第一篇:109型机车分配阀安全阀故障分析及改进建议
109型机车分配阀安全阀故障分析及改进建议
摘 要:本文通过分析目前109型机车分配阀安全阀在运用过程中容易出现的故障现象,如在进行几次紧急制动后安全阀易出现不正常漏风现象、安全阀返修率高等问题,文章总结了故障原因,并结合实际情况提出了几点改进建议。
关键词:DK-1型电空制动机; DK-2型电空制动机;109型机车分配阀;安全阀;增压方式; 调压阀
0 引言
DK-1型电空制动机是我国电力机车中的主型制动机,而109型分配阀又是DK-1型电空制动机的核心元件,它根据列车管压力的变化来相应控制制动缸压力的大小,从而实现机车的制动和缓解。
在实际运用过程中,109型机车分配阀安全阀在目前的紧急增压方式下易出现风压不正常泄漏;紧急制动时安全阀噪音偏大;消耗压缩空气严重;无火回送时安全阀调压不方便;安全阀返修率较高等缺点。
据售后人员反映,109型机车分配阀的安全阀一般在完成几次紧急制动后,就可能出现安全阀漏风现象,使容积室压力非正常下降,其主要原因是安全阀在工作时动作频繁,导致阀口的密封性降低,使安全阀出现漏风点,导致容积室产生漏风现象。这会在一定程度上会影响机车制动力的大小,使空气制动作用不能达到预期效果,因此对安全阀的改进具有重要意义。安全阀故障现象及原因分析
1.1 故障现象
据在各机务段售后人员反映,109型机车分配阀安全阀在完成几次紧急制动后,安全阀就可能出现故障,主要表现在:
(1)安全阀不正常漏风,导致容积室压力不稳定。
(2)安全阀的阀口易形成麻点,(3)安全阀的整定压力值会随着时间的推移产生一定的偏差。
(4)安全阀工作时噪音较大。
(5)压缩空气泄漏量大。
1.2 原因分析
紧急制动时在增压阀的作用下,总风经小孔迅速流向容积室,使得容积室压力能够快速上升,直至其压力达到安全阀的整定压力值。此时,安全阀便开始在排风和停止排风的重复动作中反复切换,直到容积室压力得以缓解。
安全阀采用泄压式金属阀口密封的形式,阀芯与阀体为刚性接触。实施紧急制动时,因为安全阀的动作过程非常迅速,使阀芯与阀体之间频繁冲击,因此导致阀芯与阀体的接触面在频繁冲击的状态下易产生损伤,并且,当阀口一旦有异物进入时接触面还易形成麻点,使安全阀密封不严,阀与阀口的接触面就是安全阀的主要漏风地点,最终会导致容积室压缩空气经安全阀泄漏。
由于安全阀的频繁跳跃式的工作,锁紧螺母由于频繁的机械振动可能会有一些松动,使得安全阀随着工作时间的推移,整定压力值发生一定的飘移。
紧急制动时,安全阀在动作过程中,压力空气的排泄以及阀芯与阀体的频繁冲击都会产生较大的噪音污染。改进建议
为了解决109型分配阀安全阀的以上问题,本文针对已投入运营机车和新造机车两种不同情况提出以下建议。
2.1 对于已投入运营机车的改进建议
(1)在制动机的操作方法上的优化改进:
①尽可能少使制动机处于紧急制动位,以降低安全阀的工作频率,延长其使用寿命;
②在不使用制动机时应关闭总风,防止总风意外进入容积室,产生过大的压力使安全阀动作,以SS4B机车DK-1型电空制动机为例,具体操作是关闭总风塞门123,阻断总风进入分配阀的通路。
(2)应给安全阀加装空气过滤装置,如过滤网,尽量提高压力空气的清洁度,因为空气中的杂质会使阀与阀体的接触面更容易损伤,降低安全阀的使用寿命。
2.2 对于新造机车的改进建议
(1)对于新造机车提出一种新的紧急增压时容积室压力控制设计方案,具体方案如下:
总风进入分配阀后分为两条空气通路,一路为增压阀口打开时向容积室供风的通路,一路为均衡部制动缸供风通路。新的压力控制方案保留了均衡部制动缸供风通路,而另一条则是从外部引入经过调压阀整定后的总风,并且将其引入到原增压阀部。
①取消原分配阀阀体上的安全阀,并封堵沟通安全阀和容积室的孔Ⅳ;
②堵塞分配阀内部沟通总风与增压阀的孔Ⅲ;
③将分配阀增压阀部的总风通路引出然后通过一个外部调压阀与外部总风管连通;
将分配阀紧急增压通路变为由外部总风经调压阀到增压阀,再到容积室。改进以后,紧急制动状态下增压阀阀口打开,外部总风流经过调压阀将压力变为调压阀整定值的450kPa,再通过C3小孔流往容积室,容积室的最高压力等于调压阀整定压力值。
容积室的最高压力由调压阀进行控制,同时去掉安全阀后,完全截断了容积室的压缩空气从安全阀泄漏的通路,彻底消除了容积室压力经安全阀泄漏的隐患,并可完全消除安全阀动作时产生的噪音污染,还可减少压缩空气的消耗。
(2)实践运用
这种设计方法已应用在160km/h交流客运机车DK-2型电空制动机的设计中。总风经过调压阀52(整定压力450kPa,无火回送时250kPa)、检测口276、紧急增压塞门137进入到分配阀101内部。紧急制动时,由于列车管压力急剧降低,经调压阀调压后的压力空气进入到容积室内,并保障容积室内的空气压力大小即为调压阀的整定值。通过实验对设计方案的反复验证,证明这种新的紧急增压时容积室压力控制方式的设计准确、可靠。原来的安全阀在无火回送时调压不便,需要反复充风来调节整定压力,操作繁琐,而新的设计方案只需把无火安全塞门139打开,容积室最大压力由无火安全阀(整定压力250kPa)190来控制,操作简单方便。结束语
针对109型机车分配阀安全阀易出现的故障,装有DK-1型电空制动机已投入运营的机车,采取优化操作方法和加装安全阀空气过滤装置能在一定程度上降低安全阀的故障率,但不能从根本上解决安全阀漏风、易消耗压缩空气等问题。若采用上文新的容积室压力控制设计方式,弱化安全阀在制动机正常工作时的功能和作用,可使安全阀的问题得到根本上的解决。这样既避免了压缩空气的泄漏,保障了容积室压力在紧急制动时的准确和稳定,又降低了压缩空气的消耗,消除了安全阀噪音,使无火回送时调压方便。此种设计方案可在后续各型机车制动机新设计时推广应用。
参考文献:
[1] 刘豫湘,陆缙华,潘传熙.DK-1型电空制动机与电力机车空气管路系统[M].北京:中国铁道出版社,1998.[2] 黄金虎,马俊飞.109型分配阀紧急增压方式的改进探讨[J]电力机车与城轨车辆,2011(3).
第二篇:CRH3型动车组受电弓故障分析及改进措施
题目:班级:姓名:学号:成绩:
西 南 交 通 大 学
期末大作业
机车检测与故障诊断
CRH3型动车组受电弓
故障分析及改进措施
2016年6月
西南交通大学期末大作业
CRH3型动车组受电弓故障分析及改进措施
摘 要:针对 CRH3 型动车组受电弓软连线、支持绝缘子磨损断裂较为严重问题,结合受电弓结构特点和 CRH3 型动车组运行实际情况进行分析,提出了相应的改进措施和建议,以确保动车组正常运用安全。
关键词:CRH3 型动车组;受电弓软连线;支持绝缘子;故障;改进措施
Abstract:in view of the pantograph soft connection type CRH3 emu, support insulator and wear fracture is relatively serious problem, combining with the characteristics of the pantograph structure type and CRH3 emu operation actual situation analysis, proposed the corresponding improvement measures and Suggestions, to ensure the safety of emu operation.Keywords:Type CRH3 emu;Pantograph soft connection;Support insulator;Fault;Improvement measures
1.引言
受电弓是动车组极其重要的电器部件,用来把接触网2 5 k V的电能传导给车内高压设备。3 5 0 k m / h的CRH3型动车组采用SS400型受电弓。自从2008 年7 月1日试运行以来,截至10月30日,京津城际客运专线运行的6 列CRH3 型动车组平均累积走行公里为 12 万km。由于受电弓具有较好的气动力模型和气流调整装置,能有效改善受电弓的气动力稳定性,保证弓头位置稳定,整体性能基本适应动车组运行需要。但受电弓各软连线、支持绝缘子磨损断裂较为严重(软连线、绝缘子新品使用时间分别仅为6 天与18 天),不仅造成工作量和材料成本的增加,而且还容易造成受电弓各轴承的电蚀和绝缘距离的降低,影响受电弓的正常性能的发挥。在这期间已更换受电弓 24 根软连线、32 个支持绝缘子,换修率明【】显高于其他电器部件1。
2.受电弓的发展和构造
在中国科技高速发展的今天,动车具有清洁环保、高效节能等优点,在铁路运输中发展迅速,是今后铁路交通发展的一个重要方向。正是因为它的大力发展,也突显了受电弓的故障问题。
动车组安全运行的关键部件就是受电弓,它是动车组从接触网上传递能源并获取能源的装置。受电弓安装在动车的顶部,受电弓在使用的时候会上升,与接触网接触,将接触网上获取电流,然后将电流从动车的顶部向动车的底部传送,使动车可以正常的运转。在动车停止时,受电弓不会升起而是贴在动车的顶部。
受电弓是动车组与电流之间衔接桥梁,受电弓的好坏会影响动车组在运行过程中的安全问题,现在普遍在对动车进行提速,对于受电弓的性能也提出了比较高的要求,对于受电弓容易出现故障的原因,做出相关处理的措施,对受电弓定期的检测和故障处理,让动车组能够安全的运行。
西南交通大学期末大作业
3.受电弓故障原因
首先是接触网与受电弓的不匹配产生的问题。对于接触网的标准悬挂就是使悬挂的接触网弹性均匀。但是这个似乎很难做到,因为接触网的悬挂受到外部环境的影响,所以每一段的弹性都是存在差异的,有些地方安装了过重的装置,就会导致高速运行的动车组的受电弓剧烈波动,就会损坏受电弓。这种现象下的征状就是硬点,在现有的接触网条件下,动车组的速度越快硬点征状就越是突出。这并不是一个很好的现象,接触网的剧烈波动会导致它磨损程度的加剧,也对受电弓产生撞击性损害。
其次是动车组在高速运行中空气的摩擦力对于受电弓的影响。在动车组保持运动过程中,空气的阻力会对高速运动的列车产生影响,对于动车顶端的受电弓也会产生一定程度的影响。在动车运行中,受电弓需要上升与接触网接触,产生振动,而在这一过程中,空气的流动在加速,使受电弓受到空气阻力摩擦的作用,会对动车顶部的受电弓产生较大的影响。
第三是受电弓与动车顶端链接不当,动车在高速运行过程中受电弓在频繁工作,如果受电弓链接不当造成的断股,就会造成链接部位的磨损,影响受电弓的使用寿命。现在受电弓的软连线形状多以扁平形结构,在空气阻力和链接面积相同的情况下,这部分受到的压力是比较大的,受电弓软连线截面形状不当造成的软连线容易断股。这就会造成很多危险,比如局部电流增大,软连线链接的部分温度过高,这样增大了链接部分的电阻,软连线容易发生热脆,使受电弓发生故障。
总体来说受电弓故障的主要原因有:接触网与受电弓的不匹配产生的问题,空气的摩擦力对于受电弓的影响,受电弓与动车顶端链接不当,碳滑条磨损严重,网线故障,受电弓碳滑条龟,裂检修工艺不太完善,检修人员专业技能不熟练。动车组在运行过程中受到不可抗力的影响,使受电弓不能正常运行,出现故障。
4.原因分析
4.1接触网硬点及弓网匹配产生的交变剪切应力
接触网接触悬挂的一个重要指标就是弹性均匀,由于接触悬挂本身存在弹性差异,如果在接触悬挂或接触线的某些部位有附加重量、偏斜的线夹和安装不良的分相分段器,在电动车组高速运行情况下,受电弓就可能出现不正常波动或摆动,甚至出现撞弓、碰弓现象。形成这种现象的本征状态称为硬点。硬点是一种结构的本征缺欠,并且是相对的,在已定的接触网结构下列车速度越高硬点表现越明显。硬点是一种有害的物理现象,它会加快接触导线和受电弓滑板的异常磨耗和撞击性损害,撞击力还会向受电弓其他部件传递。
运行中为保证牵引电流的顺利流通,受电弓和接触线之间必须有一定的接触压力[SS400 型受电弓接触压力为(80±10)N],接触导线在受电弓抬升作用下会产生不同程度的上升,从而使受电弓在运行中产生上下振动,使受电弓产生一个与其本身归算质量相关的上下交变的动态接触压力。该接触压力和硬点产生的撞击力会使受电弓的上、下臂及下臂、底架之间产生持续不断的相对转动,使臂杆之间及上臂杆与弓头之间的软连线不停地伸缩或扭动,交变
【】剪切应力的作用导致软连线过早断裂2。
4.2动车组空气动力对受电弓部件的影响
动车组运行中,周围空气的动力作用一方面对列车和列车运行性能产生影响,同时对车顶受电弓的运行也产生一定的影响。受电弓作为一个弹性机构,通过自身结构保持与接触网导线的接触压力,在运行过程中,受到运行动态力的影响,使其在运行中的振动变得非常复杂。
西南交通大学期末大作业
除此,受电弓在运行中还受到空气流作用产生的一个随速度增加而迅速增加的气动力。从风洞试验结果来看,动车组表面压力在头车车身、拖车和尾车车身区域为低负压区。在有侧向风作用下,动车组表面压力分布发生很大变化,当列车在曲线上运行又遇到强侧风时,尤其对车顶部件表面压力的影响最大。
4.3动车组会车时对受电弓部件表面压力的影响
在一列车与另一静止不动的动车组会车以及 2 列等速或不等速相对运行的动车组会车时,将在静止动车组和 2 列相对运行动车组一侧的侧墙上引起压力波(压力脉冲)。这是由于相对运动的动车组车头对空气的挤压,在与之交会的另一动车组侧壁上掠过,使动车组间侧壁上的空气压力产生很大的波动。
试验和计算表明,动车组会车压力波幅值大小与速度有关,随着会车速度的大幅度提高,会车压力波的强度将急剧增大。由试验可知,当头部长细比γ为2.5,2列车以等速相对运行会车时,速度由250 km/h 提高到 350 km/h,压力波幅值由1 015 Pa增至1 950 Pa,增大近1倍。
4.4受电弓软连线截面形状不当造成的断股
软连线由很多细导线编织而成,由于动车组在运行中其动作次数比较频繁,如果软连线的截面形状和连接方式不当,就会造成软连线逐渐折损。目前,软连线截面形状为扁平矩形结构,在相同的截面面积和空气动力的情况下,该截面结构软连线所受的压力值较高,而从材料力学角度分析,该结构的抗弯曲和剪切许用应力值又较小,其边缘部位又存在一定的应力集中,造成软连线容易断股。软连线断股后,由于单位面积电流的增大,导致软连线及连接座的温度升高,从而使接触电阻增大,造成恶性循环,致使软连线热脆性增强。
4.5受电弓支持绝缘子硅橡胶伞裙为柔性材料
受电弓支持绝缘子是由有机合成材料组成的复合结构绝缘子,主要由芯棒、金具、伞裙护套和粘接层组成。硅橡胶伞裙护套是合成绝缘子的外绝缘部分,其作用是使绝缘子具有足够高的抗湿闪和污闪性能,保护芯棒免受大气侵蚀。金具是合成绝缘子的机械负荷的传递部件,它和芯棒组装在一起构成绝缘子的连接件,伞裙护套与芯棒之间用粘接胶进行粘接。由于硅橡胶绝缘子的伞裙是柔性材料,动车组在高速运行时,绝缘子背风面伞裙在空气流作用下产生较高的负压,在交会列车及速度变化时绝缘子周围空气动力长期作用,易出现交变舞动和
【3】振动变形,最终造成伞裙与护套连接处逐渐裂损。
5.改进措施建议
5.1加强接触网检测减少硬点数量
C R H 3 动车组在京津城际客运专线投入正式运行,其对动车组受电弓和接触网的关系要求是很高的。良好的受流条件是动车组的有关设备正常运行的前提,也是接触网寿命延长的关键。对于高速电气化铁路接触网,硬点的检测是十分重要的。加强接触网检测和调整、完善,减少硬点数量,能大大降低交变的动态接触压力的变化范围,减小受电弓所受的冲击和振动。
5.2改变受电弓软连线截面形状
将软连线截面形状由平矩形结构改为圆形,圆柱形表面的迎风处正对来流方向为正压区,沿
西南交通大学期末大作业
曲面向两侧,正压逐渐减小变为负压。在相同的截面面积和空气动力的情况下,该截面结构软连线所受的平均压力值较低,另外,该结构的抗弯曲和剪切许用应力值又较高,软连线不易断股。
5.3改善受电弓支持绝缘子机械性能
绝缘子伞裙与护套连接处裂损,可大大降低绝缘子的爬电距离,在连续雨、雾等潮湿条件的天气情况下极易发生放电闪络。因此,改善并保证其机械性能尤其是撕裂强度的稳定性是保证支持绝缘子外绝缘伞套良好的抗漏电起痕和蚀损性能、增水性及抗老化性的关键。有关厂家应合理选择配方,在确保硅橡胶耐紫外线性能和热稳定性的前提下,加强对原材料质量的检验和对添加剂、补强剂使用质量的分析监控。通过比较和近3 个月的运用表明,CRH3 型动车组车顶高压跨接电缆目前采用的硅橡胶支持绝缘子伞裙机械强度优于受电弓支持绝缘子,能适应350 km/h 速度等级要求。CRH3 型动车组受电弓支持绝缘子已更换为此类绝缘子。
6.如何避免受电弓故障频发
受电弓是动车组安全运行的关键部件,是沟通动车组与接触网的桥梁,是动车组从接触网上获取能源并传递能源的唯一部件。因此,在动车组运行途中受电弓产生故障,我们应该及时妥当处理,保证动车组安全运行。所以要检查电弓运行中的磨损情况,坚固碳条安装,完整电头集,检查受电弓是否有变形等症状。检查轴承和受电弓的链接处是否保能够灵活升降。检查底架橡胶应水平安装防止它变形。检查升弓装置有无问题,能否灵活升降。检查连接线各处是否破损,链接的部分是否紧密,是否有接触不良的问题。保持升弓状态,听升弓状态的声音,可以检测出受电弓气阀板是否有故障,电弓气阀板需要牢固安装,防止漏气,其次是要看气压是否在正常范围内。对受电弓经常发生故障的地方进行接触网的检查,将故障反应到相关维修部门,对此地方进行检修。
由专业技术人员对检修人员进行培训,对受电弓的工作原理、易发生的故障、如何解决受电弓的突发故障进行系统的培训。使检修人员、掌握新技能,方便解决受电弓出现的故障。了解运行路段状态,填写信息反馈表。对受电弓经常发生故障的地方进行接触网的检查,将故障反应到相关维修部门,对此地方进行检修。并将修复后的结果告知动车组。
7.结论
自2008 年8月,通过对京津客运专线的6 列CRH3 型动车组的受电弓软连线和支持绝缘子
【】进行改进,从试验和运行情况看,有效地防止了软连线断股、伞裙撕裂故障的发生4。另外,针对 CRH3 型动车组车顶绝缘子数量比较多,安装结构特殊,运行速度高,冬季更易发生绝缘子闪络的特点,各级运输主管部门、科研机构和运用单位要紧密协作,未雨绸缪,切实提高绝缘子质量,最大限度地消除冬季雾霜潮湿天气对接触网供电的影响。
参考文献:
[1] 铁道部运输局,北京交通大学.动车组概论[M].北京:铁道部运输局,北方交通大学,2005 [2] 吴积钦.电气化铁道接触网硬点检测装置[J].铁道学报,1999,21(S1).[3] 崔江流,宿志一.我国输电线路硅橡胶合成绝缘子的研制与应用[J ].电力设备,西南交通大学期末大作业
2000(3).[4] 唐山轨道客车有限责任公司.SS400 型受电弓[Z].唐山:唐山轨道客车有限责任公司,2008.5
第三篇:货车安全阀故障应急处理及其改进
货车安全阀故障应急处理
及其改进措施
铁路货车空重手动调整装置在我国已应用了近半个世纪,现在仍然在不少车辆上装配使用。五十年代,随GK型制动机而推出了两级手动空重车调整,然后相继出现了间接作用式的103型空气制动机到直接作用式的120空气制动机配套的空重手动调整装置,后来120空气制动机开始配套使用自动调整式的空重调整装置。近年来随着120阀在货车上的广泛使用,大部分货车已配置自动调整式空重调整装置,但仍有不少货车车辆使用的是手动空重调整装置。
一、空气制动机
配置空重手动调整装置的GK 型制动机(120型制动机手动空重调整装置类似)的简图及组成如下图1所示,图1 GK 型空气制动机 -三通阀; 2 -缓解阀,3 -副风缸; 4 -制动缸; 5 -远心集尘器; 6 -截断塞门; 7 -制动主管; 8 -折角塞门; 9 -连接器; 10 -车长阀; 11 -制动支管; 12 -软管; 13 -安全阀; 14 -降压风缸; 15 -空重车转换手把。空重车手动调整装置由降压气室、安全阀、空重车塞门、空重车指示牌及调整手把等组成。其调整方法是当车辆每轴平均载重未满6t时,将空重车调整手把置于空车位;当车辆每轴平均载重在6t及其以上时,将空重车调整手把置于重车位。车辆总重(自重+总重)达到40t时,按重车调整。这种空重车调整装置采用的是空重二级调整方式,空重车的制动力不同是通过改变制动缸的容积来实现的。
空车位时,开放空重车塞门,使制动缸与降压气室(容积17L)连通,扩大制动缸容积。当制动时,副风缸压力空气经三通阀进入制动缸,同时经空重车塞门进入降压气室,制动缸压力由于其容积扩大而降低,为了使空车位时制动缸压力控制在186.2kPa(1.9kgf/cm²)以下,在制动缸降压气室的连通管(或降压气室)上设有安全阀。它的调整压力为186.2kPa(1.9kgf/cm²),如果空车位制动缸压力超过186.2kPa(1.9kgf/cm²),则多余的压力空气都从安全阀排掉;而当压力下降至160 kPa时,安全阀就会停止排风,保证制动缸有足够大的压力产生制动力。
重车位时,关闭空重车塞门,截断降压气室与制动缸的连络,因此,制动时,副风缸压力空气只进入制动缸,制动缸压力就较高[最高可达372.4kPa(3.8kgf/cm²)]。GK型制动机配套的空重车调整装置就是通过这种方式来调整制动缸的压力,从而达到使空车、重车获得不同的制动力的目的。
二、安全阀漏泄故障分析
在货车运用过程中,空气制动机空重手动调整装置常见的问题就是安全阀漏泄故障。到达列车进行试风作业时,无论空车重车都要将空重车调整手把置于空车位后进行。此时进行试风作业就很容易判断三通阀至降压风缸连通是否存在漏泄,如果是安全阀漏泄时,就需要更换安全阀。当安全阀发生漏泄情况时,大部分情况并不是安全阀损坏的原因,而是安全阀设计、制造过程中存在的一些缺陷导致列车运行一段时间后安全阀失效。
120型空气制动机上的安全阀失效,会直接导致列车主管压力在制动保压位时下降,将增加列车再充风缓解时间,影响到列车司机在长大坡道再次制动的时机,严重危及列车行车安全。图2为安全阀的构造和作用方式,图2 安全阀的构造和作用
安全阀失效的主要原因要从它的结构和原理上分析。安全阀主要由盖形螺母、弹簧、调整螺母、阀杆、阀芯、阀体组成(见图3)。其作用原理是:弹簧压紧阀芯起限压作用,弹簧对阀芯作用力的大小决定安全阀限制压力的大小;调整螺母通过螺牙间的配合来定位,从而达到控制锁定弹簧弹力大小的目的;因此最终决定安全阀限压大小的是调整螺母和阀体螺牙的配合位置。问题就出在阀体与调整螺母间螺牙的配合上,因为运动物体上螺牙间的配合是极不稳定的。安全阀调整弹簧在给阀芯一个向下压力的同时会给调整螺母一个向上的张力,在这个恒定张力的作用下,车辆运行过程频繁的振动就会使得螺牙间的配合产生自然缓解,导致调整螺母在阀套内向上移动,造成阀芯失去弹簧的压力,无法对降压风缸进行限压作用。那么在制动时,制动缸的压力空气就会顺着连管到安全阀,再由安全阀流向大气,使得车辆制动发生缓解,危及行车安全。
图3 安全阀配件图
三、应急处理方法
在车辆运用中,安全阀失效(漏泄)时,卸下安全阀防盗罩,拧下盖型螺母后,就会发现调整螺母是上图4左边状态,此时,安全阀内阀没有受到弹簧的作用力或受的作用力很小,如果把空重车手把打到空车位置,降压风缸内压力达到较小值时安全阀就处于开放状态(作用良好的安全阀要求风压达到190KPa时排风,降至160KPa前停止排风),降压风缸内的空气就会通过安全阀排到大气中。在没有新安全阀更换的情况下,可以通过调整调整螺母来处理安全阀的漏泄。如下图5所示,调整到阀杆上部露出调整螺母10~15mm,然后在列车制动时将空重手把打到空车位,检查安全阀是否发生漏泄。
如上办法只是紧急处理方法,经过调整后的安全阀是无法保证达到风缸压力升至190KPa前排风,降至160KPa前停止排风(制规)的要求的。
图4 左:调整螺母位移导致阀失效时
右:阀起作用时
图5 安全阀失效示意图
图6 调整方法
四、安全阀改进方法
针对上述问题,本人提出如下改进意见,共相关部门参考。要提高安全阀的稳定性,必须防止调整螺母与阀体间螺牙配合的自然解锁作用。我的建议是在安全阀出厂时在盖形螺母和调整螺母间加装垫块,使得调整螺母的位置在允许的极小范围内移动,不至脱出导致安全阀失效。垫块的厚度等于经过检定作用良好的安全阀H-h的值。具体做法如上图7所示。垫块材料可以使用防腐处理后一般木材制作,保证硬度的同时也能有一定自由度的张力。
图7 安全阀改进示意图
货车GK型空气制动机配套的空重车调整装置如上图所示,由降压气室、安全阀、空重车塞门、空重车指示牌及调整手把等组成。为了使空车位时制动缸压力控制在190 kPa 以下,在制动缸降压气室的连通管(或降压气室)上设有安全阀。其作用是在空车位时,通过安全阀自动开启与关闭来控制制动缸的压力,从而达到使空重车获得不同制动力的目的。安全阀调整压力为190 kPa,如果空车位制动缸压力超过 190kPa,则多余的压力空气都从安全阀排掉;低于160kPa时,安全阀停止排气。重车位时关闭空重车塞门,截断降压气室与制动缸的连通,安全阀不起作用。
第四篇:车组转向架故障原因分析及改进方法
摘要
安全是铁路运输的永恒主题,客车安全又是铁路安全的重中之重。旅客列车作为复杂系统集成,任何细小的故障隐患,都将可能造成无法估量的损失。客车安全工作就是运用科学的维修策略,做到超前处置,预警预控,提前将各种故障源排查出,将风险点消除掉,加强安全控制力,降低事故损失,确保旅客列车安全秩序平稳。本论文以 25K 型客车 CW-2 型转向架的故障统计数据作为分析依据,统计梳理了客车走行部的多种故障模式,综合乌鲁木齐车辆段的运营线路、季节气候、运行里程以及维修水平等多方面因素,运用数据统计以及相关性分析,确定出影响客车走行部故障主要的相关因素以及故障模式。针对影响客车走行部的主要故障模式,运用故障树的模型分析,查找出影响故障模式中基本事件,以风险管理的理念,对故障模式中的基本事件进行风险要素分析评估,确定影响岗位质量安全的风险点,通过风险对策措施表,对影响质量安全的关键环节以及卡控流程进行完善,做到隐性故障的提前消除,预防客车安全事故的发生。合现场作业实际,本论文选取了客车走行部维修班组作为基于风管理维修策略的实施对象。根据“管理规范化”的要求,融合岗位安全职责、基本作业过程、规章管理制度以及安全质量控制措施等方面,修订出符合现场风险管理实际的《检车员岗位风险控制说明书》;根据“作业标准化”的要求,客车走行部故障模式、事故基本事件、安全风险点、基本作业过程以及质量标准,修订完善出具有操作性的《25K 型客车转向架流程风险辨析指导书》。通过对基于 25K 型客车 CW-2 型转向架故障统计以及因素相关性分析,运用故障模式故障树分析,基本事件的风险辨析、评估和层级防控,完善了分级管理、预警预控的客车维修策略,确保了现场安全作业管理的全面、准确、有效,进一步提高了客车维修水平。关键词:故障模式;相关性;维修策略 1
目 录
摘 要...............................................................1 第1章 绪论..........................................................4 1.1 研究背景及意义....................................................4 1.1.1我国机车车辆维修现状与发展.......................................4 1.1.2课题选择及意义...................................................5 1.2 文献综述..........................................................6 1.2.1国内外检修策略的发展.............................................6 1.2.2以可靠性为中心的维修(RCM)概述..................................7 1.3 文献分析及总结....................................................8 1.4 论文的研究内容及方法.............................................8 第2章..............................................................10 2.1动车转向架故障类型统计............................................10 2.2动车组转向架故障原因分析..........................................12 2.2.1部件设备漏油分析................................................13 2.3制动装置故障分析..................................................13 2.4其他零部件的故障分析..............................................13 第3章..............................................................14 3.1动车组转向架的故障模式、致命性分析(FMECA)..................14 第4章..............................................................17
4、结束语.............................................................17 参 考 文 献...........................................................18
第1章 绪论
1.1 研究背景及意义
1.1.1 我国机车车辆维修现状与进展
(1)我国机车车辆修制状况近年来随着我国高速铁路的开通运营,以及动车组的广泛开行,我国在机车车辆的维修模式上也逐渐发生着显著地变化[1]。一方面以高速动车组的维修模式已经脱离了原有的传统检修模式,运用先进的可靠性和安全性维修理念,以走行公里合理安排一、二、三、四、五级修程,实行白天运行,夜间停留检修的修制,充分利用库停时间,按不同修程完成各检修单元,体现灵活多样的维修特点。另一方面是传统的普速铁路,依然沿用比较成熟的计划性预防维修体制,并增加了关键零部件的寿命管理,虽然提高了计划标准化维修的高安全性,在统一的计划修体制下,维修的灵活性不足,直接造成维修成本居高不下。
(2)我国机车车辆维修存在的问题
1、我国机车车辆维修制度不均衡。随着近几年我国高速列车的投入使用,机车车辆维修工作将呈现以向“以可靠性为中心(RCM)”的维修制度发展的动车组检修制度
[1],和以计划预防修为主的普速列车检修制度这两种维修模式共存的局面。一是在部分检修段两种维修制度同时存在必然会增加维修组织的难度。二是检修周期短、维修成本高、停车时间长的计划预防维修制度已经逐渐无法适应“大密度、高频次、高安全”的列车组织模式。
2、我国维修理论基础薄弱。多年来,我国客车车辆维修重视实践,轻理论现象比较突出,致使实践中经常出现基本概念混乱,导致“维修不足”和“过度维修”维修的现象。随着铁路运营体制的深入改革,客车维修部应进一步对可靠性、可维护性、可用性方面的研究和实践,加强对设备设施的风险研判,建立适应自身环境特色的维修理论体系。
3、客车车辆采购、设计中缺乏可靠性、维修性工程的应用。这种现象尤其凸显在普速列车的维修中,在我国铁路客车车辆在出厂设计方面只对客车车辆性能和结构进行设计,没有对可靠性、维修性指标提出要求,也没有对客车车辆交货后进行可维护性检验验证,这就造成客车车辆可靠性和维修性方面得不到很好的保证,给运营维修带来了不少的困难。
1.1.2 课题选择及意义
位于祖国大西北的某车辆检修段承担着日均检修到发列车18列300余辆,确保着日均发送20000余名旅客出行安全,并担负着2100余辆运用客车的维修、保养安全管理任务。主型车为构造时速140公里、转向架为CW-2型准高速25K型车底,主要担负乌鲁木齐至北京(T69/70)、上海(T53/54)、汉口(T193/194)的旅客运输,一次往返需连续运行4-5天,走行里程达8000公里以上。转向架是铁路客车运用安全的核心部件之一,它直接承载车体和旅客重量,保证车辆顺利通过曲线,它的各种参数直接决定了车辆的稳定性和乘坐舒适性,其运用的高安全性和高可靠性是确保旅客生命财产安全的关键中的关键。该客车车辆段主型客车是长春客车厂2000年制造的以CW-2型转向架为走行部的25K型客车,保有量为467辆,约占保有客车总数的40%。长春客车厂生产制造的准高速客车CW—2型客车转向架,是在充分吸收借鉴国外先进技术经验的基础上,并结合我国实际情况新设计的转向架,在通过安全性、平稳性实验后,已于1995年春投入运行。该段自2001年8月正式投入CW-2型转向架运用以来,在检修理念、维修体系、作业方式等方面产生了翻天覆地的变化。同时,为运用维护好该型客车,结合人员结构、配件供给模式、以及相关的工装设备改进等方面,在确保25K型客车安全、可靠方面历经9年做了大量的探索与尝试,并积累了内容丰富的故障和维修数据资料。论文选题将从主型25K型车的CW-2转向架结构、检修人员的素质、检修设备、检修标准和制度等方面来思考25型客车走行部安全性、可靠性的维修模式。同时根据西北地区客车运行的线路环境和检修情况,结合事故致因模型化进一步分析导致转向架事故的原理和机制,采用数理统计方法对转向架系统故障数据进行了分析,通过获得转向架系统故障模式生成规律,进一步运用以可靠性为中心的维修思想,改进完善客车转向架运用维修策略,降低维修费用,确保25型客车持续、安全平稳、可靠运行。
1.2 文献综述
1.2.1 国内外检修策略的发展
工业化从手工作坊对机械化、电气化、信息化时代,各个时期的设备管理与检 4 修方式有很大的变化[2],一般来说可分为故障检修阶段、计划检修阶段和状态检修阶段。
(1)故障检修阶段
故障检修阶段也称为事后检修阶段[2],是设备检修最早出现的方式。也是一种比较直观的维修方式,即设备设施出现故障不能确保安全有效运行的时候,对设备设施采取故障消除性维修,也属于一种应急性维修,由于对检修条件的安全性考虑的不是很充分,在维修过程中往往付出较高的维修成本。
(2)计划检修阶段
针对故障维修存在准备工作不足的弊端,计划性检维修根据设备故障功能失效与运行时间之间的关系,确定检修内容和检修周期,维修人员根据所确定的维修内容准备相应的维修配件、工装和场地,并在周期临界点实施维修,提前将故障预防在事故发生之前,确保了设备设施在运转中期内的可靠性和安全性,这种 维修模式对与时间有关的损耗性部件有较好的效果,但对非损耗性部件就难以确定出其周期性,为了确保安全,往往采取提前更换的方式,也造成了不必要的“过度维修”现象的出现。
(3)状态检修阶段
随着故障诊断水平的提高,以及故障诊断设备的广泛运用,设备的在线监测成为确保安全必不可少的辅助方式,对设备运行状态的实时监控,也为设备功能性的失效状态提供了比较直观发现手段,维修人员可根据监测结果在设备部件临近,失效的时候,进行实时维修,达到了设备按需维修的目的。但对于设备系统 性强、构造复杂的设备,由于监测点繁多,增加了检测的难度和维修计划的复杂程度,不利于维修效率的提高。
(4)以可靠性为中心的维修
在1960年代,美国联邦航空局对当时最先进的波音747飞机有着严格的维修要求[2],导致产生非常繁重的维修任务计划,使这种技术先进的飞机给维修体制提出了严峻的考验。而繁杂的维修任务使得航线运营波音747飞机难以盈利。同时也暴露出,即便使用基于时间的更换或翻修之类的预防性维修,也没有有效地现住地 5 减少产品失效率。1980年通过对航空工业费用效益的观察得到广泛共识,军事工业和其他工业也都作为加强维修程序的要求,开始应用以可靠性为中心的维修方式,诸如核电站、化工、汽车、制造、石油和天然气、建筑等行业。
1.2.2 以可靠性为中心的维修(RCM)概述
RCM(以可靠性为中心的维修,Reliability Centered Maintenance)是当前维修领域比较通行的以设备预防维修理念为基础的体系性维修的工程过程[2]。
(1)RCM的基本观点
1、设备设施的固有可靠性和安全性是由最初设计和制造水平决定的,如果设备的固有可靠性与安全性水平不能满足使用要求,相通过提高维修的次数来提高设备的安全性是达不到预期效果的。因此,增加维修次数,不一定会使设备越可靠和越安全。
2、设备设施在运行过程中出现故障隐患是不可避免的,而且每种设备故障产生的原因也不尽相同,维修工作的重点就是预防有严重后果的故障发生。因此,在故障维修工作中,要根据设备故障所产生的不良影响及后果,有针对地制定不同的维修策略。
3、探查设备设施故障规律,合理安排维修时机。在对设备进行维修工作时,要尽量弄清设备的故障模式,对有耗损性的设备可很据故障统计规律安排较为合理的保养和维修(更换),来预防故障隐患造成设备功能性失效。对损耗较少的设备设施,如果按照故障统计规律,安排定期的维修或更换,可能对设备的维护效果不是很理想,对此类设备更适宜于通过检查、监控采取视情维修方式。
4、以最小经济费用保证设备设施的安全性和可靠性。维修工作中,对设备采用不同的维修策略,其所需要耗费的维修资源是不相同的,甚至是相差巨大。
1.3 文献分析及总结
从上述文献综述可以看出,无论是传统的事后维修还是现代发展起来的RCM/LCC模式,都把确保设备的安全可靠作为维修的第一出发点。由于行业、地域、装备、人员、环境的差异,对设备的维护往往是各种维修方式相互交叉、综合运用,在满 足可靠性、可用性的前提下,尽可能的减少维修费用和人力成本。
维修理论发展历史表明,任何一种维修方式、维修理论,都是通过总结前人的理论、方法以渐进的方式发展起来,不存在基于某一种设备检修理念和维修策略可以确保使用设备的绝对安全,再科学的检修理念和设备维护手段也只有和现场实际环境紧密结合,基于相似设备的维修经验和现场数据统计,分析清楚理论、方法与现场的实际差距,相互取长补短才能发挥其应有的效果。
随着现代设备的系统复杂性和运行环境的不确定性,只有在巩固和加强现有的维修基础上,充分吸收、借鉴当代最新的维修理论和方法,努力探索出新的维修模式,才有可能不断改善现有环境对维修的束缚,进而实现设备安全性、可靠性和可用性的新的突破。
1.4 论文的研究内容及方法.本论文以铁路交通运输系统某站 25K 型客车 CW-2 型转向架作为研究对象,以该对象故障统计数据作为分析依据,运用数据统工具计统计,分析了客车转向架的多种故障模式,综合该车辆段所处的地理位置、气候条件、运营线路、运行里程以及维修水平等多方面故障影响要素,分析确定出影响故障的主要因素,并结合因素相关性分析,寻找出影响客车走行部主要故障模式的关键风险因素。
运用故障树的模型分析,对影响客车走行部的主要故障模式,查找出影响故障模式中基本事件。运用风险管理的理念,对故障模式中的基本事件进行风险要素分析评估,辨析出影响维修质量的风险点,通过制定合适的风险对策措施表,对容易造成故障隐患安全的关键环节进行有效维修,做到隐性故障的提前消除,预防客车安全事故的发生。
本论文结合客车安全现场作业实际,根据“管理规范化”的要求,选取了影响客车走行部维修质量的库检班组和乘务组作为基于风险管理维修策略的实施对象。通过构建风险管理维修策略体系,从岗位安全职责、基本作业过程、规章管理制度以及安全质量控制措施等方面入手,重点是为了修订出符合现场风险管理 实际的控制流程。根据“作业标准化”的要求,认真分析客车走行部故障模式、事故基本事件、安全风险点、基本作业过程以及质量标准,修订完善出具有操作性的风险辨析措施。
通过对转向架故障统计以及因素相关性分析,运用故障模式事故树分析,基本 事件的风险辨析、评估和层级防控,目的是为了构建确保了现场安预警预控的客车维修策略,能够进一步提高客车维修水平。
第2章
2.1动车转向架故障类型统计
在分析产品故障时,一 般是 从 产 品 故 障 的 现 象 入手,通过故障现象(故障模式)找出原因和故障机理。对机械产品而言,故障模式的识别是进行故障分析的基础之一。
由于故障分析的目的是采取措施、纠正故障,因此在进行故障分析时,需要在调查、了解产品发生故障现场所记录的系统或分系统故障模式的基础上,通过分析、试验逐步追查到组件、部件或零件级(如螺母)的故障模式,并找出故障产生的机理。
故障的表现形式,更确切地说,故障模式一般是对产品所发生的、能被观察或测量到的故障现象的规范描述。
故障模式一般按发生故障时的现象来描述。由于受现场条件的限制,观察到或测量到的故障现象可能是系统的,如制动系统不能制动;也可能是某一部件,如传动箱有异常响声;也可能就是某一具体的零件,如油管破裂等。因此,针对产品结构的不同层次,其故障模式有互为因果的关系。
故障模式不仅是故障原因分析的依据,也是产品研制过程中进行可靠性设计的基础。如在产品设计中,要对组成系统的各部分、组件潜在的各种故障模式对系统功能的影响及产生后果的严重程度进行故障模式、影响及危害性分析,以确定各种故障模式的严酷度等级和危害度,提出可能采取的预防改进措施。因此将故障的现象用规范的词句进行描述是故障分析工作中不可缺少的基础工作。
依据某检修部门几年内积累的故障数据;故障数据中的列车号主要是从002A 到190A;车辆编号是从1车厢到8车厢;二级系统包括车体系统、车外系统、电气系统、给水卫生系统、供风系统、内装系统、转向架系统 7大系统;各系统的故障百分比如表1所示。由表1可知转向架系统在整个动车组系统中故障频率所占有效百分比达20%以上。根据转向架系统的结构特点和功能,将转向架划分为悬挂装置、架构组成。轮对轴箱定位装置、排障装置、驱动装置、制动装置、转向架配管及配线等。
表1 二级系统频率分布的输出结果
依据某机车车辆股份有限公司采集积累的大量使用维护数据,进行了分类处理,得到动车组转向架的故障部位和故障类型表,如表2所示。
表2 转向架系统故障模式统计表
从表2中明显看出,转向架系统总共有42个故障模式,制动装置包括轮对等故障达到30条,占26.78%,应重点加强与制动装置相关部件的管理维修和保养工作,及时发现故障隐患,杜绝事故。
2.2动车组转向架故障原因分析 2.2.1部件设备漏油分析
通过表2分析可知零部件设备漏油在转向架故障中较为常见,可以占到总故障数的25%。通过对设备运行的观察发现可能故障原因是(1)动车在运转时,在相对封闭的机械箱里,机器在运转时会产生大量的热量。动车组在全日制工作时,箱内温度逐渐升高,箱内压力也会逐渐增大.油液在箱内压力作用下从密封间隙处渗出。(2)设计不合理;制造质量不良;使用维护不当,检查不及时。设备上的某些静、动配合面缺少密封装置,或采用的密封方案不合适;设备上的某些润滑系统只有给油路,而没有回油路,使油压越来越大,造成泄漏。
2.3制动装置故障分析
动车组制动装置故障在转向架系统故障中占到最大的比例,达到了26%以上。动车组转向架制动装置采用空液转换液压制动方式。制动装置故障不仅会造成动车组途中晚点,而且如处理不当会导致动车组发生事故,严重影响运输秩序,威胁乘客的生命财产安全。
制动系统的常见故障包括了制动控制装置传输不良、制动控制装置故障、制动控制装置速度发电机断线、制动力不足、制动不缓解、监控显示器显示抱死、列车紧急制动不能复位、监控器等控制设备无电等。制动控制装置传输不良时,制动时会检测制动力不足。传输不良主要是光连接器的连接插头松动、接触不良,终端装置接口卡板故障。当制动控制装置速度发电机断线时,车辆将无法进行滑行控制。制动力不足时,可能是 UB-TRTD继电器故障、电路故障、制动管系泄漏、EP阀故障、检测传感器故障、BCU 故障等。但出现制动抱死故障显示时,可 能 是 由 速 度 传 感 器 断 线、PCIS防滑阀故障、CI与 BCU信息传输故障导致再生制动与空气制动同时发生、BCU内部滑行、抱死检测控制错误显示制动系统故障等造成的。
2.4其他零部件的故障分析
轮对组成故障损伤,因其裸露车体外,且直接与地面钢轨接触,运行状况复杂,且轮对组成乃转向架的重要部件,如有故障易造成严重的事故。其次空气弹簧故障因其材质特殊为橡胶所制,较易被划伤,若运行时间长易造成空气弹簧的故障。其次还有横向减振器和抗蛇行减振器,这两者均为油压减振器,易造成漏油故障,从而降低减振效果。制动夹钳的长时间使用及检修维护不当,使制动装置易出现故障。
第3章
3.1动车组转向架的故障模式、致命性分析(FMECA)
经过前面的分析,基本了解了动车组转向架的故障模式和发生原因,但是仍不清楚每种失效模式对转向架功能所造成的致命度的大小,所以需要对转向架进行FMECA 分析,以便掌握其可靠性薄弱环节,为可靠性评估与提高可靠度提供科学依据部件i以失效模式j发生失效时,该零部件的致命度为:
式中αij是部件i以失效模式j而引起部件的失效模式概率;βij是部件i以失效模式j发生失效造成部件损伤的概率。国标草案中将此称为丧失功能的条件概率。其值为1,表示肯定发生损伤;0.5表示可能发生损伤;0.1表示很少可能发生损伤;0表示无影响。λi是部件i成为基本失效件的故障率采用平均故障率,其计算公式为:
式中ni为部件i 在规定时间内的故障总次数;Tj为部件i在规定时间内故障间隔时间序列中的第j个故障间隔时间;m 为故障间隔时间的个数。
根据上面介绍的FMECA分析方法,结合笔者掌握的动车组转向架使用维护故障数据,经过处理,得到该车型转向架主要部件的FMECA分析结果如表3所示。
通过上面的分析,可以看到在转向架的各个主要部件中轮对部件的部位致命度最大,主要是因为轮对承受了车辆与线路间相互作用的全部载荷及冲击,且直接与地面钢轨接触。其次是制动卡钳(动车)、空气弹簧和轴箱体。
表3 动车组转向架主要部件FMECA分析表
续表3
它们将是影响转向架可靠性的关键部件。另外,横向减振器部件的致命度也不小,虽然抗蛇行减振器的故障致命度并不很大,但它是使动车组在行驶时具有良好的平稳性、舒适度和安全性的保证,列车在高速行驶中易发生转向架蛇行运动,所 15 以也应该加以重视。具体到故障模式致命度来看轮缘擦伤、横向减振器漏油、制动夹钳漏油、空气弹簧破损、橡胶垫破损等,是重点针对的对象,对此可以采取以下措施:(1)对于轮缘擦伤、横向减振器漏油、制动夹钳漏油、空气弹簧破损、橡胶垫破损、磨损、弹簧断裂、弹力不足等故障,要加强车辆行驶前、行驶后检查,必要时采取无损检测或磁力探伤,如发现部件有微小裂纹,应及时更换防止裂纹进一步扩展,磨损加剧等。同时建议使用抗拉压、抗剪切、抗扭转、耐磨损的材料来制造,合理改进制造工艺过程,提高部件的质量和使用寿命。(2)铁路管理部门,应加强铁路线路钢轨和沿线设施设备和运行环境的整理维护,以减少车辆运行除外的意外故障。(3)动车组维修部门维护转向架时应严格按照维修手册规定进行,并对致命度大的部件和模式加以 重视。
第4章
4、结束语
通过FMECA方法分析可以发现同一设备系统中不同功能的零部件因其重要程度不同以及结构上的差异,其危险优先数也会有所不同,因此在设计中就需要区别对待,将危险优先数特别高的部件优先考虑。本文通过现场使用维护数据,对动车组转向架故障车控制电器柜其他空气断路器故障导致的质量问题。
参 考 文 献
[1] 董锡明.近代铁道机车车辆维修现状与发展趋势.铁道机车车辆, 2002 增刊: 213-218.[2] 董锡明.机车车辆运用可靠性工程.中国铁道出版社, 2002.[3] 贾希胜.以可靠性为中心的维修决策模型.国防工业出版社, 2007.[4] 程五一, 王贵和, 吕建国编著.系统可靠性理论.中国建筑工业出版社, 2010.[5] 吴波, 丁毓峰, 黎明发编著.机械系统可靠性维修及决策模型.化学工业出版社, 2007.[6] 束洪春.电力系统以可靠性为中心的维修.机械工业出版社, 2009.[7] 国务院.铁路交通事故应急救援和调查处理条例.中国铁道出版社, 2007.[8] 铁道部.铁道交通事故调查处理规则.中国铁道出版社, 2007.[9] 崔殿国.机车车辆可靠性设计及应用.中国铁道出版社, 2008.[10] 杨玉兴, 朱启新.预防性维修活动关键件的确认方法和流程.电子产品可靠性与环境试验, 2008, 26(3): 13-15.[11] 贾俊平编著.统计学(第二版).清华大学出版社, 2007.[12] 何钟武, 肖朝云, 姬长法编著.以可靠性为中心的维修.中国宇航出版社, 2007.[13] 杨景辉 , 康建设.RCM 维修管理模式及其应用分析.科学技术与工程 , 2007, 7(15):3881-3885.[14] Kumar U.D.等编.可靠性、维修与后勤保障——寿命周期方法.电子工业出版社, 2010.[15] 王卫江.故障与预防性维修对机械可靠性影响的统计分析.机械管理开发, 2000, 6: 60-61.[16] 金玉兰, 蒋祖华.以可靠性为中心的多部件设备预防性维修策略的优化.上海交通大学学 报,2006, 40(12): 2051-2057.[17] 余卓民,赵洪伦.以可靠性为中心的机车车辆结构生命周期安全管理体系.中国铁道科学, 2005, 26(6): 0001-0005.[18] 严俊, 周峰.以可靠性为中心维修在地铁车辆制动系统中的应用.城市公共事业, 2008, 22(4): 30-33.[19] 周学兵,段国富.以可靠性为中心的装备维修管理系统.机械工程与自动化,2008,1: 0054-0056.[20] 狄威.简论机车车辆的可靠性与维修性及维修信息管理.北京交通大学学报, 2007,6.[21] 金莲珠,杨晨辉.CW-2 型准高速客车转向架.铁道车辆, 1995, 33(12): 57-60.
第五篇:牵引电动机定子接地故障分析及改进措施
牵引电动机定子接地故障分析及改进措施
-------机车公司电机车间
袁峰
摘要: 分析牵引电动机定子接地故障产生的原因,制定了相应的改进措施,提高电机运用的可靠性.
关键词:ZQDR-410电动机;定子故障;分析;改进措施
一、前言
ZQDR-410型牵引电动机(以下简称410电机)是东风4型内燃机车的主要大部件之一..其质量的好坏直接影响整部机车的运用.但由于电机本身存在诸多先天不足,以致使一些惯性故障仍然没有得到有力的控制.需要特别提出的是,铁路几次大提速,DF4机车面临更为严峻的考验.因为东风4车410牵引电动机的先天缺陷多在机械方面,随着机车速度提高,电机的振动较以前更大,尤其是机车提速后,运行速度恰好处于电机的共振范围,整机和各部件振动明显加剧,导致电机的运用条件更为恶劣,发生故障的机率大大增加.
二、质量原状分析
牵引电机定子故障的主要表现两个方面:1磁极接地;
2、联线及引出线烧损,下面做一下具体分析: 1、磁极接地
造成磁极接地主要有以下几个原因:
(1)、磁极螺栓松动。磁极螺栓松动从根本上说是主、从动齿轮啮合不良和轮对冲击产生的高频振动引起的。加上电机本身的一些固有缺陷(如主极凸台过高、每只附极只靠两个螺栓紧固)使线圈和铁芯间发生相对位移或线圈与凸台接触,最终线圈对地绝缘被磨破造成接地。
(2)、机座凸台边缘有未清除的毛刺、残渣将主附极线圈(主要是主极线圈)绝缘刺破而接地。
(3)、主极铁芯于线圈之间一体化不良。由于线圈公差尺寸很大,这就使线圈内框与铁芯的间隙大小不一,有的磁极装配靠适形毡不能把线圈撑紧,这就使磁极线圈在运用过程中容易与凸台产生相对位移,最终导致电机定子接地。
(4)、线圈变形。电机运用条件恶劣和拆解手段不够先进是造成线圈变形的主要原因。另外,在线圈检修过程中修理匝间短路以及换线鼻子时也容易使线圈变形。在磁极进行装配时,线圈高度方向的扭曲变形是最有害的质量隐患,这种变形必然导致线圈与铁芯长边方向的间隙不均,铁芯尖角处与线圈内框距离变得更小,在电机运用一段时间后铁芯就会和线圈接触,最后因线圈绝缘被磨破而接 地。
2、联线及引出线烧损
造成联线及引出线烧损主要有以下几个原因:
(1)、联线材质过硬。联线在长期的使用过程中,铜排的硬度逐渐增大,抗振性能不断降低。加上C2、H2引出线在铜排水平方向有硬弯,极容易产生应力集中,在恶劣的外部条件下逐渐出现裂纹,使有裂纹的部位接触电阻增大而烧损。
(2)、旧线规格、质量不一。为降低牵引电机定子接地故障率,许多机务段对联线进行了改造,但由于技术水平不同,加之全路没有一个统一的规范,致使入厂车联线品种多样,良莠不齐。特别是经压制成的铜编织线,在厂修后屡次发生烧损故障。
(3)、紧固件质量不稳定。联线螺栓和接头板的质量对电机定子可靠性也至关重要,车间就曾因为螺栓断和接头板质量不好发生多起主附极与联线街头处烧损的段外故障。因为接线处紧固不良必然造成线圈线鼻子与联线随电机振动而分合,产生的电弧使接头处烧损。(4)、联线绑扎不牢。用蜡线绑扎联线和引出线很难绑紧,浸漆后有蜡线松弛现象,并容易因材质变脆而使机械强度大大降低,对联线起不到应有的固定作用。
(5)、联线与蚂蝗钉之间有绝缘缺陷。这种情况主要发上生在部分内部联线的蚂蝗钉过长的入厂410电机上,由于工字板不能将联线与蚂蝗钉完全隔开,在410电机运用过程中联线与蚂蝗钉逐渐贴紧,磨破绝缘后造成联线烧损、定子接地。
三、技术改进措施:
机车的运用状况更加恶劣是410电机定子故障的源头,410电机的设计缺陷导致这种故障频频发生。因此,要满足用户的要求就必须深入调查,合理分析。大胆地对410原设计进行改进。为降低410定子故障进行质量攻关,并取得了较好的效果。现总结如下: 1、磁极接地
(1)、针对磁极螺栓松,车间一方面开始对其实施专检,另外对浸漆班交出的定子进行检查并及时热紧,由于电机在运用中抱轴处所受到的振动力最大,所以在410电机抱轴处的主极螺栓边焊接挡块,阻止螺栓受振而转动。
(2)、改进机座检修工艺,加强对凸台的检修力度,清除凸台边缘的毛刺、残渣,并用手锉将凸台边缘锉修一遍。
(3)、强调线圈套极的一体化效果,对宽度方向尺寸较大的线圈适当增加适形毡的层数,使磁极装配成为一个牢固的整体。另外,要求铁芯两端上紧塞紧块后要用适形毡边角料将线圈与铁芯间的空隙堵死,塞紧。
(4)、对于线圈变形,一方面要求解体班进一步提高拆解完好率,另一方面自制多种检测工具,提高线圈的检修水平,防止不合格品流入下道工序。对于变形较小又无法修复到原形的线圈可用三层黄金薄膜加一层外包的方法增大线圈内框尺寸,使之符合套极的要求。(5)、更换磁极线圈的外包绝缘材料。用热烘收缩带取代原来的无碱玻璃丝带,使线圈的机械性能得到了很大的提高。
(6)、定子由原工艺的普通浸漆改为采用真空压力浸漆。提高定子的绝缘强度和机械强度。
2、联线烧损
(1)、将引出线改为软联线。改变原设计的扁铜线或铜编织线结构,全部使用丁晴橡胶电缆线,两端套铜管压接制成,以吸收振动。(2)、为防止螺栓断造成主附极与联线接头处烧损,M8×25螺栓全部由普通4.8级改为8.8级高强度螺栓,使车间内紧固螺栓断现象得到了杜绝。车间还多次与接头板生产单位结合,使接头板质量也有了很大的提高,并一直比较稳定。(3)、为使联线绑扎牢靠。车间改用了无纬带对联线进行绑渣,机械强度较蜡线有了很大的提高,联线的可振动幅度大大降低。(4)、在联线固定方面,车间除了将原来的长蚂蝗钉进行了必要的改造外,还在C2和H2引出线振动最大处各增加了一个蚂蝗钉,有效地提高了电机运用的可靠性。
(5)、将480电机主极间联线由原设计的两根50平方铜编织线全部更换成3根,提高电机载流量,并执行先浸漆后装联线的工艺,防止联线因吸绝缘漆而变硬。
经过以上两项技术改进的措施,定子故障率有了明显降低。