答案(1)(2)2

在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号成立)的条件,否则会出现错误。

变|式|训|练

1.已知a>0,b>0,若不等式--≤0恒成立,则m的最大值为()

A.4

B.16

C.9

D.3

解析 因为a>0,b>0,所以由--≤0恒成立得,m≤(3a+b)=10++恒成立。因为+≥2=6,当且仅当a=b时等号成立,所以10++≥16,所以m≤16,即m的最大值为16。故选B。

答案 B

2.已知函数f

(x)=ln(x+),若正实数a,b满足f

(2a)+f

(b-1)=0,则+的最小值是________。

解析 因为f

(x)=ln(x+),f

(-x)=ln(-x+),所以f

(x)+f

(-x)=ln[(x+)·(-x+)]=ln1=0,所以函数f

(x)=ln(x+)为R上的奇函数,又y=x+在其定义域上是增函数,故f

(x)=ln(x+)在其定义域上是增函数,因为f

(2a)+f

(b-1)=0,f

(2a)=-f

(b-1),f

(2a)=f

(1-b),所以2a=1-b,故2a+b=1。故+=+=2+++1=++3≥2+3。(当且仅当=且2a+b=1,即a=,b=-1时,等号成立。)

答案 2+3

考向三

线性规划及其应用

微考向1:求线性目标函数的最值

【例3】(2018·全国卷Ⅱ)若x,y满足约束条件则z=x+y的最大值为________。

解析 作可行域,则直线z=x+y过点A(5,4)时取最大值9。

答案 9

线性目标函数z=ax+by最值的确定方法

(1)将目标函数z=ax+by化成直线的斜截式方程(z看成常数)。

(2)根据的几何意义,确定的最值。

(3)得出z的最值。

变|式|训|练

(2018·天津高考)设变量x,y满足约束条件则目标函数z=3x+5y的最大值为()

A.6

B.19

C.21

D.45

解析 不等式组表示的平面区域如图中阴影部分所示,作出直线y=-x,平移该直线,当经过点C时,z取得最大值,由得即C(2,3),所以zmax=3×2+5×3=21。故选C。

答案 C

微考向2:线性规划中的参数问题

【例4】(2018·山西八校联考)若实数x,y满足不等式组且3(x-a)+2(y+1)的最大值为5,则a=________。

解析 设z=3(x-a)+2(y+1),作出不等式组表示的平面区域如图中阴影部分所示,由z=3(x-a)+2(y+1)得y=-x+,作出直线y=-x,平移该直线,易知当直线过点A(1,3)时,z取得最大值,又目标函数的最大值为5,所以3(1-a)+2(3+1)=5,解得a=2。

答案 2

解决这类问题时,首先要注意对参数取值的讨论,将各种情况下的可行域画出来,以确定是否符合题意,然后在符合题意的可行域里,寻求最优解,从而确定参数的值。

变|式|训|练

已知x,y满足约束条件目标函数z=2x-3y的最大值是2,则实数a=()

A.

B.1

C.

D.4

解析 作出约束条件所表示的可行域如图中阴影部分所示,因为目标函数z=2x-3y的最大值是2,由图象知z=2x-3y经过平面区域的点A时目标函数取得最大值2。由解得A(4,2),同时A(4,2)也在直线ax+y-4=0上,所以4a=2,则a=。故选A。

答案 A

1.(考向一)(2018·福建联考)已知函数f

(x)=

若f

(2-x2)>f

(x),则实数x的取值范围是()

A.(-∞,-1)∪(2,+∞)

B.(-∞,-2)∪(1,+∞)

C.(-1,2)

D.(-2,1)

解析 易知f

(x)在R上是增函数,因为f

(2-x2)>f

(x),所以2-x2>x,解得-2

答案 D

2.(考向一)(2018·南昌联考)若a>1,0

A.loga2

018>logb2

018

B.logba

C.(c-b)ca>(c-b)ba

D.(a-c)ac>(a-c)ab

解析 因为a>1,0

018>0,logb2

018<0,所以loga2

018>logb2

018,所以A正确;因为0>logab>logac,所以<,所以logba(c-b)ba,所以C正确;因为ac0,所以(a-c)ac<(a-c)ab,所以D错误。故选D。

答案 D

3.(考向二)(2018·河南联考)已知直线ax-2by=2(a>0,b>0)过圆x2+y2-4x+2y+1=0的圆心,则+的最小值为________。

解析 圆x2+y2-4x+2y+1=0的圆心坐标为(2,-1)。由于直线ax-2by=2(a>0,b>0)过圆x2+y2-4x+2y+1=0的圆心,故有a+b=1。所以+=(a+2+b+1)=≥+×2=,当且仅当a=2b=时,取等号,故+的最小值为。

答案

4.(考向三)(2018·南昌联考)设不等式组表示的平面区域为M,若直线y=kx经过区域M内的点,则实数k的取值范围为()

A.B.C.D.解析 作出不等式组表示的平面区域,如图阴影部分所示,易知当直线y=kx经过点A(2,1)时,k取得最小值,当直线y=kx经过点C(1,2)时,k取得最大值2,可得实数k的取值范围为。故选C。

答案 C

5.(考向三)(2018·广州测试)若x,y满足约束条件

则z=x2+2x+y2的最小值为()

A.

B.

C.-

D.-

解析 画出约束条件对应的平面区域,如图中阴影部分所示,z=x2+2x+y2=(x+1)2+y2-1,其几何意义是平面区域内的点(x,y)到定点(-1,0)的距离的平方再减去1,观察图形可得,平面区域内的点到定点(-1,0)的距离的最小值为,故z=x2+2x+y2的最小值为zmin=-1=-。故选D。

答案 D

下载2014高考数学文复习方案 二轮作业手册(新课标·通用版)专题限时集:第3A讲 不等式与线性规划 Word版含解析专题word格式文档
下载2014高考数学文复习方案 二轮作业手册(新课标·通用版)专题限时集:第3A讲 不等式与线性规划 Word版含解析专题.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐