第一篇:液化天然气站消防设计探讨
LNG—液化天然气站消防设计探讨 概述
LNG—液化天然气的缩写,按照美国国家标准NFPA 59A定义为:一种基本上是甲烷构成的液态流体,含有微量的乙烷、丙烷、氮或通常在天然 气中存在的其他成分。天然气主要来源于气田和油井伴生气,通常是作为燃料使用。由于其液化储运技术要求较高,所以国内一直是近距离管道输送,资源浪费严 重。发达国家很早就将天然气进行液化储运,应用于生活、工业、汽车燃气等各个行业。1999年上海引进法国工艺技术建成了第一个LNG站,作为城市燃气的 备用气源。2000年淄博引进日本技术建设了LNG气化站,主要供应工业生产用气。由于目前我国未出台LNG站消防设计规范,笔者结合淄博LNG站消防设 计审查经验,提出一点浅见,供同行及设计人员参考。设计依据探讨
1.1 目前国内相关规范
①《石油化工企业设计防火规范》(1999年修订版)GB50160—92
②《城镇燃气设计规范》(1998年版)GB50028—93
⑧《建筑设计防火规范》(1997年修订版)GBn687
④《建筑防雷设计规范》GB50057-94
⑤《爆炸和火灾危险环境电力装置设计规范》GB50058—92
⑥《建筑灭火器配置设计规范)2BJl40—90
⑦《火灾自动报警系统设计规范》》GB50116—98
⑧《石油化工企业可燃气体和有毒气体检测报警设计规范》SH3004—1999
2.2 国外有关规范
①美国国家标准NFPA 59A《液化天然气(LNG)生产、储存和装卸标准》(1996年版)
②日本部颁标准KHK—4《一般高压瓦斯保安法则》(平成6年修订版)
2.3 适用规范探讨
由于目前国家尚未出台LNG站消防设计规范或标准,现对以上列出的有关规范的适用性作如下分析:
《城镇燃气设计规范》(1998年版)(以下简称《燃规》)第102条规定:本规范适用于新建、扩建或改建的城镇燃气工程和装置设计。另据《燃规》名词解释,城镇燃气是指符合本规范燃气质量要求的,供给居民生活、公共建筑和工业企业生产作燃料用的,公用性质的燃
气。一般包括天然气、液化石油气和人工煤气。《燃规》第六章对液化石油气储运供应做了明确规定,但对液化天然气未作说明。
《石油化工企业设计防火规范》(1999年修订版)(以下简称《石化规》)第102条规定:本规范适用于以石油、天然气及其产品为原料的石油化工新建、扩建或改建工程的防火设计。《石化规》对液化烃的储运设计做了明确规定。另据《石化规》名词解释,液化烃指的是
15℃时蒸汽压大于0.1 MPa的烃类液体及其他类似的液体。应包括液化天然气。
淄博新建LNG站属液化天然气气化、供气站,向周围企业、居民提供工业与民用天然气,应属城镇燃气范围,但《燃规》对液化天然气储运供应设计未作规定。本着无明确规范执行相近规范的原则,可执行《石化规》。该工程LNG储罐储存条件为0.3MPa(绝)、一
145℃,按照《燃规》规定应属于“半冷冻式储罐”。但《石化规》把液化烃储罐分为两类:“全压力式储罐”和“全冷冻式储罐”,没有“半冷冻式储罐”。为 此,设计组专门向《石化规》国家标准管理组进行了请示,得到明确答复:“液化烃半冷冻式储罐可参照《石化规》对液化烃全压力式储罐的要求进行防火设计”。
综上所述,淄博新建LNG站工程的消防设计主要依据《石化规》有关条款,其他专业规范均参照执行。美国、日本规范标准对LNG站的储罐、电器仪表、工艺设施、安全消防均作了详细规定,虽不能作为设计依据,但可以借鉴参考。火灾危险性分析
3.1 LNG火灾危险性分析
淄博的液化天然气来源于中原油田,主要组分为(体积百分比V%):甲烷93.609;乙烷4.1154,丙烷1.1973;其它组分(丁烷、戊烷、氮、二氧化碳等)1.0783。
物性参数:分子量:17.3;气化温度:-162.3℃:液相密度:447kg/m3;气相密度:0.722kg/m3;液态/气态膨胀系数: 612.5m3/m3(15.5℃);燃点:650ºC;热值:9260kcal/m3;气化潜热;121kcal/kg;储存条件:温度-145℃;压 力0.3MPa(绝)。天然气闪点为-190ºC,与空气混合能形成爆炸性混合物,爆炸下限(V%)为3.6—6.5,爆炸上限(V%)为13—17,最大爆炸压力6.8 kg。
天然气火灾有以下特点:火灾爆炸危险性大;火焰温度高、辐射热强;易形成大面积火灾;具有复燃、复爆性。
3.2 主要设计火灾危险性
3.2.1 LNG储罐
LNG储罐为100m3卧式真空粉末绝热低温储罐,双层结构,内胆材料为不锈钢0Cr18Ni9(0表示含碳量不足1%),其化学成分、含量与美 国(ASTM)304钢以及日本(JIS)SUS304钢的成分基本相同,外壳材料为Q235A(一种A型钢)。内胆与外壳之间填充珠光砂并抽真空绝热,内胆外面包一层弹性绝热材料以防止珠光砂沉积压实造成绝热性能下降。其最大的危险在于绝热性能下降,因为LNG是低温深冷储存,一旦绝热性能下降,储罐压 力剧增,会造成储罐破裂事故。
3.2.2 气化器
气化器有冬季使用的水浴式气化器和其他季节使用的空浴式气化器两种,其主要作用是LNG流经气化器换热发生相变,转化为气体并提高温度,经过调压器调至0.4MPa(绝)后进入管网,然后送给用户。因为进入气化器的是液化天然气,在气化之前一旦发生泄漏 极易造成火灾爆炸事故。
3.2.3 BOG储罐
钢制储罐,用来储存LNG储罐罐顶蒸发气体(Boiloffgas)。该罐主要用来平衡LNG储罐的压力,一旦LNG储罐温度发生波动,气化出的气体便进入该罐。因此BOG储罐应有配套的液化回收系统或放空设施,避免超压造成泄漏事故。
3.3 工艺火灾危险性
本工艺装置的火灾危险性为甲类,装置区内的大部分区域为爆炸危险1区。工艺流程比较简单,LNG用槽车运至气站后卸人储罐,气化、加臭、计量后进人管网送给用户。主要火灾危险有以下几点:
3.3.1 LNG运输中的分层和涡旋问题
LNG是一种多组分混合物,温度和组成的变化会引起密度变化,继而引起分层和涡旋,表面蒸发率剧增(涡旋时的蒸发率比正常状态要大20倍),引起槽车内压力骤增造成泄漏事故,1971年意大利曾发生过类似事故。
3.3.2 LNG泄漏问题
由于LNG是低温深冷储存,所以它的泄漏一般液化烃有所不同。LNG一旦从储罐或管道中泄漏,一小部分立即急剧气化成蒸气,剩下的泄漏到地面,沸腾气化后与周围的空气混合成冷蒸气雾,在空气中冷凝形成白烟,再稀释受热后与空气形成爆炸性混合物。
LNG泄漏冷气体在初期比周围空气浓度大,易形成云层或层流。气化量取决于土壤、大气的热量供给,刚泄漏时气化率很高,一段时间后趋近于一个常数,这时的LNG泄漏到地面上会形成一种液流。消防设计探讨
4.1 总平面布局
站址选择及总平面布置均参照《石化规》有关要求执行。
4.1.1 站址选择
站址应处于全年最小频率风向的上风侧,站内应平坦,通风良好,便于LNG的扩散。距离公共建筑及民用建筑均应大于120米(日本规范分别为98.3米和65.6米)。
4.1.2 总图布置
在满足工艺流程的前提下,应合理布置功能分区,储存区、生产及辅助区和办公区应分开设置。综合考虑防火间距、消防车道及防火防爆要求。
4.2 建筑结构(耐火等级)
站内建构物均应按《建筑设计防火规范》进行设计,其耐火等级、层数、长度、占地面积、防火间距、防爆及安全疏散均按规范要求进行设计;建构筑物 墙、楼板、柱、梁、吊顶的选材和结构均需要满足规范规定的强度、耐火、防爆要求。建构筑物及重要设备的联合平台,均应设置两个以上的安全疏散口;生产装置 内的承重钢框架、支座、裙座、管架等按规范要求涂覆耐火层保护,耐火层的耐火极限不低于1.5小时。
由于LNG的特殊性质,站内建构筑物及重要设备支架除应满足相应的耐火等级外,还要满足抗冷性能。特别是储罐基础、防火堤及挡液堤必须能承受-145℃以下的低温。
4.3 工艺装置
装置均设计成密闭系统,在控制的操作条件下使被加工的物料保持在由设备和管道组成的密闭系统内。在装置的进出口总管上设置紧急切断阀,以杜绝引起火灾爆炸的可能性。
4.4 储运设施
储运设施的设计均严格按照《石化规》有关要求执行。
4.4.1 储罐安全措施
在储罐的液相管上设紧急切断阀,每个储罐两个,以便在装置发生意外时切断储罐与外界的通道,防止储罐内的LNG泄漏。
储罐内罐设安全放空阀,连通火炬;外罐设泄压设施,放空气体引至高点排放。
4.4.2 管道安全措施
在液相管道的两个切断阀之间设置安全阀,一旦两个切断阀关闭,管道内的液体受热气化时,安全阀自动起跳,以防超压造成事故。
气相总管上设紧急放空装置,一旦有误操作或设备超压,安全阀起跳,以保护气相管道的安全。
4.4.3 泄漏处置措施
根据LNG的特殊性质,LNG的泄漏处置是最重要的设施。美国国家标准NFPA 59A《液化天然气(LNG)生产、储存和装卸标准》明确提出: LNG站内应按规范要求设置拦截区,服务于LNG储灌区、装卸区和生产工艺区。且LNG和可燃制冷剂、储罐防护堤、拦截墙和泄流系统必须采用压实土、混凝 土、金属等耐低温材料建造。
储罐周围设置防护堤,高度1米,储罐与防护堤的间距按照储罐液位高度减去防护堤高度计算。在储罐防火堤内设置LNG导流沟和集液池,以防泄漏的LNG接触其他储罐基础。
卸车台处另设一集液池,用来收集卸车过程中泄漏的LNG。
所有集液池内的LNG均应采取可靠的保护措施,使其安全气化,避免造成危险。
4.4.4 安全放散
站内设专用放空火炬,高30~40米,LNG储罐、BOG储罐、工艺管道及各生产工段的超压泄放气体均引入火炬,避免在站内形成爆炸性混合物。4.5 电气仪表
4,5.1 火灾探测及DCS联动系统
DCS为自动监视控制系统,有异常发生时及时报警并通过ESD(紧急停车)快速切断使各部设备处于安全状态。
在储罐区、气化区、卸车台等可能产生天然气泄漏的区域均设置可燃气体浓度监测报警装置,在储罐、气化器等关键设备的适当部位安装火灾探测器;在控制室设有集中报警控制系统,一旦有气体泄漏或发生火灾,能够及早发现并采取措施。
另外站内还设有一套先进的监控系统,能监控各装置设备的工艺参数(温度、压力、液位等)并能连锁控制,有异常情况时发出警报提醒操作人员及时处理,特殊情况下可以启动紧急切断装置(站内所有紧急切断阀均从日本进口,电动控制),确保各主要设备处于安
全状态。
4.5.2 电气设备及电缆
站内电气设计严格执行《爆炸和火灾危险环境电力装置设计规范》要求。电气设备和灯具均满足相应的防爆级别,电缆沟进行防火封堵并采用阻燃性电缆。
4.5.3 防雷防静电
根据生产性质、发生雷电的可能性和后果,站内生产装置和辅助设施、工业建筑均采用装设避雷网和避雷针防止雷击。装置区内的封闭金属罐、塔及设备管道按规范要求作好防雷接地。
4.5.4 消防用电及通讯
应确保站内的消防用电及通讯设施。消防控制系统、消防水泵、气压给水设备等主要用电设备应有备用电源(双电源供电或采用备用发电设备);站内控制中心应设外线报警电话或与消防队直通的专线电话。
4.6 消防设施
消防系统的设计均严格按照《石化规》有关要求并参照国外的先进经验执行。
4.6.1 消防给水系统
消防给水系统由消防泵房、消防水罐、消防管道及消火栓、消防水炮等组成。站内按一次火灾计算,LNG储罐所需消防用水量最大,一次用水量为478m3/h,火灾延续时间为6h,贮水量不应小于2866m3(站内设置两个公称容量1500m3的固定顶消防水储罐)。
站内设置环状DN300消防水管网,管网上设置地上式消火栓。罐区周围设置固定式消防水炮及箱式消火栓,另外设两台移动消防水泡,放在泵房内备用。
消防泵房内除按照站区所需消防用水量要求设置主备用泵外,另设一套消防气压给水设备,平时用来维持管网的恒压状态(0.38MPa),火灾时自动启动消防水泵,达到0.8~0.9MPa,形成临时高压消防给水系统。
4.6.2 蒸汽灭火系统:
按照《石化规》要求,在生产工艺装置处设置蒸汽消防系统,利用站内锅炉产生的高压蒸气,在工艺设备、管道及框架、平台等易泄漏处设有消防蒸汽管及接头,遇有紧急情况时,可方便地灭火或对设备、管道进行保护。
4.6.3 泡沫系统(高倍数泡沫保护和低倍数泡沫灭火系统)
为了有效地控制泄漏的LNG流淌火灾,借鉴国外先进经验,站内设置了高倍数泡沫保护系统。采用PF4型水轮式高倍数泡沫发生器和3%的高倍数泡沫 液,发泡量为100~200m3/min。主要用来覆盖保护储罐区、管道、卸车台泄漏及事故集液池内的LNG,使其安全气化,避免产生危险。
有条件的站内还可按规范要求设置固定式低倍数泡沫灭火系统。在储罐区、管道、卸车台及事故集液池等处设置泡沫管道及管牙接口,并配置一定数量的泡沫钩枪。也可在储罐、管道、卸车台及重要设备上方设置泡沫喷淋灭火装置。
4.6.4 干粉灭火系统
在LNG储罐、BOG储罐、管道安全阀等气体放空部位,可设置于粉灭火装置,一旦排出的气体被点燃,可以自动释放干粉灭火,避免事故扩大造成危险。
4.6.5 气体灭火系统
在总控制室、自备发电机房、变配电室等封闭空间内可采用气体自动灭火系统,有人值班的可采用手动控制,现场无人值班的应采用自动控制。
4.6.6 移动式灭火器材
根据《建筑灭火器配置设计规范))GBJl40—90规定,该装置生产区为严重危险级场所,设置MFA8型手提式干粉灭火器和MFAT50型推车式干粉灭火器。辅助生产区属轻危险级,设置MFA8型手提式干粉灭火器。控制室、变配电室内配置MT7型手提式二氧化碳 灭火器,以保证迅速有效地扑灭初期火灾和零星火灾。
4.7 灭火对策
4.7.1 切断气源,控制泄漏。如不能有效控制堵住泄漏,可允许泄漏气体稳定燃烧,防止大量气体扩散造成二次危害。
4.7.2 对着火罐及邻近罐和设备进行冷却保护,固定式冷却设备失效时应迅速采用消防水泡等移动式设备进行冷却,避免储罐设备受热超压造成更大灾害。
4.7.3 要控制泄漏出的LNG流淌,可筑堤堵截或挖导向沟,将LNG引至事故集液池等安全地带,然后用高倍数泡沫覆盖,使其安全气化,避免燃烧扩大。
4.7.4 初起小火可利用现场配置的移动式灭火器材进行扑救,火势较大时应立即报警,调动大型消防车辆灭火。结论
在目前我国没有LNG站消防设计规范的情况下,参照《石化规》的有关要求及国外的先进经验进行的上述设计,基本能够满足LNG站的消防安全要求,各种设备得到了最大程度的保护,为LNG站的安全运行提供了有力的保障,实践证明是行之有效的。
第二篇:液化天然气气化站的安全设计
液化天然气气化站的安全设计
作者:石志俭,„
文章来源:燃气技术专题的博客
点击数:170
更新时间:2010-5-7 概述
液化天然气气化站(以下称LNG气化站),作为中小城市或大型工商业用户的燃气供应气源站,或者作为城镇燃气的调峰气源站,近年来在国内得到了快速发展。
LNG气化站是一种小型LNG接收、储存、气化场所,LNG来自天然气液化工厂或LNG终端接收基地,一般通过专用汽车槽车运来。本文仅就LNG气化站内储罐、气化器、管道系统、消防系统等装置的安全设计进行探讨。LNG储罐
2.1 LNG储罐的工艺设计
LNG储罐是LNG气化站内最主要的设备。天然气的主要成分甲烷常温下是永久性气体,即在常温下不能用压缩的方法使其液化,只有在低温条件下才能变为液体。LNG储罐的工作压力一般为0.3~0.6MPa,工作温度约-140℃,设计压力为0.8MPa,设计温度为-196℃[1]。
LNG气化站内150m3及以下容积的储罐通常采用双层真空绝热结构,由内罐和外罐构成,内罐材质为0Cr18Ni9不锈钢,外罐材质为16MnR压力容器用钢。内罐和外罐之间是由绝热材料填充而成的绝热层。当外罐外部着火时绝热材料不得因熔融、塌陷等原因而使绝热层的绝热性能明显变差。
目前生产厂家所用的绝热材料一般为珠光砂,填充后抽真空绝热。为防止周期性的冷却和复热而造成绝热材料沉积和压实,以致绝热性能下降或危及内罐,宜在内罐外面包一层弹性绝热材料(如玻璃棉等),以补偿内罐的温度形变,使内外罐之间的支撑系统的应力集中最小化。支撑系统的设计应使传递到内罐和外罐的应力在允许极限内。
储罐静态蒸发率反映了储罐在使用时的绝热性能,其定义为低温绝热压力容器在装有大于50%有效容积的低温液体时,静止达到热平衡后,24h内自然蒸发损失的低温液体质量与容器的有效容积下低温液体质量的比值。一般要求储罐静态蒸发率≤0.3%[
1、2]。除绝热结构外,储罐必须设计成可以从顶部和底部灌装的结构,以防止储罐内液体分层。
2.2 LNG储罐的布局
根据GB
50028—2006《城镇燃气设计规范》的规定,储罐之间的净距不应小于相邻储罐直径之和的1/4,且不应小于1.5m。储罐组内的储罐不应超过两排,储罐组的四周必须设置周边封闭的不燃烧实体防护墙,储罐基础及防护墙必须保证在接触液化天然气时不被破坏。LNG罐区的设计应通过拦蓄设施(堤)、地形或其他方式把发生事故时溢出的LNG引到安全的地方,防止LNG流入下水道、排水沟、水渠或其他任何有盖板的沟渠中。
储罐防护墙内的有效容积V应符合下列规定:①对因低温或因防护墙内一储罐泄漏、着火而可能引起的防护墙内其他储罐泄漏,当储罐采取了防止措施时,V不小于防护墙内最大储罐的容积。②当储罐未采取防止措施时,V不小于防护墙内所有储罐的总容积。
2.3 储罐抗震、防雷、防静电设计
GB
50223—2004《建筑工程抗震设防分类标准》规定,20万人以上城镇和抗震设防烈度为8、9度的县及县级市的主要燃气厂的储气罐,抗震设防类别划为乙类。美国NFPA59A《液化天然气(LNG)生产、储存和装运标准》(2001年版)规定,LNG气化站内设施及构筑物的抗震设计应考虑操作基准地震(OBE)和安全停运地震(SSE)两种级别地震的影响。
操作基准地震(OBE)是指设施在其设计寿命期内可承受的可能发生的地震,即在该级别地震发生时,设备将保持运行。安全停运地震(SSE)是指气化站所在地罕见的强烈地震,设施设计应能保存LNG并防止关键设备出现灾难性故障,不要求设施在发生SSE后保持运行。
LNG罐区防护墙及其他拦蓄系统的设计至少在空载时能承受SSE级别的荷载,要求在发生SSE之后,LNG储罐可能会出现故障,但防护墙和其他拦蓄系统必须保持完好。凡是失效之后可能会影响到LNG储罐完整性的系统和构件,以及隔离储罐并保证它处在安全停运状态所需要的系统组件,必须能承受SSE而不发生危险。
LNG储罐应按照OBE进行设计,并按照SSE进行应力极限校核。在工厂内制造的储罐,其设计安装应符合ASME《锅炉和压力容器规范》(2007年版)的要求,储罐和支座的设计还应考虑地震力和操作荷载的组合作用,使用储罐或支座设计规范标准中规定的许用应力增量。
LNG气化站的储罐区设置地下避雷接地网,LNG储罐的支柱与避雷接地网连接,LNG储罐上无须设置防雷保护装置。站区的防雷设计应符合GB
50057—94《建筑物防雷设计规范》(2000年版)中“第二类防雷建筑物”的有关规定。防静电设计应符合HG/T
20675—1990《化工企业静电接地设计规程》的要求。气化器和管道系统
LNG气化站使用的气化器一般分为环境气化器(空温式气化器)和加热气化器(水浴式气化器、电加热气化器)。各气化器的出口阀及出口阀上游的管件和阀门,设计温度应按-168℃计算。气化器的出口须设置测温装置,并设自动控制阀门,当气化后进入燃气输配系统的气体温度高于或低于输配系统的设计温度时,自动控制阀门应能自动切断天然气的输出。
气化器或其出口管道上必须设置安全阀,安全阀的泄放能力应满足以下要求:①环境气化器的安全阀泄放能力必须满足在1.1倍的设计压力下,泄放量不小于气化器设计额定流量的1.5倍。②加热气化器的安全阀泄放能力必须满足在1.1倍的设计压力下,泄放量不小于气化器设计额定流量的1.1倍。
LNG气化站内使用温度低于-20℃的管道应采用奥氏体不锈钢无缝钢管,工艺管道上的阀门应能适用于液化天然气介质,液相管道采用加长阀杆的长柄阀门,连接宜采用焊接。工艺管道采用自然补偿的方式,不宜采用补偿器进行补偿。LNG管道上的两个相邻的截断阀之间,必须设置安全阀,防止形成完全封闭的管段。液化天然气储罐必须设置安全阀,选用奥氏体不锈钢弹簧封闭全启式安全阀;单罐容积为100m3及以上的储罐应设置2个或2个以上安全阀。管道和储罐的安全阀都应设置放散管并集中放散。液化天然气集中放散设施的汇集总管应安装加热器,低温天然气经过加热器加热后变成比空气轻的气体后方可放散。安全检测、控制装置
LNG气化站储罐区、气化区以及有可能发生液化天然气泄漏的区域,一般应安装低温检测报警装置,爆炸危险场所应设置燃气浓度检测报警装置。LNG储罐都应设置检测液位的报警装置,可以设置储罐低液位报警、超低液位报警、高液位报警、超高液位报警,以提醒工作人员及时处理。气化站内还应设置事故紧急切断装置,当事故发生时,应切断或关闭液化天然气来源,还应关闭正在运行、可能使事故扩大的设备。切断系统应具有手动、自动或手动自动同时启动的性能,手动启动器应设置在事故时工作人员方便到达的地方,并与所保护设备的间距不小于15m。消防系统
LNG气化站的消防系统主要包括消防供水和高倍数泡沫系统。
LNG储罐消防用水量应按照储罐固定喷淋装置和水枪用水量之和计算。总容积超过50m3或单罐容积超过20m3的液化天然气储罐或储罐区应设置固定喷淋装置。LNG立式储罐固定喷淋装置应在罐体上部和罐顶均匀分布。生产区防护墙内的排水系统应采取防止液化天然气流入下水道或其他顶盖密封的沟渠中的措施。需要说明的是,水既不能控制也不能熄灭LNG液池火灾,水在LNG中只会加速LNG的气化,进而加快其燃烧速度,对火灾的控制只会产生相反的结果。因此,LNG气化站的消防用水大量用于冷却、保护受到火灾辐射的储罐和设备,以减少火灾升级和降低设备的危险。这一点在制定和实施LNG气化站事故应急救援预案时必须注意。
液化天然气火灾多是由于储罐、管道或其他连接处破裂、损坏,使液化天然气喷出或外溢而引起的,一般归结为以下两种因素:①液化天然气在破口处喷出时产生静电酿成火灾,形成喷火现象;②液化天然气泄漏后会迅速气化变成蒸气,与空气混合形成爆炸性气体,在受热后温度上升或接触其他明火时发生爆炸。
高倍数泡沫覆盖了泄漏燃烧的液化天然气,一方面其封闭效应使得大量的高倍数泡沫以密集状态封闭了火灾区域,防止新鲜空气流入,使火焰熄灭。另一方面其蒸汽效应(指火焰的辐射热使其附近的高倍数泡沫中的水蒸发,变成水蒸气,吸收大量的热量)阻挡了火焰对泄漏液化天然气的热传递,从而降低了液化天然气的气化速度,达到有效控制火灾的目的。
倍数过低的泡沫含水量大,当其析液接触泄漏的液化天然气时,往往会加快液化天然气的气化速度;倍数过高的泡沫抵抗燃烧能力差,泡沫破裂速度快,不能起到有效的封闭作用。GB
50196—93《高倍数、中倍数泡沫灭火系统设计规范》(2002年版)规定了泡沫混合液供给强度为7.2L/(min·m2),发泡倍数为300~500倍。结语
在美国、日本等发达国家,LNG气化站的建设、生产技术已经非常成熟,但在我国还处于起步阶段。我们应努力全面学习先进的建设管理经验,周密考虑,从设计、施工阶段严格执行规范和技术要求,为LNG气化站的长久安全运行奠定坚实的基础。
第三篇:天然气液化厂(站)巡检管理制度
天然气液化厂***站巡检制度
1、总则
1.1 目的为贯彻落实科学巡检,明确细化各项巡检管理工作,进一步提高巡检工作质量,对装置存在问题及时发现及时处理,确保我站装置安全、稳定、长周期运行,特制定本制度。
1.2 范围
本办法适用于生产班组各岗位生产的不间断巡回检查管理。
1.3 术语和定义
1.3.1科学巡检:以提高人的素质和强化“三基”建设为基础,提高巡检质量为核心,采用创新管理理念和科学管理方法,借助高科技巡检监控工具,及时发现和消除生产安全隐患,确保生产装置安全、稳定、长周期运行;
1.3.2常规巡检点:影响装置正常生产运行的设备或部位;
1.3.3关键巡检点:影响装置安全运行的重要设备或部位;
1.3.4特护巡检点:随时会出现非正常工况,对安全生产产生重大影响的重要设备或部位。
2、管理职责分工
2.1 生产管理组是不间断巡回检查工作的主管部门,负责对各生产班组的巡回检查管理工作进行督促、检查和考核;负责审定《天然气液化厂***站巡检制度》,定期或不定期组织工艺、设备、电仪、安全、生产班组等召开危害辨识及安全风险评估会议,审定关键巡检点和特护巡检点,并负责关键巡检点和特护巡检点台帐管理和上报;
2.2 电仪组自行制定适用于电气、仪表班组的《巡回检查管理实施细则》并报技术组备案,并负责对电气、仪表班组的巡回检查管理
工作进行督促、检查和考核;参加关键巡检点、特护巡检点危害辨识及安全风险评估,对关键巡检点、特护巡检点提出专业管理措施和建议;
2.3 安全质检组负责指导完善员工巡检作业的个人防护用具配备;参加关键巡检点、特护巡检点危害辨识及安全风险评估,对关键巡检点、特护巡检点提出专业管理措施和建议;协助做好巡检管理有关工作,并负责提出装置区域治安巡逻管理措施和建议;负责对全站治安巡逻管理工作进行督促、检查和考核;
2.4 各生产班组负责本组职工按照既定各岗位的巡检线路、巡检内容、巡检时间、站名、站号,并组织落实《天然气液化厂***站巡检制度》;参与危害辨识和安全风险评估,提出关键巡检点、特护巡检点修正或增减并上报生产管理组。
3、巡检的执行
3.1 各生产班组要通过优化人员、优化巡检线路,提高巡检科学性,并可采用视频监控、离线状态监测、电子智能巡检及多岗位交叉巡检等方式,开展巡检工作;
3.2 各生产班组根据岗位实际情况,配备合适的个人防护用具、巡检工具和设备监测器具,巡检人员佩戴相应的个人防护用具、巡检工具和设备监测器具进行巡检;
3.3 当班操作人员按照规定的路线、内容,定时、定点进行高标准高质量巡回检查,检查各设备运行状况、现场仪表参数、现场跑、冒、滴、漏等情况,并做好巡检记录,发现问题及时处理,不能单独处理的及时按程序汇报;
3.4 巡回检查要做到“看、听、摸、查、比”,设备、电气、仪表专业和装置巡检人员在巡检中发现问题时,必须及时互相通报和联
系处理。当出现暴雨、冰雹、暴雪等恶劣天气,在确保巡检人员安全的前提下,根据现场实际情况适当调整巡检工作;
3.5 设备、电气、仪表专业技术员必须确保每天不少于2次的深度常规巡检,对关键巡检点不少于4次、特护巡检点不少于 8次。其它特护机组的巡检和考核,按上级部门有关管理规定执行;
3.6 巡检过程中发生事件、事故,依据事件、事故汇报程序进行汇报或按事故应急预案进行处理;
3.7 巡检人员若遇生产操作或需处理问题而无法例行巡检时,要把情况写入交班日志; 巡检人员已按要求巡检,但因巡检设备故障出现的漏检、缺检项,当班巡检人员也应把情况写入交班日志;
3.8 巡检人员在巡检过程中,要履行辖区内的治安巡逻职责,查陌生人,查可疑迹象,禁止无关人员和物品进入装置区域,发现案情须及时报告并经门卫接警务室及时处理。
4、考核
4.1 未按时巡检的,经抽查发现有漏检现象的,考核责任班组**分/次;
4.2 未按规定做好巡检记录、记录不完整(包含办公区域及设备卫生交接)、未按仿宋字体记录、在记录本上乱涂乱画的,考核责任班组**分/次;
4.3 巡检时草率应对,不认真履行巡检职责的,对于应发现问题而未发现的,考核责任班组**分/次;
4.4 巡检过程中发现问题未及时汇报、处理的,处罚款考核责任班组**分/次;
4.5 当班组未按规定填写、上报和发放巡检记录的,考核责任班组**分/次;
4.6当班组遗失巡检记录或故意损坏巡检记录的,考核责任班组**分/次;
4.7当班组因未按时巡检或未按照规定巡检、未履行报告制度等工作缺陷,导致装置运行产生较大波动,考核责任班组**分/次,并追究对相关巡检人员追究责任。
5、附则
5.1 本管理办法须经天然气液化厂生产技术部与***液化站办公会议讨论通过,由生产管理组负责修订、解释并监督执行。
第四篇:液化天然气学习心得
学习心得
如果说页岩气对于我们尚比较陌生的话,那么LNG应该是我们每个天然气行业工作者耳熟能详,津津乐道的了。
LNG,即液态的天然气,为无色、无味、无毒、无腐蚀性液体,标准状态下沸点为-162℃,气液体积比约为620:1,正是由于LNG的这种物理性质,保障了LNG能够安全、大量的储存和运输,从而在天然气大规模远洋贸易中,起到至关重要的作用,虽然天然气仍然主要采用管道运输的方法,但是说道远洋运输,LNG是最好的也是目前唯一的手段。而LNG之所以如此受到青睐,主要是因为LNG的用途广泛,LNG可以用作民用燃气、发电、化工、运输工具的燃料和冷能利用几方面。
我国从2006年开始进口LNG,2008年进口总量为333.6万吨,2009年占全球贸易量3.14%,占亚太地区5%。2010年占全球贸易量4.3%,占亚太地区7.2%。预计到2020年,中国进口LNG为2500万吨/年。
这意味着我国急需形成大型化多元化的LNG产业链,LNG产业链包括天然气预处理、液化、储存、运输、接收、应用等环节。其中天然气的液化、储存、运输和应用是整个产业链的主要组成部分。目前我国已建和在建的天然气液化工厂约100座,但规模较小,国内技术已建成投产的装置约100套,工艺技术为单循环混合制冷剂和膨胀制冷,最大能力12万吨/年(膨胀制冷),混合冷剂技术建成的最大能力为60万吨/年。国内在建的天然气液化项目最大能力为100万吨/年。
天然气装置三大主要工艺系统为:天然气净化、天然气液化、LNG储运,其中天然气液化是技术核心和关键。而液化工艺分为三种:阶式制冷循环、膨胀机制冷循环、混合冷剂制冷循环。
阶式制冷循环流程复杂、设备多,但是能耗低,所以不单独采用;膨胀机制冷循环液化率低、能耗高,适用于中小型LNG装置;混合冷剂制冷循环系统简单、投资低,所以适用于大型LNG装置,目前采用较多的均为混合制冷循环。
远洋进口LNG由大型LNG船运送至接收站后,由陆地上的LNG罐车载运到各地,供居民燃气或工业燃气用。LNG罐车运载状态一般是常压,温度为112k的低温。LNG虽然相对于天然气较为安全,但仍然是易燃、易爆的介质,且陆地运输相对于管网运输也存在很大风险,所以,运输中的安全可靠是至关重要的。
LNG罐车由牵引车、低温储罐、行走机构(底盘)、充装泄压系统、增压减压系统、安全系统、仪表检测系统、抽真空及测量系统几部分构成。由于LNG的低温特性,所以储罐的保温防冻以及输送液体的泵也至关重要。采用泵送液体主要优点在于转注流量大、时间段,泵后压力高,泵前压力要求低,罐体设计压力低,这给LNG的充装节省了很多的资金和麻烦,但是LNG罐车的造价仍然较高,结构较复杂。
LNG大部分用途仍然是为了天然气的运输方便,所以,LNG气化站至关重要,LNG气化站是一个接受、储存和分配LNG的基地,是城镇或燃气企业把LNG从生产厂家转往用户的中间调节场所。LNG气化站主要包括卸车台、低温储罐、增压系统、气化系统及调压、计量和加臭系统。LNG通过低温槽车运到气化站,槽车储罐通过增压器进行增压,在压差作用下,通过卸车台的管道进入站内的低温储罐。低温储罐通过增压器使储罐压力达到一定值,罐内LNG通过出液管道进入气化系统,使LNG气化升温达到设定值,再通过出站调压器将压力降到要求值,然后通过计量和加臭系统进入燃气管网系统。气化站和LNG液化工厂等都需要合理的储罐进行储存LNG,由于储罐形式需要考虑储存规模、项目投资、建设周期、占地面积等因素,目前,国内LNG气化站常用的低温储槽有字母罐及单罐两种形式。一般储存量在1000m³以下的城市LNG气化站,基本都采用单罐储存。考虑到LNG储罐的运输、制造和国内的实际情况,由于占地小、国内厂家制造技术成熟等优点,对中小城市一般选择50m³、100m³、150m³的卧式或立式圆筒形低温真空粉末绝热储罐。
之后我还了解了LNG工厂、LNG汽车、LNG工艺上及设备上的一些要求,以及LNG储罐的一些原理和储罐低温保温的填料要求。
这次的学习可以说对我的帮助很大,LNG对于每个天然气行业的工作者来说都不算陌生,但是其中很多重要的特性、工艺要求、设备要求及选型等,对我们来说还不是很懂,通过这次学习,使我对LNG整个产业链有了全新的认识,感谢公司以及老师给我的这次机会。
第五篇:液化天然气论文
《液化天然气供应技术课程设计》
题
目
液化天然气运输安全与发展
学生姓名
学号
专业年级
院
系
指导教师
2014 年 10月 31日
液化天然气运输安全与发展
摘要:天然气是一种清洁优质能源,近年来,世界天然气产量和消费量呈持续增长趋势。从今后我国经济和社会发展看,加快天然气的开发利用,对改善能源结构,保护生态环境,提高人民生活质量,具有十分重要的战略意义。具有建设投资小、建设周期短、见效快、受外部影响因素小等优点。作为优质的车用燃料,LNG具有辛烷值高、抗爆性好、燃烧完全、排气污染少、发动机寿命长、运行成本低等优点;与压缩天然气(CNG)相比,LNG则具有储存效率高,续驶里程长,储瓶压力低、重量轻、数量小,建站不受供气管网的限制等等诸多优点。
关键词:液化天然气,液化,运输,安全,发展,应用
1液化天然气的制取与输送
LNG是液化天然气的简称,常压下将天然气冷冻到-162℃左右,可使其变为液体即液化天然气(LNG)。它是天然气经过净化(脱水、脱烃、脱酸性气体)后,采用节流,膨胀和外加冷源制冷的工艺使甲烷变成液体而形成的。LNG的体积约为其气态体积的l/620。天然气的液化技术包括天然气的预处理,天然气的液化及贮存,液化天然气的气化及其冷量的回收以及安全技术等内容。LNG利用是一项投资巨大、上下游各环节联系十分紧密的链状系统工程,由天然气开采、天然气液化、LNG运输、LNG接收与气化、天然气外输管线、天然气最终用户等6个环节组成。由于天然气液化后,体积缩小620倍,因此便于经济可靠的运输。用LNG船代替深海和地下长距离管道,可节省大量风险性管道投资,降低运输成本。从输气经济性推算,陆上管道气在3000km左右运距最为经济,超过3500km后,船运液化天然气就占了优势,具有比管道气更好的经济性。LNG对调剂世界天然气供应起着巨大的作用,可以解决一个国家能源的短缺,使没有气源的国家和气源衰竭的国家供气得到保证,对有气源的国家则可以起到调峰及补充的作用,不仅使天然气来源多元化,而且有很大的经济价值。
LNG作为城市气化调峰之用比用地下储气库有许多优点。例如:它选址不受地理位置、地质结构、距离远近、容量大小等限制,而且占地少、造价低、工期短、维修方便。在没有气田、盐穴水层的城市,难以建地下储气库,而需要设置LNG调峰。这项技术在国外已比较成熟,如美国、英国和加拿大的部分地区采用LNG调峰。我国也正在引进这项技术。液化天然气蕴藏着大量的低温能量,在1个大气压下,到常温气态大约可放出879KJ/kg的能量,利用其冷能可以进行冷能发电、空气分离、超低温冷库、制造干冰、冷冻食品等。由于LNG工厂在预处理时已脱除了气体的杂质,因此LNG作为燃料燃烧时所排放的烟气中 S02及NOx含量很少。因此被称为清洁能源,广泛用于发电、城市民用燃气及工业燃气,减少了大气污染,有利于经济与环境的协调发展。
2液化天然气的应用
2.1液化天然气冷能的利用
LNG的用途很广。可用于民用负荷调峰、发电、工业用户和商业用户。LNG的关键技术在于深度冷冻液化,其储罐和专用运输巨轮就象超级低温冰箱,这些过程都要消耗巨大的能源,但按能量守恒规律,此冷能在释砹时侧利用,以l毕低成本。利用LNG冷能主要是依据LNG与周围环境之间存在的温度和压力差,通过LNG变化到与外界平衡时,回收储存在LNG中的能量。
利用LNG冷能的过程可分为两类:直接利用和间接利用。前者包括:发电、空气液化分离、冷冻仓库、制造液化二氧化碳、海水淡化、空调和低温养殖、栽培等。后者包括:低温破碎、水和污染物处理及冷冻食品等。目前对液化天然气冷能的利用工程取得了许多成果。2.2液化天然气应用于汽车
天然气作为能源,由于它对大气污染少而被称为清洁燃料,更是汽车的优质代用燃料。近年来,它已被世界许多国家重视和推广。按照天然气的储存方式不同,天然气汽车大致分为CNGV(压缩天然气汽车)、LNGV(液化天然气汽车)、和ANGV(吸附天然气汽车)。
目前我国对天然气汽车的发展也非常重视。到1999年。全国已改装各种CNG汽车l万多辆,建设加气站70多座。ANGV正处在研制阶段。我国 LNGV的应用仍是一项空白。用LNG作为汽车燃料特别值得推广。与传统的石油类燃料相比,LNG具有明显的优点,汽车续驶里程长,LNG相对于 CNG和LPG具有储存能量大、压力低、噪声低、更清洁等优势,利用LNG冷量取代汽车空调,不破坏生态,良好的使用性能(抗爆、稳定性强、燃烧热值高、燃点值宽)和相对便宜。俄罗斯在将 LNG用于汽车运输、铁路运输、水上运输和空中运输方面积累了许多经验。
发动机运行时,LNG储液罐内的天然气液态与气态并存,正常工作压力不低于0.2MPa。当罐内压力低于0.2MPa时,压力控制阀开启,自增压器工作。将一部分气态天然气充人储液罐,而使罐内压力升高到工作压力。可以通过调节压力控制阀来改变自增压器的工作点。发动机处于停机状态时,随热量的不断吸人。LNG会不断气化。当LNG储液罐中的压力高于0.6MPa时,安全阀打开,迅速放出部分气态天然气,保证LNC储液罐不被损坏。另外,在LNG储存系统设有液位计和压力指示装置。车用液化天然气的储存温度范围为-130℃~160℃,其储存压力低于0.6MPa。使用时,从罐内流出的液化天然气经过气化器吸收发动机冷却水或废气热量而气化,并使其温度升高,然后通过两级减压器减压,由管路送到混合器与空气混合进入发动机。LNG的气化需要吸收较多热量。要求气化器具有良好的换热性能,并能供给足够的热量。
3液化天然气的运输方式及安全
3.1.1LNG运输船
为了液化天然气海上运输安全,LNG运输船的安全措施必须十分严格。以使用很多的MOSS球罐LNG船为例,主要的安全措施如下:
(1)球罐特制。由于罐内储存超低温液体会引起内部收缩,在结构上考虑避免收缩时的压力,设置储罐的支撑固定装置;为防止储罐超压或负压,专门装设安全阀;储罐开口暴露设置在甲板上。
(2)加强隔热。隔热的目的一是防止船体结构过冷;二是防止向储罐内漏入热量。LNG储槽的隔热结构由内部核心隔热部分和外层覆壁组成。针对不同的储槽日蒸发率要求,内层核心隔热层的厚度和材料也不同,LNG储槽的隔热板采用多层结构,由数层泡沫板组合而成。所采用的有机材料泡沫板需要满足低可燃性、良好的绝热性和对LNG的不溶性。在MOSS型船的球形储罐中,沿舱裙结构的漏热通常要占储罐总漏热量的30%,采用一块不锈钢板插在铝和钢质裙之间形成热阻,可明显减少漏热,日蒸发率从通常的0.2%降到0.1%。
(3)BOG处理。LNG储槽的隔热结构并不能完全防止LNG的蒸发,每天仍会有0.15~0.3%的蒸发量。这些蒸发气体(BOG)可以用作LNG船发动机燃料和其他加热设备的燃料。为了船舶的安全经济运行,采用再液化装置可以控制低温液体的压力和温度。为保证储存安全,也可以减小储槽保温层厚度,降低船舶造价,增加运量。
(4)采用二次阻挡层。在球罐泄漏时,把已泄漏的LNG保留一定时间,使船体构件不要降低到它的允许温度以下。以避免船体发生损坏或着火爆炸的重大事故。
(5)采用双层壳体。在船舶的外壳体和储槽间形成保护空间,从而减小了槽船因碰撞导致储槽意外破裂的危险性。
(6)为了安全,设置各种计量、测量和报警设施。3.1.2
船舶装卸安全
LNG船舶运输安全,除了LNG船舶安全外,船舶装卸安全也是重要方面。为此,在卸载设施、储罐和其他相关部位上必须采用相应的安全措施。
(1)卸载设施。在卸料臂上安装紧急关闭(ESD)阀和卸料臂紧急脱离系统(ERS);LNG装船泵安装紧急关闭装置。
(2)储罐。为防止装满系统,将装船泵和储罐灌注管路上的ESD阀隔开;断开装置可人工或自动操作;使用液位报警器;防止超压或负压,采用导向操纵安全阀和自压安全阀。
(3)其他措施。LNG码头和靠近卸料臂处、蒸发器、LNG泵等位置设置低温探测器;在LNG建筑物内、管线法兰、卸料臂及蒸发器旁设置气体探测器;在LNG建筑物内、储罐顶盖上、码头及工艺区设置火警探测器。3.2车运安全 3.2.1LNG汽车槽车 LNG槽车的安全主要是防止超压和消除燃烧的可能性(禁火、禁油、消除静电)。
防止超压:防止槽车超压的手段主要是设置安全阀和爆破片等超压泄放装置。根据低温领域的运行经验,在储罐上必须有两套安全阀在线安装的双路系统,并设一个转换,当其中一路安全阎需要更换或检修时,可以转换到另一路上,维持至少一套安全阀系统在线使用。在低温系统中,安全阀由于冻结而不能及时开启所造成的危险应该引起重视。安全阀冻结大多是由于阀门内漏,低温介质不断通过阀体而造成的。一般通过目视检查安全阀是否结冰或结霜来判断。发现问题必须及时更换。为了运输安全,槽车上除了设置安全阀和爆破片外,还可以设置公路运输泄放阀。在槽车的气相管路上设置一个降压调节阀,作为第一道安全保护,该阀的泄放压力远低于罐体的最高工作压力和安全阀起跳压力。它仅在槽车运行时与气相空间相通;而在罐车装载时,用截止阀隔离降压调节阀使其不起作用。
泵送LNG槽车上工作压力低,设置公路运输泄放阀的作用是:(1)罐内压力低,降低了由静压引起的内筒压力,有利于罐体的安全保护;
(2)如果罐内压力升高,降压调节阀先缓慢开启以降低压力,防止因安全阀起跳压力低而造成LNG的突然大流量泄放,既提高了安全性,又防止了LNG的外泄;
(3)罐体的液相管、气相管出口处应设置紧急切断阀,该阀一般为气动的球阀或截止阀,通气开启,放气截止,阀上的汽缸设置易熔塞,易熔塞为伍德合金,其熔融温度为(70±5)℃。当外界起火燃烧温度达到70℃时,易熔塞熔化,在内部气压(0.1MPa)作用下,将熔化了的伍德合金吹出并泄压。泄压后的紧急切断阀在弹簧作用下迅速关闭,达到截断装卸车作业的目的。
防止着火:为了防止着火,消除LNG槽车周围的燃烧条件也是十分重要的。
(1)置换充分
LNG储槽使用前必须用氮气对内筒和管路进行吹扫置换,直至含氧量小于2.0%为止,然后再用产品气进行置换至纯度符合要求。
(2)静电接地 LNG槽车必须配备导静电接地装置,以消除装置静电;另外,在车的前后左右两侧均配有4只灭火机,以备有火灾险情时应急使用。
(3)阻火器
安全阀和放空阀的出口汇集总管上应安装阻火器。阻火器内装耐高温陶瓷环,当放空口处出现着火时,防止火焰回火,起到阻隔火焰作用,保护设备安全。3.2.2汽车装卸安全
LNG公路运输安全,除了LNG槽车安全外,汽车装卸安全也是重要方面。为此,在装卸设施、储罐和其他相关部位上必须采用相应的安全措施。
(1)装卸设施。在装卸臂上安装紧急关闭(ESD)阀;LNG装车泵安装紧急关闭装置。
(2)储罐。为防止装满系统,将装车泵和储罐灌注管路上的ESD阀隔开;断开装置可人工或自动操作;使用液位报警器;防止超压或负压,采用导向操纵安全阀和自压安全阀。
(3)其他。LNG装卸车场、蒸发器、LNG泵等处设置低温探测器;在LNG建筑物内、管线法兰、装卸臂及蒸发器旁设置气体探测器;在LNG建筑物内、储罐顶盖上、装卸车场及工艺区设置火警探测器。
4结束语
为了满足国民经济的需要和环境保护的要求,开发和安全运输液化天然气,最大程度地有效利用天然气这一资源,天然气液化与储运技术及液化天然气的应用,给我国天然气工业的发展和天然气的应用打下坚实的基础和必要的前提。
参考文献
[1]顾安忠等.液化天然气技术.北京:机械工业出版社,2004 [2]徐孝先等.液化天然气的运输方式及其特点.油气储运,Vok 25第25卷2006.3 [3]顾安忠,液化天然气技术,机械工业出版社,2011-5-1 [4]《兰州理工大学学报》,天然气液化技术研究,2004-06期 [5]李博洋,天然气储存及及应用技术论文,2009-01期