第一篇:电源辐射的屏蔽技术
开关电源辐射的屏蔽技术
发布时间:2014-10-27 09:57:43 浏览:88次
抑制开关电源产生干扰辐射的另一种方法是屏蔽,目的是切断电磁波的传播途径,用电磁屏蔽的方法解决电磁 干扰的问题不会影响电路的正常工作。用导电率良好的材料对电场进行屏蔽,用磁导率高的材料对磁场进行屏 蔽。为了防止脉冲变压器的磁场泄漏,可以利用闭合环形成磁屏蔽。另外,还要对整个的开关电源进行电场屏 蔽。屏蔽应考虑散热和通风问题,屏蔽外壳上的通风孔最好为圆形多孔,在满足通风要求的条件下,孔的数量 可以多,每个孔的尺寸要尽可能小。接缝处要焊接,以保证电磁通路的连续性,如果采用螺钉固定,注意螺钉 之间的距离要短。屏蔽外壳的引人、引出线处要采取滤波措施,否则,这些会成为干扰发射天线,严重降低屏 蔽效果。若对电场屏蔽,屏蔽外壳一定要接地,否则将起不到屏蔽效果;若对磁屏蔽,屏蔽外壳则不需要接地。对非嵌人的外置式开关电源的外壳一定要进行电场屏蔽,否则,很难通过辐射干扰测试。对于开关电源来说,主要是做好机壳屏蔽、高频变压器屏蔽,开关管和整流二极管的屏蔽,采用光电隔离技术。功率开关管和输 出二极管通常有较大的功率损耗,为了散热通常需要安装散热器或直接安装在电源底板上。器件安装时需要用 导热性良好的绝缘片进行绝缘,这就使器件与底板和散热器之间产生了分布电容,开关电源的底板是交流电源 的地线,因而通过器件与底板之间的分布电容将电磁干扰耦合到交流输人端产生共模干扰,解决这个问题的办 法是采用两层绝缘片之间加一层屏蔽片,并把屏蔽片接到直流地上,割断射频干扰向输人电网传播的途径。为 了抑制开关电源产生的辐射电磁干扰对其他电子设备的影响,可以完全按照对磁场屏蔽的方法来加工屏蔽罩,然后将整个屏蔽罩与系统的机壳和地连接成一体,就能对电磁场进行有效的屏蔽。电源某些部分与大地相连可 以起到抑制干扰的作用。例如,静电屏蔽层接地可以抑制变化电场的干扰;电磁屏蔽用的导体原则上可以不接 地,但不接地的屏蔽导体时常增强静电耦合而产生所谓“负静电屏蔽”效应,所以仍以接地为好,这样使电磁 屏蔽能同时发挥静电屏蔽的作用。电路的公共参考点与大地相连,可为信号回路提供稳定的参考电位。因此,系统中的安全保护地线、屏蔽接地线和公共参考地线各自形成接地母线后,最终都与大地相连。
第二篇:屏蔽与接地技术总结
屏蔽技术屏蔽的定义
屏蔽可通过各种屏蔽体来吸收或反射电磁场骚扰的侵入, 达到阻断骚扰传播的目的;或者屏蔽体可将骚扰源的电磁辐射能量限制在其内部, 以防止其干扰其它设备。(对两个空间区域之间进行金属的隔离, 以控制电场、磁场和电磁波由一个区域对另一个区域的感应和辐射。)
1.一种是主动屏蔽, 防止电磁场外泄;
2.一种是被动屏蔽, 防止某一区域受骚扰的影响。
屏蔽就是具体讲, 就是用屏蔽体将元部件、电路、组合件、电缆或整个系统的干扰源包围起来, 防止干扰电磁场向外扩散;用屏蔽体将接收电路、设备或系统包围起来, 防止它们受到外界电磁场的影响。因为屏蔽体对来自导线、电缆、元部件、电路或系统等外部的干扰电磁波和内部电磁波均起着吸收能量(涡流损耗)、反射能量(电磁波在屏蔽体上的界面反射)和抵消能量(电磁感应在屏蔽层上产生反向电磁场,可抵消部分干扰电磁波)的作用, 所以屏蔽体具有减弱干扰的功能。
2.屏蔽的分类
屏蔽可分为电场屏蔽、电磁屏蔽和磁屏蔽三类。电场屏蔽又包括静电场屏蔽和交变
电场屏蔽;磁场屏蔽又包括静磁屏蔽和交变磁场屏蔽。
1.静电屏蔽常用于防止静电耦合和骚扰, 即电容性骚扰;2.电磁屏蔽主要用于防止高频电磁场的骚扰和影响;3.磁屏蔽主要用于防止低频磁感应, 即电感性骚扰。
2.1静电场屏蔽和交变电场屏蔽
用来防止静电耦合产生的感应。屏蔽壳体采用高导电率材料并良好接地,以隔断两个电路之间的分布电容偶合,达到屏蔽作用。静电屏蔽的屏蔽壳体必须接地。
以屏蔽导线为例,说明静电屏蔽的原理。静电感应是通过静电电容构成的,因此,静电屏蔽是以隔断两个电路之间的分布电容。静电感应,既两条线路位于地线之上时,若相对于地线对导体1 加 有V1的电压,则导体2 也将产生与V1成比例的电V2。由于导体之间必然存在静电电容,若
设电容为C10、C12 和C20,则电压V1 就被C12 和C20 分为两部分,该被分开的电压就为V2,可用下式加以计算;
导体1 和2 之间加入接地板便可构成静电屏蔽。这样,在接地板与导体
1、导体2之间就产生了静电电容C`10 和C`20。等效电路,增加了对地静电电容,消除了导体1、2 之间直接偶合的静电电容。按示2.1,由于C12=0,故与V 1 无关,V2=0。这就是静电屏蔽的原理。
我们若用金属壳体将干扰源屏蔽起来, C1 为干扰源与屏蔽壳体之间的电容, C2 为电子设备与屏蔽壳体之间的电容, Zm 为屏蔽壳体对地阻抗。可求得屏蔽后电子设备上的耦合干扰电压:V sm = ω2 C1 C2 Zm ZsV N / {(ω2 C1 C2 Zm ZsjRs/ ωL s)(8)
屏蔽层的截止角频率ωc = R/ L s ,故取模V = V s/ 1 +(ωc/ ω)2当ω = 0(直流)时, V N = 0 ,当ω = 5ωc 时,V n = 0.98 V s。
当屏蔽中有电流时,中心导线上将感应一个电压V n ,此电压在频率ω≥5ωc 时接近于屏蔽层上的电压V S ,并随着频率升高而增大。我们将屏蔽层两端接地并不能抑制磁耦合干扰,因为屏蔽层中的电流所产生的磁通会与中心导线交连。通常只将屏蔽层上感应的电荷泄放入地,起到电场屏蔽作用。
(2)同轴电缆的中心导线是干扰源时,即中心导线有电流流过。这时如将屏蔽层的一端接地,那么中心导线在屏蔽层上感应的电荷被泄放入地,起到了电场屏蔽作用,但对磁场来说,其作用是非常小的。如果将屏蔽两端接地,所示,由A RSL SB 支路到方程:(Rs + jωL s)Is10MHz 及接地面尺寸为l≈λ/ 20 时,一般可采用单点和多点的混合接地方式.3)混合接地:混合接地既包含了单点接地的特性,又包含了多点接地的特性。例如,系统内的电源需要单点接地,而射频信号又要求多点接地,这时就可以采用混合接地。对于直流,电容是开路的,电路是单点接地,对于射频,电容是导通的,电路是多点接地。
混合接地使接地系统在低频和高频时呈现不同的特性,这在宽带敏感电路中是必要的。电容对低频和直流有较高的阻抗,因此能够避免两模块之间的地环路形成。当将直流地和射频地分开时,将每个子系统的直流地通过10~100nF的电容器接到射频地上,这两种地应在一点有低阻抗连接起来,连接点应选在最高翻转速度(di/dt)信号存在的点。
在工程实践中,除认真考虑设备内部的信号接地外,通常还将设备的信号地,机壳与大地连在一起,以大地作为设备的接地参考点。设备接大地的目的是
1)
保护地,保护接地就是将设备正常运行时不带电的金属外壳(或构架)和接地装置之间作良好的电气连接。为了保护人员安全而设置的一种接线方式。保护“地”线一端接用电器外壳,另一端与大地作可靠连接。
2)
防静电接地,泄放机箱上所积累的电荷,避免电荷积累使机箱电位升高,造成电路工作的不稳定。
3)
屏蔽地,避免设备在外界电磁环境的作用下使设备对大地的电位发生变化,造成设备工作的不稳定。
4)
浮地 :即该电路地与大地无导体连接。(虚地:没有接地,却和地等电位的点)其优点是该电路不受大地电性能的影响。浮地可使功率地(强电地)和信号地(弱电地)之间的隔离电阻很大,所以能阻止共地阻抗电路性耦合产生的电磁干扰。其缺点是该电路易受寄生电容的影响,而使该电路的地电位变动和增加了对模拟电路的感应干扰。一个折衷方案是在浮地与公共地之间跨接一个阻值很大的泄放电阻,用以释放所积累的电荷。注意控制释放电阻的阻抗,太低的电阻会影响设备泄漏电流的合格性。
1)
交流电源地与直流电源地分开
一般交流电源的零线是接地的。但由于存在接地电阻和其上流过的电流,导致电源的零线电位并非为大地的零电位。另外,交流电源的零线上往往存在很多干扰,如果交流电源地与直流电源地不分开,将对直流电源和后续的直流电路正常工作产生影响。因此,采用把交流电源地与直流电源地分开的浮地技术,可以隔离来自交流电源地线的干扰。
2)
放大器的浮地技术
对于放大器而言,特别是微小输入信号和高增益的放大器,在输入端的任何微小的干扰信号都可能导致工作异常。因此,采用放大器的浮地技术,可以阻断干扰信号的进入,提高放大器的电磁兼容能力。
3)
浮地技术的注意事项
i.尽量提高浮地系统的对地绝缘电阻,从而有利于降低进入浮地系统之中的共模干扰电流。ii.注意浮地系统对地存在的寄生电容,高频干扰信号通过寄生电容仍然可能耦合到浮地系统之中。iii.浮地技术必须与屏蔽、隔离等电磁兼容性技术相互结合应用,才能收到更好的预期效果。iv.采用浮地技术时,应当注意静电和电压反击对设备和人身的危害。
1.3接地的原因
当许多相互连接的设备体积很大(设备的物理尺寸和连接电缆与任何存在的干扰信号的波长相比很大)时,就存在通过机壳和电缆的作用产生干扰的可能性。当发生这种情况时,干扰电流的路径通常存在于系统的地回路中。
在考虑接地问题时,要考虑两个方面的问题,一个是系统的自兼容问题,另一个是外部干扰耦合进地回路,导致系统的错误工作。由于外部干扰常常是随机的,因此解决起来往往更难。要求接地的理由很多,下面列出几种:
1)安全接地:使用交流电的设备必须通过黄绿色安全地线接地,否则当设备内的电源与机壳之间的绝缘电阻变小时,会导致电击伤害。
2)雷电接地:设施的雷电保护系统是一个独立的系统,由避雷针、下导体和与接地系统相连的接头组成。该接地系统通常与用做电源参考地及黄绿色安全地线的接地是共用的。雷电放电接地仅对设施而言,设备没有这个要求。
3)电磁兼容接地:出于电磁兼容设计而要求的接地,包括:
a)屏蔽接地:为了防止电路之间由于寄生电容存在产生相互干扰、电路辐射电场或对外界电场敏感,必须进行必要的隔离和屏蔽,这些隔离和屏蔽的金属必须接地。
b)滤波器接地:滤波器中一般都包含信号线或电源线到地的旁路电容,当滤波器不接地时,这些电容就处于悬浮状态,起不到旁路的作用。
c)噪声和干扰抑制:对内部噪声和外部干扰的控制需要设备或系统上的许多点与地相连,从而为干扰信号提供“最低阻抗”通道。
d)电路参考:电路之间信号要正确传输,必须有一个公共电位参考点,这个公共电位参考点就是地。因此所有互相连接的电路必须接地。
电磁兼容接地:出于电磁兼容设计而要求的接地,它包括:(1)屏蔽接地为了防止电路之间由于寄生电容存在产生干扰、电路辐射电场或对外界电场敏感,必须进行必要的隔离和屏蔽,这些隔离和屏蔽的金属必须接地;(2)滤波器接地:滤波器中一般都包含信号线或电源线到地的旁路电容,当滤波器不接地时,这些电容就处于悬浮状态,起不到旁路的作用;(3)噪声和干扰抑制:对内部噪声和外部干扰的控制需要设备或系统上的许多点与 地相连,从而为干扰信号提供“最低阻抗”通道;
(4)电路参考:电路之间信号要正确传输,必须有一个公共电位参考点,这个公共电位参考点就是地.因此所有互相连接的电路必须接地.1.4接地的应用
2.1 信号电缆的接地技术
电缆的屏蔽层必须接地,如不接地,由于寄生耦合,其干扰程度反而比不带屏蔽层严重,使导线增加干扰。
(1)1MHz下低频电缆的接地技术。低频信号电缆的屏蔽层应一点接地。屏蔽层单端接地时,流过屏蔽层的信号电流大小相等、方向相反,它们产生的磁场干扰相互抵消;屏蔽层两端接地时,屏蔽层上流过的是信号电流与地环电流的叠加,不能完全抵消信号电流所产生的磁场干扰。因此,屏蔽层单端接地对电磁场干扰具有很好的抑制作用,而屏蔽层两端接地抑制电磁场耦合干扰的能力比单端接地要差。故低频信号电缆以采取单端接地的屏蔽双绞线的抗电磁干扰效果最佳。至于接地点,a)当电路中有一个不接地的信号源与一个接地的放大器相连时,输入端的屏蔽层应接至放大器的公共端
b)当一个不接地的放大器与一个接地的信号源相连时,应在信号源的输出端接地,这样放大器输入端没有干扰电压。
在光缆传输系统中,各监控点的光端机外露导电部分、光缆加强芯等都采用一点接地,一般与系统的接地装置相连。因为光缆传输信号是在微弱的电流下进行的,要求各级工作电路都有良好的信噪比,采用这种方法接地可以加强屏蔽,防止干扰。
(2)1MHz以上高频电缆的接地技术。对于屏蔽双绞线对电缆,高频集肤效应使干扰电流在屏蔽层外表面流动,而信号电流在屏蔽层内表面流动,从而减少屏蔽层上信号电流和干扰电流的耦合。为了保证屏蔽层为地电位, 1 MHz以上高频电缆通常采用多点接地技术
1.5抑制接地干扰 1.应用隔离变压器
通过隔离变压器阻隔地回路的形成来抑制地回路干扰。电路1 的输出信号经变压器耦合到电路2,而地环路则被变压器所阻隔。但是,变压器绕组间存在分布电容,通过此分布电容形成地环路的等效电路所示,该图中设输出电路的内阻为零,变压器绕组之间的分布电容为C,输入电路的输入电阻为RL。
在分析隔离变压器阻隔地环路的干扰时,根据电路分析的叠加原理,可以不考虑信号电压的传输,即将信号电压短路,只考虑地环路电压UG。
由地环路电压U G 产生的地环路电流为:式中,ω为地回路电压UG的角频率,I、UG分别为地回路电流、电压。地回路电流I 在RL上的产生的压降为:
(x-2)将上式整理,得:(x-3)因此有:(x-4)
当没有采用隔离变压器,直接采用信号线传输时,干扰电压UG 全部加到Rl上,而采用隔离变压器后加到RL上的电压为UN。所以,(x-4)式表示隔离变压器抑制地回路 干扰的能力,|UN/UG| 越小,变压器抑制干扰的能力就越大。
由(x-4)式可知,当ωCRl≤1 时,|UN/UG| ≤ 1。所以,要提高隔离变压器的抗干扰能力,有效地办法是减小变压器绕组间的分布电容C(因为ω是无法改变的,而减小负载电阻Rl会影响信号的传输)。如在变压器绕组之间加一电屏蔽,就可以有效的减小变压器绕
组间的分布电容C,从而有效地阻隔了地回路的干扰。为了防止地回路电压UG通过电屏蔽层与绕组间的分布电容耦合加至负载Rl造成干扰,电屏蔽层应接至负载Rl的接地端。必须指出,采用隔离变压器不能传输直流信号,也不适于传输频率很低的信号。但是,隔离变压器对地线中较低频率的干扰具有很好的抑制能力。同时,电路中的信号 电流只在变压器绕组连线中流过,因此可避免对其他电路的干扰。2.应用光耦合隔离
在两电路间采用光耦合器是切断两电路单元间地环路的有效方法之一。电路1 的信号电流通过发光二极管后,发光二极管的发光强弱随通过它的电流变化,这样就把电路1 的信号电流变成强弱不同的光信号。再由光电三极管把强弱不同的光转化成相应的电流,从而实现了电路间的信号传输。通常发光二极管和光电三极管封装在一起,构成一个光耦合器。这种光耦合器可把两电路间的地环路完全隔断,有效地抑制地线干扰。由于光耦合器电流与发光强度的线性关系较差,传输模拟信号时会产生较大的失真,所以应用受到限制。但它对数字信号传输非常适用,如在固态继电器中隔离控制信号的干扰。
1.4常见的问题
Q1:为什么要接地? 接地技术的引入最初是为了防止电力或电子等设备遭雷击而采取的保护性措施,目的是把雷电产生的雷击电流通过避雷针引入到大地,从而起到保护建筑物的作用。同时,接地也是保护人身安全的一种有效手段,当某种原因引起的相线(如电线绝缘不良,线路老化等)和设备外壳碰触时,设备的外壳就会有危险电压产生,由此生成的故障电流就会流经PE线到大地,从而起到保护作用。随着电子通信和其它数字领域的发展,在接地系统中只考虑防雷和安全已远远不能满足要求了。比如在通信系统中,大量设备之间信号的互连要求各设备都要有一个基准„地'作为信号的参考地。而且随着电子设备的复杂化,信号频率越来越高,因此,在接地设计中,信号之间的互扰等电磁兼容问题必须给予特别关注,否则,接地不当就会严重影响系统运行的可靠性和稳定性。最近,高速信号的信号回流技术中也引入了“地”的概念。
Q2:接地的定义
在现代接地概念中、对于线路工程师来说,该术语的含义通常是„线路电压的参考点';对于系统设计师来说,它常常是机柜或机架;对电气工程师来说,它是绿色安全地线或接到大地的意思。一个比较通用的定义是“接地是电流返回其源的低阻抗通道”。注意要求是“低阻抗”和“通路”。
Q3:常见的接地符号
PE,PGND,FG-保护地或机壳;
BGND或DC-RETURN-直流-48V(+24V)电源(电池)回流; GND-工作地;DGND-数字地;AGND-模拟地;LGND-防雷保护地
Q4:合适的接地方式
Answer: 接地有多种方式,有单点接地,多点接地以及混合类型的接地。而单点接地又分为串联单点接地和并联单点接地。一般来说,单点接地用于简单电路,不同功能模块之间接地区分,以及低频(f<1MHz)电子线路。当设计高频(f>10MHz)电路时就要采用多点接地了或者多层板(完整的地平面层)。
Q5:信号回流和跨分割的介绍
对于一个电子信号来说,它需要寻找一条最低阻抗的电流回流到地的途径,所以如何处理这个信号回流就变得非常的关键。
第一,根据公式可以知道,辐射强度是和回路面积成正比的,就是说回流需要走的路径越长,形成的环越大,它对外辐射的干扰也越大,所以,PCB布板的时候要尽可能减小电源回路和信号回路面积。
第二,对于一个高速信号来说,提供有好的信号回流可以保证它的信号质量,这是因为PCB上传输线的特性阻抗一般是以地层(或电源层)为参考来计算的,如果高速线附近有连续的地平面,这样这条线的阻抗就能保持连续,如果有段线附近没有了地参考,这样阻抗就会发生变化,不连续的阻抗从而会影响到信号的完整性。所以,布线的时候要把高速线分配到靠近地平面的层,或者高速线旁边并行走一两条地线,起到屏蔽和就近提供回流的功能。
第三,为什么说布线的时候尽量不要跨电源分割,这也是因为信号跨越了不同电源层后,它的回流途径就会很长了,容易受到干扰。当然,不是严格要求不能跨越电源分割,对于低速的信号是可以的,因为产生的干扰相比信号可以不予关心。对于高速信号就要认真检查,尽量不要跨越,可以通过调整电源部分的走线。(这是针对多层板多个电源供应情况说的)
Q6:为什么要将模拟地和数字地分开,如何分开? 模拟信号和数字信号都要回流到地,因为数字信号变化速度快,从而在数字地上引起的噪声就会很大,而模拟信号是需要一个干净的地参考工作的。如果模拟地和数字地混在一起,噪声就会影响到模拟信号。
一般来说,模拟地和数字地要分开处理,然后通过细的走线连在一起,或者单点接在一起。总的思想是尽量阻隔数字地上的噪声窜到模拟地上。当然这也不是非常严格的要求模拟地和数字地必须分开,如果模拟部分附近的数字地还是很干净的话可以合在一起。Q7:单板上的信号如何接地? 对于一般器件来说,就近接地是最好的,采用了拥有完整地平面的多层板设计后,对于一般信号的接地就非常容易了,基本原则是保证走线的连续性,减少过孔数量;靠近地平面或者电源平面,等等。
Q8:单板的接口器件如何接地? 有些单板会有对外的输入输出接口,比如串口连接器,网口RJ45连接器等等,如果对它们的接地设计得不好也会影响到正常工作,例如网口互连有误码,丢包等,并且会成为对外的电磁干扰源,把板内的噪声向外发送。一般来说会单独分割出一块独立的接口地,与信号地的连接采用细的走线连接,可以串上0欧姆或者小阻值的电阻。细的走线可以用来阻隔信号地上噪音过到接口地上来。同样的,对接口地和接口电源的滤波也要认真考虑。
Q9:带屏蔽层的电缆线的屏蔽层如何接地? 屏蔽电缆的屏蔽层都要接到单板的接大地上而不是信号地上,这是因为信号地上有各种的噪声,如果屏蔽层接到了信号地上,噪声电压会驱动共模电流沿屏蔽层向外干扰,所以设计不好的电缆线一般都是电磁干扰的最大噪声输出源。当然前提是接口地也要非常的干净
第三篇:核电厂对有害辐射的屏蔽防护措施有哪些
核电厂对有害辐射的屏蔽防护措施有哪些? 核电厂对有害辐射的屏蔽防护措施方面,我认为可以从两点进行讨论,即从员工个人与群体的防护、核电厂在建设生产过程中的防护两方面进行讨论。
一、员工个人与群体的防护
一、外照射防护方法:(一)、时间防护
时间防护的原理是:在辐射场内的人员所受照射的累积剂量与时间成正比,即个体所受辐照剂量=剂量率×辐照时间。
因此,在照射率不变的情况下,尽量减少人体在放射源危险范围内停留的时间,即缩短照射时间便可减少所接受的剂量,或者人们在限定的时间内工作,就可能使他们所受到的射线剂量在最高允许剂量以下,确保人身安全(仅在非常情况下采用此法),从而达到防护目的。
综上,时间防护的要点是尽量减少人体与射线的接触时间(缩短人体受照射的时间)。(二)、距离防护
距离防护是外部辐射防护的一种有效方法,采用距离防护的射线基本原理是首先将辐射源是作为点源的情况下,辐射场中某点的照射量、吸收剂量均与该点和源的距离的平方成反比,我们把这种规律称为平方反比定律,即辐射强度随距离的平方成反比变化(在源辐射强度一定的情况下,剂量率或照射量与离源的距离平方成反比)。
增加射线源与人体之间的距离便可减少剂量率或照射量,或者说在一定距离以外工作,使人们所受到的射线剂量在最高允许剂量以下,就能保证人身安全。从而达到防护目的。
综上,距离防护的要点是尽量增大人体与射线源的距离。(三)、源强防护 通过加入大量屏蔽物质,核辐射在穿透这些物质时强度会减弱,一定量的屏蔽物质包裹于核辐射源中,减弱核辐射源强,间接的保护人员安全
源强防护的要点是通过降低辐射源的强度,从而达到人员防护的目的。(四)、屏蔽防护
在工作人员与放射源之间设置屏蔽,减少其工作环境的辐射水平。
屏蔽防护的原理是:射线包括穿透物质时强度会减弱,一定厚度的屏蔽物质能减弱射线的强度,在辐射源与人体之间设置足够厚的屏蔽物(屏蔽材料,例如对于X射线常用的屏蔽材料是铅板和混凝土墙、钢板,或者是钡水泥(添加有硫酸钡-也称重晶石粉末的水泥)墙。),便可降低辐射水平,使人们在工作所受到的剂量降低最高允许剂量以下,确保人身安全,达到防护目的。
综上,屏蔽防护的要点是在射线源与人体之间放置一种能有效吸收射线的屏蔽材料。
二、内照射的防护方法:
我们都知道,放射性物质进入体内的途径有:食入、吸入、从裸露伤口进入、通过皮肤渗入等,防护的关键在于切断造成内污染的各种途径。(一)、集体防护
集体防护措施主要有以下几种:
1、加强通风;
2、稀释;
3、防止放射性物质扩散。(二)、个人防护
个人防护主要是针对放射性物质进入人体的途径,主要措施有:
1、正确佩戴个人呼吸用品;
2、严禁在控制区域进食、吸烟;
3、不带裸露伤口进控制区域工作。
二、核电厂在建设生产过程中的防护
一、核电厂对环境和社会公众的辐射危害主要是由于向水体和大气中排放放射性物质造成的。(一)、在核电厂正常运行的情况下,会产生气态废物、液态废物、固态废物以及放射性活化产物等,并可能将其带入我们所生活的环境实体中,此类核辐射污染在排出前就已经经过了严格处理且污染的量非常少,可以说此类污染在合理范围内对环境和公众是无影响的。(二)、在核电厂发生了核事故的情况下,由于屏蔽设施遭到破坏,会导致裂变产物大量释放被释放进我们所生活的环境实体中,故而严重的核事故会对公众和环境造成严重威胁,例如:1979年3月28日三英里岛核电站事故、.1986年4月26日切尔诺贝利核泄漏事故(史上危害最大核事故)、1957年10月10日温斯克尔大火、1993年4月6日托木斯克核爆炸、1970年12月18日加卡平地核事故
二、核电厂用于降低公众和环境照射的措施有很多,在电厂设计阶段、运行阶段以及出现事故阶段都有措施来保证公众和环境受到的影响最小。
这些措施涉及废物处理、安全措施和应急防护行动等各个方面。(一)、设计阶段
核电厂的设计和选址必须考虑放射性流出物对环境、生态和公众的影响,核电厂应能保证在发生最大可信事故条件和不利的扩散条件下也不会给公众带来不可接受的照射。除了要电厂本身的技术要满足要求外,众多外部因素也是必须考虑的部分。
1、外部事件:如反核能运动。
2、厂址和环境:
(1)地质方面要求非火山地震带,没有岩层断裂;(2)水源方面要求核电站当地水源最小的年份也要满足核电站用水;
3、人口和社会资源分布:
(1)当地居民密集度,一般不建设在大城市傍边,一般建郊区;
(2)电站需要一个缓冲区,应急缓冲区,包括出现事故后的人员撤离响应考虑,考虑当地风向的一般情况,考虑当地大气的一般流动情况;
(3)能源需求,核电站的发电是高科技,一般给区域用电负荷大供电,所以一般建在工业地区吧;不过交通考虑较小,这点不同于火电站需要大量化石能源供应那样;
(4)地区经济,核电站的效应是明显的,包括经济效应和环保效应。(二)、运行阶段和事故阶段
为了防止放射性物质向环境释放,在电厂的设计中考虑了多重屏障和包容体,对放射性物质进行有效包容。
如:将燃料芯块包裹于燃料包壳之中,再将燃料包壳包裹于一回路压力边界中,最后再在最外部加上安全壳予以保护。
(三)、为了使公众所受照射低于管理限值和设计目标值,需要严格控制放射性物质的排放量。
(1)首先,放射性废物在排放前必须经过严格的处理和监测程序;
(2)其次,对于废液和废气的排放,规定放射性产物在水中和空气中的浓度不得超过限值,包括排放总限值和浓度限值;
(3)最后,许可证持有者接受社会公众和相关检测部门的监督,信息公开保持常态化。
结语
以上就是个人对于核电厂对有害辐射的屏蔽防护措施方面,从员工个人与群体的防护、核电厂在建设生产过程中的防护两方面进行的讨论。从讨论之中我们可以清楚地看到,核辐射的防护问题与核电站的建设运行有着密切的联系,这里涉及到大量物理、经济、地理、政治问题,故而我们可以得出核电厂的建设是一个复杂的大问题,光是辐射防护问题就使得核电厂的建设不可能一蹴而就。
(共计2415字)
第四篇:电源EMI传导辐射实际整改经验总结(绝对值得)
1、在反激式电源中,Y电容接初级地与次级地之间在20MHZ时,会比Y电容接在高压与次级地之间高5dB左右。当然也要视情况而定。
2、MOS管驱动电阻最好能大于或等于47R。降低驱动速度有利于改善MOS管与变压器的辐射。一般采用慢速驱动和快速判断的办法。
3、若辐射在40MHZ-80MHZ之间有些余量不够,可适当地增加MOS管DS之间的电容值,以达到降低辐射量的效果。
4、若在输入AC线上套上磁环并绕2圈,有降低40-60MHZ之间辐射值的趋势,那么在输入EMI滤波部分中串入磁珠则会达到同样的效果。如在NTC电阻上分别套上两个磁珠。
5、在变压器与MOS管D极之间最好能串入一个磁珠,以降低MOS管电流的变化速度,又能降低输出噪音。
6、电源输入AC滤波部分,X电容放在共模电厂的那个位置并不重要,注意布线时要将铜皮都集中于X电容的引脚处,以达到更好的滤波效果,但X电容最好不要与Y电容连接在同一焊点。
7、在300W左右的中功率电源中,其又是由几个不同的电源部分组成,一般采用三极共模电感。第一级使用100UH-3MH左右的双线并绕锰锌磁环电感,其后再接Y电容,第二级与第三级可使用相同的共模电感,需要使用的电感量并不要求很大,一般10MH左右就能达到要求。若把Y电容放在第二级与第三级之间,效果就会差一些。如果采用两级共模滤波,秕一级电感量适当取大些,1.5-2.5MH左右。
8、如果采用三级,第一级电感量适当取小些,在200UH-1MH之间。测试辐射时,最好能在初次级之间的Y电容套上磁珠。如果用三芯AC输入线,在黄绿地线上也串磁环,并绕上两到三圈。
9、在二极管上套磁珠,一般要求把磁珠套在其电压变化最剧烈的地方,在正端整流二极管中,其A端电压变化最剧烈。
10、实例分析:
一台19W的二合一电源,在18MH左右处有超过QP值7dB,前级采用两级共模滤波方法和一个X电容,无论怎样更改滤波部分,此处的QP值总是难以压下来。
先是怀疑是由EC2834主变压器引起,后改变变压器使用磁芯屏蔽或最内层磁芯屏蔽加初次级之间屏蔽都没有效果,至MOS/8N60的驱动电阻已达47R,在DS之间加电容也没有什么改善。
去除inverter部分,用相当纯电阻负载测试,此处情况好转。在QP值以下达4dB的余量。怀疑Inverter部分有问题。仔细观察发现采用OZ芯片的推挽拓扑中,驱动脚直接接到MOS的G极,割断后,加入47R的电阻,测试值在QP值以下达4dB余量。
11、在一台19的二合一电源中(方案LD7575+TL4947)经公司传导仪总测试,在18MHZ左右处有超过QP的地方,而且是在此处有上升与下降的过程,其它部分测试线尚好。经观察,此电源没有很明显的布线问题,只是Y电容从初级地搭到次级地,怀疑此处有问题,把Y电容搭至初级高压与次级地之间,此处值已降低AV值以下4dB,所以建议是反激电源中,最好能把Y电容接至初级高压与次级地之间。当然有些电源接在哪两个部位并不明显有作用。
12、在一台输入功率28W的DVD电源中,传导测试曲线已通过,但在30MHZ处其QP值为37dB左右,辐射测试时在40M-80MHZ超标(采用LD7575方案),磁芯采用屏蔽绕法(屏~初~+5V~+12V~+5V~初~屏)。从其传导曲线图看在25MHZ~30MHZ时其曲线基本平直因此在辐射中可能有超标的危险。当把三芯线换成两芯线时,其从10M~30MHZ传导曲线基本平直在30dB上下,因此怀疑是地线上有较大的干扰,先用一个锰锌铁氧芯磁环用导线绕上三圈串入地线中,传导曲线并无很明显改善。后把圈数增至6Ts,电感量为150UH,达到了滤波的效果,在10MH~30MHZ时的曲线基本平直。后换成较大号的磁环,电感量不变,其圈数为8Ts,效果更好,在25MHZ~30MHZ时,比上一磁环低2dB左右。所以若是在15MH~25MHZ有超标值,并且确定是由地线引起,采用此方法能达到立杆见影的效果。
13、在辐射测试中,30~50MHZ处与150MHZ~230MHZ处有连续超标波段,更改芯片的驱动电阻大小和更改反激RCD篏位可降低此两处的辐射值。具体如下:更改MOS管的驱动电阻由22R改为51R,30~50MHZ处会降低几dB左右。把RCD篏位改为RRCD篏位,即在篏位电容处串入一个20~50R左右的电阻,在150~230MHZ处会有很大的效果,另外可以在变压器高压与变压器地之间并入聚酯电容,可以达到两处都降低的综合效果。若采用上述方法能降低辐射量,并使电源达标,就可以不采用变压器屏蔽的方法,以降低生产成本。
14、若电源板中由多个不同的电源部分组合而成,建议降低每一部分MOS管的驱动速度,在不影响温升的前提下,慢速的驱动比采用其它方法降低辐射都要好。
15、开关环路(MOS管)di/dt很高的电流会在环路阻抗(包括输入电容的ESR)上产生压降,从而产生差模EMI干扰。另外漏极节点上的电压变化很大,同时dv/dt很快。缩小其面积减少静电场的耦合可以降低差模EMI噪音,方法是在输入电容上并一个聚酯膜电容。
16、次极二极管整流环路,流过幅值很高的开关电流,在电源中成为最强的功率辐射天线之一,因而其环路面积必须最小化。此环路同时影响漏感的损耗有及初级篏位电路的损耗。通过缩小此环路造成的长度,可以减少反射到初级侧的漏感值,此次级漏感是通过变压器(以匝比平方的关系)反射回初级侧的。
17、初级RCD篏位电路流的电流为快速瞬间电流,因而此环路的面积也要尽量少。为了降低此环路的速度,在篏位电容上串入一个20R~50R的电阻,以减缓电容的充放电速度。注意此电路的功率损耗,最好采用大于1W的金属氧化膜电阻。
18、次级二极管的篏位RC电路,虽然di/dt比较小,但也尽量减少其环路面积,此环路对控制高频的EMI很关键。
19、如果VCC供电绕组也要提供较大的电流,也应尽可能降低其环路面积。
20、从变压器的角度来看,连接其“热点”的元件的直线宽度尽量缩小,较宽的直线有较大的走线电感,同时这些信号会通过容性耦合到大地上,从而造成更多的共模EMI噪音。
21、经EMI辐射测试对比,62R的驱动电阻比51R的驱动电阻在30M~50MHZ有更低的辐射值。
22、在整机测试中,数据线,电源线,音频线,面板控制线一定要布局好,如:a、这些线不能从晶振旁边穿过或靠近它。b、这些线不能从CPU旁边或正面下方穿过。总之,线不能从干扰源(快速变化的信号)正面,下面旁边经过,否则经过一系列的阻抗变换,放大,在线上就会使辐射值增大,造成怎么整改电源都没有效果的结果。
第五篇:通信工程电源系统防雷技术规定
通信工程电源系统防雷技术规定
1、总则
2、技术术语
3、通信电源系统防雷与接地的组成4、通信电源系统耐雷电冲击指标
5、通信电源系统防雷措施
5.1电力线路防雷措施
5.2电源设备防雷措施
5.3太阳电池、风力发电机组、市电混合供电系统防雷措施
6、接地
7、避雷器的选择
8、附录A 本规定用词说明
附录B 逼雷器的残压要求
附加说明
条文说明
1总则
1.01 为确保通信局站通信设备和工作人员的安全。以及站内通信设备的正常工作,防止
通信局站由于电源系统引入的雷害,特制定此规定
1.02