第一篇:三角形两边和大于第三边教学反思
《认识三角形两边之和大于第三边》教学反思
“动手操作”是学生学习的重要方式之一。研究表明:人们在学习时,如果仅靠看和听,最多只能掌握30%的新知,如果做的话,可以达到90%以上。随着新课改的不断深入,动手操作已在课堂教学中得到广泛的运用,学生的积极性提高了,课堂气氛也活跃了。那么,动手操作果真那样神奇,是数学课堂上一切问题的灵丹妙药吗?结合一位教师的案例剖析,我对动手操作产生了新的思考。
教学片段:
师:请四人小组合作,拿出准备好的四捆小棒首尾相接的摆一摆三角形。(小棒的长度是①10cm、6cm、5cm;②6cm、5cm、4cm;③10cm、6cm、4cm;④10cm、5cm、4cm)在摆的过程中如果遇到了问题可以在小组内讨论。
学生操作、讨论。交流。
师:你们在摆三角形的过程中遇到了什么问题?
生:我们小组在摆三角形的过程中,发现第一、二、三捆的小棒都能摆出三角形,但第四捆的三根小棒摆不出三角形。师:其他小组摆的同他们一样吗? 生:一样(齐答)。
师:就是说,用第一、二、三捆的小棒都能摆成三角形,第四捆小棒摆不出三角形。有不同意见吗? 生:没有。
师:那我们就请一组同学在投影仪上摆摆看。
一组同学到讲台上用小棒摆三角形。学生摆出了以下图形:
师:下面的同学,你们也用的第三捆小棒摆出了三角形吗? 生:是的。
教师的头上开始冒汗了。反思:
学生用10厘米、6厘米、4厘米的小棒围出了三角形,原因出在哪?我仔细观察了我旁边学生用的小棒,这些小棒是用饮料、牙签、还有塑料棒做的。都有一定的直径,如果学生在截取时再多截那么一点儿,摆时两根小棒接头的位置摆放不准,摆出一个三角形也就不足为奇了。看来问题不在学生这里,因为学生想方设法围出老师要求的三角形的心情,是可以理解的。看来问题出在实验本身。教师让学生用10厘米、6厘米、5厘米的三根小棒摆一个三角形,这样的三角形是能够摆出的。用10厘米、5厘米、4厘米的三根小棒摆一个三角形,这种三角形是明显摆不成的。但是,让学生用4厘米、6厘米、10厘米的小棒摆一个三角形,的确是难为学生了。除非是学生已经知道了结论。
那么,怎样解决这个问题呢?我们应从学生的角度来思考。可以这样来处理教材:准备四捆小棒,两组能围成三角形的,两组围不成三角形的。小组合作后,让学生说说在刚才的活动中有什么发现,引导学生得出两根长度之和大于第三根的能围成三角形,两根长度之和小于第三根的则围不成三角形的规律。最后让学生讨论:如果两根长度之和等于第三根的长度,能否围成一个三角形?在学生充分讨论的基础上,教师可以用课件演示或在黑板上面画线段的方法来验证,让学生发现两根长度之和等于第三根长度的也不能围成三角形,进而得出数学结论:三角形的任意两边之和大于第三边。
从上面的案例中,我们不难看出,无论是知识的讲授还是学生的动手操作,我们都要从学生的角度来思考,对具体操作方面的每个细节都要精心设计,因为这些细节影响着课堂效果,同时也展示了教师的智慧。
第二篇:三角形任意两边的和大于第三边教学设计
三角形任意两边的和大于第三边教学设计
教学过程:
一、创设情境
1.出示:课本82页例3情境图。
(1)这是小明同学上学的路线。请大家仔细观察,他可以怎样走?
(2)在这几条路线中哪条最近?为什么?
2.大家都认为走中间这条路最近,这是什么原因呢?
请大家看,连接小明家、商店、学校三地,近似一个什么图形?连接小明家、邮局、学校三地,同样也近似一个什么图形?那么走中间这条路,走过的路程是三角形的一条边,走旁边的路走过的路程实质上是三角形的另两条边的和,根据刚才大家的判断,走三角形的两条边的和要比第三边大,那么,是不是所有的三角形的三条边都有这样的关系呢?
我们来做个实验。
二、实验探究
1.实验1:用三根小棒摆一个三角形。
在每个小组的桌上都有5根小棒,请大家随意拿三根来摆三角形,看看有什么发现?
学生动手操作,发现随意拿三根小棒不一定都能摆成三角形。接着引导学生观察和比较摆不成三角形的三根小棒,寻找原因,深入思考。
2.实验2:进一步探究三根小棒在什么情况下摆不成三角形。
(1)每个小组用以下四组小棒来摆三角形,并作好记录。
(2)观察上表结果,说一说不能摆成三角形的情况有几种?为什么?
(3)能摆成三角形的三根小棒又有什么规律?
(4)师生归纳总结:三角形任意两边的和大于第三边。
三、应用深化
1.通过实验,我们知道了三角形三条边的一个规律,你能用它来解释小明家到学校哪条路最近的原因吗?
2.请学生独立完成86页练习十四的第4题:在能拼成三角形的各组小棒下面画“√”。(单位:厘米)
问:我们是否要把三条线段中的每两条线段都相加后才能作出判断?有没有快捷的方法?(用较小的两条线段的和与第三条线段的关系来检验。)
你能用下图中的三条线段组成三角形吗?有什么办法?
3.有两根长度分别为2 cm和5 cm的木棒。
(1)用长度为3 cm的木棒与它们能摆成三角形吗?为什么?
(2)用长度为1 cm的木棒与它们能摆成三角形吗?为什么?
(3)要能摆成三角形,第三边能用的木棒的长度范围是。
四、反思回顾
在这节课里,你有什么收获?学会了什么知识?是怎样学习的?
教学目标:
1.探究三角形三边的关系,知道三角形任意两条边的和大于第三边。
2.根据三角形三边的关系解释生活中的现象,提高运用数学知识解决实际问题的能力;提高观察、思考、抽象概括能力和动手操作能力。
3.积极参与探究活动,在活动中获得成功的体验,产生学习的兴趣。
第三篇:三角形任意两边之和大于第三边教学案例
教学案例:三角形任意两边的和大于第三边
通伏小学 张永恒
教学内容:人教版八册P82 教学目标:
1、通过动手操作和观察比较,使学生知道三角形任意两边的和大于第三边;
2、能根据三角形三边的关系解释生活中的现象,提高运用数学知识解决实际问题的能力;提高观察、思考、抽象概括的能力以及动手操作的能力;
3、让学生积极参与探究活动,获得成功体验,产生学习数学的兴趣。重点:三角形三边之间的关系
难点:探索发现三角形三边之间的关系。教学准备:小棒、课件 教学过程:
一、引入
1、师:同学们,我们已经认识了三角形,你能告诉大家什么是三角形吗? 生:由三条线段围成的图形叫做三角形。
师:不错,那么三条线段就一定能围成三角形吗?能(不能)
师:那我们就来围围看吧。谁愿意上来围?(两生上台演示——评析)
2、师:看来,有的三条线段能围成三角形,有的三条线段不能围成三角形。那下面我们大家都来围围三角形,好不好? 二、三角形三边关系的探究
(一)围三角形,创建研究素材
1、师:(1)同桌两人合作,每次从5根小棒中任取3根来围三角形,将围的情况记录在白纸上。要求分工合作:一人围,一人记录。
2、学生操作(教师指导)
3、反馈:学生汇报能和不能围成的情况(教师板书记录)师:还有吗?情况不少,我们就用省略号来表示吧!
[检测错误情况——对同学们汇报上来的能和不能围成三角形的各种情况,对照自己的记录,看看谁还有意见?]
(二)思考讨论,发现规律
1、师:同学们,能不能围成三角形看来跟三条线段的什么有关?(长度),那么究竟怎么样的三条线段不能围成三角形?怎么样的三条线段又能围成三角形,下面我们先通过自己观察、思考,再与同桌进行讨论来发现其中的奥秘。
2、学生讨论(教师参与)
3、反馈 层次1:
师:下面我们先来看怎样的三条线段不能围成三角形?
(1)生:我们发现两边的和小于(等于)第三边就不能围成三角形。比如2+2小于5,就不能围成三角形。(师板书:2+2<5,)
师:真的吗?来围给我们看看?(生上台围,展示)(2)师:是不是所有的情况都是小于呢?
生:我们发现两边的和等于第三边也不能围成三角形。3+3等于6,就不能围成三角形。(师板书:3+3=6)
师:也请你围给我们看看?(生展示)
检验其余记录下来的情况。(师生齐算,板书算式)层次2:(1)列举发现
师指着板书:这些能围成三角形的三条边又有怎样的关系呢?
生:我们发现两条边的和大于第三条边就能围成三角形。如2+3>4,这样就能围成三角形。(师板书)
师:谁有不同发现?
生:我们认为必须每两条边相加和大于第三条边才能围成三角形。比如2+3>4、2+4>3、4+3>2(师板书)
哪些组还有不同发现?
生:我们认为最短的两边的和大于第三条边就能围成三角形。如只要2+3>4,就能围成三角形。
师:还有吗?(2)辨析
师:各自说说理由吧!生:因为如果只考虑一种情况是不行的,有时两条线段的和大于第三条线段,也不能围成三角形。
师:举个例子呢?引导学生引用“不能”的情况来反证。
生:比如在刚才不能围成的情况中:3+4<8、8+4>3、8+3>4,出现了两个大于的情况,但只要存在两边和小于(等于)第三边的情况,也不能围成三角形。所以只考虑一种情况是不行的。
师:那么为什么最短的两条线段的和大于最长的线段就能围成三角形呢? 生:因为最短的两条线段的和大于最长的线段,那么另外两组边加起来肯定比这一组长。意思是如果2+3>4,那么2+4肯定>3,4+3肯定>2。
(师用实物在黑板上演示)
小结:因为只要最短两边的和大于了最长的边,那么其他任意两边的和都会大于第三条边的。所以你们两组的观点实际上是一致的。这也就是三角形三边关系的一个
重要结论:三角形任意两边的和大于第三边
三、应用
1、下面哪几组的三条线段能围成三角形?(3、4、5)(2、3、7)(3、3、3)(3、3、6)
2、根据3、3、6这题延伸。要求:拿掉一根3厘米的线段,再重新配一根其它长度的线段,使它们能围成三角形。(取整厘米数)
如果拿掉的是6分米,那么配上的一根最短应该是几?最长可以是几?
3、机动:16分米长的小棒如果要围成一个三角形,我们必须将它截成3段,其中最长的一边最多可以截几分米?为什么?具体可以怎样截,你有没有方法可以将所有的情况不遗漏也不重复的列举出来?(要求边取整分米数)
四、总结
师:这节课你有哪些收获?关于三角形三边关系还有值得我们探索的地方,比如三角形任意两边的差与第三边有怎样的关系?有兴趣的同学课外可以自己进行探索。
(另外还有一种思路:先告诉学生结论,然后通过验证来检查结论是否正确)
六、案例反思
这节课,我始终在教学活动中,以培养学生的自主探讨学习为主,在新授课的过程中能充分发挥学生自主学习的作用。因为教学内容相对简单,我在课上只要学生自己能说的、能做的我就绝对不说、不做。整堂课学生的自主学习相当充分,并不是留于形式,浮于表面,而是实实在在的自主学习。特别是在探索三角形分类的过程中,多次让学生观察、思考、讨论,自主探索三角形的分类知识,我仅仅起了组织和引导的作用。一节课下来,学生在动手操作、主动探索、交流辩论的过程中,进行自主的归纳、总结,他们在自主学习中获取知识的能力,在操作中感悟数学的能力,均得到较好的发展。
第四篇:三角形三边关系教学反思
让数学课既“有营养”又“好吃”
字数:2592 字号: 【大 中小】
《三角形三边关系》是苏教版数学四年级下册的教学内容,“三角形任意两边长度之和大于第三边”是三角形的重要性质。了解这一知识,不仅可以更好地理解和掌握三角形的特征,而且可以利用它解决很多日常生活问题。教材在例题之后编排了以下几道习题。
【教材呈现】
原题1:下面哪组线段可以围成一个三角形?为什么?
面画“√”。
原题2:一个三角形,两边的长分别是12厘米和18厘米,第三条边的长可能是多少厘米?在合适的答案下
原题3:先量出下面两根小棒的长度,再想一想,能和它们围成三角形的第三根小棒的长可能是多少厘米?
原题4:从学校到少年宫有几条路线?走哪一条路最近?
在实际教学中,逐一解决以上习题固然能巩固“三角形任意三边之和大于第三边”这一知识点,加深对三角形三边关系的理解。但是,总是以小棒为载体,运用结论进行判断和选择,学生始终感觉在进行数学训练,兴趣淡然,体会不到这一知识内涵的丰富性以及在生活中的广泛应用。为此,我对练习进行了重新设计。
【教学片段】
师:这节课我们一起研究了三角形的三边关系,知道了三角形任意两边之和都是大于第三边的。这个知识在生活中用处可大着呢!不信,你看!
第一组:
师:木匠王师傅要找三根木料做一个三角形,他挑出了这样三根,能做出来吗?出示:
生:不能,因为第二根加第三根小于第一根。
师:只判断这两根就确定啦?
生:我觉得只要有两条边的和小于第三边就肯定不行了。
师:那你为什么不先判断第一根加第二根,或者第一根加第三根呢?
生:第一根最长,再加一根更长,肯定大于第三根。
师:那能不能围成,最关键是看什么?
生:两条短一些的边加起来大于最长的边。
师:哦!难怪你们这么快,原来还有这个窍门啊!
第二组:
师:王师傅试了试,果然做不成三角形。无奈之下,换了一根。这回,能做起来吗?
出示:
生:还是不能,因为第二根加第三根的和等于第一根,还是围不成。
师:为什么选7+3来判断?
生:因为7和3是较短的。这一组如果符合要求,其余的也一定符合要求!
师:说得真棒!
第三组:
师:王师傅两次都没做起来,有些不高兴了,他拿起锯子,把最长的一根锯掉了一段!这回,他成功了吗?
出示:
生(很失望):还是没有!
师:怎么又失败了呢?这最长的一根已经被锯短了呀!
生:不对,因为这一锯,让第二根成为最长的了,3厘米加3厘米小于7厘米,两条短边加起来小于最长的边,还是做不成!
第四组:
师:王师傅一气之下,把这根锯短的扔掉了,他决心重新寻找!你们能给王师傅一些建议?(取整数)
出示4:
生:5厘米。
师:可以吗?
生判断:3厘米+5厘米>7厘米,能围成三角形。
生:8厘米也可以。
师:行吗?其他学生判断。
……
师:大家你一言我一语,都有道理!王师傅想,你们要是能给我个范围就好了!
生交流,汇报。
生:我认为只要大于4厘米小于10厘米都可以。
师:为什么?
生:如果正好是4厘米,那么3+4=7,围不成,所以要比4厘米多;如果正好是10厘米,那么3+7=10,也围不成,所以要比10厘米少。
师:看来,第三根的长度除了要比两根之和短,还有什么要求?
生:两边之和大于第三边,两边之差小于第三边。
师:有了大家的建议,王师傅终于找到了合适的木料!
生不禁欢呼……
第五组:
师:王师傅完成了任务!一看时间,不早了,得赶紧回家!
出示:
师:王师傅从木料场回家,有几条路可走?他会选择哪一条路呢?
生:中间一条。
师:为什么?
生:两边的路是弯曲的,中间的是直的,两点之间线段最短。
师:用我们今天学的知识能解释吗?
生:中间一条路和两边的路合在一起,可以看作两个三角形。每个三角形中,两边之和又是大于第三边的,所以中间的路最近。
【设计思考】
特级教师吴正宪提出,要让孩子享受既有“营养”又“好吃”的数学学习,单调的练习题如何烹饪成适合孩子的美味?本节课,主要做了以下思考:
有“营养”,要有明确的目标定位。课前,我首先对教材中安排的4道习题进行了研究。题1是根据每组中3条线段的长度判断它们是否能围成三角形,巩固对三角形三边关系的认识,强化对三角形特征的认知。题2引导学生根据给定的三角形的两条边,讨论第三边的长度所在的区间,并选择合适的第三边的长度,使学生更深刻地理解三角形的三边关系,培养思维的条理性和严密性,发展空间观念。题3要求先测量长度,再判断能与之围成三角形的第三根小棒的长度。促使学生在寻求第三根小棒长度的过程中,初步形成三角形两边长度的差小于第三边的认识,进而加深对三角形三边关系的认识与理解。题4则是让学生应用三角形的三边关系解决简单的实际问题,使学生在解决问题的过程中不断加深对三角形三边关系的理解。
以上习题的训练目标成为我练习设计的首要定位,即:无论以何种形式呈现,内在的达成目标应该是既定不变予以落实的。
有“营养”,要有助于提升思维能力。
教材习题是通过不同的要求,达成学习目标的,但每道题在独立练习时,目标指向性比较单一,一道题解决一个问题。而关于三边关系的知识,内在联系是非常紧密的,三条边中任意一条边长度的改变都有可能引起整体的变化。是否可以通过“变式”来沟通知识的联系,让学生在不断的思维转换中加深对三边关系的理解?这一想法成为练习设计的落脚点。于是梳理不同类型三角形的特点并有机串联,第一组是两边之和小于第三边的类型,通过追问,引导学生得出判断的简便方法,只要判断两条短边之和大于第三边即可。第二组呈现两边之和等于第三边的情形,用于巩固。第三组则在第二组的基础上,将最长的变为最短的,此举,从形式上来看,只是改变了一根小棒的长度,但从本质上讲,此时三角形三边的长短关系则发生了变化,较短边不再是前两组的7和3,而是3和3,这就促使学生重新审视三边长度整体把握后再作判断。第四组只给定两根小棒的长度,思考第三根小棒的长度区间,不仅考虑两根之和大于第三边,还要考虑两边之差小于第三边。最后一组将知识应用于生活。此环节没有出示过多的习题与要求,只是在一组练习的基础上通过不断地变式,由浅入深,逐步提升思维含量,培养学生的思维能力。
“好吃”,要能激发儿童兴趣。
很多学生抱怨数学冰冷、枯燥、无趣,那往往是因为我们将原本鲜活的内容生硬地呈现在了学生面前。课堂上,学生为了做题而做题,数学与生活成了两张皮,学生丝毫体会不到所学的数学知识离开了课本在生活中能有何应用?儿童的心理特征决定了只有有趣的,才是他们愿意学的。激发学习兴趣,理应成为教师课堂教学的重要任务。上述案例中,笔者反复思量,寻找与三边关系紧密结合的生活原型,创造性地设置出木匠王师傅做三角形的情境,学生在帮助王师傅寻找合适木料的过程中,积极性被充分调动起来,体会到了问题解决后的愉悦之情。
“好吃”,要站在儿童立场解决问题。
所谓儿童立场,简单地说,就是教师要能够换位思考,把自己当作儿童,以儿童的眼光看待事物,以儿童的视角考虑问题。我们常常以成人的眼光审视严谨系统的数学,并以自己习惯了的教学方式将数学“成人化”地呈现在学生面前。课堂上,常常忽视了童年期学生心理、特点和学习规律,失去了儿童的情趣。上述案例中,教者就抓住了儿童爱听故事的年龄特点,为数学问题创设生活情境,在情境中生动地讲述故事,王师傅找木料,换木料,锯木料,扔木料,一波三折,环环相扣。当王师傅总是找不到合适的木料时,学生们不禁发出一阵阵叹息,继而迅速投入到紧张的思考中。当王师傅在大家的帮助下终于完成任务,学生们竟不约而同地发出“耶……”的欢呼声!课堂上,既有人物情感的相互交融,又有学生思维的深度撞击,师生互动,生生互动,在分析、讨论、质疑、归纳过程中,学生对于三角形三边关系的认识不断丰富,理解更加深刻。有位老师听课后不觉感叹:数学课上成了“故事课”,不要说学生,连我们也意犹未尽啊!
作为教师,我们要读懂教材、读懂学生、读懂课堂,用心研究,尽可能地丰富习题内涵,让习题承载多重训练目标。同时用智慧创造,让学生在兴趣的指引下,思维不断得到提升。唯有“营养”与“好吃”兼而有之,才能烹饪出学生喜欢的数学课堂。
第五篇:《三角形三边的关系》教学反思
三角形三边关系教学反思
《三角形的三边关系》三角形的三边关系是在学生了解了三角形的一些基本特征的基础上学习的,学生虽然知道了三角形有三条边,但三角形“边”的研究却是学生首次接触,短短的三十五分钟之内,要让学生从抽象的几何图形中得出三角形三边的关系这个结论,并加以运用,并非易事。因此,教学中,我让学生亲身经历了探究的过程,围绕“任意的三条线段能不能围成一个三角形?”这个问题让学生自己动手操作,发现有的能围成,有的不能围成,再次由学生自己找出原因,为什么能?为什么不能?初步感知三条边之间的关系,接着重点研究“能围成三角形的三条边之间到底有什么关系?”通过观察、验证、再操作,最终发现三角形任意两边之和大于第三边这一结论。这样教学符合学生的认知特点,既增加了兴趣,又增强学生的动手能力。通过本节课的教学,既让我感受到了成功的喜悦,同时也从课堂中暴露出了一些实际问题,下面我将从以下几方面反思本节课的课堂教学:
一、关注学生亲身经历
本节课的一个突出特点就在于学生的实际动手操作上,通过教师提问:能否摆成三角形与三角形的“边的长度”有关系,它们之间有着怎样的关系呢?今天我们就一起来研究这个问题。这样很自然地就导入了新课,为后面的新课做了铺垫。在新授部分:学生用手中的小棒按老师的要求来摆三角形,并且做好记录。这个过程必须得每个学生亲自动手,在此基础上观察、发现、比较,从而得出结论。苏霍姆林斯基曾说:“在人的心理深处都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者和探索者。而在儿童的精神世界中,这种需要特别强烈。”教学中,我有意设置这些实际动手操作、共同探讨的活动,既满足了学生的精神需要,又让学生在浓烈的学习兴趣中学到了知识,体验到了成功的快乐。
二、练习设计层层深入
本节课我设计了四个练习:
1、判断能否围成三角形。
2、小明从家到学校走哪条路最近?
3、从五根小棒中选择3根小棒组成三角形,4、找第3根边组成三角形
评价一节数学课,最直接有效的方式就是通过练习得到的反馈。而学生之间参差不齐,为了能兼顾全班学生的整体水平,我在练习设计上主要采用了层层深入的原则,先是基础知识的练习,并从中发现3根一样长的小棒一定能组成三角形;然后用三角形的知识解决实际问题;最后增加拓展延伸题,让优等生在这个知识点上的学习更进一步。而每一道题都运用了本节课的知识,每一道题目的呈现方式又都不同。这样既能让后进生跟得上,又能让优等生吃得饱,从而让全班同学共同进步。
但是从教学过程中我也反思了自己的不足之处。
一、时间安排不够合理,当发现学生在填写表格时有困难,应及时引导学生填写,在这部分时间有所浪费;
二、没有及时捕捉学生的智慧。学生在思考“能围成三角形三条边的关系”时,其中有一个学生说“我发现两条短边的和比另外一条边长时,就能围成三角形。”当时由于我考虑到为后面的“任意”二字做铺垫,并没有对学生的这个答案做过多的评价。而是自后面的优化环节才提及,没有很好地利用学生生成的资源。