关于电力电子装置谐波问题的综述

时间:2019-05-15 01:51:21下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《关于电力电子装置谐波问题的综述》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《关于电力电子装置谐波问题的综述》。

第一篇:关于电力电子装置谐波问题的综述

摘要:随着电力电子技术的发展,谐波的危害已越来越严重,谐波治理问题已经迫在眉睫。对电力电子装置谐波源进行了分析和总结,指出了其危害及相应的谐波管理原则和综合治理方法,并对谐波治理工作进行了展望。

关键词:电力电子;谐波;危害;抑制

引言

1电力电子装置——最主要的谐波源

1.1整流器

作为直流电源装置,整流器广泛应用于各种场合。图1(a)及图1(b)分别为其单相和三相的典型电路。在整流装置中,交流电源的电流为矩形波,该矩形波为工频基波电流和为工频基波奇数倍的高次谐波电流的合成波形。由傅氏级数求得矩形波中的高次谐波分量In与基波分量I1之比最大为1/n,随着触发控制角α的减小和换相重叠角μ的增大,谐波分量有减小的趋势。

此外,现有研究结果表明:整流器的运行模式对谐波电流的大小也有直接的影响,因此在考虑调整整流电压电流时,最好要进行重叠角、换相压降以及谐波测算,以便确定安全、经济的运行方式;当控制角α接近40°,重叠角μ在8°左右时的情况往往是谐波最严重的状态,所以要经过计算,尽量通过正确选择调压变压器抽头,避开谐波最严重点[1]。

1.2交流调压器

交流调压器多用于照明调光和感应电动机调速等场合。图2(a)及图2(b)分别为其单相和三相的典型电路。交流调压器产生的谐波次数与整流器基本相同。

1.3频率变换器

频率变换器是AC/AC变换器的代表设备,当用作电动机的调速装置时,它含有随输出频率变化的边频带,由于频率连续变化,出现的谐波含量比较复杂。

1.4通用变频器

通用变频器的输入电路通常由二极管全桥整流电路和直流侧电容器所组成,如图3(a)所示,这种电路的输入电流波形随阻抗的不同相差很大。在电源阻抗比较小的情况下,其波形为窄而高的瘦长型波形,如图3(b)实线所示;反之,当电源阻抗比较大时,其波形为矮而宽的扁平型波形,如图3(b)虚线所示。

除了上述典型变流装置会产生大量的谐波以外,家用电器也是不可忽视的谐波源。例如电视机、电池充电器等。虽然它们单个的容量不大,但由于数量很多,因此它们给供电系统注入的谐波分量也不容忽视。

2谐波的危害

2)影响各种电气设备的正常工作,除了引起附加损耗外,还可使电机产生机械振动、噪声和过电压,使变压器局部严重过热,使电容器、电缆等设备过热、绝缘老化、寿命缩短,以致损坏;

4)会导致继电保护和自动装置误动作,并使电气测量仪表计量不准确;

5)会对邻近的通信系统产生干扰,轻者产生噪声,降低通信质量,重者导致信息丢失,使通信系统无法正常工作。

3谐波的管理原则

表1谐波电流极限值(IEEE519-1992规定)

Isc/IL

Hlt;11

11lt;H lt;17

17lt;H lt;23

23lt;H lt;35H

35THD

lt;20 4.0 2.0 1.5 0.6 0.3 5.0

20-50 7.0 3.5 2.5 1.0 0.5 8.0

50-100 10.0 4.5 4.0 1.5 0.7 12.0

100-1000 12.0 5.5 5.0 2.0 1.0 15.0

1000 15.0 7.0 6.0 2.5 1.4 20.0

表2电压正弦波形畸变率限值

供电电压/kV

电压正弦波形畸变率限值/%

0.38 5

6或10 4

3

1.5

4谐波的综合治理

目前,我国电力系统对谐波的管理呈现“先污染,后治理”的被动局面,所以如何综合治理已经成为一个迫在眉睫的研究课题。

关于“综合”的内涵,有人认为用范围广泛、普遍推广来描述;也有人认为用集合的、一体化的来表述更实际;笔者认为综合治理的工作应包含以下两方面:

——加强科学化、法制化管理;

——采取有效技术措施防范和抑制谐波。

4.1加强科学化、法制化管理

主要从两个方面加强管理:

——普遍采用具有法律约束和经济约束的手段,改变先污染后治理的被动局面,即应该严格按照各类电力设备、电力电子设备的技术规范中规定的谐波含量指标,对其进行评定,如果超过国家规定的指标,不得出厂和投入电力系统使用;

——供电部门应从全局出发,全面规划,采取有力措施加强技术监督与管理,一方面审核尚待投入负荷的谐波水平,另一方面对已投运的谐波源负载,要求用户加装滤波装置。

4.2采取有效的技术措施

目前解决电力电子设备谐波污染的主要技术途径有两条:

——主动型谐波抑制方案即对电力电子装置本身进行改进,使其不产生谐波,或根据需要对其功率因数进行控制;

4.2.1主动型谐波抑制方案

主要是从变流装置本身出发,通过变流装置的结构设计和增加辅助控制策略来减少或消除谐波,目前采用的技术主要有一下几个方面。

——多脉波变流技术大功率电力电子装置常将原来6脉波的变流器设计成12脉波或24脉波变流器以减少交流侧的谐波电流含量。理论上讲,脉波越多,对谐波的抑制效果愈好,但是脉波数越多整流变压器的结构越复杂,体积越大,变流器的控制和保护变得困难,成本增加。

——脉宽调制技术脉宽调制技术的基本思想是控制PWM输出波形的各个转换时刻,保证四分之一波形的对称性。根据输出波形的傅立叶级数展开式,使需要消除的谐波幅值为零、基波幅值为给定量,达到消除指定谐波和控制基波幅值的目的,目前采用的PWM技术有最优脉宽调制、改进正弦脉宽调制、Δ调制、跟踪型PWM调制和自适应PWM控制等。

力电子装置,一般除了采用主动型谐波抑制方法以外,还要辅以无源或有源滤波器加以抑制高次谐波。

4.2.2被动型谐波抑制方案

——无源滤波器(PF)无源滤波器通常采用电力电容器、电抗器和电阻器按功能要求适当组合,在系统中为谐波提供并联低阻通路,起到滤波作用。无源滤波器的优点是投资少、效率高、结构简单、运行可靠及维护方便,因此无源滤波是目前广泛采用的抑制谐波及进行无功补偿的主要手段。无源滤波器的缺点在于其滤波特性是由系统和滤波器的阻抗比所决定,只能消除特定的几次谐波,而对其它次谐波会产生放大作用,在特定情况下可能与系统发生谐振;谐波电流增大时滤波器负担随之加重,可能造成滤波器过载;有效材料消耗多,体积大。

APF按与系统连接方式分类,可分为串联型、并联型、混合型和串-并联型。

串联型APF可等效为一受控电压源,主要用于消除带电容滤波的二极管整流电路等电压型谐波源负载对系统的影响,以及系统侧电压谐波与电压波动对敏感负载的影响。由于此类APF中流过的电流为非线性负载电流,因此损耗较大;此外串联APF的投切、故障后的退出等各种保护也较并联APF复杂,所以目前单独使用此类APF的案例较少,国内外的研究多集中在其与LC无源滤波器构成的混合型APF上[2]。

混合型APF就是将常规APF上承受的基波电压移去,使有源装置只承受谐波电压,从而可显著降低有源装置的容量,达到降低成本、提高效率的目的。其中LC滤波器用来消除高次谐波,APF用来补偿低次谐波分量。

串-并联型APF又称为电能质量调节器(UPQC)[3],它具有串、并联APF的功能,可解决配电系统发生的绝大多数电能质量问题,性价比较高。虽然目前还处于试验阶段,但从长远的角度看,它将是一种很有发展前途的有源滤波装置。

有源滤波技术作为改善供电质量的一项关键技术,在日本、美国、德国等工业发达国家已得到了高度重视和日益广泛的应用。但是有源滤波器还有一些需要进一步解决的问题,诸如提高补偿容量、降低成本和损耗、进一步改善补偿性能、提高装置的可靠性等。同时APF的故障还容易引发系统故障,因此各国对此技术还保持着一定的谨慎态度[4]。

5谐波综合治理的展望 日益严重的谐波污染已引起各方面的高度重视。随着对谐波产生的机理、谐波现象的进一步认识,将会找到更加有效的方法抑制和消除谐波,同时也有助于制定更加合理的谐波管理标准。加大对谐波研究的投入将会大大加快对谐波问题的解决,当然谐波问题的最终解决将取决于相关技术的发展,特别是电力电子技术的发展。随着国民经济、谐波抑制技术的进一步发展、法制的进一步完善和对高效利用能源要求的增强,谐波治理问题最终将会得到妥善的解决。

随着电子计算机和电力半导体器件的发展,有源电力滤波器的性能会越来越好,价格会越来越低。而用于无源滤波的电容和电抗器的价格却呈增长的趋势。因此有源电力滤波器将是今后谐波抑制装置的主要发展方向。另外,电力电子技术中的有源功率因数校正技术也是极具生命力的。

6结语

谐波的综合治理工作势在必行。消除电力电子装置谐波污染的工作,可称之为电力电子技术应用的“绿色工程”。电力电子技术的发展必须和这个工程同步,这样才能为高效、低污染地利用电能开辟重要途径,促进我们国民经济的发展和用电设备的革新。同时,电力电子技术的推广和利用才能有更为广阔的发展前景。

第二篇:电力电子装置谐波问题的综述

电力电子装置谐波问题的综述

0 引言

随着电力电子技术的发展,电力电子装置的广泛应用给电力系统带来了严重的谐波污染。各种电力电子设备在运输、冶金、化工等诸多工业交通领域的广泛应用,使电网中的谐波问题日益严重,许多低功率因数的电力电子装置给电网带来额外负担并影响供电质量,因此,电力电子装置的谐波污染已成为阻碍电力电子技术发展的重大障碍。故抑制谐波污染,提高功率因数的研究已成为电力电子技术中的一个重大课题。本文围绕这一关键问题,通过对电力电子谐波源及其危害的认识和分析,从污染和防治的关系考虑,探讨了综合治理的方法,最后对谐波综合治理的发展趋势进行了展望。1 电力电子装置——最主要的谐波源

非线性负荷是个谐波源,它引起电网电压畸变,使电压中带有整数倍基波频率的分量。作为最主要的谐波源的电力电子装置主要为各种交直流变流装置(整流器、逆变器、斩波器、变频器)以及双向晶闸管可控开关设备等,另外还有电力系统内部的变流设备,如直流输电的整流阀和逆变阀等。下面对其产生的谐波情况作一分析。1.1 整流器

作为直流电源装置,整流器广泛应用于各种场合。图1(a)及图1(b)分别为其单相和三相的典型电路。在整流装置中,交流电源的电流为矩形波,该矩形波为工频基波电流和为工频基波奇数倍的高次谐波电流的合成波形。由傅氏级数求得矩形波中的高次谐波分量In与基波分量I1之比最大为1/n,随着触发控制角α的减小和换相重叠角μ的增大,谐波分量有减小的趋势。

(a)单相(b)三相

图1 AC/DC整流电路

此外,现有研究结果表明:整流器的运行模式对谐波电流的大小也有直接的影响,因此在考虑调整整流电压电流时,最好要进行重叠角、换相压降以及谐波测算,以便确定安全、经济的运行方式;当控制角α接近40°,重叠角μ在8°左右时的情况往往是谐波最严重的状态,所以要经过计算,尽量通过正确选择调压变压器抽头,避开谐波最严重点[1]。1.2 交流调压器

交流调压器多用于照明调光和感应电动机调速等场合。图2(a)及图2(b)分别为其单相和三相的典型电路。交流调压器产生的谐波次数与整流器基本相同。

(a)单相(b)三相 图2 AC/AC交流调压电路

1.3 频率变换器

频率变换器是AC/AC变换器的代表设备,当用作电动机的调速装置时,它含有随输出频率变化的边频带,由于频率连续变化,出现的谐波含量比较复杂。1.4 通用变频器

通用变频器的输入电路通常由二极管全桥整流电路和直流侧电容器所组成,如图3(a)所示,这种电路的输入电流波形随阻抗的不同相差很大。在电源阻抗比较小的情况下,其波形为窄而高的瘦长型波形,如图3(b)实线所示;反之,当电源阻抗比较大时,其波形为矮而宽的扁平型波形,如图3(b)虚线所示。

(a)输入电路(b)输入电流波形

图3 通用变频器 除了上述典型变流装置会产生大量的谐波以外,家用电器也是不可忽视的谐波源。例如电视机、电池充电器等。虽然它们单个的容量不大,但由于数量很多,因此它们给供电系统注入的谐波分量也不容忽视。2 谐波的危害

谐波对公用电网的危害主要包括:

1)使公用电网中的元件产生附加的谐波损耗,降低了发电、输变电设备的效率,大量的3次谐波流过中性线时,会引起线路过热甚至发生火灾;

2)影响各种电气设备的正常工作,除了引起附加损耗外,还可使电机产生机械振动、噪声和过电压,使变压器局部严重过热,使电容器、电缆等设备过热、绝缘老化、寿命缩短,以致损坏;

3)会引起公用电网中局部并联谐振和串联谐振,从而使谐波放大,使前述的危害大大增加,甚至引起严重事故;

4)会导致继电保护和自动装置误动作,并使电气测量仪表计量不准确; 5)会对邻近的通信系统产生干扰,轻者产生噪声,降低通信质量,重者导致信息丢失,使通信系统无法正常工作。3 谐波的管理原则

要提高电能质量,必须加强对谐波的管理。本着限制谐波源向公用电网注入谐波电流,将谐波电压限制在允许范围内的原则。首先要掌握系统中的谐波源及其分布,限制其谐波在允许范围内方可入网,未达标的必须采取治理措施,以防谐波扩散。为此国际电工委员会(IEC)和美国IEEE都有推荐标准,如IEEE规定的电流谐波极限标准见表1。我国结合电网实际水平并借鉴其他国家标准制定的电压正弦波形畸变率规定见表2。

表1 谐波电流极限值(IEEE519-1992规定)

表2 电压正弦波形畸变率限值 谐波的综合治理

目前,我国电力系统对谐波的管理呈现“先污染,后治理”的被动局面,所以如何综合治理已经成为一个迫在眉睫的研究课题。

关于“综合”的内涵,有人认为用范围广泛、普遍推广来描述;也有人认为用集合的、一体化的来表述更实际;笔者认为综合治理的工作应包含以下两方面: ——加强科学化、法制化管理;

——采取有效技术措施防范和抑制谐波。4.1 加强科学化、法制化管理 主要从两个方面加强管理:

——普遍采用具有法律约束和经济约束的手段,改变先污染后治理的被动局面,即应该严格按照各类电力设备、电力电子设备的技术规范中规定的谐波含量指标,对其进行评定,如果超过国家规定的指标,不得出厂和投入电力系统使用; ——供电部门应从全局出发,全面规划,采取有力措施加强技术监督与管理,一方面审核尚待投入负荷的谐波水平,另一方面对已投运的谐波源负载,要求用户加装滤波装置。

4.2 采取有效的技术措施

目前解决电力电子设备谐波污染的主要技术途径有两条:

——主动型谐波抑制方案即对电力电子装置本身进行改进,使其不产生谐波,或根据需要对其功率因数进行控制;

——被动型谐波抑制方案即谐波负载本身不加改变,而是在电力系统或谐波负载的交流侧加装无源滤波器(PF)、有源滤波器(APF)或者混合滤波器(HAPF)等装置,通过外加设备对电网实施谐波补偿。4.2.1 主动型谐波抑制方案 主要是从变流装置本身出发,通过变流装置的结构设计和增加辅助控制策略来减少或消除谐波,目前采用的技术主要有一下几个方面。

——多脉波变流技术大功率电力电子装置常将原来6脉波的变流器设计成12脉波或24脉波变流器以减少交流侧的谐波电流含量。理论上讲,脉波越多,对谐波的抑制效果愈好,但是脉波数越多整流变压器的结构越复杂,体积越大,变流器的控制和保护变得困难,成本增加。

——脉宽调制技术脉宽调制技术的基本思想是控制PWM输出波形的各个转换时刻,保证四分之一波形的对称性。根据输出波形的傅立叶级数展开式,使需要消除的谐波幅值为零、基波幅值为给定量,达到消除指定谐波和控制基波幅值的目的,目前采用的PWM技术有最优脉宽调制、改进正弦脉宽调制、Δ调制、跟踪型PWM调制和自适应PWM控制等。

——多电平变流技术针对各种电力电子变流器(对于电压型的变流器必须用联接电感与交流电源相连),采用移相多重法、顺序控制和非对称控制多重化等方法,将方波电流或电压叠加,使得变流器在网侧产生的电流或电压为接近正弦的阶梯波,且与电源电压保持一定的相位关系。

——功率因数预调整器在电力电子装置中加入高功率因数预调整器,在预调整器的直流侧通过DC/DC变换控制入端电流,保证电力电子装置从电网中获取的电流为正弦电流并与电网电压同相。此方法控制简单,可同时消除高次谐波和补偿无功电流,使电力电子装置输入端的功率因数接近1。

主动型谐波抑制方案的主要问题在于成本高、效率低。同时,电力电子系统中很高的开关频率使PWM载波信号产生高次谐波,还会导致高电平的传导和辐射干扰。因此在设计主动型谐波抑制方案时,必须用EMI滤波器将高次谐波信号从系统中滤除,防止它们作为传导干扰进入电网;还要利用屏蔽防止它们作为辐射干扰进入自由空间,对空间产生电磁污染。所以对于较大功率的电力电子装置,一般除了采用主动型谐波抑制方法以外,还要辅以无源或有源滤波器加以抑制高次谐波。4.2.2 被动型谐波抑制方案

——无源滤波器(PF)无源滤波器通常采用电力电容器、电抗器和电阻器按功能要求适当组合,在系统中为谐波提供并联低阻通路,起到滤波作用。无源滤波器的优点是投资少、效率高、结构简单、运行可靠及维护方便,因此无源滤波是目前广泛采用的抑制谐波及进行无功补偿的主要手段。无源滤波器的缺点在于其滤波特性是由系统和滤波器的阻抗比所决定,只能消除特定的几次谐波,而对其它次谐波会产生放大作用,在特定情况下可能与系统发生谐振;谐波电流增大时滤波器负担随之加重,可能造成滤波器过载;有效材料消耗多,体积大。

——有源滤波器(APF)图4为APF原理图,APF通过检测电路检测出电网中的谐波电流,然后控制逆变电路产生相应的补偿电流分量,并注入到电网中,以达到消谐的目的。APF滤波特性不受系统阻抗影响,可消除与系统阻抗发生谐振的危险。与无源滤波器相比,具有高度可控性和快速响应性,不仅能补偿各次谐波,还可抑制电压闪变、补偿无功电流,性价比较为合理。另外,APF具有自适应功能,可自动跟踪补偿变化着的谐波。

图4 APF原理图

APF按与系统连接方式分类,可分为串联型、并联型、混合型和串-并联型。并联型APF可等效为一受控电流源,主要适用于感性电流源负载的谐波补偿。它能对谐波和无功电流进行动态补偿,并且补偿特性不受电网阻抗影响。目前这类APF技术已相当成熟,大多数工业运行的APF多属此类滤波器。

串联型APF可等效为一受控电压源,主要用于消除带电容滤波的二极管整流电路等电压型谐波源负载对系统的影响,以及系统侧电压谐波与电压波动对敏感负载的影响。由于此类APF中流过的电流为非线性负载电流,因此损耗较大;此外串联APF的投切、故障后的退出等各种保护也较并联APF复杂,所以目前单独使用此类APF的案例较少,国内外的研究多集中在其与LC无源滤波器构成的混合型APF上[2]。

混合型APF就是将常规APF上承受的基波电压移去,使有源装置只承受谐波电压,从而可显著降低有源装置的容量,达到降低成本、提高效率的目的。其中LC滤波器用来消除高次谐波,APF用来补偿低次谐波分量。

串-并联型APF又称为电能质量调节器(UPQC)[3],它具有串、并联APF的功能,可解决配电系统发生的绝大多数电能质量问题,性价比较高。虽然目前还处于试验阶段,但从长远的角度看,它将是一种很有发展前途的有源滤波装置。有源滤波技术作为改善供电质量的一项关键技术,在日本、美国、德国等工业发达国家已得到了高度重视和日益广泛的应用。但是有源滤波器还有一些需要进一步解决的问题,诸如提高补偿容量、降低成本和损耗、进一步改善补偿性能、提高装置的可靠性等。同时APF的故障还容易引发系统故障,因此各国对此技术还保持着一定的谨慎态度[4]。

——有源电路调节器(APLC)图5为有源线路调节器(APLC)的原理图,其结构与APF相似,因此过去很多文献上都将其等同于APF。其实,从原理上分析,与APF单节点谐波抑制相比较,APLC是向网络中某个(几个)优选节点注入补偿电流,通过补偿电流在网络中一定范围内的流动,实现该范围内所有节点谐波电压的综合抑制。即通过单节点单装置的装设,达到多节点谐波电压综合治理的功能,APLC的出现,表明电力系统谐波治理正朝着动态、智能、经济效益好的方向发展。

图5 APLC原理图 谐波综合治理的展望

日益严重的谐波污染已引起各方面的高度重视。随着对谐波产生的机理、谐波现象的进一步认识,将会找到更加有效的方法抑制和消除谐波,同时也有助于制定更加合理的谐波管理标准。加大对谐波研究的投入将会大大加快对谐波问题的解决,当然谐波问题的最终解决将取决于相关技术的发展,特别是电力电子技术的发展。随着国民经济、谐波抑制技术的进一步发展、法制的进一步完善和对高效利用能源要求的增强,谐波治理问题最终将会得到妥善的解决。

随着电子计算机和电力半导体器件的发展,有源电力滤波器的性能会越来越好,价格会越来越低。而用于无源滤波的电容和电抗器的价格却呈增长的趋势。因此有源电力滤波器将是今后谐波抑制装置的主要发展方向。另外,电力电子技术中的有源功率因数校正技术也是极具生命力的。6 结语

谐波的综合治理工作势在必行。消除电力电子装置谐波污染的工作,可称之为电力电子技术应用的“绿色工程”。电力电子技术的发展必须和这个工程同步,这样才能为高效、低污染地利用电能开辟重要途径,促进我们国民经济的发展和用电设备的革新。同时,电力电子技术的推广和利用才能有更为广阔的发展前景。

第三篇:电力电子装置总结

1、电力电子装置的主要类型:AC/DC、DC/DC、DC/AC、AC/AC、静态开关

2、器件特点

电力二极管:由于存在结电容,有反向恢复时间,在未恢复阻断能力之前,相当于短路状态

晶闸管:电流型器件。擎住电流 IL,触发后,当IA > IL 撤除Ig,仍导通。

维持电流IH,当IA < IH时阻断。要关断晶闸管,必须使IA小于维持电流。

电力三极管:电流型器件。二次击穿,当Uce超过超过集电极额定电压后,发生正向雪崩击穿,Ic剧增,称为一次击穿。一次击穿后如不及时限流,大的集电结功耗会造成局部过热,导致三极管等效电阻减小,Ic再次急剧上上升,管子瞬时过热烧毁,称为二次击穿。

电力场效应管:电压型器件。单极性导电,开关速度快,常工作在高频方式,存在寄生体二极管D,有反向恢复过程,易引起管子损坏。导通电阻有正的温度系数,便于并联使用(易于均流)

IGBT:电压型器件。MOSFET与双极晶体管构成的复合管,无二次击穿,有擎住效应。

达到擎住电流后,IGBT失去控制能力。解决办法:工作电流不超过规定最大值,并尽量减小du/dt值。

3、器件缓冲电路

主要作用:抑制开关器件的di/dt、du/dt,改变开关轨迹,减少开关损耗,使之工作在安全工作区内。

分类:无极性、有极性、复合型 RCD关断缓冲电路(P14)

电容选择:原则1:按总损耗为最小确定电容值

原则2:按临界缓冲计算电容

电阻选择:

1、器件最小导通时间应大于电容的放电时间常数

2、电容的最大电流与工作电流之和不超过器件额定值,为防振荡,采用无感电阻

二极管选择:要求快速回复,耐受瞬时大电流,耐压高,一般选用快速恢复二极管。

4、保护技术

保护的类型: 过电流保护、输出过压保护、输入瞬态电压抑制、输入欠压保护、过温保护、器件控制极保护(P19 重点,清楚其中各元件的作用。)

第二章

1、线性电源与开关电源的区别:线性电源管子工作在线性放大区,开关电源工作在开关模式

2、开关电源的基本组成:1.开关电源输入环节,(输入浪涌电流的抑制:限流电阻

加开关、采用负温度系数热敏电阻NTC)2.功率变换电路(P23):拓扑结构,Buck、Boost、BuckBoost(不带隔离)

正激、反激、推挽、半桥、全桥(带隔离变压器)

重点掌握前5种的工作原理,波形绘制很重要 3.控制及保护电路:控制主要方式是PWM,又分为电压控制模式和峰值电流控制模式

3、反激变换器:开关管导通时电源将电能转为磁能储存在电感(变压器)中,当开关管关断时再将磁能变为电能传送到负载(那么应该知道正激变换器了吧) 单端变换器:变压器磁通仅在单方向变化

4、重点掌握单端反激开关电源(P27)

工作模式:连续和不连续,两种模式输出电压表达式(输入公式困难,自己看书)第三章 逆变器

1、逆变器的主电路拓扑机构:半桥式、全桥式、推挽式(P55)

2、半桥电压利用率低,仅为直流母线电压一半,但其可以利用两个大电容自动补偿不对称波形,这是其一大优点。

3、全桥和推挽电压利用率均为半桥2倍,但存在变压器直流不平衡的问题

4、推挽的主要优点是电压损失小,只有单管压降。而且两个开关管的驱动可以共用,驱动电路简单。

5正弦脉宽调制(SPWM):利用面积冲量等效的原理获得谐波含量很小的正弦电压输出,其谐波主要分布在载波频率以及载波频率的整数倍附近。

5、SPWM类型:单极性SPWM,双极性SPWM,单极性倍频SPWM

6、怎样区分单极性与双极性:(简单)看输出半周期内脉冲是否正负交替

7、单级倍频的有点:Uab存在三种电平(哪三种因该知道吧),电压脉动幅度比双极性低一倍,相同开关频率下输出SPWM脉动频率单极性倍频比双极性高一倍(单极倍频为载波频率两倍,双极性为载波频率),有利于猴急滤波。

8、会分析什么时候产生什么样的驱动信号,那些管子导通,输出什么样的波形。

9、什么是载波比?什么是调制比?(自己找一下答案比较好)

10、输出电压表达式:幅值 = 直流侧电压 * 调制比。有效值又是什么样的?

11、直流偏磁问题:由于逆变电压中出现直流分量,使变压器磁芯的工作磁滞回线中心偏离了坐标原点 ,正反向脉冲磁过程中工作状态不对称,使得变压器正负半周传输的能量不平衡,称为直流偏磁现象。

12、哪些变换电路存在直流偏磁现象:全桥变换一般存在,半桥变换利用两个大电容自动补偿不对称波形,不存在。

13、直流偏磁危害:造成变压器磁芯单向饱和 ,励磁电流急增, 威胁器件的安全运行。同时逆变器输出电压波形发生严重畸变。

14、直流偏磁产生原因:控制系统的电源电压或元件参数引起三角载波或正弦调制波正、负半周不对称

15、抗不平衡措施:分静态、动态。静态:严格挑选器件,注意驱动电路一致性

动态:模拟补偿、数字适时补偿

16、辅助电源:为控制电路、检测电路、驱动电路等供电

17、感应加热电源:先将市电整流,在逆变为高频交流给感应线圈供电。分为串联谐振和并联谐振两种。其功率调节是靠调节工作频率来实现的,在谐振点附近时负载等效阻抗最低,电流大,功率亦大。提高频率后阻抗增加,电流减小,功率减小。第四章 不间断UPS

1、UPS定义:Uninterruptible Power Supply是指当交流输入电源(习惯称为市电)发生异常或断电时,还能继续向负载供电,并能保证供电质量,使负载供电不受影响的装置。

2、UPS的类型:后备式、双变换在线式、在线互动式、Delta变换式

3、后备式原理:原理框图(P95)

市电正常时,充电器给蓄电池充电,市电经过滤波、稳压后向负载供电  市电异常(含掉电)时,蓄电池通过逆变器向负载供电 特点:

1、市电—电池转换时,输出电压有转换时间

2、供电品质不高

3、结构简单、成本低、效率高

4、双变换在线式原理:原理框图(重点掌握P95)

市电正常时,市电经AC/DC,DC/AC两次变换后给负载供电 市电故障时,由蓄电池经DC/AC变换供电

只有当逆变器故障时,才通过装换开关切换,市电直接旁路给负载供电 特点:市电—电池切换时,可实现零时间切换

供电品质高,结构复杂,成本高、效率低

5、在线互动式: 市电正常时,UPS逆变器工作在整流状态,向电池充电,市电通过智能调压直接向负载供电

市电掉电后,逆变器转为逆变状态,电池通过逆变器向负载供电 特点:

1、市电—电池转换时,输出电压有转换时间

2、供电品质较低

3、结构简单、成本低、效率高

6、Delta变换式

只对输出电压的差值进行调整和补偿

特点:

1、市电—电池转换时,可实现零切换时间

2、供电品质高

3、前端变换器功率等级较低

4、结构较复杂、成本较高(低于双变换在线式UPS)、效率高

7、蓄电池的基本性能指标(P106):

放电终止电压:表示电池不允许再放出电能时的电压,通常为1.75V/单格。放电率:放电至终止电压的电流大小或时间快慢。可用放电电流或放电时间表示。容量:放电电流与放电时间的乘积来表示,单位为安时(A·h)放电电流:就是电池的输出电流

8、逆变、市电切换

a.机械接触器:可以防止电弧,但不能很好解决对后级负载不间断、无扰动供电 b.静态开关:零时间切换,但是有管耗

c.混合式开关:同时导通实现不间断供电,但可能产生环流

9、输出滤波:作用是滤除逆变桥输出SPWM波中的谐波分量。由于输出脉宽调制波中的谐波主要分布在开关频率附近,选取LC滤波器的谐振频率满足(P113 式4-5)

10、同步锁相组成:鉴相器、环路滤波器、压控振荡器 第五章

1、四象限斩波调速(重点分析P135)

各象限运行时的工作原理,各管的通断状态(对照书上进行分析,图不好贴)

2、具有中间环节的DC/DC变换器

为什么采用具有中间变换环节的变换形式:输入输出电压悬殊,采用具有中间高频环节的变换形式,经高频变压器实现降压或升压 工作原理:直流输入电压经输入滤波后加到半桥式逆变器电路上,逆变后的方波经高频变压器降压,再经二极管不空整流,得到低压直流电压。输出电压通过闭环控制逆变器的PWM信号,达到电压的控制,实现电压稳定输出。

3、TL494锯齿波形成(P141):频率由5端和6端电容、电阻决定f=1.1/RC(知道1.1是都少吗?Ln3,想到什么了吗)。5端产生锯齿波

4、TL494的脉宽控制原理(P141,结合图5.11进行分析)第六章

1、交流调功器:调节输出功率,对电压,电流没有严格要求。

2、交流调功器的控制模式:过零触发半周波控制(定周期/ 变周期)、调相触发 控制

3、过零触发半周波控制:将交流电源每N个电压半周定为一个调节周期T,在该调节

周期内调节导通电压半周的个数M来调节输出功率。

特点:负载得到的电压(电流)波形总是完整的正弦波,避免了电流的瞬时冲击,功率因数高,但负载电流存在频率低于基频的次谐波分量,应用范围受限制,且调节周期较长。

4、调相触发控制:以每个交流电压半周为调节周期,通过调节晶闸管的导通相位角进行调功。

特点:负载的电压(电流)是缺角正弦波,功率因数差,且存在高次谐波,对电网和无线电波会产生射频干扰

5、谐振型逆变器(有可能会画波形)

主电路结构:1.串联谐振逆变电路。

2.电容分压电路(可增强电路承受冲击负载的能力P168)3.移相调压(使得逆变电压可控P168)6、400Hz谐振型逆变器实例分析 总体构成(P169图6.19):

1浪涌抑制电路(启动电阻R97,接触器JC)2输入滤波电路(滤波电感L01 电容C1-C4)

3移相全桥电路(Q1、Q2、Q3、Q4以及开关器件的RCD缓冲电路)4主变压器、5反馈变压器、6桥臂直通保护电路(上下桥臂直通时,触发QE、QF,强制关断Q2、Q4)

第七章 电力系统用电力电子装置

1、阻抗补偿方案(P175):1.晶闸管投切电容器TSC

2.晶闸管控制电抗器TCR(晶闸管触发角90-180)3.晶闸管控制串联电容器TCSC

2、电压源变流器补偿方案:1.无功功率发生器 2.开关型串联基波电压补偿

3、谐波危害:公用电网、电缆、用电设备、继电器接触器、电气仪表、环境电磁干扰、电网局部谐振等(P181)

3、无源滤波器的缺点: 1.受参数影响;

2.消除特定次谐波;

3.与无功补偿、调压要求难以协调

4、有源滤波器(APF)的原理: 针对电网中非线性负载,检测其谐波电流,作为电流指令控制一个与电网并联的电流发生源,使之输出电流跟踪指令电流,该电流源就提供了非线性负载所需的谐波电流,电网只需提供基波电流。

5、有源滤波器拓扑结构:串联型、并联型、混合型,其变流器分电压型和电流型

6、直流输电基本原理:包括直流输电线和两个换流站,一站工作在整流,一站工作在逆变,功率从整流站向逆变站传送。直流输电系统通过调节换流器的触发控制角,将两端换流站的直流电压极性同时反向,实现输送功率翻转。

7、直流输电主接线方式: 双极方式、单极大地回线方式、单极金属回线方式、单极

双极线并联大地回线

8、直流输电有点:1.方便电网互联

2.线路造价低,功耗小 3.适宜远距离输电

9、直流输电缺点:

1、换流装置价格昂贵,结构复杂

2、消耗无功功率

3、产生谐波

4、控制装置复杂

10、直流输电适用场合:

1、与距离大功率输电

2、海底电缆隔海输电

3、出线走廊拥挤地区

4、两大系统互联或不同频率电网连接

11、直流输电的控制和调节:稳态直流电流表达式(P193)

明显从式中可以看出改变那些量可以改变直流电流 第八章

1、形成电磁干扰的条件:

1.向外发送电磁干扰的源——噪声源 2.传递干扰的途径——噪声耦合和辐射 3.承受电磁干扰的客体——受扰设备

2、常用抑制电磁干扰的措施:1.用电路和器件抑制电磁干扰

2.滤波 3.屏蔽 4.布线 5.接地

第四篇:清华大学复试电机学电力电子问题总结

电机学

1、什么是直流电机

直流电机是实现机械能和直流电能之间相互转换的旋转电机。直流电机本质上是交流电机,需要通过整流或逆变装置与外部电路相连接。常见的是采用机械换向方式的直流电机,它通过与电枢绕组一同旋转的换向器和静止的电刷来实现电枢绕组中交变的感应电动势、电流与电枢外部电路中直流电动势、电流间的换向。(实质是一台有换向装置的交流电机)

2、同步机和异步机的区别

同步电机定子交流电动势和交流电流的频率,在极对数一定的条件下,与转子转速保持严格的同步关系。同步电机主要用做发电机,也可以用作电动机,还可以用作同步调相机(同步补偿机)。同步电机可以通过调节励磁电流来调节无功功率,从而改善电网的功率因数。(同步电动机主要用于功率比较大而且不要求调速的场合。同步调相机实际上就是一台并联在电网上空转的同步电动机,向电网发出或者吸收无功功率,对电网无功功率进行调节。)异步电机是一种转速与电源频率没有固定比例关系的交流电机,其转速不等于同步转速,但只要定转子极对数相等,无论转子转速如何,定、转子磁动势都以同步转速相对于定子同向旋转,即二者总是相对静止。异步电机主要用作电动机,缺点是需要从电网吸收滞后的无功功率,功率因数总小于1。异步电机也可作为发电机,用于风力发电场和小型水电站。

3、什么是电枢反应?直流电机是否有电枢反应?

对于同步电机来说,电枢反应是指基波电枢磁动势对基波励磁磁动势的影响。直流电机也有电枢反应,是指电枢磁动势对励磁磁动势产生的气隙磁场的影响。

4、异步机的转子有那几种折合方式?

异步电机转子的折合算法主要包括频率折合和转子绕组折合,原则是保持转子基波磁动势不变,对定子侧等效。在进行这两种折合之前还有一个转子位置角的折合。

5、电动机为什么会转?

都是由于转子上的绕组受到了电磁力,产生拖动性电磁转矩而带动转子转动。

具体来说,同步电机是由于定子绕组通入三相对称电流,产生旋转磁场,相当于旋转磁极,使得同步电动机转子磁极吸引而同步旋转。异步电动机是由于转子转速小于同步转速,转子与定子电流产生的旋转磁动势有相对运动,转子绕组切割磁感线,产生感应电动势,进而产生感应电流使得转子绕组受到安培力,产生电磁转矩,带动转子旋转。

6、直流机和异步机分别有哪几种调速方式? 异步电动机的调速方法:(1)改变转差率调速,包括调压调速、转子串接电阻调速(只用于绕线转子电动机)。(2)变极调速(只用于笼型异步电动机)。(3)变频调速(多用于笼型异步电动机)。(变频调速性能最好,但价格比较高)他励直流电动机的调速方法:

(1)电枢串接电阻调速(只能从基速向下调)。(2)改变端电压调速(只能从基速向下调)。(3)改变磁通调速(从基速向上调,弱磁升速)。

7、简述VVVF?V/F恒定,保持磁通不变,E恒定。电机的基本模型,比如定子的几个绕组,转子上的绕组以及相互间的磁通影响,大家请参看电力系统暂态分析派克变换的课件。

8、为什么我们要制定额定值,让系统和电机运行在额定状态下?

制定额定值是为了便于各种电气设备和电机的设计制造及其使用。系统和电机只有运行在额定状态下才能取得最佳的技术性能和经济效果。

9、有功的发出原理和计算方法以及无功的V形曲线。

对于同步发电机来说有功的发出是由于功角的存在,功角是空载电动势是相电压之间的夹角,也可以看成是励磁磁动势与相电压等效合成磁动势之间的夹角。由于同步电机工作在发电状态时,功角大零,故励磁磁动势的等效磁极会吸引相电压等效合成磁动势的等效磁极,通过磁场的耦合作用将转子的机械能转换成电能输出。有功功率可以利用功角特性来进行计算。

同步发电机无功的V形曲线是负载时电枢电流和励磁电流的关系曲线,特点:有功功率越大,V形曲线越高;每条V形曲线都有一个最低点;最低点是发电机运行工况的分界点,左边是欠励(超前),右边是过励(滞后)。

V形曲线有助于工作人员了解发电机的运行工况,进而对发电机进行控制。

10、变压器和异步机参数的测试方法?分别在变压器的哪一侧做?

变压器的参数测试方法方法有短路试验和空载试验。短路试验通常在高压侧做,即在高压侧加压;空载通常在低压侧做,即在低压侧加额定电压。通过短路试验可以测得一次短路电流为额定值时的一次短路电流、电压和短路损耗,由这三个量可以算出变压器折合到一次侧的短路阻抗、短路电阻和短路电抗。通过空载试验可以测得对一次绕组施加额定电压时的一次电压、二次电压、一次电流和输入功率,即空载损耗,由这四个量可以算得变比、励磁阻抗、励磁电阻和励磁电抗。

异步电机的参数测试方法有堵转试验(短路试验)和空载试验,均在定子侧加压。通过堵转试验可以测得定子电流为额定值时的定子电压和短路损耗,进而由这三个量可以算出折合到定子侧的短路阻抗、短路电阻和短路电抗。通过空载试验数据可以作出空载特性曲线(空载电压和空载损耗的关系曲线),进而可以求出机械损耗和铁耗,再利用额定电压下的试验数据和短路试验所得的漏电抗求得励磁电阻、励磁电抗和励磁阻抗。

11、电机有几种运行方式?怎样判断电机是运行在哪种方式下? 电机运行的方式主要有发电机和电动机两种方式。

对于同步电机可以根据电磁功率或者功角的正负来判断其运行在哪种方式下。按发电机惯例,当电磁功率或者功角为正时同步电机为发电机,当电磁功率或者功角为负时同步电机为电动机。

对于直流电机可以根据电磁功率的正负或者电枢电动势和电枢端电压的大小比较来判断其运行在哪种方式下。在发电机惯例下,当电磁功率为正时为发电机,当电磁功率为负时为电动机。当电枢电动势大于电枢端电压时为发电机,当电枢电动势小于电枢端电压时为电动机。

12、电机中哪几种电机有阻尼绕组和补偿绕组,它们分别的作用。凸极同步电机有阻尼绕组,直流电机有补偿绕组。

13、同步机的短路特性为什么是一条直线?

因为短路的时候FIk,FaIk,又由于这时电枢磁动势是直轴去磁的,故有FFf1Fa,Ff1Ik,又因为短路时气隙磁动磁很小,磁路不饱和,可以看作线性的,故Ff1If,故IkIf,即短路特性是一条直线。如果励磁电流不加限制地增大,那么当磁路出现饱和时,短路特性将不再是直线。

14、我们怎么测同步机的短路电抗?为什么引入普梯尔电抗?和实际电抗有什么区别? 通过测空载特性曲线和零功率因数负载特性曲线来求电枢绕组漏电抗。引入保梯电抗是为了与漏电抗区别开来。由于用时间相矢量图进行理论分析时并没有考虑到转子绕组的的漏磁情况,所以实际测得的零功率因数负载特性曲线,在电压较高时,比理论上的零功率因数曲线要低,使得测得的电抗比实际值大。

15、直流电机启动的电阻设置的原因?看看电机学试验的相关内容。直流电机起起动时在电枢回路中串入电阻是为了限制起动电流。

16、电机的功率流程,包括各种电机做发电和电动时功率的流向和损耗。

同步电动机的功率流程:从电源输入的电功率,减去定子绕组的铜耗得到电磁功率;电磁功率再减去空载损耗得到电机轴上输出的机械功率。

三相异步电动机的功率流程:交流电源输入的有功功率,减去定子铜耗,再减去定子铁铁耗,得到电磁功率;电磁功率减去转子铜耗得到机械功率;机械功率再减去机械损耗和附加损耗得到输出功率,即电动机转轴上能够输出给机械负载的机械功率。P238 并励直流发电机的功率流程:输入的机械功率,减去空载损耗得到电磁功率;电磁功率减去电枢回路铜耗,再减去励磁回路铜耗得到发电机输出的电功率。

并励直流电动机的功率流程:输入的电功率减去励磁回路铜,再减去电枢回路铜耗,得到电磁功率;电磁功率再减去空载损耗得到输出的机械功率。

17、串励直流电机能否空载启动?P313还有并励和串励的区别?

不能。因为串励电动机在轻载时,电磁转矩较小,电枢电流很小,气隙磁通值很小,转速就已经很高,如果理想空载的话,转速就会趋于无穷大,所以不允许空载启动,以防发生危险的飞车现象。

并励和串励的区别主要是结构和机械特性的区别。并励的励磁绕组和电枢绕组并联,而串励的励磁绕组和电枢绕组串联。并励的机械特性是硬特性,转速随电磁转矩的增大变化很小;串励的机械特性是软特性,转速随电磁转矩的增加迅速下降。

(机械特性是指转速和电磁转矩之间的关系。他励的机械特性是硬特性,复励电动机的机械特性介于并励和串励电动机特性之间,因而具有串励电动机起动性能好的优点,而没有空载转速极高的缺点。)

18、同步电动机和异步电动机的选择原则

在不需要调速的大功率场合或者要求改善功率因数的场合选择同步电动机,在需要调速并且对功率因数要求不高的场合选用异步电动机。

19、双相异步电机如何运行?单相异步电机如何运行?

20、变压器能变换什么物理量。可以变电压、变电流、变阻抗、变相位。

21、凸极同步发电机突然失去励磁后会有什么变化 还有凸极电磁功率,可以带小负载,但是重栽时会失步。

22、变压器等效电路和实际的区别 磁耦合关系变到电路问题,原副边等效

23、异步机s=0什么意思?什么是异步机同步转速?异步机与同步机构造上区别?同步机分类?P121分别用于什么场合?永磁电机是同步还是异步?

在实际运行中,异步机s=0的情况不可能发生,因为如果s=0则转速与同步转速相等,转子与旋转磁动磁相对静止,转子绕组不再切割磁感线,不再产生感应电流,也就不会再受安培力的作用而转动。在实际运行中,异步电动机空载时,由于转速非常接近同步转速,故s约等于0.异步机的同步转速是指电源的频率。异步机与同步机的构造区别主要在于转子上。同步机按转子结构分类分为凸极和隐极,凸极电机用于转速不高的场合,如水轮发电机;隐极电机主要用于转速较高的场合,如汽轮发电机。永磁电机是同步机(异步机的励磁由定子电流提供)。

24、同步电动机与异步电动机相比较的优缺点

同步电动机主要应用在一些功率比较大而且不要求调速的场合。优点是可以通过调节励磁电流来改善电网的功率因数,缺点是不能调速。

异步电动机优点是可以调速,能够广泛应用于多种机械设备和家用电器。缺点是需要从电网吸收滞后的无功功率,难以经济地在较宽广的范围内平滑调速。

25、一个同步发电机,接对称负载,转速恒定,定子侧功率因数和什么有关?接无限大电网和什么有关?

跟电机的内阻抗和外加负载性质有关(内功率因数解,P134);跟励磁电流与原动机转矩有关。

26、同步发电机怎么调有功无功。调无功时有功怎么变化?

同步发电机并联运行时,通过调节原动机的拖动转矩,进而改变发电机的输入功率来调节有功功率;通过调节励磁电流来调节无功功率。调节无功功率时,有功率不会发生变化,但调节有功功率时无功功率也将发生变化。

27、变压器原理

变压器的工作原理是电磁感应定律。

28、异步电动机所带负载增大,转速、定子转子的相关参数怎么变化(感应电动势等)

EE,EksE,s增大)转速低,定子流增大,转子电流增大,电动势增大(U1122Se2'

29、并联合闸四个基本条件

并联合闸时发电机与电网电压应满足以下四个条件:(1)幅值相等,波形一致;(2)频率相等;(3)相位相同;(4)相序一致。30、直流电动机优点:

直流电动机的优点:具有优良的调速性能,调速范围宽,精度高,平滑性好,且调节方便,还具有较强的过载能力和优良的起动、制动性能。(缺点:换向困难,维修量大,成本较高中。)

31、异步电机能否发电,怎样启动?

异步电机可以发电,用于风力发电场和小型水电站。

异步电机要用于发电机时,可以先按异步电动机来起动,然后再依次通过减负载,降电压来使转速增大,直到大于同步转速。

32、异步机的绕线分为哪几种方式? 笼型绕组和绕线型绕组。

33、什么条件下会产生旋转磁场?

由于每个脉掁磁动势都可以分解为一个正转的旋转磁动势和一个反转的旋转磁动势,在大小和相差合适的情况下,两相及以上的脉振磁动势都可以合成得到旋转磁动势。

34、鼠笼电机,三线绕组去掉一相后是否还能转?家里的电风扇是几相? 可以,两相。

35、变压器的等值电路有哪四个参数?怎样通过试验获得?

短路电阻、短路电抗、励磁电阻、励磁电抗。短路电阻和短路电抗可以通过短路试验得到,励磁电阻和励磁电抗可以通过空载试验得到。(具体见10)

36、同步电动机和负载相连,功率因数由什么决定?和无穷大电网连接,功率因数由什么决定? 见25

37、理想变压器原边接一个220V有效值的交流电源,串接一个10欧姆的电阻,问副边短路和开路下,原边电流各是多少? 短路时是22A,开路时是0。

38、电机(同步电机、异步电机)的电枢磁动势是如何产生的? 电机带负载时,电枢绕组中流过的电流产生的。

39、异步电机什么情况下可以作为发电机,转速有什么要求?异步发电机的转子转速能不能无限增大,为什么?

异步电机作为发电机时主要用于风力发电场和小型水电站,转速要大于同步转速。异步发电机的转子转速不能无限增大,因为异步电机的转速大于同步转速时是工作于发电机状态,如果转速无限增大,就有可能出现“飞车”现象,损坏设备,还可能影响人身安全。40、异步电机的等效电路是怎样的?

异步电机堵转时的T型等效电路有六个参数,定子电阻、定子电抗、转子电阻、转子电抗(都是折合后)、励磁电阻、励磁电抗。而旋转时的T型等效电路与堵转时相比,在转子回路中多一个与转子旋转相关的附加电阻,代表机械功率。

41、通过什么手段将异步电机等效成电路表示?

在保持转子基波磁动势不变,对定子侧等效的情况下对异步电机的转子进行位置角折合、频率折合和绕组折合,把转子侧的参数都折合到定子侧就可以将异步电机等效成电路来表示了。

42、电机的励磁有什么作用? 产生磁场以实现机电能量转换。

43、一个有关电机保护的问题:电机在什么情况下需要切断运行?

电机在失步或出现飞车现象的时候需要切断运行。如发生短路故障后,故障线路切除较晚,使同步发电机与系统之间失去同步,这时候应该将电机切断运行。

电力电子

1.普通晶闸管的导通条件及关断方法

导通条件:阳极承受正压,并且有门极触发信号。

关断方法:给晶闸管加反向电压;或者减小流过晶闸管的电流,使其电流小于维持电流。2.如何选用晶闸管(电流定额、电压定额)

电压定额选为正常工作峰值电压的2~3倍;电流定额(通态平均电流)选为正常使用电流平均值的1.5~2.0倍。

3.门极关断晶闸管(GTO)与普通晶闸管相似,但结构上把阴极宽度减薄并采用台式结构,因而通过在门极加反压就能关断,但是GTO晶闸管也还存在一些问题:P19(1)关断门极电流大(2)Du/dt能力差,需缓冲电路(3)通态电压高(导致器件冷却困难)4.功率场效应管(MOSFET)的特点:P23(1)压控器件,驱动简单(2)多子导电器件,开关频率高

(3)电阻率具有正的温度系数,器件容易并联运行(4)无二次击穿

(5)适合于低压、小功率、高频的应用场合(6)高压器件的导通电阻大25 5.绝缘栅双极性晶体管(IGBT)的特点:P27(1)具有MOSFET(功率场效应管)和BJT(功率晶体管)的优点(2)开关频率高(3)导通压降低(4)驱动简单(5)容易并联

(发展方向:开关时间缩短,通态压降减小,高压、大电流)6.变压器漏抗对整流电路的影响

由于变压器漏感的存在,电流换向不可能在瞬间完成,输出电位不能马上跳到新导通的那相电位上,致使输出平均电压下降。换相过程对应的时间用电角度表示即换相重叠角,致使输出电压的下降称为换相压降。7.产生有源逆变的条件

(1)直流侧一定要有一个直流电动势源;(2)要求晶闸管的控制角大于pi/2 8.逆变失败的原因:P66(1)触发脉冲丢失或延时(2)晶闸管失去正向阻断的能力(3)电源电压缺相或消失(4)逆变角过小

9.晶闸管触发电路对触发信号的要求: P70(1)触发信号应有足够的幅值,不能太大,也不能太小(2)触发信号的宽度至少要大于晶闸管的开通时间

(3)为使器件迅速导通,并提高承受di/dt的能力,触发脉冲电流应有一定的上升率(4)为减少门极损耗,晶闸管的触发信号都采用脉冲方式 10.晶闸管触发电路的基本组成部分:P71(1)同步信号的产生部分(2)移相触发脉冲产生的部分

(3)触发脉冲的功率放大与隔离输出部分 11.GTO晶闸管对门极驱动电路的要求:P82(1)门极开通电路

要求门极开通信号有足够的幅值和上升沿,以实现强触发,减小开通时间和开通损耗。要求门极开通脉冲由高幅值短脉冲和低幅值长脉冲组成,以保证在导通期间连续提供门极电流。(2)门极关断电路

门极关断电路的电压值要足够大,关断电流上升率有一定的要求,关断脉冲的宽度应大于关断时间与尾部时间之和。(3)门极反偏电路

为了防止du/dt过大引起误触发,要设置反偏电路。12.IGBT和功率MOSFET对驱动电路的要求:P88(1)门极电压最高绝对值小于20V(2)门极阈值电压为2.5~5V(3)用小内阻的驱动源,以保证U(GE)有足够陡的前沿

(4)驱动正电平的选择:U(GE)越高,通态与开关损耗越小,但短路电流越大,一般取12~15V(5)关断过程中为了加快关断速度,一般取U(GE)为-5~-10V(6)门极电阻对开关速度影响很大,门极电阻越大,开关损耗越大,门极电阻越小,关断尖峰电压越高(应取合适值)

(7)控制电路与驱动电路应隔离(8)简单实用,有保护,抗干扰强

13.电力电子器件的缓冲电路用来减小器件在开关过程中产生的过压、过流、过热、du/dt和di/dt,确保器件安全可靠运行。说出几种典型的缓冲吸收电路及其用途:P91 关断缓冲吸收电路:(1)电容吸收电路(开通损耗大)

(2)RC阻容吸收电路:广泛应用于大功率二极管、晶闸管和MOSFET的过压吸收。(3)充放电式RCD缓冲电路:应用于GTO和功率晶体管BJT(4)箝位工RCD缓冲电路:适用于高频的IGBT器件

(5)无损缓冲吸收电路(既有充放电RCD的缓冲作用,又能实现能量回收)开通缓冲吸收电路

14.电压型逆变器(VSI)与电流型逆变器(CSI)的比较:P116(1)电压型逆变器:恒压源(大电容相当于恒压源);180度导电制;器件只承受正向电压;需要反并联二极管。

(2)电流型逆变器:恒流源(大电感);120度导电制;器件要受正反向电压。(3)每相电压、电流的波形都不同。15.什么是脉宽调制(PWM)技术

根据作用于惯性环节的相等原理,用幅值相同、宽度不等的脉冲来等效正弦波的技术。16.为什么要PWM?

因为方波逆变器存在谐波大、动态响应差、电源侧功率因数低、控制电路复杂、成本高等问题,而PWM逆变器具有谐波小、动态响应快、电源侧功率因数高、控制电路简单、成本低等优点。

17.正弦电压脉冲宽度调制SPWM的优缺点:P119 优点:(1)消除谐波效果好;(2)既可以调频,又可以调压,因而动态响应快;(3)调整装置的功率因数提高了。

缺点:(1)由于元件开关次数增多,因此开关损耗大;(2)SPWM直流电源电压利用率低。18.正弦电压PWM控制方式有模拟电路、数字电路、大规模集成电路。其中数字电路方式有三种方法:自然采样法、规则采样法、直接PWM法。19.电流型逆变器PWM与电压型PWM的区别:P134(1)是把电流波形进行脉宽调制。

(2)目的主要是为了减小低速运行时的脉动转矩,主要消除低次的高次谐波,而电压型逆变器除了尽量消除较多高次谐波外,还要调压和提高动态响应。(3)在120度宽的电流方波中间60度范围内不允许进行PWM(4)半周期内脉冲宽度之和还保持120度。

20.为什么电流型逆变器PWM在120度宽的电流方波中间60度范围内不允许进行PWM:P135

如果电流型逆变器PWM在120度宽的电流方波中间60度范围内进行PWM,就会产生逆变器一个支臂直通的现象,会造成直流电源短路,这是不允许的。21.多重化技术解决什么问题?

由于PWM技术管子开关频率高,损耗大,大容量逆变器PWM无法使用,但电机要求消谐波,故采用多重化技术来改善大容量逆变器的输出波形,减少谐波分量,使波形尽量接近正弦波。

22.什么是PWM,简述电压,电流PWM的异同,电压电流逆变的异同。

PWM技术是根据作用于惯性环节的冲量相等原理,用幅值相同、宽度不等的脉冲来等效正弦波的技术。

电压、电流PWM的调制原理是一样的,并且都是为了消除滤波,它们的区别见19。电压、电流逆变器的异同见14。23.什么是电力电子?

电力电子技术是应用于电力领域的电子技术,是使用电力电子器件对电能进行变换和控制的技术。电力电子技术主要用于电力变换。24.半控器件和全控器件的主要差别?

半控器件只可用门极信号控制开通而不能关断,全控器件既可以用门极信号控制开通,也能用门极信号控制关断。25.换相压降怎么产生的 见6 26.设计电流型逆变器带异步电机需要注意什么?(导通角120度,有续流回路)电流型逆变器在换相时产生尖峰电压、对晶闸管和二极管的耐压要求较高,对电动机绝缘也有一定的影响,所以设计时要注意采取电压限幅的措施。此外,还要注意无功功率处理电路的设计,为无功电流提供路径。

27.晶闸管整流电路带纯电阻负载的电源侧功率因数如何?为什么?

电源侧功率因数是感性的,这是由于晶闸管控制角的存在,使得电源的电流滞后于电压,故对外呈感性,并且由于交流电源带整流电路工作时,通常情况下输入电流不是正弦波,产生电流畸变因数,使得功率因数较低。28.PWM的目的?

减小谐波、改善动态响应、提高电源侧功率因数、简化控制电路、降低成本。29.整流电路中,用二极管比用晶闸管功率要大吗?

采用不控整流没有控制角的影响,与采用晶闸管相比可以改善功率因数,因此在视在功率相等的情况下采用二极管比用晶闸管功率应该要大。30.电流逆变的优点,缺点,关于四象限

优点:输出电压波形接近正弦波(由于高次谐波电流被电机转子磁动势基本平衡掉了);直流环节串大电感,在维持电流方向不变情况下,逆变桥和整流桥可以改变极性,因而可以进行四象限运行;适于单机频繁加减速运行;进行电流控制时比电压型逆变器动态性能好。缺点:输出的正弦波电压上有由于元件换相引起的毛刺;低频时有转矩脉动现象。31.IGBT比大功率晶体管有什么优点?

开关频率高、时间短,没有二次击穿现象,控制功率小,元件容易并联运行。(即MOSFET的优点)

32.SPWM怎么产生,三角波和正弦波幅值哪个大?

通过正弦调制波和载波三角波的大小比较来产生幅值相同、宽度不等的脉冲来等效正弦波。为了输出波形不发生畸变,三角波的幅值应大于等于正弦波幅值。33.交交变频和交直交变频的区别?交直交变频频率怎么控制?

交交变频是从交流电源通过变频器直接变为另一频率可调的交流电,而交直交变频是把工频交流电先通过整流器整流成直流,然后再通过逆变器把直流逆变成为频率可调的交流电。交直交变频电路中,如果使用的是方波逆变器,则通过改变逆变器中元件导通与关断频率的快慢,就能改变输出交流电频率的高低(改变直流环节电压的高低,就能调节交流输出电压幅值的大小);如果使用的是PWM逆变器,可以通过改变正弦控制波的频率来改变输出电压的频率。

34.PWM是什么物理意义?斩波器是否用到PWM? 为什么要等效成正弦波?

PWM技术是根据作用于惯性环节的冲量相等原理,用幅值相同、宽度不等的脉冲来等效正弦波的技术。主要是为了消除谐波。斩波器是直流高压器,没有用到PWM。

等效成正弦波是因为方波的谐波强,用于驱动异步电动机时会产生6K次脉动转矩,当脉动频率和电机自然频率相近时,容易引起共振,很难得到稳定的低速运行。35.在电压型PWM中,是怎么实现同时调频和调压的?P118

由于PWM是通过正弦调制波和载波三角波的大小比较来实现用幅值相同、宽度不等的脉冲来等效正弦波的,因此要想改变逆变器输出电压基波幅值大小以及频率高低,只要改变正弦调制波的幅值及频率就可以。36.IGBT的开关频率P29 一般为18到20kHz 37.大功率晶体管正向安全工作范围受哪些条件限制?P21 安全区大体分为四个区,第一区受集电极电流大小限制,第二区受管子耗散功率限制,第三区受二次击穿限制,第四区受管子一次击穿电压限制。

38.第三道题李永东老师问的,PWM都有哪些?不太理解问的是什么……接着李老师问我知道什么是PWM吗?马上回答是根据伏秒积面积等效原理,用幅值相等、宽度不等的脉冲等效正弦波,主要目的是消谐波。最后在提示下说出了正弦电压PWM(SPWM)、正弦电流PWM、直流PWM。期间我还问李老师多重化技术算PWM吗?他说不算……(PWM有电压型逆变器PWM,正弦电流PWM,正弦磁链PWM,优化PWM,电流型逆变器PWM。其中优化PWM着重消除低次谐波,更高次数谐波可通过滤波电路解决。)39.DC/DC变换电路温升过高怎么回事,怎么办

40.整流和逆变都会引起电网谐波污染,请问为什么电网(电源侧)会被污染。(博)因为交流电源带整流电路工作时,通常输入电流不是正弦波,而逆变时由于逆变角的影响,输出到电网侧的交流电也不是正弦波,都有谐波存在,故电网会被污染。41.整流过程中的换向会引起什么变化?

由于变压器漏感的存在,电流换向不可能在瞬间完成,输出电位不能马上跳到新导通的那相电位上,致使输出平均电压下降。42.吸收式RCD的原理,应用

原理:当器件关断时,电源经二极管向电容充电,由于二极管的正向导通压降很小,所以关断时的过压吸收效果与电容吸收电路相当。当器件开通时,电容通过电阻放电,限制了器件中的开通尖峰电流。

主要应用于开关频率不太高的GTO和大功率晶体管。43.晶闸管整流电路带纯电阻负载为什么电路对外表现感性

这是由于晶闸管控制角的存在,使得电源的电流滞后于电压,故对外呈感性。

第五篇:电力电子简答题

什么是电力电子技术?答:用于电力领域的电子技术,即应用电力电子器件对电能进行变换和控制的技术。电力变换通常包括那几类?答:电力变换通常分为四大类,即交流变直流(整流)、直流变交流(逆变)、直流变直流(直流斩波)和交流变交流。其中交流变交流可以是电压或电力的变换,叫交流电力控制,也可以是和相数的变换。什么是电力电子器件?答:电力电子器件是指直接应用于承担电能的变换或控制任务的主电路中,实现电能的变换或控制的电子器件。目前,电力电子器件一般专指电力半导体器件。电力电子器件如何分类?答:按照电力电子器件被控制信号所控制的程度,可分为以下三类:不可控器件、半控型器件和全控型器件(又叫自关断器件)。根据器件内部电子和空穴两种载流子参与导电的情况,电力电子器件又可分为:单极型器件、双极型器件和混合型器件。按照控制信号的不同,还可将电力电子器件分为电流驱动型和电压驱动型,后者又叫场控器件或场效应器件。什么是晶闸管?它主要有哪些应用?答:晶闸管是硅晶体闸流管的简称,它包括普通晶闸管和双向、可关断、逆导、快速等晶闸管。普通型晶闸管(Thyristor)曾称为可控硅整流器,常用SCR(Silicon Controlled Rectifier)表示。在实际应用中,如果没有特殊说明,皆指普通晶闸管而言。晶闸管主要用来组成整流、逆变、斩波、交流调压、变频等变流装置和交流开关以及家用电器实用电路等。晶闸管是如何导通的?答:在晶闸管阳极——阴极之间加正向电压,门极也加正向电压,产生足够的门极电流Ig,则晶闸管导通,其导通过程叫触发。晶闸管参数主要有哪些?答:晶闸管参数都和结温有关,主要的参数有:(1)电压定额。1)断态重复峰值电压UDRM。指允许重复加在晶闸管阳极—阴极间的正向峰值电压,规定它的数值为断态不重复峰值电压,规定它的数值为断态不重复峰值电压UDRM的90%。2)反向重复峰值电压URRM。指允许重复加在晶闸管阳极—阴极间的反向峰值电压,规定其值为反向不重复峰值电压URSM的90%。3)额定电压UTN。通常取实测的UDRM、URRM中较小值,按国家规定的标准电压等级就低取整数,即为晶闸管的额定电压。(2)电流定额。通态平均电流IT(AV)。晶闸管在环境温度40℃和规定的冷却条件下,结温不超过额定结温时,所允许通过的最大工频正弦半波(不小于1700)。晶闸管为什么在夏天比冬天容易出故障?答:晶闸管在正常工作时所允许的最高结温叫额定结温,在此温度下,一切有关的额定值和特性都得到保证。夏天时,环境温度和冷却介质的温度都较高,使晶闸管的冷却条件变差,导致晶闸管结温过高而损坏。另外,晶闸管结温上升,使所需要的门极触发电压UGT、门极触发电流IGT降低,晶闸管在外来干扰下容易造成误触发。总之,结温上升,使晶闸管的参数发生变化,性能变差,容易出现故障。晶闸为什么管在夏天工作正常,而到了冬天就不可靠了?答:冬天的环境温度和冷却介质的温度都较低,因而晶闸管的结温较夏天低,导致门极触发电压UGT、门极触发电流IGT偏高,使原来的触发电路发出的触发信号不能使晶闸管导通。晶闸管在使用时门极常加上负电压,有何利弊?答:晶闸管门极加负电压的好处是避免干扰造成的误触发,但负电压最大值不能超过5V;不利方面是门极损耗增加,且降低晶闸管的触发灵敏度。为什么有触发脉冲时晶闸管导通,脉冲消失后则又关断?答:晶闸管的阳极—阴极间加正向电压,门极上有正向触发脉冲时,晶闸管被触发导通。此后阳极电流逐渐上

升到擎住电流IL值时,去掉触发脉冲,则管子继续导通,直到电流升到负载电流后,进入正常正常工作状态。如果阳极电流还没有升到擎住电流值就去掉门极脉冲,则晶闸管就不能继续导通而关断。晶闸管的阳极—阴极间加正向正常电压,门极加上正向触发脉冲后晶闸管为什么也不导通?答:其主要原因如下:a)触发电路功率不足。B)脉冲变压器极性接反。C)负载断开。D)门极—阴极间并联的保护二极管短路。E)晶闸管损坏。晶闸管的阳极—阴极间加正向正常电压,为什么不加触发脉冲晶闸管也导通?答:主要原因是:(1)晶闸管本身触发电压低,门极引线受干扰,引起误触发。(2)环境温度和冷却介质的温度偏高,使晶闸管结温偏高,导致晶闸管触发电压降低,在干扰信号下造成误触发。(3)晶闸管额定电压偏低,使晶闸管在电源电压作用下“硬开通”。(4)晶闸管的断态电压临界上升率du/dt偏低或晶闸管侧阻容吸收回路断路。晶闸管在工作时引起其过热的因素有哪些?答:主要因素如下:(1)晶闸管过载。(2)通态平均电压,即管压降偏大。(3)门极触发功率偏高。(4)晶闸管与散热器接触不良。(5)环境温度和冷却介质温度偏高。(6)冷却介质流速过低。门极可关断晶闸管主要参数有哪些?答:GTO的主要参数如下:(1)最大可关断阳极电流IATO。它也是标称GTO额定电流的参数。(2)电流关断增益off。定义为offIATOIGM 式中 IGM——门极负脉冲电流最大值。(3)擎住电流IL。在门极信号作用下,GTO从断态转为通态,阳极电流开始上升,当切除门极信号时,若管子处于临界导通状态,此时所对应的阳极电流就被定义为擎住电流。绝缘栅双极晶体管有哪些主要参数?答:绝缘栅双极晶体管主要参数有:(1)最大集—射极电压UCES。它是由IGBT内部PNP晶体管所能承受的击穿电压所决定的。(2)最大集电极电流。包括额定直流电流IC和1ms脉冲最大电流ICP。(3)最大集电极功耗PCM。指在正常工作温度下,允许的最大耗散功率。IGBT在实际应用中应采取哪些保护措施?答:IGBT在实际应用中常用的保护措施如下:(1)过流保护。通过检测出的过电流信号切断门极信号,使IGBT关断。(2)过压保护。设置吸收电路可抑制过电压并限制电压上升率du/dt。(3)过热保护。利用温度传感器检测出IGBT的壶温,当超过允许值时令主回路跳闸。缓冲电路有什么作用?答:缓冲电路也叫吸收电路,在电力电子器件应用技术中起着重要的作用。开通缓冲电路可以抑制器件开通时的电流冲和di/dt,减少器件的开通损耗;而关断缓冲电路用于吸收器件的关断过电压和换相过电压,抑制du/dt,减小关断损耗;上述两种缓冲电路结合在一起则称之为复合缓冲电路,兼有二者的功能。可控整流电路如何分类?答:有单相和多相等型式,常用的控整流电路为:(1)单相。主要包括:1)单相半波;2)单相全波(又叫双半波);3)单相桥式(又分单相全控桥和单相半控桥两种型式)。(2)三相。主要包括:1)三相半波(又叫三相零式);2)三相桥式(又分三相全控桥和三相半控桥两种型式);3)带平衡电抗器的双反星形。可控整流电路有哪些应用?答:可控整流电路可以把交流电压变换成固定或可调的直流电压,凡是需要此类直流电源的地方,都能使用可控整流电路。例如,轧机、龙门刨床、龙门铣床、平面磨床、卧式镗床、造纸和印染机械等可逆或不可逆的直流电动机拖动、蓄电池充电、直流弧焊、电解

和电镀等。什么是触发延迟角?答:在可控整流电路中,可控元件从开始承受正向阳极电压起到施加触发脉冲时止,其间的电角度叫触发延迟角,用表示,简称触发角,也叫控制角或移相角。什么是导通角?答:主电路中可控元件在一个周期内导通的电角度,用表示。什么是同步?答:触发信号和电源电压在频率和相位上相互协调的关系叫同步。单相可控整形电路有哪些优缺点?答:单相可控整流电路线路简单、价格便宜,制造、调试、维修都比较容易。但其输出的直流电压脉动系数较大,若想改善波形,就需加入电感量较大的平波电抗器,因而增加了设备的复杂性和造价;又因为其接在电网的一相上,当容量较大时,易使三相电网不平衡,造成电力公害,影响供电质量。因此,单相可控整流电路只用在较小容量的地方,一旦功率超过4kW或要求电压脉动系数小的地方都采用三相可控整流电路。在实际电路中为什么要用晶闸管串联?答:单个晶闸管的额定电压是有一定限度的,当实际电路要求晶闸管承受的电压值大于单个晶闸管的额定电压时,可以用两个以上的同型号的晶闸管串联使用。在实际电路中为什么要用晶闸管并联,晶闸管并联时应采用哪些措施?答:单个晶闸管的额定电流是有一定限度的,当实际电路要求晶闸管通过的电流值大于单个晶闸管的额定电流时,可以用两个以上同型号的晶闸管并联使用。由于各晶闸管的正向特性不可能一样,将使晶闸管在导通状态和导通过程中电流分配不均,使通过电流小的管子不能充分利用,而通过电流大的管子可能烧坏,因此要采取以下措施:(1)尽量选用正向特性一致的管子并联。(2)采取均流措施。(3)采用强触发。(4)降低电流额定10%使用。晶闸管整流电路为什么要用整流变压器,三相整流变压器为什么都用D,y联结?答:一般情况下,晶闸管整流电路要求的交流供电电压与电网电压不一致,因此需配用适合变压器,以使电压匹配;另外,为了减少电网与晶闸管整流电路之间的相互干扰,要求两者隔离。基于上述两种理由,要用整流变压器。由于晶闸管整流电路输出电压中除直流分量外,还含有一系列高次谐波,三相整流变压器的一次侧采用三角形联结,可使幅值较大的三次谐波流通,有利于电网波形的改善;二次侧接成星形联结是为了得到中性线,特别是三相半波整流电路,必须要有中性线。三相半控桥与三相全控整流电路相比有哪些特点?答:三相半控桥用三只晶闸管,不需要双窄脉冲或大于60的宽脉冲,因而触发电路简单、经济、调整方便。三相半控桥只能做可控整流,不能工作于逆变状态,因而只应用于中等容量的整流装置或不可逆的直流电动机传动系统中。实际应用中,还需在输出端并接续流二极管,否则在大电感负载时,一旦脉冲突然丢失,则会产生失控。三相半控桥电路,控制灵敏度低,动态响应差。调试晶闸管整流装置时,应注意哪些问题?答:调试晶闸管整流装置时,应注意的问题有:(1)核对接线确保无误。(2)先调试触发电路。触发脉冲的宽度、幅值、移相范围等必须满足要求。(3)再调试主回路。必须保证触发脉冲与主回路电压同步,对于三相整流电路,要特别注意三相交流电源的相序,不能颠倒。主回路的调试可先在低压下进行、正常后再接入正常电压试运行。(4)试运行中要注意观察整流装置的电压、电流有无异常声响等。运行一段后,确实没有问题,方可投入正常运行。常用的触发电路有哪几种?答:触发电路的形式多种多样,常用的触发电路主要有阻容移相桥触发电路、单结晶体管移相触发

电路、同步信号为正弦波的触发电路、同步信号为锯齿波的触发电路、KC系列的集成触发电路和数字式触发电路。什么是电力电子器件的驱动电路?答:电力电子器件的驱动电路是主回路与控制电路之间的接口,它对设备的性能有很大的影响。驱动电路性能良好,可使器件工作在较理想的开关状态,缩短开关时间、减小开关损耗,对设备的运行效率、安全性和可靠性都有重要的意义。驱动电路的主要任务是什么?答:驱动电路的主要的任务是将信息电子电路传来的信号按照控制目标的要求,转换成使电力电子器件开通或关断的信号。什么是逆变?如何分类?答:将直流电转变为交流电的过程就叫逆变。变流器工作在逆变状态时,把直流电转变为50Hz的交流电送到电网,称为有源逆变;若把直流电转变为某一频率或频率可调的交流电供给负载使用,则叫做无源逆变或变频。要想使变流器工作在逆变状态,应该具备什么条件?答:应同时具备以下两个条件:(1)外部条件。必须有外接的直流电源。(2)内部条件。控制角90。什么叫逆变角?答:变流器工作在逆变状态时,常将控制角改用表示,将称为逆变角,规定以处作为计量角的起点,角的大小由计量起点向左计算。和的关系为。三相逆变电路对触发电路的要求和整流电路相比有什么不同?答:以三相半波共阴极接法为例进行分析。三相半波电路要求每隔120按顺序给V1、V3、V5施加触发脉冲,以保证换相到阳极电压更高的那一相上。对于整流电路来说,如果同时给三个晶闸管施加触发脉冲,电路也能正常换相,而逆变电路则不行。逆变电路要求触发电路必须严格按照换相顺序,依此给三个晶闸管施加触发脉冲,才能保证电路正常工作。什么叫逆变失败,造成逆变失败的原因有哪些?答:晶闸管变流器在逆变运行时,一旦不能正常换相,外接的直流电源就会通过晶闸管电路形成短路,或者使变流器输出的平均电压和直流电动势变成顺向串联,形成很大的短路电流,这种情况叫逆变失败,或叫逆变颠覆。造成逆变失败的原因主要有:(1)触发电路工作不可靠。例如脉冲丢失、脉冲延迟等。(2)晶闸管本身性能不好。在应该阻断期间管子失去阻断能力,或在应该导通时不能导通。(3)交流电源故障。例如突然断电、缺相或电压过低等。(4)换相的裕量角过小。主要是对换相重叠角估计不足,使换相的裕量时间小于晶闸管的关断时间。为了防止逆变失败,最小逆变角min应取多大?答:逆变状态允许采用的最小逆变角应为:min 式中 ——晶闸管关断时间tq折合的角度,约45; ——换相重叠角,与负载电流IL和变压器漏抗成正比,约1520。——安全裕量角,考虑脉冲不对称,一般取10。综上所述,得出:min30——35。变频器是如何分类的?答:按能量变换情况,可将变频器分成两大类:交—交变频器和交—直—交变频器。前者是将50Hz交流电直接转换成所需频率(一般是低于50Hz)的交流电,叫作直接变频。后者是将50Hz的交流电先经晶闸管装置整流成直流电,然后再将直流电逆变成所需频率的交流电,叫做间接变频。变频器有哪些换相方式?答:变频器有如下换相方式:(1)自然换相。有两种形式:电网电压换相和负载换相。(2)

强迫换相。如何区分电压源型和电流源型变频器?两者都属于交—直—交变频器,由整流器和逆变器两部分组成。由于负载一般都是感性的,它和电源之间必有无功功率传送,因此在中间的直流环节中,需要有缓冲无功功率的元件,如果采用大电容器来缓冲无功功率,则构成电压源型变频器;若采用大电抗器缓冲无功功率,则构成电流源型变频器。什么是斩波器?答:斩波器是在接在恒定直流电源和负载电路之间,用以改变加到负载电路上的直流电压平均值的一种电力电子器件变流装置。斩波器怎样分类?答:斩波器按选用的晶闸管元件,可分为逆阻型和逆导型两类。应用全控型器件,可以构成降压斩波电路、升压斩波电路、升降压斩波电路、Cuk斩波电路、Sepic斩波电路、Zeta斩波电路等基本斩波电路。什么是交流调压器,应用在哪些地方?答:通过对晶闸管控制,可把固定的交流电压转换成可调的交流电压,这种变流装置叫交流调压器。交流调压器广泛用于电炉的温度控制、舞台灯光的调节、中小功率异步电动机小范围调速以及电解电镀中整流变压器的一次绕组电压控制等。什么是晶闸管交流开关?答:如果令交流调压器中的晶闸管在交流电压自然过零时关断或导通,则称之为晶闸管交流开关。交流调压器的晶闸管常用哪些方式控制?答:交流调压器的晶闸管常用两种方式控制:相位控制和通—断控制。在交流调压器或交流开关中,使用双向晶闸管有什么好处?答:双向晶闸管不论是从结构上,还是从特性上,都可以把它看作是一对反并联晶闸管集成元件。它只是一个门极,可用交流或直流脉冲触发,使之能正、反向导通。在交流调压器或交流开关中使用双向晶闸管可以简化电路、减小装置体积和质量、节省投资、方便维修。单相半波可控整流电路接大电感负载,为什么必须接续流二极管,电路才能正常工作?与单相桥式半控整流电路中的续流二极管的作用是否相同?答:电感足够大时,若不接续流二极管,则在正半周导通期间电感吸收能量,并储存起来;在电压负半周,电感释放所吸收的能量,使晶闸管的阳极承受正压继续导通,这样在负载上就出现负电压波形,且负电压波形接近于正电压波形时,Ud0,Id0。因此,在接上续流二极管后不论延迟角多大,电感储存的能量经续流二极管续流,同时晶闸管因承受反压而关断,负载上不出现负电压波形,则整流输出电压Ud0.45U21cos2。至于单相桥式半控整流电路,不接续流二极管,电路本身具有续流回路,但是在实际运行中,可能会发生一只晶闸管导通而两只二极管轮流导通的异常现象,为避免这种失控情况,在负载测并联了续流二极管。由此可见,两只二极管的作用不完全相同。在单相桥式全控整流电路中,若有晶闸管因为过流而烧成断路,结果会怎样?如果这只晶闸管被烧成短路,结果又会怎样?答:若有一晶闸管因为过流而烧成断路,则单相桥式全控整流电路变为单相半波可控整流电路,如果这只晶闸管被烧成短路,会引起其它晶闸管因对电源短路而烧毁,严重时使输入变压器因过流而损坏。(因此在设计电路时,在变压器二次侧与晶闸管之间应串联快速熔断丝,起到过流保护作用。)GTO和普通晶闸管同为PNPN结构,为什么GTO能够自关断,而普通晶闸管不能?答:GTO能够自动关断,而普通晶闸管不能自动关断的原因是:GTO的导通过程与普通的晶闸管是一样的,有同样的正反馈过程,只不

过导通时饱和程度不深。其中不同的是,在关断时,给门极加负脉冲,即从门极抽出电流,则晶体管V2的济济电流Ib2减小,使Ik和IC2减小,IC2减小又使IA和IC1减小,又进一步减小V2的基极电流,如此形成强烈的正反馈。当两个晶体管发射极电流IA和IK的减小使a1+a2<1时,器件退出饱和而关断。与GTR相比功率MOS管有何优缺点?答:与GTR相比功率MOS管的优缺点有是:功率MOS的显著特点第一个是驱动电路简单,需要的驱动功率小。第二个显著特点是开关速度快,工作频率高,它的热稳定性优于GTR。其缺点有:电流容量小,耐压低,一般只适用于功率不超过10KV的电力装置。电力电子器件的缓冲电路的作用是什么?关断缓冲与开通缓冲在电路形式上有何区别,各自的功能是什么?答:电力电子器件的缓冲电路的作用是抑制电力电子器件的内因过电压,du/dt或者古流和di/dt,减小器器件的开关损耗。关断缓冲与开通缓冲在电路上的形式区别有:关断缓冲电路是由电阻和二极管并联再和电容串联所构成,开通缓冲电路是由电阻和二极管串联再和电感并联所构成。其各自的功能是:关断缓冲电路又称为du/dt抑制电路,用于吸收器件的关断过电压和换相过电压,抑制du/dt,减小关断损耗。开通缓冲电路又称为di/dt抑制电路,用于抑制器件开通时的电流过冲和di/dt,减小器件的开通损耗。

1、指出下图中①~⑦各保护元件 及VD、Ld的名称和作用。

解:①星形接法的硒堆过电压保护; ②三角形接法的阻容过电压保护;

③桥臂上的快速熔断器过电流保护;④晶闸管的并联阻容过电压保护;

⑤桥臂上的晶闸管串电感抑制电流上升率保护;⑥直流侧的压敏电阻过电压保护;⑦直流回路上过电流快速开关保护; VD是电感性负载的续流二极管;Ld是电动机回路的平波电抗器;

四、画图题(10分)

请利用六块锯齿波同步触发电路的X、Y控制端,来组成六路互相相差60°的双窄脉冲触发系统图,并画出其脉冲输出波形的相互关系图。

解:

下载关于电力电子装置谐波问题的综述word格式文档
下载关于电力电子装置谐波问题的综述.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    电力电子补考

    1. PLC运行时,应该将其开关置 RUN 档(RUN、STOP)。 2. 国际电工委员会IEC对可编程序控制器作了如下规定:可编程序控制器是一种数字运算操作的电子系统,专为__工业环境__下应用而......

    电力电子名词解释

    肖特基势垒:在一些情况、金属铬银钨铂与半导体表面的适应接触也会形成势垒。它是一种阻碍电子运动移动的电势能,其作用类似PN结,呈现PN结的非线性特性,但并不等同与PN结。 电导......

    电力电子简答

    在晶闸管两端并联R、C吸收回路的主要作用有哪些?其中电阻R的作用是什么?(1)R、C回路的作用是:吸收晶闸管瞬间过电压,限制电流上升率,动态均压作用。(2)R的作用为:使L、C形成阻尼振荡,不......

    电力电子说课稿

    黑龙江职业学院课程说案体例及说明 根据学院两次说课比赛的实际情况,针对2013年人才培养工作评估要求,现就课程说案的编写提出以下说明,供各单位撰写说案时参考: 1. 说案重点要......

    电力电子实验报告

    实验一、直流斩波电路的性能研究 一、实验目的 1.熟悉降压斩波电路和升压斩波电路的工作原理。 2.掌握这两种基本轿波电路的工作状态及波形情况。 二、实验项目 降压型(Buck)斩......

    汽车电子控制装置教案

    第一章汽车电子技术的现状与发展 本章教学要求: 1、了解汽车电子控制技术的发展过程; 2、了解汽车电子控制技术的现状与发展趋势; 教学方法: 讲授法、启发式 一、汽车电子控制......

    电网高次谐波问题分析

    电网高次谐波问题分析 梁晓红1,李贞2 (1.平顶山工业职业技术学院电力工程系,河南平顶山;2.平顶山工业职业技术学院电力工程系,河南平顶山) 摘要:文中对电网高次谐波的产生及危害进......

    电力电子实验总结

    电力电子技术实验总结 随着大功率半导体开关器件的发明和变流电路的进步和发展,产生了利用这类器件和电路实现电能变换与控制的技术——电力电子技术。电力电子技术横跨电力......