第一篇:预防性试验和检修的现状及改进建议
电力设备预防性试验和检修的现状及改进建议
摘要:随着炼化工业及其自备电网的迅速发展,特别是随着炼化装置的停工检修周期的加长,对供电的可靠性和安全性提出了更高的要求,年复一年的大规模的预防性试验和检修方式已难以适应这一变化。本文分析了独山子电网预防性试验和检修的现状,指出大力开展电力设备在线监测,逐步淡化定期的预防性试验和检修是一个发展方向。并对今后的工作提出一些建议。
关键词:电力设备 预防性试验和检修 在线监测 建议
预防性试验和检修是电力设备运行和维护工作中一个重要环节,是保证电力设备安全运行的有效手段之一。多年来,独山子自备电网的高压电力设备基本上都是按照原电力部颁发的《电力设备预防性试验规程》的要求进行试验的,对及时发现、诊断设备缺陷起到重要作用。随着炼化装置的停工检修周期的加长,对供电的可靠性和安全性提出了更高的要求,传统的预防性试验和检修方式愈来愈显示出许多不足。
1.电力设备预防性试验和检修的现状
独山子电网现有2座热电厂,2座110kV变电站,6座35kV变电站,主变容量达到了约600MVA。在安排历年电网的检修计划时,采用了一年一度的春季预防性试验和检修制度,贯彻“到期必修,修必修好”的方针。预防性试验实际上包含三部分内容,即电力设备的检修和绝缘试验及继电保护装置的调校,以下简称预试。作为例行的定期检修,春季预试已经成为独山子电网的一件大事,由于预试期间倒闸操作频繁、时间跨度长、风险大,从独山子石化公司领导、职能部门到相关班组都高度重视。职能部门从2月份就开始编制计划,各基层单位也在人员、仪器、工具、配件等方面充分准备。预试时间为3~7月,历时约4月之久。在此期间,试验检修人员加班加点,极为辛苦。另外还要有电力调度、运行人员等一大批人员付出可观的劳动。以2003年为例,据不完全统计,电网倒闸操作1560次,检修变压器218台,线路65条,高压开关柜565台。
多年来,独山子石化公司严格执行电力设备预防性试验规程,检修规程和保护装置的检验条例,发现了许多电力设备缺陷,通过及时消缺保证了电力设备和系统的安全运行。但是,预试这一定期维护体制在运行中也暴露出很多弊端。
预防性试验的目的之一是通过各种试验手段诊断电力设备的绝缘状况。电力设备的绝缘部分是薄弱环节,最容易被损坏或劣化。绝缘故障具有随机性、阶段性、隐蔽性。绝缘缺陷大多数发生在设备内部,从外表上不易观察到。微弱的绝缘缺陷,特别是早期性绝缘故障,对运行状态几乎没有影响,甚至绝缘预防性试验根本测试不到。受试验周期的限制,事故可能发生在2次预防性试验的间隔内。这就决定了定期的预防性试验无法及时准确及早发现绝缘隐患。
预防性试验包括破坏性试验(如直流耐压、交流耐压等)和非破坏性试验(如绝缘电阻、绕组直流电阻、介质损耗等)。非破坏性试验中,一般所加的交流试验电压不超过10kV,这比目前的35~220kV电网的运行电压低很多。在运行电压下,设备的局部缺陷已发生了局部击穿现象,而在预防性试验中仍可顺利过关,但这种局部缺陷在运行电压下却不断发展,以致在预防性试验周期内可能导致重大事故。显然,随着电压等级的升高,预防性试验的实际意义已减弱。另一方面,破坏性试验则可能引入新的绝缘隐患,由于试验电压都数倍于设备的额定电压,且这种高压对绝缘造成的不同程度的损伤是不可逆转的,长此以往必将缩短电力设备的使用寿命。
计划性的预试的重要依据是试验和检修周期。虽然对设备状态不佳的设备进行了必要的预试,但对设备运行情况良好的设备按部就班进行,不仅增加设备维护费用,而且由于检修不慎或者频繁拆装反而缩短了使用寿命,降低了设备利用率。经验表明,有些初始状态和运行状态都很好的设备,经过带有一定盲目性的试验和检修后,反而破坏了原有的良好状态。
可见这种不考虑设备运行状态的定期检修,带有很大的盲目性。不仅造成了大量的人力、物力、财力的浪费,同时也增加了运行人员误操作、继电保护及开关误动作的几率。通过对几年来发生的电气事故原因的分析,发现预防性试验期间是电气责任事故多发期。
2.状态检修是发展趋势
设备检修体制是随着科技的进步而不断演变的。状态检修是从预防性检修发展而来的更高层次的检修体制,是一种以设备状态为基础,以预测设备状态发展趋势为依据的检修方式。通过信息采集、处理、综合分析后有目的地安排检修的周期和检修的项目,“该修则修,修必修好”。它与计划检修相比,具有明显的优势:
(1)克服定期检修的盲目性,具有很强的针对性。根据状态的不同采取不同的处理方法,降低运行检修费用。对于状态差的设备及时安排预试,对于状态好的设备可以延长检修周期,从而节省人力、物力和财力,有效地降低维护成本和检修风险。
(2)减少停运(总检修)时间,提高设备可靠性和可用系数,延长设备使用寿命,更好的贯彻“安全第一,预防为主”的方针。
(3)减少维护工作量,降低劳动强度,有利于减员增效,提高经济效益。
状态监测是状态检修的基础。实现电力设备状态检修的基础是必须了解运行设备的绝缘状态,这就需要绝缘在线监测。绝缘在线监测是一种实时监测方法,能及时反映被监测参数的变化情况或变化趋势,对电力设备早期绝缘故障及时发现,做到防患于未然,这是预防试验难以做到的。
几年来,独山子电网在电力设备的状态监测方面也做了不少工作。
2002年在 110kV 乙烯总变1~2号主变和热电厂1~4号主变安装了HYDRAN 201i智能型变压器早期故障在线监测系统,对反映变压器内部油及固体绝缘故障的重要特征气体H2和CO等进行在线监测,能更有效地保障变压器安全可靠运行。
广泛应用红外测温仪和热成像仪等诊断技术。在设备运行状态下,利用红外检测的不接触、不停运、不取样、不解体的特点,通过监测设备故障引起的异常红外辐射和温度场来实现早期故障的及时发现。几年来,独山子电网通过红外技术发现了多起电力设备隐患,由于发现早,处理及时,避免了设备事故的发生。
此外,在交流旋转设备上广泛使用振动仪和脉冲仪进行状态监测,为设备检修提供了依据。
3.对今后工作的建议
目前,由于技术管理基础工作比较薄弱,在线监测也不尽完善,实现预试向状态检修的过渡需要较长的时间。在此过程中,预防性试验作为保证设备安全运行的主要手段仍将发挥重要作用。
3.1 状态检修是今后的发展方向。现阶段就应该积极做好大量细致的基础工作,如建立完善的技术档案(包括设备随机资料,安装调试记录,历次检修试验报告,运行记录等),为以后的状态检修创造条件。在实施电网改造时,可以考虑应用一些成熟的在线监测技术,比如变压器油中的气体、总烃、水分含量的监测和超标报警,氧化锌避雷器的泄漏电流、阻性电流监测和超标报警;电压互感器和电流互感器及套管的一次泄漏电流、等值电容、介损的监测和超标报警等。
3.2 提高电力设备的质量和运行维护水平。据介绍,工业发达国家电力公司的预防性试验工作,从整体上来看,试验项目较少,试验周期较长,有的甚至对某些设备不做试验。其主要原因在于发达国家电力设备产品质量较好,运行维护水平较高。这就要求我们在以后的工作中,对新增设备或技术改造从选型、监造、安装、调试方面把好质量关,不能依赖预试来发现隐患或事故暴露缺陷。同时抓好运行维护工作,通过常规巡检或离线探查掌握设备的状态。
3.3 通过历次试验检修情况进行综合分析,根据设备运行的可靠性和安全状况对预防性试验和检修的项目和周期进行调整。
3.4 推广使用先进的测量仪器和试验设备,改进试验方法。近几年来,许多测量仪器和试验设备逐步走向数字化、微机化、自动化,提高了测量精度和工作效率。随着电力技术的发展,已经出现了很多新方法,既能准确发现设备缺陷,又能减少试验过程对设备绝缘的损伤程度,在今后的工作中应优先采用。
3.5 加大电网改造力度,推广新技术、新材料、新设备、新工艺,延长试验和检修周期。2年来,独山子电网实施了较大规模地技术改造,为状态检修奠定了一定的基础。以保护装置和自动装置为例,由于广泛应用具有自诊断技术的微机型装置,电力二次设备的状态监测在技术上比较容易实现,不必依据传统的《继电保护及电网安全自动装置检验条例》每年校验,而是6年一次全检。母线和导线的热缩材料绝缘化处理同样在提高系统安全性的同时,大大减少了维护工作量,也减少了停电时间和次数。
电力是保证石油炼化企业正常生产的动力,由于炼化企业的连续生产,因而对供电的稳定性和连续性要求极高。随着炼化工业和电网的迅速发展,炼化生产对电力的依赖性越来越强,特别是随着炼化装置的停工检修周期的加长,对电力供应的可靠性和安全性提出了更高的要求,年复一年的大规模的预防性试验和检修方式已难以满足这一要求。随着科技进步,大力开展电力设备在线监测,逐步淡化定期的预防性试验和检修是今后的重要发展方向。
停电检修作业中有哪些保证安全的技术措施?
在检修工作中,工作人员应明确工作任务、工作范围、安全措施、带电部位等安全注意事项。工作负责人必须始终留在工作现场,对工作人员的安全认真监护,随时提醒工作人员注意安全。对需要进行监护的工作,如不停电检修工作和部分停电检修工作等,并指定专人监护。监护人应认真负责、精力集中,随时提醒工作人员应注意的事项,以防止可能发生的意外事故。
全部停电和部分停电的检修工作应采取下列步骤以保证安全。
(1)停电 检修工作中,如人体与其他带电设备的间距较小,10千伏及以下者的距离小于0.35米,20~35千伏者小于0.6米时,该设备应当停电,如距离大于上列数值,但分别小于0.7米和1米时,应设置遮拦,否则也应停电。停电时,应注意对所有能够给检修部分送电的线路,要全部切断,并采取防止误合闸的措施,而且每处至少要有一个明显的断开点。对于多回路的线路,要注意防止其他方面突然来电,特别要注意防止低压方面的反送电。
(2)放电 放电的目的是消除被检修设备上残存的静电。放电应采用专用的导线,用绝缘棒或开关操作,人手不得与放电导体相接触。应注意线与地之间、线与线之间均应放电。电容器和电缆的残存电荷较多,最好有专门的放电设备。
(3)验电 对已停电的线路或设备,不论其正常接入的电压表或其他信号是否指示无电,均应进行验电。验电时,应按电压等级选用相应的验电器;
(4)装设临时接地线 为了防止意外送电和二次系统意外的反送电,以及为了消除其他方面的感应电,应在被检修部分外端装设必要的临时接地线。临时接地线的装拆顺序一定不能弄错,装时先接接地端,拆时后拆接地端。
(5)装设遮拦 在部分停电检修时,应将带电部分遮拦起来,使检修工作人员与带电导体之间保持一定的距离。
(6)悬挂标示牌 标示牌的作用是提醒人们注意。例如,在一经合间即可送电到被检修设备的开关上,应挂上“有人工作,禁止合闸”的标示牌;在临近带电部位的遮拦上,应挂上“止步,高压危险”的标示牌等等。
停电检修作业中有哪些保证安全的技术措施?
在检修工作中,工作人员应明确工作任务、工作范围、安全措施、带电部位等安全注意事项。工作负责人必须始终留在工作现场,对工作人员的安全认真监护,随时提醒工作人员注意安全。对需要进行监护的工作,如不停电检修工作和部分停电检修工作等,并指定专人监护。监护人应认真负责、精力集中,随时提醒工作人员应注意的事项,以防止可能发生的意外事故。
全部停电和部分停电的检修工作应采取下列步骤以保证安全。
(1)停电 检修工作中,如人体与其他带电设备的间距较小,10千伏及以下者的距离小于0.35米,20~35千伏者小于0.6米时,该设备应当停电,如距离大于上列数值,但分别小于0.7米和1米时,应设置遮拦,否则也应停电。停电时,应注意对所有能够给检修部分送电的线路,要全部切断,并采取防止误合闸的措施,而且每处至少要有一个明显的断开点。对于多回路的线路,要注意防止其他方面突然来电,特别要注意防止低压方面的反送电。
(2)放电 放电的目的是消除被检修设备上残存的静电。放电应采用专用的导线,用绝缘棒或开关操作,人手不得与放电导体相接触。应注意线与地之间、线与线之间均应放电。电容器和电缆的残存电荷较多,最好有专门的放电设备。
(3)验电 对已停电的线路或设备,不论其正常接入的电压表或其他信号是否指示无电,均应进行验电。验电时,应按电压等级选用相应的验电器;
(4)装设临时接地线 为了防止意外送电和二次系统意外的反送电,以及为了消除其他方面的感应电,应在被检修部分外端装设必要的临时接地线。临时接地线的装拆顺序一定不能弄错,装时先接接地端,拆时后拆接地端。
(5)装设遮拦 在部分停电检修时,应将带电部分遮拦起来,使检修工作人员与带电导体之间保持一定的距离。
(6)悬挂标示牌 标示牌的作用是提醒人们注意。例如,在一经合间即可送电到被检修设备的开关上,应挂上“有人工作,禁止合闸”的标示牌;在临近带电部位的遮拦上,应挂上“止步,高压危险”的标示牌等等。
电气安全检查有哪些内容?
电气安全检查包括检查电气设备绝缘有无破损,绝缘电阻是否合格,设备裸露带电部分是否有防护,屏护装置是否符合安全要求,安全间距是否足够,保护接零或保护接地是否正确、可靠,保护装置是否符合要求,手提灯和局部照明灯电压是否是安全电压或是否采取了其他安全措施,安全用具和电气灭火器材是否齐全,电气设备安装是否合格,安装位置是否合理,电气连接部位是否完好,电气设备或电气线路是否过热,制度是否健全等内容。
对变压器等重要电气设备要坚持巡视,并做必要的记录新安装的设备,特别是自制设备的验收工作要坚持原则,一丝不苟。对于使用中的电气设备,应定期测定其绝缘电阻;对于各种接地装置,应定期测定其接地电阻;对于安全用具、避雷器、变压器油及其他一些保护电器,也应定期检查、测定或进行耐压试验。
发生触电事故后,怎样对症急救?
当触电者脱离电源后,应根据触电者的具体情况,迅速对症救护。现场应用的主要救护方法是人工呼吸法和胸外心脏挤压法。
对于需要救治的触电者,大体按以下三种情况分别处理:
(1)如果触电者伤势不重、神志清醒,但有些心慌、四肢发麻、全身无力,或者触电者在触电过程中曾一度昏迷,但已经清醒过来,应使触电者安静休息,不要走动。严密观察并请医生前来诊治或送往医院。
(2)如果触电者伤势较重,已失去知觉,但还有心脏跳动和呼吸,应使触电者舒适、安静地平卧,周围不围人,使空气流通,解开他的衣服以利呼吸。如天气寒冷,要注意保温,并速请医生诊治或送往医院。如果发现触电者呼吸困难、微弱,或发生痉挛,应随时准备好当心脏跳动或呼吸停止时立即作进一步的抢救。
(3)如果触电者伤势严重,呼吸停止或心脏跳动停止,或二者都已停止,应立即施行人工呼吸和胸外心脏挤压,并请医生诊治或送往医院。应当注意,急救要尽快地进行,能等候医生的到来。在送往医院的途中,也不能中止急救。如果现场仅一个人抢救,则应口对口人工呼吸和胸外心脏挤压应交替进行,每次吹气2~ 3次,再挤压 10~ 15次。而且吹气和挤压的速度都应比双人操作的速度提高一些,以不降低 抢救效果。
电气安全教育有哪些内容?
电气安全教育是为了使工作人员懂得电的基本知识,认识安全用电的重要性,掌握安全用电的基本方法,从而能安全地、有效地进行工作。新入厂的工作人员要接受厂、车间、生产小组等三级安全教育。对一般职工应要求懂得电和安全用电的一般知识;对使用电气设备的一般生产工人除懂得一般电气安全知识外,还应懂得有关的安全规程;对于独立工作的电气工作人员,更应该懂得电气装置在安装、使用、维护、检修过程中的安全要求,应熟知电气安全操作规程,学会电气灭火的方法,掌握触电急救的技能,并应通过考试,取得合格证明。新参加电气工作的人员、实习人员和临时参加劳动的人员(干部和临时工等),必须在经过安全知识教育后,方可到现场随同参加指定的工作,但不得单独工作。
第二篇:电力设备预防性试验和检修的现状及改进建议
电力设备预防性试验和检修的现状及改进建议
2008-8-28
【大 中 小】【打印】
预防性试验和检修是电力设备运行和维护工作中一个重要环节,是保证电力设备安全运行的有效手段之一。多年来,独山子自备电网的高压电力设备基本上都是按照原电力部颁发的《电力设备预防性试验规程》的要求进行试验的,对及时发现、诊断设备缺陷起到重要作用。
随着炼化装置的停工检修周期的加长,对供电的可靠性和安全性提出了更高的要求,传统的预防性试
验和检修方式愈来愈显示出许多不足。
1.电力设备预防性试验和检修的现状
独山子电网现有2座热电厂,2座110kV变电站,6座35kV变电站,主变容量达到了约600MVA.在安排历年电网的检修计划时,采用了一年一度的春季预防性试验和检修制度,贯彻“到期必修,修必修好”的方针。预防性试验实际上包含三部分内容,即电力设备的检修和绝缘试验及继电保护装置的调校,以下简称预试。作为例行的定期检修,春季预试已经成为独山子电网的一件大事,由于预试期间倒闸操作频繁、时间跨度长、风险大,从独山子石化公司领导、职能部门到相关班组都高度重视。职能部门从2月份就开始编制计划,各基层单位也在人员、仪器、工具、配件等方面充分准备。预试时间为3~7月,历时约4月之久。在此期间,试验检修人员加班加点,极为辛苦。另外还要有电力调度、运行人员等一大批人员付出可观的劳动。以2003年为例,据不完全统计,电网倒闸操作1560次,检修变压器218台,线路65条,高
压开关柜565台。
多年来,独山子石化公司严格执行电力设备预防性试验规程,检修规程和保护装置的检验条例,发现了许多电力设备缺陷,通过及时消缺保证了电力设备和系统的安全运行。但是,预试这一定期维护体制在运行中也暴露出很多弊端。
预防性试验的目的之一是通过各种试验手段诊断电力设备的绝缘状况。电力设备的绝缘部分是薄弱环节,最容易被损坏或劣化。绝缘故障具有随机性、阶段性、隐蔽性。绝缘缺陷大多数发生在设备内部,从外表上不易观察到。微弱的绝缘缺陷,特别是早期性绝缘故障,对运行状态几乎没有影响,甚至绝缘预防性试验根本测试不到。受试验周期的限制,事故可能发生在2次预防性试验的间隔内。这就决定了定期的预防性试验无法及时准确及早发现绝缘隐患。
预防性试验包括破坏性试验(如直流耐压、交流耐压等)和非破坏性试验(如绝缘电阻、绕组直流电阻、介质损耗等)、非破坏性试验中,一般所加的交流试验电压不超过10kV,这比目前的35~220kV电网的运行电压低很多。在运行电压下,设备的局部缺陷已发生了局部击穿现象,而在预防性试验中仍可顺利过关,但这种局部缺陷在运行电压下却不断发展,以致在预防性试验周期内可能导致重大事故。显然,随着电压等级的升高,预防性试验的实际意义已减弱。另一方面,破坏性试验则可能引入新的绝缘隐患,由于试验电压都数倍于设备的额定电压,且这种高压对绝缘造成的不同程度的损伤是不可逆转的,长此以
往必将缩短电力设备的使用寿命。
计划性的预试的重要依据是试验和检修周期。虽然对设备状态不佳的设备进行了必要的预试,但对设备运行情况良好的设备按部就班进行,不仅增加设备维护费用,而且由于检修不慎或者频繁拆装反而缩短了使用寿命,降低了设备利用率。经验表明,有些初始状态和运行状态都很好的设备,经过带有一定盲目性的试验和检修后,反而破坏了原有的良好状态。
可见这种不考虑设备运行状态的定期检修,带有很大的盲目性。不仅造成了大量的人力、物力、财力的浪费,同时也增加了运行人员误操作、继电保护及开关误动作的几率。通过对几年来发生的电气事故原因的分析,发现预防性试验期间是电气责任事故多发期。
2.状态检修是发展趋势
设备检修体制是随着科技的进步而不断演变的。状态检修是从预防性检修发展而来的更高层次的检修体制,是一种以设备状态为基础,以预测设备状态发展趋势为依据的检修方式。通过信息采集、处理、综合分析后有目的地安排检修的周期和检修的项目,“该修则修,修必修好”。它与计划检修相比,具有明显的优势:
(1)克服定期检修的盲目性,具有很强的针对性。根据状态的不同采取不同的处理方法,降低运行检修费用。对于状态差的设备及时安排预试,对于状态好的设备可以延长检修周期,从而节省人力、物力
和财力,有效地降低维护成本和检修风险。
(2)减少停运(总检修)时间,提高设备可靠性和可用系数,延长设备使用寿命,更好的贯彻“安全
第一,预防为主”的方针。
(3)减少维护工作量,降低劳动强度,有利于减员增效,提高经济效益。
状态监测是状态检修的基础。实现电力设备状态检修的基础是必须了解运行设备的绝缘状态,这就需要绝缘在线监测。绝缘在线监测是一种实时监测方法,能及时反映被监测参数的变化情况或变化趋势,对电力设备早期绝缘故障及时发现,做到防患于未然,这是预防试验难以做到的。
几年来,独山子电网在电力设备的状态监测方面也做了不少工作。
2002年在 110kV 乙烯总变1~2号主变和热电厂1~4号主变安装了HYDRAN 201i智能型变压器早期故障在线监测系统,对反映变压器内部油及固体绝缘故障的重要特征气体H2和CO等进行在线监测,能更
有效地保障变压器安全可靠运行。
广泛应用红外测温仪和热成像仪等诊断技术。在设备运行状态下,利用红外检测的不接触、不停运、不取样、不解体的特点,通过监测设备故障引起的异常红外辐射和温度场来实现早期故障的及时发现。几年来,独山子电网通过红外技术发现了多起电力设备隐患,由于发现早,处理及时,避免了设备事故的发
生。
此外,在交流旋转设备上广泛使用振动仪和脉冲仪进行状态监测,为设备检修提供了依据。
3.对今后工作的建议
目前,由于技术管理基础工作比较薄弱,在线监测也不尽完善,实现预试向状态检修的过渡需要较长的时间。在此过程中,预防性试验作为保证设备安全运行的主要手段仍将发挥重要作用。
3.1 状态检修是今后的发展方向。现阶段就应该积极做好大量细致的基础工作,如建立完善的技术档案(包括设备随机资料,安装调试记录,历次检修试验报告,运行记录等),为以后的状态检修创造条件。在实施电网改造时,可以考虑应用一些成熟的在线监测技术,比如变压器油中的气体、总烃、水分含量的监测和超标报警,氧化锌避雷器的泄漏电流、阻性电流监测和超标报警;电压互感器和电流互感器及套管的一次泄漏电流、等值电容、介损的监测和超标报警等。
3.2 提高电力设备的质量和运行维护水平。据介绍,工业发达国家电力公司的预防性试验工作,从整体上来看,试验项目较少,试验周期较长,有的甚至对某些设备不做试验。其主要原因在于发达国家电力设备产品质量较好,运行维护水平较高。这就要求我们在以后的工作中,对新增设备或技术改造从选型、监造、安装、调试方面把好质量关,不能依赖预试来发现隐患或事故暴露缺陷。同时抓好运行维护工作,通过常规巡检或离线探查掌握设备的状态。
3.3 通过历次试验检修情况进行综合分析,根据设备运行的可靠性和安全状况对预防性试验和检修的项目和周期进行调整。
3.4 推广使用先进的测量仪器和试验设备,改进试验方法。近几年来,许多测量仪器和试验设备逐步走向数字化、微机化、自动化,提高了测量精度和工作效率。随着电力技术的发展,已经出现了很多新方法,既能准确发现设备缺陷,又能减少试验过程对设备绝缘的损伤程度,在今后的工作中应优先采用。
3.5 加大电网改造力度,推广新技术、新材料、新设备、新工艺,延长试验和检修周期。2年来,独山子电网实施了较大规模地技术改造,为状态检修奠定了一定的基础。以保护装置和自动装置为例,由于广泛应用具有自诊断技术的微机型装置,电力二次设备的状态监测在技术上比较容易实现,不必依据传统的《继电保护及电网安全自动装置检验条例》每年校验,而是6年一次全检。母线和导线的热缩材料绝缘化处理同样在提高系统安全性的同时,大大减少了维护工作量,也减少了停电时间和次数。
电力是保证石油炼化企业正常生产的动力,由于炼化企业的连续生产,因而对供电的稳定性和连续性要求极高。随着炼化工业和电网的迅速发展,炼化生产对电力的依赖性越来越强,特别是随着炼化装置的停工检修周期的加长,对电力供应的可靠性和安全性提出了更高的要求,年复一年的大规模的预防性试验和检修方式已难以满足这一要求。随着科技进步,大力开展电力设备在线监测,逐步淡化定期的预防性试
验和检修是今后的重要发展方向。
第三篇:预防性试验
电气预防性试验顺利进行
电气预防性试验是保证电厂安全运行生产的一项重要工作,今年的电气预防性试验于3月开始。根据今年局下发的电气预防性试验的通知,首先确定我们厂及托管的4个瓦斯电站的电气预防性试验项目,并且由机电科的李总带队分别对我厂及4个瓦斯电站的试验项目进行了一次彻底的核查,确保了电气预防性试验的顺利进行。
我厂及4个瓦斯电站成立了领导工作组并安排试验工作。在领导组组长的组织下,严格按照电气预防性试验的安全技术措施进行了试验,试验过程中相关领导技术员盯在现场,并对具体工作中的细节问题进行了监督和安排。到目前为止,屯兰瓦斯电站,东曲瓦斯电站,马兰瓦斯电站的电气预防性试验工作都按标准,高要求的顺利完成,我厂及杜尔坪瓦斯电站的试验工作正在稳步进行中。总之,经过领导组及全体工作人员的共同努力,电气预防性试验得以顺利进行,为我厂及各瓦斯电站机电设备的安全稳定运行提供了保证。
石建涛
第四篇:电气设备预防性试验的维护检修规程
电气设备预防性试验的维护检修规程
一、总则 ㈠范围
1.本规程规定了各种电力设备预防性试验的项目、周期和要求,用以判断设备是否符合运行条件,预防设备损坏,保证安全运行。
2.本规程用于我站所有电气设备的预防性试验。㈡引用标准
1.引用中华人民共和国电力行业标准《电力设备预防性试验规程》DL/T596-1996。
2.下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。
GB311一83 高压输变电设备的绝缘配合高电压试验技术
GB/T507一086 绝缘油介电强度测定法 GB1094.1~5一85 电力变压器 GB2536一90 变压器油
GB5583一85 互感器局部放电测量
GB5654一85 液体绝缘材料工频相对介电常数、介质损耗因数和体积电阻率的测量
GB7252一87 变压器油中溶解气体分析和判断导则 GB7328一87 变压器和电搞器的声级测定 GB7595一87 运行中变压器油质量标准
GB/T7598一87 运行中变压器油、汽轮机油水溶性酸测定法(比色法)
GB/T7599一87 运行中变压器油、汽轮机油酸值测定法(CBTB法)
GB7600一87 运行中变压器油水分含量测定法(库仑法)GB7601一87 运行中变压器油水分含量测定法(气相色谱法)GB9326.1~.5一88 交流334kV及以下油纸绝缘自容式充油电缆及附件
GB11022一89 高压开关设备通用技术条件
GB11023一89 高压开关设备六氟化硫气体密封试验导则 GB11032一89 交流无间隙金属氧化物避雷器 GB12022一89 工业六氟化硫
DL/G421一91 绝缘油体积电阻率测定法
DL/T423一91 绝缘油中含气量测定真空压差法
DL/T429.9一91 电力系统油质试验方法绝缘油介电强度测定法
DL/T450一91 绝缘油中含气量的测定方法(二氧化碳洗脱法)
DL/T459一92 福镍蓄电池直流屏定货技术条件
DL/T492一92 发电机定子绕组环氧粉云母绝缘才能化鉴定导则
DL/T593一1996 高压开关设备的共用定货技术导则 SH0040一91 超高压变压器油 SH0351一62 断路器油
二、定义、符号 ㈠预防性试验
为了发现运行中设备的隐患,预防发生事故或设备损坏,对设备进行的检查、试验或监测。也包括取油样或气样进行的试验。
㈡在线监测
在不影响设备运行的条件下,对设备状况连续或定进行的监测,通常是自动进行的。
㈢带电测量
对在运行电压下的设备,采用专用仪器,由人员参与进行的测量。㈣绝缘电阻
在绝缘结构的两个电极之间施加的直流电压值与流经该对电极的泄流电流值之比。常用表直接测得绝缘电阻值。本规程中,若无说明,均指加压I min时的测得值。
㈤吸收比 在同一次试验中,lmin时的绝缘电阻值与15S时的绝缘电阻值之比。㈥极化指数
在同一次试验中,l0min时的绝缘电阻值与lmin时的绝缘电阻值之比。
㈦本规程所用的符号
Un设备额定电压(对发电机转子是指额定额定励磁电压); Um设备最高电压;
Uo/U电缆额定电压(其中Uo为电缆导体与金属套或金属屏蔽之间的设计电压,U为与导体之间的设计电压);
U1mA避雷器直流1mA下的参考电压; tgδ介质损耗因数。
三、特殊规定
㈠试验结果应与该设备历次试验结果相比较,与同类设备试验结果相比较,参照相关的试果,根据变化规律和趋势,进行全面分析后做出判断。
㈡遇到特殊情况需要改变试验项目、周期或要求时,对主要设备需经上一级主管部门审查后执行;对其它设备可由本单位总工程师审查批准后执行。
㈢ll0kV以下的电力设备,应按本规程进行耐压试验(有特殊规定者除外)。110kV及以上力设备,在心要时应进地耐压试验。
50Hz交流耐压试验,加至试验电压后的持续时间,凡无特殊说明者,均为lmin;其它耐压的试验电压施加时间在有关设备的试验要求中规定。
非标准电压等级的电力设备的交流耐压试验值,可根据本规程规定的相邻电压等级按插计算。
充油电力设备在注油后应有足够的静置时间才可进行耐压试验。静置时间如无制造厂规u应依据设备的额定电压满足以下要求:
500kV >72h 220及330kV >48h 110kV及以下 >24h ㈣进行耐压试验时,应尽量将连在一起的各种设备分离开来单独试验(制造厂装配的成套不在此限),但同一试验电压的设备可以连在一起进行试验。已有单独试验记录的若干不验电压的电力设备,在单独试验有困难时,也可以连在一起进行试验,此时,试验电压采用-接设备中的最低试验电压。
㈤当电力设备的额定电压与实际使用的额定工作电压不同时,应根据下列原则确定试验电压:
1.当采用额定电压较高的设备以加强绝缘时,应按照设备的额定电压确定其试验电赶
2.当采用额定电压较高的设备作为代用设备时,应按照实际使用的额定工作电压确试验电压;
3.为满足高海拔地区的要求而采用较高电压等级的设备时,应在安装地点按实际使额定工作电压确定其试验电压。
㈥在进行与温度和湿度有关的各种试验时(如测量直流电阻、绝缘电阻、tgs、泄漏电漪应同时测量被试品的温度和周围空气的温度和湿度。
进等到绝缘试验时,被试品温度不应低于+5℃,户外试验应在良好的天气进行,且空气对湿度一般不高于80%。
㈦在进行直流高压试验时,应采用负极性接线。
㈧如产品的国家标准或行业标准有变动,执行本规程时应作相应调整。
㈨如经实用考核证明利用带电测量和在线监测技术能达到停电试验的效果,经批准可以做停电试验或适当延长周期。
第五篇:电气预防性试验中存在的问题和改进建议
电气预防性试验中存在的问题和改进建议
一、变压器(包括电抗器)和油浸互感器变压器油中总烃、氢和乙炔超标问题
由于变压器油只有在局部放电(温度可达3 000℃以上)或局部过热(温度可达1 000℃以 上)时才能分解出氢、乙炔和其它碳氢化合物。所以通过定期预防性试验发现总烃、氢或乙 炔超标,或未超标但有上升趋势时,说明设备内部可能已出现局部放电或过热故障了,应给 予足够的注意。一般单位对这项试验都能按原部颁《电力设备预防 性试验规程》(以下简称“预试规程”)执行,但对测试数值的分析和处理往往注意不够,主 要表现在以下两个方面:认为测试数值不超标就平安无事。
如有的单位在定期试验时突然出现乙炔,但不超过标准5 ppm,就认为没有问题,让设备继 续运行,实际上乙炔的出现即说明设备内部可能出现局部放电或局部高温过热。如某厂一台 互感器在预试中出现乙炔,在安排吊芯检查前一天发生爆炸;某厂一台互感器出现微量乙炔,通过及时吊芯检查,发现了局部放电点。110 kV及以上电压等级电流互感器氢气超标比较普遍。
有的供电局氢气超标的电流互感器多达几十台,甚至上百台,大都未采取措施及时处理。部分单位对氢气超标问题有不同看法。如某省电力试验研究所规定,若其它各项试验合格,仅单一的氢气超标可当成一级绝缘使用。但在国外制造厂中有的却把产生氢气作为掌握和控制设备内部故障的唯一指标。
因为变压器油中的溶解气体色谱分析是目前掌握和控制变压器类设备内部故障的一项 非常重要的技术措施,既是定期试验,又是检查性试验。为此建议,在试验中若发现总烃、氢、乙炔超标,或虽未超标但有不断增加的趋势时,应给予足够的重视。一般可采取以下措施:
(1)用“三比值”法分析故障类型;
(2)对已超标或虽未超标但情况比较严 重的设备如产气速率较快等,应创造条件进行吊芯检查和对变压器油进行脱气处理。经上述 处理后的设备还应缩短试验周期,加强跟踪、试验、分析,直到气体不再产生或产气平稳不 再增加为止;
(3)电流互感器如产生氢气,若确认是 因变压器油质量不合格,应及时更换,更换后仍应继续跟踪试验分析。若产氢的原因无法确 定,应在跟踪试验分析的基础上进行脱气处理,然后再继续跟踪试验分析。情况严重的应创 造条件吊芯检查。
二、变压器绕组、套管和互感器tgδ试验问题
因变压器绕组、套管和互感器中使用了大量的绝缘纸,当绝缘纸的含水量超过其固有值时,设备会出现受潮现象。测量tgδ的目的就是对绝缘受潮作出准确的判断。预试规程中除了根据不同的设备规定了不同的tgδ允许值外,还规定了应将试验测得的tgδ与出厂值、历年值或上一次试验值进行比较,要求变压器绕组的增量限值一般不大于30%;而对油纸电容型套管和电流互感器的增量限值虽未作具体要求,但在说明中规定“有明显增长或接近允许限值时进行综合分析tgδ与温度电压的关系。当tgδ随温度增加明显增大,或试验电压由10 kV升到 Um/3,tgδ增量超过±0.3%时,不应继续运行”,对电磁式电压互感器只规定tgδ不应大于表中的限值;对电容式电压互感器规定tgδ与初始值相比不应有显著变化。
各单位对tgδ试验和预试规程中规定的限值都很重视,但对将试验值与出厂值或历年值或上一次试验值对比则普遍注意不够。如某供电局对数十台主变压器和上 百台互感器都按规定进行了定期试验,记录了大量数据,但没有一个按规定作对比,就下结 论为合格。由于不进行对比,可能会有绝缘受潮未及时发现和处理的重大隐患。如某发电厂 在一台110 kV主变压器试验中tgδ虽然偏大,但未超过限值,就下结论为合格,在继续运行 中套管发生爆炸,造成变压器严重损坏重大事故。由于电容型套管和油纸电容型电流互感器 的主绝缘是由若干串联的电容链构成,外部充有绝缘油,当设备由于密封不良等原因受潮时,水份往往通过外层绝缘逐步浸入电容芯,因此在受潮初期测量末屏对地的绝缘电阻和tgδ更 为灵敏,同时还可以通过比较主绝缘(导杆对末屏)和外层绝缘(末屏对地)的绝缘电阻和tg δ来判断绝缘受潮程度。所以在预试规程中规定对电容型套管和油纸电容型电流互感器在定 期预防性试验时,应测量末屏对地绝缘电阻值,若小于1 000 M 时,应测量末屏对地tgδ不 得大于2%。此外预试规程中还规定应测量主绝缘的电容量与初始值或出厂值差别,若超出 ±5%范围时应查明原因。对这几项规定有的单位均未执行,有的单位仅做了绝缘电阻测定,但对低于1 000 M 的设备没有进行tgδ检测,就下结论为合格,有可能留下事故隐患。
根据上述问题,提出以下建议: 原部颁《电力设备预防性试验规程》 是总结电力部门技术监督工作40多年经验和教训,吸取近年来国内外新出现的试验项目和诊 断技术编写而成的,是法规性文件,对其中规定的试验项目、标准和要求,应认真执行,不 得随意删减或将标准降低。为了便于将试验数值与初始值、出厂值、历年值进行对比和审查,可在现行的试验数据表格中,加入规定限值和初始值或出厂 值,历年值和对比值三栏。试验人员在试验前先从试验档案中查出初始值或出厂值、历年值,以便试验后立即在现场进行对比分析,发现问题及时处理。tgδ试验的准确性除了直接受试验人员的技术水平和经验影响外,还与采用的仪器有关。一般tgδ试验可以采用西令电桥,M 型试验器或其它仪器,但每种仪器由于精密度和抗干扰能力不一致,测量误差不同,因此测出的数值都不相同,为了便于对比,建议将试验人员和使用的仪器固定下来。tgδ试验由于精密度较高,易受仪器和外界因素的干扰,最大误差有可能接近0.3%,所以当试验数值很小,如在0.3%以下时,通过对比变化稍大于30%,一般可不算有明显变化。
三、有载调压装置的试验问题
许多单位对有载调压装置的试验普遍重视不够。按预试规程规定,对这个装置应进行的试验项目共有6个大项和5个小项。在部颁《电力变压器检修导则》和《有载分接开关运行维护导则》中,对检查、试验的规定和要求更为详尽和具体。共分为5个大 项25个小项。如其中规定在检修时要用直流示波器测量触头的切换时间,弧触头的桥接时间 和三相同期误差(限值标准分别为30~50ms,3~5 ms,3 ms),测量过渡电阻值误差不大于 10%,测量各对触头接触电阻应小于500μ 等。此外,对运行中的有载分接开关还增加 了不少规定,如:对开关室内的绝缘油,每6个月至1年或分接变换2 000~4 000次至少 采样试验一次;击穿电压低于25 kV时,应开盖清洗换油或滤油一次。新投产设备1~2年或 分接变换5 000次应吊芯检查一次;每年结合小修,操作3个循环分接变换等。在安全性评价 中我们查阅了有关单位的检修维护记录、运行记录和大修报告,仅有一个单位有比较详细的 记录,但检查试验项目还是不够完整。针对上述问题,提出如下建议: 对变压器的有载分接开关的检查和试验应按部颁《有载分接开关运行维护导则》和 《电力变压器检修导则》中的有关规定认真执行。建议国家电力公司下属有关单位按上述两个部颁导则要求修改和补充预试规程中 的有关检查试验项目。
四、变压器绕组变形试验问题
电力变压器在运行中发生低压侧出口短路或近区短路事故时,冲击电流很大(可能超过10倍额定电流),对变压器有较强的破坏力,尤其是国产变压器承受这种冲击的能力较弱,往往造成内部结构,特别是绕组严重变形。如某供电局一台220 kV 150 MVA主变压器在低压 侧出口短路后,做了各种绝缘试验和对变压器油进行了色谱分析均良好,但在做绕组变形试 验时,内部绕组呈现严重变形,经吊罩检查,打开围屏后发现低压侧绕组已乱成一团,及时 进行了处理,避免了一起变压器损坏的重大事故。由于预试规程中没有绕组变形试验的规定,致使一般单位对此项试验重视不够。我们还发现有的单位由于配电装置(包括线路)可靠性较 差,有的变电站在一年中连续发生过100多次速断过流保护跳闸事故,有的事故发生在变压 器出口,但未引起足够的重视。一般认为事故后只要强送电成功就平安无事了。根据上述的 经验,在变压器出口或近区短路事故后,不进行绕组变形试验很可能会留下十分严重的隐患。为此建议: 在主变压器发生出口或近区短路事故后,除了进行各种绝缘试验和色谱分析外,还 应及时进行绕组变形试验; 建议国家电力公司电科院等有关部门在预试规程中补充变压器绕组变形试验的项 目和要求; 据了解,目前一般发供电企业大都没有测试绕组变形试验的仪器,只能请外单位协助进行,且每次试验费用较大。若供电局自己拥有较多的变压器(如50台以上),建议购置一台试验仪器,对故障后的变压器都进行试验,作为历史档案保存,便于日后对比,这对加强 设备管理,防止重大设备事故发生,将起到积极的作用。
五、避雷器试验问题
预试规程对避雷器试验规定得详尽具 体,除绝缘电阻测定,检查放电记录的动作情况外,要求在雷雨季节前对阀式避雷器做电导 电流和同一组内串联组合元件的非线性因素差值;对金属氧化物避雷器测量直流1mA电压(U1mA)及0.75U1mA以下的泄漏电流和运行电压下的有功交流泄漏电流。对这几项技术性要求较 高的试验,不少单位虽然做了,但不够完整,主要表现在以下几个方面: 有些主要项目,如金属氧化物避雷器在试验中只测定了运行电压下的全电流,未测 定阻性电流功率损耗,因而无法与初始值进行比较。预试规程规定,当阻性电流增加1倍时,应停电检查。测试数据未按预试规程进行对比分 析,如阀式避雷器的电导电流,金属氧化物避雷器的U1mA下的泄漏电流值阻性电流损耗,虽 然都测量了,但未按规定与初始值比较,就下结论为合格。按预试规程要求,新投运的110kV及以上的金属氧化物避雷器,投运3个月后应测量一次交流泄漏电流,以后每半年测量一次,运行一年后,每年雷雨季节前测量一次,有的单位并未按规定执行。
针对上述问题,为防止避雷器爆炸事故发生,建议严格执行预试规程的规定,一项不漏,逐项测试,并与初始值对比后再下结论。