第一篇:《计量经济学》参考书目
《计量经济学》参考书目
主要参考书
李子奈,《计量经济学》,高等教育出版社,2000年7月
Damodar N.Gujarrati,《Basic Econometrics》(fourth edition), The McGraw-Hill Companies, 2001
Jeffrey M.Wooldridge, 《Introductory Econometrics: A Modern Approach》(second edition), Thomson, South-Western, 2003
古扎拉蒂著,林少宫译,《计量经济学》(第3版),中国人民大学出版社,1999年
其它参考书
张保法著,《经济计量学》(第4版),经济科学出版社,2000年1月
赵国庆主编,《计量经济学》,中国人民大学出版社,2001年2月
Michael D.Intriligator,《Econometric Models,Techniques,and Applications》(Second Edition), Prentice-Hall Inc.,1997
R.S.Pindyck, D.L.Rubinfeld, 《Econometric Models and Econometric Forecasts》(Fourth Edition), McGraw-Hill, 1990
G.S.Maddala, 《Introduction to Econometrics》(Third Edition),John Wiley & Sons, 2001 李子奈,《计量经济学—方法与应用》,清华大学出版社,1992年
Robert D.Mason, Douglas A.Lind, 《Statistical Techniques in Business and Economics》(Nineth Edition), McGraw-Hill Company, 1996(机械工业出版社,1998年12月)
张寿、于清文编著,《计量经济学》,上海交通大学出版社,1984年
唐国兴编著,《计量经济学—理论、方法和模型》,复旦大学出版社,1991年
陈正澄著,《计量经济学》,台湾三民书局,1980年
吴承业、龚德恩编著,《应用经济计量学教程》,中国铁道出版社,1996年
R.L.Thomas, 《Introductory Econometrics: Theory and Applications》,Longman Inc.,1985
高级教材,部分参考
李子奈、叶阿忠,《高等计量经济学》,清华大学出版社,2000年
William H.Greene,《Econometric Analysis》(Fourth Edition), Prentice-Hall Inc., 2000 G.C.Chow著,郑宗成等译,《经济计量学》,中国友谊出版公司,1988年
L.Klein著,谢嘉译,《经济计量学教科书》,商务印书馆,1983年
G.G.Judge等著,周逸江等译,《经济计量学理论与实践引论》,中国统计出版社,1993年
张晓峒著,《计量经济分析》,经济科学出版社,2000年 9月
241
第二篇:计量经济学学习心得
计量经济学的心得与体会
本学期开设了《计量经济学》这门课程,刚开始接触,绝得这门课不简单,看着那繁琐的数学公式和看不明白的模型,把我吓住了,但通过一学期的学习,还是从中学到很多的东西。
计量经济学是一门从数量方面研究各种经济变量变化规律的应用学科,是人们从数量方面探寻经济活动的规律,它是经济学、数学和统计学相结合的一门综合性学科,根据实际观测的统计数据,运用数学和统计学的方法,借助于计算机技术从事经济关系与经济活动数量规律的研究,并以建立和应用计量经济模型为核心的一门经济学科。
本人能够对Eviews软件进行熟练的操作和应用,学习了一元线性回归模型和多元线性回归模型等模型,把数据应用于建立的模型,然后进行分析检验,上一步骤的完成的好坏直接影响下一步骤的效果,真所谓环环相扣。
虽然学习了很多有关计量经济学的内容,但是我对有些内容的掌握的还有所欠缺,同时也深深的对这门学科产生了浓厚的兴趣,着实体会到科学和数字的魅力所在,希望自己今后能将计量经济学的精髓学以致用。
第三篇:计量经济学心得体会
计量经济学心得体会
这学期学习了计量经济学这门课,发现原来我们身边很多现象(诸如经济领域,农业生产等等)都可以用计量经济学来进行研究。整个学期中,老师让我们每个小组都运用计量经济学的理论自选一个课题进行研究并进行课堂展示,各个小组精彩的展示,不仅将所学知识与实际现象相结合,同时也大大扩展了我们的知识面。
这次的计经小组作业,我们小组在定题之前进行了很多次的讨论,最后选择了影响税收收入的因素为研究课题,我们选择这个主题其一是它是经济领域的现象,与我们所学专业联系紧密,同时我们小组成员也对影响税收收入的相关因素很好奇,想知晓哪些因素对税收有影响。
作为组长,在定题之后,我为每个组员安排了任务,每个人负责相应的板块,有的负责收集资料,有的负责软件操作,有的负责结果探讨与分析,有的负责报告的撰写。安排完任务之后我继续跟进小组成员的进度,解决他们的疑问。而在本次作业中,我主要是是负责收集资料和进行Eview输出结果分析。在完成作业期间,我们也遇到了很多问题,比如有的数据不好收集,有时候软件操作无法顺利显示结果,但一旦某个成员在作业过程中遇到问题,我们便会在QQ群上讨论,其他小组成员会给出建议并尽力给予帮助。最后看到我们的作业顺利完成时,内心是慢慢的自豪感,这份作业不仅包含了每个成员的心血,同时是我们努力的见证。
从大一到大三,我们学习了很多经济知识,虽然学习了很多,但有时候想起来,又觉得自己很多东西都只是浅尝辄止,根本就没真正的去认识它,去了解经济领域,而自己慢慢的也只是变成了学习的机器,对所学知识欠缺研究和思考。而本次的计量经济学作业,则很好地将我们的所学与现实经济现象相结合,不仅让我重新回顾了宏观经济学的知识,同时将我在计经课堂上所学的理论知识用于实证研究,加强了我对所学知识的运用能力,也深刻认识到计经的实用性,可以对很多经济理论进行研究分析。计经这门课程虽然已经结束,不过所学的知识却没有完结,至少在毕业论文写作上,它会有很大帮助。
第四篇:计量经济学实验报告
目录
(一)研究背景.................................................................................................................2(二)理论来源.................................................................................................................2(三)模型设定.................................................................................................................2(四)数据处理.................................................................................................................2
1.数据来源.............................................................................................................2 2.解释变量的设置.................................................................................................3(五)先验预期.................................................................................................................3
1.经验预期.............................................................................................................3 2.散点图分析.........................................................................................................3(六)参数估计.................................................................................................................4(七)显著性检验.............................................................................................................5(八)正态性检验.............................................................................................................5(九)MWD检验..............................................................................................................5(十)相关系数.................................................................................................................7(十一)虚拟变量.............................................................................................................7(十二)异方差检验、修正.............................................................................................8
1.图形检验.............................................................................................................8 2.格莱泽检验.........................................................................................................9 3.帕克检验...........................................................................................................10 4.异方差的修正加权最小二乘法.......................................................................10 5.异方差修正后的检验.......................................................................................11(十三)自相关检验.......................................................................................................11 1.图形法...............................................................................................................11 2.德宾-沃森d检验.............................................................................................12(十四)最终结果...........................................................................................................12
(一)研究背景
中国是一个大国,幅员辽阔,历史上自然地形成了一个极端不平衡发展的格局。而1978年开始的改革,政府采取了由东向西梯度推进的非均衡发展战略,使已经存在的地区间的差距进一步扩大,不利于整个社会的稳定和发展。地区发展不平衡问题包括社会发展不平衡,尤其是教育发展的不平衡。因此关注中国教育发展的地区不平衡性非常迫切。不仅是因为教育的重要性,还因为当前我国需要进一步推进教育改革的进程,使其朝着更健康的方向发展。
(二)理论来源
刘红梅.中国各地区教育发展水平差异的实证分析[J]数理统计与管理.2013.7(三)模型设定
Yi=B1+B2X2i+B3X3i+B4X4i+B5X2i+B6X4i+ui
Y——地区教育水平,用平均受教育年限表示,(年)X2——学生平均预算内教育经费,(万元/人)X3——人均GDP,(万元/人)X4——平均生师比
22
(四)数据处理
1.数据来源:国家统计局官网,选取2014年的数据:
1)各省GDP 2)各地区总人口
3)各地区每十万人拥有的各种受教育程度人口比较数据 4)地区在校总学生数 5)各地区教育财政投入 6)地区每十万总专任教师数
2.解释变量的设置:
X2=地区预算内教育经费/地区在校总学生数 =学生平均预算内教育经费(万元/人)X3=地区总GDP/地区总人口=人均GDP(万元/人)
X4=地区每十万人口各级学校平均在校生数的和/地区每十万人口总专任教师数
=平均生师比
其中:
P为各地区每十万人拥有的各种受教育程度人口比较数 T为教育年限1,6,9,12,16(五)先验预期
1.经验预期:
平均受教育年限分别跟学生平均预算内教育经费、人均GDP呈正相关关系,跟平均生师比呈负相关关系。
2.散点图分析:
学生平均预算内教育经费和平均受教育水平成正比,人均GDP和受教育水平成正比,平均生师比和平均受教育水平成反比。(六)参数估计
设定经济计量模型:Yi=B1+B2X2i+B3X3i+B4X4i+B5X2i+B6X4i+ui 参数估计:进行OLS回归
图6-1
图5-1 根据参考文献,广东和西藏是强影响点,所以我们把两地的数据去除,剩下29个地区的数据。于是,我们对剩下的29个数据进行了回归,得出这个回归结果:
图6-2 回归结果:
22Yi=23.2406-24.6626X2i+0.2296X3i-1.6477X4i+59.1341X2i2+0.0516X4i2(七)显著性检验
H0:B2=B3=B4=B5=B6=0 H1:B2,B3,B4 ,B5, B6不全为0 P=0.000000<0.01 故拒绝原假设,即认为学生平均教育经费、人均GDP、平均生师比对平均受教育年限有显著影响。
(八)正态性检验
图8-1 根据JB检验,得到其值为0.431311,接近于零,残差接近正态分布。
(九)MWD检验
对数-线性模型:Yi=B1+B2X2i+B3X3i+B4X4i+B5X2i+B6X4i 线性模型:LnYi=B1+B2X2i+B3X3i+B4X4i+B5X2i+B6X4i H0:线性模型:Y是X的线性函数 H1:对数-线性模型:lnY是X的线性函数
2图9-1
图9-2 由图9-2可得,Z1的系数是统计不显著的,则不拒绝H0, 则说明线性模型是可行的。
图9-3 由图9-3可得,Z2的系数也是统计不显著的,则不拒绝H1, 则说明对数线性模型也是可行的。
MWD检验的结论是:最后的结果是两个模型都是合理的。
(十)相关系数
图10-1 由图10-1可得,X2和X3,X4的相关程度低。另外X22 ,X42分别是X2、X4的非线性函数,所以将它们同时包含在一个模型中没有违反经典线性模型中“解释变量之间不能存在精确的线性关系”的假定。由此可得,多重共线性的程度较低
(其中X22用X5来表示,,X42用X6来表示。)
(十一)虚拟变量
设立含虚拟变量的模型:
Yi=B1+B2X2i+B3X3i+B4X4i+B5X2i2 +B6X4i2+B7D1+B8D2+ui
其中 D1:(1-中部,0-其他)D2:(1-西部,0-其他)
图11-1 回归结果表明:虚拟变量D1、D2回归系数统计不显著,即中国东、中、西部的平均受教育年限没有显著不同,可能因为中国教育机制日趋完善,教育资源趋于均衡,所以地区差异缩小
(十二)异方差检验、修正
1.图形检验:
图12-1残差平方对教育经费
图12-2残差平方对人均GDP
图12-3残差平方对平均生师比
由图形检验结果可知:数据存在相当大的变异性,表明回归模型和可能存在异方差。
2.格莱泽检验:
类型1:H0:B2=0|ei|=B1+B2X2+vi
图12-4 回归结果表明:X2的系数是统计显著的,所以拒绝原假设,回归模型中部存在异方差
类型2:H0:B3=0|ei|=B1+B3X3+vi
图12-5 回归结果表明:X3的系数是统计显著的,所以拒绝原假设,回归模型中部存在异方差。综上所述,回归模型中存在异方差。
3.帕克检验:
图12-6 由于Y的估计值的系数是统计显著的,因此帕克检验表明,回归模型存在异方差。
通过以上三种异方差的检验,我们得出该回归模型存在异方差的理论。
4.异方差的修正:加权最小二乘法
图12-7 经过多次的试验,我们最终选择1/X23作为权重,其能有效地消除异方差。
5.异方差修正后的检验
图12-8 由图12-8可知,帕克检验中,得出Y的系数是统计不显著的,因此,回归方程不存在异方差。
(十三)自相关检验
1.图形法
图13-1 由图13-1可知,对et及et-1作回归,残差的递差之间没有关系。2.德宾-沃森d检验
图13-2 由图13-2可知,d=2.206761,根据D-W表,对于n=29,k=6,在5%的显著水平下,dL=1.050,dU=1.841,由于d位于2.159和2.95之间,所以,我们无法判断是否存在自相关。
综合以上两种自相关的检验,我们得出该模型不存在自相关的结论。
(十四)最终结果
Yi/X2i3=67.3323+2.4598/X2i2+0.3444X3i/X2i3-7.9644X4i/X2i3-3.239358X22i/X2i3+0.25936X4i2/X2i3
对回归得结果解释如下:B2= 2.4598表明,如果学生平均预算内教育经费提高1个单位,则实际的地区平均受教育年限平均提高2.4598年,但其不是特别显著。B3= 0.3444表明,如果人均提高1个单位,则实际的地区平均受教育年限平均提高0.3444年,其效果小于教育经费的提高带来的影响。B4=-7.9644表明,如果平均生师比提高1个单位,则实际的地区平均受教育年限平均下降7.9644年。
R2约为0.8739,表明这几个解释变量解释了地区平均受教育年限87.39%的变异,R2值相当高。
这个模型的现实意义就是,要想提高地区的教育水平,加大对教育的投入是关键。同时,也应该提高对教师资源的重视程度,合理分配地区的教师,减低生师比,让教育资源得到最有效地配置。
第五篇:计量经济学心得
计量经济学学习心得
经过一个学期对计量经济学的学习,我收获了很多,也懂得了很多。通过以计量经济学为核心,以统计学,数学,经济学等学科为指导,辅助以一些软件的应用,从这些之中我都学到了很多的知识。
通过学习计量经济学,我发现:计量经济学便是用精简的文字概括内容要点,用朴实的语言联系现实生活,让我们体会到计量经济学就在我们的身边。
参观一个城市,先站在最高处俯瞰,然后走街串巷;了解一座建筑,先看模型,后走进每一个房间。各起一半作用。计量经济学也是如此。
学习计量经济学给我印象和帮助最大的主要有两点:一:对EVIEWS软件的熟练操作与应用,记得以前学运筹学的时候,我学会了Lindo软件,而现在我又学会了Eviews软件,我感觉自己真的是很幸运,因为毕竟有些软件是属于那种有价无市的,如果没有老师的传授我不可能从市场上或是从思想上认识到它;二:对于计量经济学辩论赛的认识我是很深刻的,在这一场没有硝烟但却处处充满着科学理论的睿智辩论中,我提高了胆识,增长了见识,也学会了团队与协作的力量。
以下我将着重从六个方面阐述我对计量经济学知识的一些认识以及个人从中学到的经验与心得。
一:计量经济学教我了我很多。
在学习计量经济学的过程中,我可以旁征博引,同时老师也给了我很多有意思的启发,因为即将面临考研的抉择,这门课也是我考研过程中必备的一门课程,因此,虽然是一门限选课,但是我仍然很用心得听讲,并对一些重要的知识做了记录,从而为自己的考研奠定一定的基础。
在认识计量经济学并不断提高自己对它的认识过程中,我感触最深的便是那一次的辩论赛,真的,一次辩论可以教会我很多有用的知识,从一个辩题的准备到辩论的过程,从推陈出新到完美的放映,从团队协作再到完美的配合,这一切,我觉得我们小组都做到了。
二:计量经济学的系统知识
计量经济学的定义为:用数学方法探讨经济学可以从好几个方面着手,但任何一个方面都不能和计量经济学混为一谈。计量经济学与经济统计学绝非一码事;它也不同于我们所说的一般经济理论,尽管经济理论大部分具有一定的数量特征;计量经济学也不应视为数学应用于经济学的同义语。经验表明,统计学、经济理论和数学这三者对于真正了解现代经济生活的数量关系来说,都是必要的,但本身并非是充分条件。三者结合起来,就是力量,这种结合便构成了计量经济学。克莱因(R.Klein):“计量经济学已经在经济学科中居于最重要的地位”,“在大多数大学和学院中,计量经济学的讲授已经成为经济学课程表中最有权威的一部分”
计量经济学关心统计工具在经济问题与实证资料分析上的发展和应用,经济学理论提供对于经济现象逻辑一致的可能解释。因为人类行为和决策是复杂的过程,所以一个经济议题可能存在多种不同的解释理论。当研究者无法进行实验室的实验时,一个理论必须透过其预测与事实的比较来检验,计量经济学即为检验不同的理论和经济模型的估计提供统计工具。
在计量经济学一元线性回归模型,我认识到:变量间的关系及回归分析的基本概念,主要包括:
其次有一元线形回归模型的参数估计及其统计检验与应用,包括: 这个公式得给出,以及样本回归函数的随机形式。总的说来,这一节留给我印象最深刻的,便是根据样本回归函数SRF,估计总体回归函数PRF,即总体回归线与样本回归线之间的关系。除此以外,我也学会了参数的最大似然估计法语最小二乘法。对于最小二乘法,当从模型总体随机抽取n组样本观测值后,最合理的参数估计量应该使得模型能最好的拟合样本数据,而对于最大似然估计法,当从模型总体随机抽取n组样本观测值后,最合理的参数估计量应该使得从模型中抽取该n组样本观测值的概率最大。显然,这是从不同原理出发的两种参数估计方法。即:
1.一元回归模型:
关于拟合优度的检验,也就是检验模型对样本观测值的拟合程度。被解释变量Y的观测值围绕其均值的总离差平方和可分解为两个部分:一部分来自于回归线,另一部分来自于随机势力。所以,我们用来自回归线的回归平方和占Y的总离差的平方和的比例来判断样本回归线与样本观测值的拟合优度。这个比例,我们也较它可决系数,它的取值范围是0<=R2<=1。
关于变量的显著性检验,是要考察所选择的解释变量是否对被解释变量有显著的线性影响。所应用的方法是数理统计学中的假设检验。我们在进行变量显著性检验时所应用的方法主要是t检验。这在之前我们的概率论与统计学的课程中都有所涉及,不算是新的知识。关于置信区间估计。当我们要判断样本参数的估计值在多大程度上可以“近似”的替代总体参数的真值,往往需要通过构造一个以样本参数的估计值为中心的“区间”,来考察它以多大的概率包含这真是的参数值。这样的方法就是我们所说的参数检验的置信区间估计。当我们希望缩小置信区间时,可以采用的方法有增大样本容量和提高模型的拟合优度。
2.多元回归模型
多元回归分析与一元回归分析的几点不同:
关于修正的可绝系数。我们可于发现,在样本容量一定的情况下,增加解释变量必定使得自由度减少,所以调整的思路是:将残差平方和与总离差平方和分别除以各自的自由度,以剔除变量个数对拟合优度的影响。这样就引出了我们这里说的调整的可绝系数。
关于对多个解释变量是否对被解释变量有显著线性影响关系的联合性F检验。F检验的思想来自于总离差平方和的分解式:TSS=ESS+RSS。通过比较F值与临界值的大小来判定原方程总体上的线性关系是否显著成立。
3.放宽基本假定模型
异方差性,即相对于不同的样本点,也就是相对于不同的解释变量观测值,随机干扰项具有不同的方差,那么检验异方差,也就是检验随机干扰项的方差与解释变量观测值之间的相关性。
序列相关性,如果模型的随机干扰项违背了相互独立的基本假设,称为存在序列相关性。一般经验告诉我们,对于蚕蛹时间序列数据作样本的计量经济学问题,由于在不同样本点上解释变量以外的其他因素在时间上的连续性,带来它们对被解释变量的影响的连续性,所以往往存在序列相关性。
多重共线性,如果某两个或多个解释变量之间出现了相关性,则成为存在多重共线性。分为完全共线和近似共线两类。计量经济学模型一旦出现多重共线性,如果仍然采用普通最小二乘法估计模型参数,会产生下列的不良后果:1.完全共线性下参数估计量不存在;2.近似共线性下普通最小二乘法参数估计量的方差变大;3.参数估计量经济含义不合理;4.变量的显著性检验和模型的预测能力失去意义。