第一篇:电火花加工技术论文
电火花加工的历史
1943年,苏联学者拉扎连科夫妇研究发明电火花加工,之后随着脉冲电源和控制系统的改进,而迅速发展起来。最初使用的脉冲电源是简单的电阻-电容回路。
50年代初,改进为电阻-电感-电容等回路。同时,还采用脉冲发电机之类的所谓长脉冲电源,使蚀除效率提高,工具电极相对损耗降低。随后又出现了大功率电子管、闸流管等高频脉冲电源,使在同样表面粗糙度条件下的生产率得以提高。
60年代中期,出现了晶体管和可控硅脉冲电源,提高了能源利用效率和降低了工具电极损耗,并扩大了粗精加工的可调范围。
到70年代,出现了高低压复合脉冲、多回路脉冲、等幅脉冲和可调波形脉冲等电源,在加工表面粗糙度、加工精度和降低工具电极损耗等方面又有了新的进展。在控制系统方面,从最初简单地保持放电间隙,控制工具电极的进退,逐步发展到利用微型计算机,对电参数和非电参数等各种因素进行适时控制。
电火花加工
电火花加工是在加工过程中,使工具和工件之间不断产生脉冲性的火花放电,靠放电时局部、瞬间产生的高温把金属蚀除下来。又称放电加工和电蚀加工,英文称(Electrical Discharge Machining,简称EMD)。按照工具电极的形式及其与工件之间相对运动的特征,可将电火花加工方式分为五类:
①利用成型工具电极,相对工件作简单进给运动的电火花成形加工;②利用轴向移动的金属丝作工具电极,工件按所需形状和尺寸作轨迹运动,以切割导电材料的电火花线切割加工;③利用金属丝或成形导电磨轮作工具电极,进行小孔磨削或成形磨削的电火花磨削;④用于加工螺纹环规、螺纹塞规、齿轮等的电火花共轭回转加工;⑤小孔加工、刻印、表面合金化、表面强化等其他种类的加工。
电火花加工的基本原理
(1)极间介质的电离、击穿,形成放电通道
放电通道是有大量带正电和负电的粒子以及中型粒子组成,带电粒子高速运动,相互碰撞,产生大量热能,使通道温度相当高,通道中心温度可达到10000摄氏度以上。由于放电时电流产生磁场,磁场又反过来对电子流动产生向心的磁压缩效应和周围介质惯性力压缩效应的作用,通道扩展受到很大阻力,故放电开始阶段通道截面很小,而通道内有高温热膨胀形成的压力高达几百万帕,高温高压的放电通道以及随后瞬间气化形成的气体急速扩展,产生一个强烈的冲击波向四周传播。在放电的同时还伴随着光效应、声效应和热效应等,这就形成了肉眼所能看到的电火花。
(2)介质热分解、电极材料的融化,汽化热膨胀
极间介质被电离、击穿,形成放电通道后,脉冲电源使通道间的电子高速奔向正极,正离子奔向负极。电能转化为动能,动能通过相互碰撞转化为热能。正极和负极表面形成瞬间热源,使通道瞬间达到很高的温度。通道高温首先使工作液介质气化,进而进行热分解。并且使两电极表面的金属材料开始融化直至沸腾气化。气化后的工作液和金属蒸汽瞬间体积猛增,形成了爆炸的特性。所以在观察电火花加工时,可以看到工件与工具电极间有小气泡冒出,工作液逐渐变黑并听到轻微的爆炸声。
(3)电极材料的抛出
通道和正负级表面放电点瞬间时使高温使工作液气化和金属材料融化、气化,热膨胀产生很高的瞬间压力。通道中心的压力最高,使气化的其体体积不断向外膨胀,形成一个扩张的冲击范围形似“气泡”,在该范围内内外、上下压强不相同,压力高的地方的熔融金属液体和蒸汽就被排挤、抛出而进入工作液。在放电过程中冲击气泡不断扩大,当放电结束后,气泡温度不再升高,但由于液体介质的惯性作用,气泡会继续向外扩张,使气泡内压力急剧降低,甚至降低到大气压一下,形成局部真空,使在高压下溶解在熔化和过热液态金属材料中的气体析出,以及液态金属本身在低压下再沸腾。由于压力的骤降,是熔融金属材料以及其蒸气在加工形成的小坑中再次爆沸飞溅而被抛出。
(4)极间介质的消电离
在电火花放电加工过程中产生的电蚀产物如果来不及排除和扩散,就会改变间隙介质的成分和降低绝缘强度。那么产生的热量将不能及时传出,带电粒子自由能不易降低,将大大减少复合几率,是电离过程不充分,将使下一个脉冲放电通道不能顺利的转移到其他部位,而始终集中在某一部分,使该处介质局部过热而破坏消电离过程,脉冲火花放电将恶循环的转变为有害的稳定电弧放电,此外还使该处介质局部过热,局部过热的工作液高温分解,结碳,使加工无法进行,并烧坏电极。因此为了保证电火花加工过程的正常进行,在两次放电之间必须有足够的时间间隔让电蚀产物充分排除,恢复放电通道的绝缘性,使工作液介质消电离。
电火花加工的条件
为了达到利用电腐蚀现象对金属材料进行尺寸加工,需创造创造以下条件: 1.必须使工具电极和工件被加工表面之间保持一定的放电间隙,这一间隙加工条件而定,通常为0.02~0.1mm。如果间隙过大,极间电压不能击穿极间工作液介质,因而不能产生火花放电;如果间隙过小,很容易造成短路接触,同样不能产生火花放电。为此,火花加工过程中不许具有工具电极的自动进给和调节装置,使其和工件的加工表面保持某一放电间隙。
2.火花放电必须是瞬时的脉冲性放电放电间隙加上电压后,延续一段时间t1,需停歇一段时间t0,延续时间ti,一般为1~1000μs,停歇时间t0一般需要20~100μs,这样才能使放电所产生的热量传导扩散到其余部分,把每一次的放电蚀点分别局限在很小的范围内,否则,像持续电弧放电那样,会使表面烧伤而无法用作尺寸加工。为此电火花加工必须采用脉冲电源。3.火花放电必须在有一定绝缘性能的液体介质中进行,例如没有、皂化液或去离子水等。液体介质又称工作液,他们必须有较高的绝缘强度(电阻率为10^3~10^7Ω·cm),有利于产生脉冲性火花放电。同时,液体还能把电火花加工过程中产生的金属小屑、碳黑、小气泡等电蚀产物从放电间隙中悬浮排除出去,并且对电极和工件表面有较好的冷却作用。
电火花加工的优点以及缺点
优点:
1、能加工硬质合金和淬火的压铸模具镶块;
2、能加工复杂的型腔的模具如形状复杂的深孔、细孔、加强筋、窄槽;
3、加工时有很小的受力
4、主要加工塑料模具和压铸模具和热锻模具
5、使用的电极材料多为比加工工件比较软的石墨和紫铜;采用石墨和紫铜的特点是采用电加工的形状都比较复杂加工电极比较烦琐,采用容易加工的石墨会产生事半功倍的效果;
6、直接使用电能加工,改变的传统的加工方法,操作简单,易于掌握,容易实现电气自动化。电火花加工主要用于模具生产中的型孔、型腔加工,已成为模具制造业的主导加工方法,推动了模具行业的技术进步。
缺点:
1、加工速度较慢。
2、往往在加工比较大的型腔时需要其他的加工方法配合比如为了高效率需要铣去型腔中大部分,然后用电极再去加工。
3、采用电火花加工的工件通常都是盲孔不便于观察,到精加工时放电间隙调小,特别容易产生积碳,严重时甚至产生烧损的现象。
4、加工时工件装卡在电极卡头的垂直下方,找正时需要长时间附下身去找正,对不正的情况,操作者的腰部特别容易疲劳。
5、采用的工作液作为放电介质,在加工过程中还起着冷却、排屑等作用。常用的工作液是粘度较低、闪点较高、性能稳定的介质,如煤油,装卡时遇到怕卡出痕迹的工件不能垫纸板和织物只能垫铜皮。工作环境要求防火,工作时要求排烟,操作者要求戴防毒面具,排烟不倡导致室内的烟雾增多,严重影响操作者的身体健康。在来回装卡工件时,手上势必会粘上煤油,对手上的皮肤伤害很大。
6、装卡电极时,同一工件粗加工和精加工,工件不动,只要换电极就要重新找正,哪怕把电极拆下来简单处理一下,给操作者带来很大的工作量。
7、电火花加工测量尺寸非常复杂往往要借助辅助工具,所以对尺寸的要求相对较低。
影响材料放电腐蚀的因素
1.极性效应对电蚀量的影响
极性效应:单纯由于正负极性不同而彼此电蚀量不一样的现象 1)产生极性效应的原因: 在电火花放电过程中,正、负两极表面分别受到负电子和正离子的轰击和瞬时热源的作用,在两极表面所分配到的能量不一样,因而融化、气化抛出的电蚀量也不一样。
2)影响极性效应的因素:
脉宽、脉间、脉冲峰值电流、放电电压、工作液以及电极对的材料等。2.电参数的影响(电参数主要指的是电压脉冲宽度t1、电流脉冲宽度te、脉冲间隔to、脉冲频率f、峰值电流 ie、峰值电压 u和极性等。)
单个脉冲放电所释放的能量取决于极间放电电压、放电电流和放电持续时间,所以单个脉冲放电能量为
Wm=∫0u(t)i(t)dt 火花放电精细的电阻的非线性特性,击穿后间隙上的火花维持电压是一个与电极对材料及工作液种类有关的数值。
由上述可得,提高电蚀量和生产率的途径在于:提高脉冲频率f;增加单个脉冲能量Wm(可增加平均放电电流ie和脉冲宽度ti,减少脉冲间隙t0,提高系数ka、ke)
3.金属材料热学常数对电蚀量的影响
金属材料的热学常数包括熔点,沸点,热导率,比热容,融化热,气化热等。而正负极产生的热量主要消耗在:
a)由于热传导散失在电极其他部分和工作液中 b)使局部金属材料温度升高至熔点 c)熔化金属材料
d)使熔化的金属材料继续升温至沸点 e)使熔融金属气化
f)使金属蒸汽继续加热成过热蒸汽
—^
^
te 所以可得脉冲放电能量相同时,金属的热学常数越高,电蚀量越小,越难加工。此外热导率越大的金属,由于传热快导致瞬间传达的热量越多,因而降低了自身的电蚀量。4.工作液对电蚀量的影响
a)形成火花击穿放电通道,并在放电结束后迅速恢复间隙绝缘状态,防止破坏性电弧放电;
b)对放电通道产生压缩作用,限制其扩展; c)有利于电蚀产物的抛出和排除 d)对工具和工件有很好的冷却作用 5.一些其他因素对电蚀量的影响
加工过程的稳定性;电极材料;电极材料瞬间熔化或气化抛出的速度
电火花加工的加工速度和工具的损耗速度以及降低工具损耗的方法
电火花加工时,工件和工具同时遭受不同程度上的电蚀,单位时间内工件的电蚀量称为加工速度,单位时间内工具的加工速度称为损耗速度。 加工速度
提高加工速度的途径有提高脉冲频率f,增加单个脉冲能量wm,提高工艺系数k等。加工速度的范围,粗加工(200~1000mm /min)、半精加工(20~100 mm /min)、精加工(小于10 mm /min)。随着表面粗糙度的减小,加工速度显著降低。 工具损耗速度
333衡量电极是否耐磨损,不仅仅只是看工具损耗速度vε,还要看同时能达到的加工速度vw,所以用相对损耗(损耗比)θ作为衡量工具电极耐磨的指标。
θ=vε/ vw×100% 降低工具电极的损耗:
a)正确的选用极性和脉宽,一般在短脉冲精加工时采用正极性加工,而在长脉冲粗加工时采用负极性加工。
b)利用吸附效应
由于电火花加工“积炭”现象总是发生在正极,所以在粗加工中往往为了提高生产率、降低电极损耗,均采用“负极加工”(工件接负极,电极接正极)。由于工具电极在煤油之类的碳氢化合物工作液中工作时,碳氢化合物将发生热分解,而产生大量的碳,这些碳粒又和金属结合形成金属碳化合物的微粒,即胶团。中性的胶团在电场作用下可能与其胶团的外层脱离而成为带电荷的碳胶粒。电火花加工中的碳胶粒一般带负电荷,在电场作用下向正极移动,并吸附在正极表面,如果电极表面瞬时温度在#""<左右,且能保持一段时间,即能形成一定强度和厚度的化学吸附层,即“炭黑膜”,由于碳的熔点和气化点很高,且有很高的抗蚀作用,可对电极起到保护和补偿作用,从而实现“低损耗”加工。影响吸附效应的还有冲、抽油的影响,采用强迫冲、抽油有利于间隙间电蚀产物的排除,使加工稳定但会使吸附、镀覆效应减弱,从而增加电极损耗。c)利用热传导效应
电火花加工的热传效应 放电加工中在电流幅值一定的情况下如果放电时间太短以致热量来不及传入金属导致主要是气化而熔化减少;如果放电时间过长使太多的热量传入金属深处也会使熔化减少。只有把放电时间设置在最佳值,才能最好的利用热效率,使电蚀量最大。这种现象称为传热效应。电极的放电点的瞬时温度不仅与瞬时放电能量成正比,而且与放电通道的截面面积有关,还跟电极材料的导热性能相关。因此限制放电初期的脉冲电流有助于限制电流的密度,可以使电极的损耗降低。脉冲电流增长率过高对在热冲击波作用下易脆裂的工具电极(如石墨)的损耗影响非常显著。另一方面,一般采用工具电极的导热性能比工件的导热性能好一些。如果采用较大的脉冲宽度和较小的脉冲电流进行加工,导热作用会使电极表面温度较低而减少损耗,工件表面温度仍较高而有利于工件的蚀除。d)选用合适的电极材料
电火花加工的脉冲电源
要求:
所产生的脉冲应该是单向的,没有负半波或负半波很小,这样才能最大化的利用极性效应,提高生产率和减小工具电极的损耗。
脉冲电压波形的前后沿应该较陡,这样才能减少电极间隙的变化及油污程度等对脉冲放电宽度和能量等参数的影响,使工艺过程稳定。因此一般采用矩形波脉冲电源
脉冲的主要参数应能在很宽的范围内调节,以满足粗、中、精加工的要求。
第二篇:电火花加工技术概述
《先进制造技术》课程学习报告
题目:电火花加工技术概述
专业:
机
械
类
姓名:
喻
娇
艳
年级:
2013 级
班级:
机械类1306班
学号:
201303164193
武汉科技大学 机械自动化学院
2016年 6月 10日
电火花加工技术概述
喻娇艳
(武汉科技大学 机械自动化学院, 湖北,武汉)(13级机械类专业,学号201303164193)
摘要:电火花加工(Electrospark Machining)在日本和欧美又称为放电加工(Electrical Discharge Machining,简称EDM),是一种直接利用电能和热能进行加工的新工艺,本文从电火花加工的研究现状、基本原理、发展前景等三方面加以论述.关键词:电火花加工的研究现状
基本原理
发展前景
Summarize of Electrospark Machining Technique
YU Jiao-yan(College of Machinery and Automation, WuHan University of Science and Technology, HuBei
WuHan 430074)Abstract: Electrospark Machining Technique is also called Electrical Discharge Machining(EDM)in Japan and Occident,it’s a new technology of machining using electrical and heat energy directly.This article discusses it in addition in three aspects including it’s research status,fundamental principle,future prospects,etc.Keywords: Research status;Fundamental principle;Future prospects
1、前言
从前苏联科学院拉扎连柯夫妇在1943年研制出世界上第一台实用化电火花加工装置以来,电火花加工已有70多年的历史,发展速度是惊人的,目前已广泛应用于机械、宇航、航空、电子、电机、仪器仪表、汽车、轻工等行业,它不仅是一种有效的机械加工手段,而且已经成为在某些场合不可替代的加工方法.例如,在解决难、硬材料及复杂零件的加工问题时,应用电火花加工技术十分有效.据统计,目前电火花加工机床的市场占有率已占世界机床市场的6%以上.而且随着科学技术的不断发展,现代制造技术极其相关技术为电火花技术的发展提供了良好机遇.柔性制造、人工智能技术、网络技术、敏捷制造、虚拟制造和绿色制造等现代制造技术正逐渐渗透到电火花加工技术中来,给电火花加工技术的发展带来了新的生机.近年来,国内外很多研究机构对电火花加工技术进行了大量的研究,并且在许多方面取得了显著进展[1-5].2、电火花加工技术的研究现状
经过60多年的发展,电火花加工技术已日趋完善.2011年第十二届中国国际展览会上,40余家国内外特种设备生产商携机参展.在高速铣削技术日趋成熟且飞速发展的今天,包括电火花加工在内的特种加工技术的市场定位越来越清晰,向高速、微细、精密领域发展成了放电加工领域主要突破方向.适合超精密加工的智能化电源技术得到了实质性应用,瑞士的AgieCharmilles公司开发的ISPG智能脉冲电源在加工表面质量、电极损耗、生产效率等方面都达到了新的高度,采用SF模块进行精密加工,表面粗糙度可以达到0.05微米Ra的水平,电极损耗大幅下降,和以往电源相比生产效率提高近30%;日本MAKINO公司开发的EDAF2型机床配备的智能脉冲电源,其超级放电技术(SST),具有放电量自动调节(AFT)、节能、低损耗、超精面加工等功能.国内放电加工技术同时也得到长足的进步.在国家科技重大专项展品方面,苏州电加工研究所有限公司研制的D7132五轴联动电火花加工机和北京市电加工研究所所研发的N850五轴电火花成形机都配置了智能化脉冲电源及高精加工电路,可稳定实现0.1-0.15微米Ra的精密加工.随着趋于微米加工的需求,对电火花加工设备的热稳定要求越来越高,事实上,热稳定指标已成为一种独立的系统广泛应用于机床的生产领域,Charmilles的FDRM3000机床的温度恒定系统是通过具有恒定温度介质冷却各运动轴的直线光栅系统,作为温度补偿系统的一个稳定参照.相比之下,我国在这方个面的的研究和应用与国外先进水平相比还存在较大差距,随着数控电火花技术逐步向精密、微细方向发展,行业内已认识到热变形现象对加工精度影响的重要性并启动了这方面的研究工作,相信不久的将来一定会有突破性发展 [6].3电火花加工技术的基本原理
电火花加工是利用侵在工作液中的两极间脉冲放电时产生的电蚀作用蚀除导电材料的特种方法,又称放电加工或电蚀加工,英文简称EDM.我们可以把整个过程分成彼此独立又相互联系的三个阶段:电离准备阶段、放电热蚀阶段和削离抛出阶段[6].原理图依次如下图所示.模型图
进行电火花加工时,工具电极和工件分别接脉冲电源的两极,并浸入工作液中,或将工作液充入放电间隙.通过间隙自动控制系统控制工具电极向工件进给,当两极间的间隙达到一定距离时,两电极上施加的脉冲电压将工作液击穿,产生火花放电.实现电火花加工的条件: 1.工具电极和工件电极之间必须维持合理的距离.在该距离范围内,既可以满足脉冲电压不断击穿介质,产生火花放电,又可以适应在火花通道熄灭后介质消电离以及排出蚀除产物的要求.2.两电极之间必须充入介质.在进行材料电火花尺寸加工时,两极间为液体介质(专用工作液或工业煤油);在进行材料电火花表面强化,两极间为气体介质.3.输送到两电极间的脉冲能量密度应足够大.在火花通道形成后,脉冲电压变化不大.因此,通道的电流密度可以表征通道的能量密度.能量密度足够大,才可以使被加工材料局部熔化或汽化,从而在被加工材料表面形成一个腐蚀痕(凹坑),实现电火花加工.4.放电必须是短时间的脉冲放电.放电持续时间一般为10-7-10-3s.由于放电时间短,使放电时产生的热能来不及在被加工材料内部扩散,从而把能量作用局限在很小范围内,保持火花放电的冷极特性.5.脉冲放电需重复多次进行,并且多次脉冲放电在时间上和空间上是分散的.其一时间上相邻的两个脉冲不在同一点上形成通道;其二,若在一定时间范围内脉冲放电集中发生在某一区域,则在另一段时间内,脉冲放电应转移到另一区域.6.脉冲放电后的电蚀产物能及时排放至放电间隙之外,使重复性放电顺利进行.一方面,火花放电以及电腐蚀过程本身具备将蚀除产物排离的固有特性;蚀除物以外的其余放电产物(如介质的汽化物)亦可以促进上述过程;另一方面,还必须利用一些人为的辅助工艺措施.电火花加工主要用于加工具有复杂形状的型孔和型腔的模具和零件;加工各种硬、脆材料,如硬质合金和淬火钢等;加工深细孔、异形孔、深槽、窄缝和切割薄片等;加工各种成形刀具、样板和螺纹环规等工具和量具;加工稀有贵重金属及特殊零件,以及多品种、多规格的新产品试件零件的加工[7].4 电火花加工技术的发展趋势
电火花加工技术是一项历史比较悠久的技工技术,在航空航天和模具的加工行业被广泛地应用,其能够对那些硬度比较大的复合材料进行加工,而且这项技术的优势还是比较明显的,是材料加工的重要方法.现在,科学技术实现了高速的发展,能够根据生产的需要进行不同类型的加工,其加工的方向朝着柔性的方向发展,而且在材料加工过程中能够节省大量的时间.所以,应该在电火花加工技术原有的优势的基础上,提高其加工的精密程度,实现环保型的加工,完善加工的方法,使电火花加工技术能够在更加广阔的范围中使用[5].电火花加工技术朝着精密化的方向发展
电火花加工技术越来越精密,在材料的尺寸选择上,其实现了高度的精密化,而且在材料的表面质量是比较精确的.在对电火花进行加工的过程中,能够对放电的间隙进行合理的处理,这就使材料加工的精度非常高.加工的间隙在处理的过程中是非常平均的,这就提高了这项加工技术的稳定性.电火花加工技术中,放电间隙是比较小的,而且能够根据材料的不同,分成不同类型的间隙,能够将放电状态进行精确化的检测.电火花加工技术在运行时,由于受到外部因素的影响,所以其效果也是不同的,要强化加工间隙的处理就必须提高伺服控制,还要对其加工的状态进行检测,确保电源是稳定的.在运用电火花进行精密化加工的过程中,需要制定一定的标准,如尺寸标准等,从而能够使材料的表面精度提高.但是,在进行电火花加工时,电极的损耗程度受到外界的影响,尽管工作人员可以对电源和工作介质进行控制,能够尽量减少电极损耗,但是,在进行电火花精确化加工的过程中,还是存在着大量的电极损耗的问题,这就使材料在加工时尺寸存在一定的误差,所以,要根据材料尺寸的要求对材料进行反复地加工,会浪费很多的时间.所以,在进行电火花加工的过程中,要减少电极的损耗.在电火花加工技术中,提高其表面质量的准确度也是重点问题,电火花加工的表面是由一个个微小的凹坑构成的,在加工后表面上会形成一个个的裂纹,这时就需要对表面进行抛光,使表面变得平整,这就使材料加工的成本上升,而且会导致电火花加工技术的效率下降,而且还不能够采用自动化的加工方法.所以,在进行电火花加工的过程中,要实现其表面质量的精密度是相当重要的,可以运用低速的走丝切割技术,在表面形成一个变质层,能够对表面进行保护,防止表面出现凹凸不平的问题.电火花加工技术的微细化方向
在材料的实际生产的过程中,微机电系统得到了较为广泛的应用,而且材料的加工越来越朝着微细化的方向发展,在电火花加工技术中要实现微细化的发展,其能够体现出电火花加工技术的特征,在加工的过程中,材料与材料之间是不能形成宏观的作用力的,而且加工不会受到材料硬度的影响,从而能够使材料在加工的过程中朝着微细化的方向发展.电火花磨削技术使电火花加工技术更加得细致,所以,微细化的发展是今后电火花技术发展的一个重要的趋势.提供少量的能量电源也是今后电火花技术发展的重点,所以,维系电火花技术能够完善材料加工的速度,能够在一定程度上实现多元化的加工.现在,微细多孔电火花加工技术还是比较完善的,其能够形成阵列式的孔隙,能够形成两个不同线路的磨削系统,然后对材料实现粗加工,在粗加工的基础上,能够采用微细电极,对材料的尺寸进行微细化的加工,结合超声振动的方法,能够在一定程度上完善微细电火花加工技术.电火花加工的高速高效化方向
电火花技术与传统的切削加工对比,其性能还是比较优越的,电火花技术加工材料的效率非常高,能够提高材料生产率.按照对电火花加工技术的相关原理来说,其能够提高材料的加工速度,主要在于其使用了节能的电源,能够在一定程度上使加工时的电力更加得充足,从而能够提高电火花加工技术的用电效率,在传统的材料加工过程中,电能的利用率还不到30%,很多电能都通过大量的电阻消耗,所以在电火花加工中采用新型的电源,能够完善电火花加工的用电率,使电能损耗能够减少.电火花加工技术是运用了铣削技术的,在材料的形状比较复杂时,电火花铣削加工技术能够结合复杂的电极,从而能够节省电极在制作过程中消耗的大量的时间,电火花铣削加工技术要分析电极消耗的电能,分析其补偿问题,而且还会受到外界因素的影响,所以,在对电极损耗进行分析时,尽量采用在线分析的方法,从而能够在一定程度上完善加工的效率.在气体的介质中进行电火花铣削加工技术,其可以运用自动化的手段,使加工的效率能够显著的提高,而且能够结合伺服系统,节省了一半的时间.而且其能够借助直线电机加工的方法,这种方法在材料加工时性能更加得稳定,使材料的性能更加得完善,即使在对深小孔进行加工,也能够在一定程度上借助电磁式的驱动程序,使电火花的加工效率提高.运用了先进的技术手段,借助了与电火花加工技术配套的机床技术,从而能够实现对加工的控制,建立模型,从而实现电火花加工技术的高效发展.绿色环保的电火花加工和复合加工方法
在采用电火花加工技术对材料进行加工时,不用使用液体冷却的方法,在材料加工时采用的是气体作为介质的,这符合可持续发展的加工模式.在实际的应用中,电火花加工中会产生大量的工作液,这些工作液会造成很严重的污染,在这些工作液中含有大量的碳氢化合物,这些化合物能够在空气中挥发,从而导致空气污染.而且在电火花加工时,在高温的条件下,会形成大量的烟气,这些烟气中含有大量的二氧化碳和一氧化碳,直接会对人体不利.这些气体还会对机床产生腐蚀作用,在加工的过程中形成电解质的废物,对水资源和土地资源造成极大的污染.在现在的电火花加工技术中,逐渐实现了采用气体介质的方式,这样就不会产生大量的废气和废水,从而能够实现环保型的加工,而且其加工的成本是比较低的,在加工的过程只需要采用空气就能够完善材料的加工.现在,气中电火花加工技术还不太成熟,还在研发的过程中,但是在不久的将来,其一定可以得到很好的应用.电火花加工技术也可以结合超声进行加工,这样能够提高加工的速度.新研发的电火花加工工艺
要使电火花加工技术能够走得更加得长远,就必须不断研发新技术,从而能够为材料的加工提供动力.现在,在电火花加工技术中,主要是对绝缘陶瓷加工技术进行研究,这种加工方法实现了新的突破,能够在一定程度上使电火花加工技术的内容加以扩宽,使其研究方向更加得广泛.在对传统的电火花加工技术进行研究的过程中,其局限性在于只能运用液体介质,所以还是会产生一定的污染.在使用绝缘陶瓷技术进行材料的加工时,其能够突破导电材料自身的限制,能够通过在陶瓷的表面覆盖电极的,从而能够实现对电极区域的加工.然后将产生的一氧化碳和二氧化碳气体去除.现在,新型的电火花加工技术,如立式旋转电火花切割加工工艺实现了长足的发展,能够实现连续的切割,防止了断丝的发生,而且在材料的加工中具有较强的稳定性,能够减少材料表面的粗糙度.这项技术在原理方面呈现出很多优点,其能够分析材料的加工机理,能够从加工的动力学角度去完善加工的效率,但是,这项技术才开始投入使用,所以还需要进一步的完善,而且相关的设备也需要完善,应该建立起配套的设备.结语
现在,电火花加工技术已经在各个行业得到了广泛的使用,其发展前景还是比较好的,所以,在运用电火花技术进行材料的加工时,尽量提高其效率,减少污染,使材料的加工朝着精细化和微细化发展,结合超声技术,使材料的加工效率更高.参考文献
[1] 任福君,李小海.电火花加工技术的新发展[ J ]电加工与模具,2003(3):1-3.[2] 李文卓,赵万生,王振龙.我国微小型电火花加工装置最新研究与进展[ J ] 电加工与模具,2001(2):5-9.[3] 白基成等.特种加工[M].北京:机械工业出版社,2013.5.[4]花国然,刘志东主编.特种加工技术[M].北京:电子工业出版社,2012.3.[5]李旭.电火花加工技术研究的发展方向分析[ J ] 电加工与模具,2015(8):1-2 [6] 曹凤国主编.电火花加工[M].北京:化学工业出版社,2014.6.[7]杨晓欣,郭长宁,裴景玉.电火花成形原理及工艺应用[M].北京:国防工业出版社,2015.2.
第三篇:电火花加工技术的应用
电火花加工技术的应用
摘要:本文主要介绍在模具制造中电火花加工技术的应用,电火花加工的特点以及在加工过程中影响表面加工质量的因素,加工过程中需要注意的问题等,以便在实际加工中需要注意修改这方面的参数。
关键词:电加工模具;加工;加工影响
鉴于模具行业的快速发展,为了使用的需求,从而生产了一批具有韧度高、硬度高、强度高等特殊性能的模具材料,致使改变了传统意义上的金属切削加工。此时,电火花加工技术广泛应用于模具制造,模具一般的加工方法为:退火+铣削加工+热处理+磨削+手工打磨、抛光,所消耗的加工时间比较长。在冲模加工时可能因为淬火变形或者开裂从而导致模具的报废,而电火花加工技术完全可以进行淬火后的模板加工,进而避免热变形弊病和镶拼结构,做到了简化模具结构,提高模具的强度与使用周期。
电加工方法
(1)电脉冲加工中放电能量密度高,便于特殊材料零件和形状复杂的加工,而且不受工件材料的性能及热处理工艺等影响。
(2)电脉冲加工中持续放电时间极短,加工中放电产生的热量扩散范围小,加工材料所受热影响范围小。
(3)电火花加工工作时,因为工具电极与工件材料不接触,因此它们之间作用力小。
(4)电火花技术能将加工工件结构简单化、从而提高工件使用寿命,降低人体的劳动强度。
影响电加工质量的因素
在进行电加工过程中的输入、输出参数比较多而且较为复杂,从而影响到模具加工的精度,其主要受到影响的工艺因素有:机床自身的制造精度、工件的装夹精度、电极的制造及装夹精度、电极损耗、放电间隙等,加工中尤其以电极损耗、放电间隙影响最大。下面介绍几种加工影响:
2.1 电极损耗的影响
在使用电火换加工模具的过程中,脉冲在放电的过程中会使工具电极受到电腐蚀的损伤从而使电极产生损耗,所以如何把握好电极损耗的规律,采用行之有效的措施减少工具电极的损耗,尽可能的保证模具在加工过程中拥有更高的加工精度。在电加工过程时,工具电极的损耗在不同的部位也是不相同,如尖角、棱边等凸起部位的电场强度较高,容易形成尖端放电,因此其损耗要比平坦部位快,所以由于不均匀的损耗必然导致加工精度的下降。
2.2 电加工中放电间隙的影响
运用电火花加工模具时,必须保证工具电极与工件之间发生脉冲放电时有足够的放电间隙。加工完成的工件型孔尺寸与电极尺寸相比,必须在加工轮廓上相差一个放电间隙。加工过程中放电间隙的作用决定着工件加工的稳定性,比如为了提高加工的稳定性可以增大脉冲放电间隙时间;同样为了提高生产率可以增大峰值电流,但是这样做将使电极损耗加大。
2.3 表面变化层对模具表面质量的影响
经过电加工过后的模具表面将会产生表面变化层(凝固层和热影响层),该变化层具有很强的抗腐蚀能力。例如凝固层和工件基体材料之间产生的是热影响层,其受到加工过程中放电点传来的高温影响,致使工件材料内部的金相组织发生了变化。在加工过程中变化层硬度变化情况的不相同主要受到所选用的电参数、冷却条件及工件材料的热处理。其中工件材料和脉冲电源的大小又影响着表面变化层的厚度,并且随着脉冲能量的增大而增厚,同样凝固层的硬度一般比较高。所以相较于普通机械加工的模具表面来说,电火花加工后的模具表面耐磨性要好的多。
电加工改进技术在模具表面的应用
在加工过程中利用电脉冲放电产生高温的原理,电极材料由硬质合金加工完成,使其熔渗到模具及易损件的工作面上,使其表面形成一层高强度、高硬度、高耐温、高耐磨的硬质白色合金强化层,这样就可以将模具表面的质量提高一个等级。对模具进行表面处理最有效的方法是改变模具表面的物理、化学性能。在改性中电极材料的选用应该根据用途进行选择,可以采用碳元素、紫铜、黄铜等材料作为电极来修复磨损的机器零件。这样的改性不仅能提高产品的硬度、耐磨性等,还能大大提高产品的使用寿命,又能降低贵重材料的消耗率,降低生产成本和维修成本。
使用电火花加工腔模具时能保证工件的精度,主要是形状精度、尺寸公差、表面质量等几个方面。首先加工精密型腔模具时,特别保证那些要求较高的尺寸部位,必须正确分析各部位尺寸要求,严格控制不同地方的尺寸精度,有些重要尺寸公差达到几微米;其次,精密型腔模具的仿形精度要求也很高,在进行型腔内部清角时,必须突出棱角,使工件表面粗糙度值均匀化,并满足所要求的表面精糙度值;另外电加工部位表面质量要求较高,表面变质层的厚度要很小,达到加工要求。
参考文献:
[1]沙迪克机电有限公司技术资料.什么是放电加工[S].[2]雷林均.特种加工技术--电火花加工[M].重庆大学出版社.[3]郭永丰等.电火花加工技术[M].哈尔滨工业大学出版社.
第四篇:精密电火花加工机的共性技术
精密电火花加工机的共性技术
标签:精密电火花机|电火花加工
鼎亿精密电火花机厂家为您解说精密精密电火花加工机的共性技术
1、自动化技术
如今国内人力资源丰富,自动化似乎是一种奢侈和浪费。但对于模具工业,由于熟练操作工的缺乏,能省人工还是很重要的。只要稍稍注意一下,类似信息很多。例如日本牧野公司推荐用一台CNC工件和电极机外预调单元,一台EDM CIM小型数据处理中心和一台配置10个可交换工作台的EDGE2电火花成形机来代替三台独立运行的EDGE2,人力成本可减少1/3,此外资金投入亦可降低18%,何乐而不为呢?
2、智能技术
电火花加工从一开始就采用伺服进给,有一定的自动化。从上世纪70年代末开始引入数控技术,机床能按编程自动定位,手动加工。但电火花加工工艺复杂,随机事件多,按既定方针是无法处理的。例如加工间隙内电蚀产物的堆积、集中放电、甚至起弧等,都要靠有经验的技师不断观察、判断,试探着调整,排除故障,优化加工参数,才能安全高效,实在是不容易。这就出现了早期的智能技术---适应控制。今天智能化已成为电火花加工机床的核心技术,先进程度的标志,已渗透到每一个部件中。这种人工智能体现在能根据加工要求,按应用分类,配以相应稳定可靠的支撑硬件,以及在实验室和生产验证中生成的工艺数据库和计算方法软件,这样一个完整的体系才称之为专家系统。
3、网络技术
中国即将进入WTO,模具工业和世界接轨势在必行,所以机床的网络技术(对品牌机这是常规功能)我们不要忽视了。例如东莞鼎亿的机床可以网络遥控完成机床上除了开机外所有的事,网上数据交换、培训、咨询、维修保养服务。用户只要增加一点点投资,开通联网功能,他带来的好处是长远的,非常可观的。
4、工艺诀窍
商品价格中创新(各种专利)和软件所占比重明显加大。例如一台HP4喷油嘴专用小孔机,重不过500kg,装置一眼就能看清楚,开价高达50万美元,理由是它提供整套加工诀窍,能满足最严格的小孔加工精度要求,CP值在2以上。过去买东西看得见摸得着,沉甸甸的一大堆,心里比较踏实,如今最值钱的可能就是几张轻飘飘的盘。但这是按照“交钥匙”协议,一旦安装,立刻能投入正常生产,无需用户调试和任何技术投入,这就是知识经济带来的好处。
第五篇:电火花成型加工技术
电火花成型加工技术
2.1 电火花加工原理和特点
一、原理
电火花加工时,脉冲电源的一极接工具电极,另一极接工件电极,两极均浸入具有一定绝缘度的液体介质(常用煤油或矿物油或去离子水)中。工具电极由自动进给调节装置控制,以保证工具与工件在正常加工时维持一很小的放电间隙(0.01~0.05mm)。当脉冲电压加到两极之间,便将当时条件下极间最近点的液体介质击穿,形成放电通道。由于通道的截面积很小,放电时间极短,致使能量高度集中(10~107W/mm),放电区域产生的瞬时高温足以使材料熔化甚至蒸发,以致形成一个小凹坑。第一次脉冲放电结束之后,经过很短的间隔时间,第二个脉冲又在另一极间最近点击穿放电。如此周而复始高频率地循环下去,工具电极不断地向工件进给,它的形状最终就复制在工件上,形成所需要的加工表面。与此同时,总能量的一小部分也释放到工具电极上,从而造成工具损耗。
从上看出,进行电火花加工必须具备三个条件:必须采用脉冲电源;必须采用自动进给调节装置,以保持工具电极与工件电极间微小的放电间隙;火花放电必须在具有一定绝缘强度(10~107Ω ·m)的液体介质中进行。
二、电火花常用基本符号
1、放电间隙:放电间隙指加工时工具和工件之间产生火花放电的一层距离间隙。在加工过程中,则称为加工间隙S,它的大小一般在0.01-0.5mm之间,粗加工时间隙较大,精加工时则较小。加工间隙又可分为端面间隙SF 和侧面间隙SL
2、脉冲宽度ti(μs):脉冲宽度简称脉宽,它是加到工具和工件上放电间隙两端的电压脉冲的持续时间(见图)为了防止电弧烧伤,电火花加工只能用断断续续的脉冲电压波。粗加工可用较大的脉宽ti>100μs,精加工时只能用较少的脉宽ti<50μs。
3、脉冲间隔to(μs):脉冲间隔简称脉间或间隔,也称脉冲停歇时间。它是两个电压脉冲之间的间隔时间。间隔时间过短,放电间隙来不及消电离和恢复绝缘,容易产生电弧放电,烧伤工具和工件;脉间选得过长,将降低加工生产率。加工面积、加工深度较大时,脉间也应稍大。
4、开路电压或峰值电压:开路电压是间隙开路时电极间的最高电压,等于电源的直流电压。峰值电压高时,放电间隙大,生产率高,但成型复制精度稍差。
5、火花维持电压:火花维持电压是每次火花击穿后,在放电间隙上火花放电时的维持电压,一般在25V左右,但它实际是一个高频振荡的电压。电弧的维持电压比火花的维持电压低5V左右,高频振荡频率很低,一般示波器上观察不到高频成分,观察到的是一水平亮线。过渡电弧的维持电压则介于火花和电弧之间。
6、加工电压或间隙平均电压U(V)
加工电压或间隙平均电压是指加工时电压表上指示的放电间隙两端的平均电压,它是多个开路电压、火花放电维持电压、短路和脉冲间隔等零电压的平均值。在正常加工时,加工电压在30-50V,它与占空比、预置进给量等有关。占空比大、欠进给、欠跟踪、间隙偏开路,则加工电压偏大;占空比小、过跟踪或预置进给量小(间隙偏短路),加工电压即偏小。
7、加工电流I(A)
加工电流是加工时电流表上指示的流过放电间隙的平均电流。精加工时小,粗加工时大;间隙偏开路时小,间隙合理或偏短路时则大。
8、短路电流Is(A)
短路电流是放电间隙短路时(或人为短路时)电流表上指示的平均电流(因为短路时还有停歇时间内无电流)。它比正常加工时的平均电流要大20-40%。
9、峰值电流Ie(A)
峰值电流是间隙火花放电时脉冲电流的最大值(瞬时),日本、英国、美国常用Ie表示,虽然峰值电流不易直接测量,但它是实际影响生产率、表面粗糙度等指标的重要参数。在设计制造脉冲电源时,每一功率放大管串联限流电阻后的峰值电流是预先选择计算好的。为了安全,每个50W的大功率晶体管选定的峰值电流约为2-3A,电源说明书中也有说明,可以按此选定粗、中、精加工时的峰值电流(实际上是选定用几个功率管进行加工)。
10、放电状态
放电状态指电火花加工时放电间隙内每一脉冲放电时的基本状态。一般分为五种放电状态和脉冲类型
第一、开路(空载脉冲)放电间隙没有击穿,间隙上有大于50V的电压,但间隙内没有电流流过,为空载状态(td=ti)。
第二、火花放电(工作脉冲,或称有效脉冲)
间隙内绝缘性能良好,工作液介质击穿后能有效地抛出、蚀除金属。波形特点是:电压上有td,te和Ie波形上有高频振荡的小锯齿波形。
第三、短路(短路脉冲)
放电间隙直接短路相接,这是由于伺服进给系统瞬时进给过多或放电间隙中有电蚀产物搭接所致。间隙短路时电流较大,但间隙两端的电压很小,没有蚀除加工作用。
第四、电弧放电(稳定电弧放电)
由于排屑不良,放电点集中在某一局部而不分散,局部热量积累,温度升高,恶性循环,此时火花放电就成为电弧放电,由于放电点固定在某一点或某局部,因此称为稳定电弧,常使电极表面结炭、烧伤。波形特点是td和高频振荡的小锯齿波基本消失。
第五、过渡电弧放电(不稳定电弧放电,或称不稳定火花放电)
过渡电弧放电是正常火花放电与稳定电弧放电的过渡状态,是稳定电弧放电的前兆。波形特点是击穿延时td很小或接近于零,仅成为一尖刺,电压电流波上的高频分量变低成为稀疏和锯齿形。早期检测出过渡电弧放电,对防止电弧烧伤有很大意义。
以上各种放电状态在实际加工中是交替、概率性地出现的(与加工规准和进给量、冲油、间隙污染等有关),甚至在一次单脉冲放电过程中,也可能交替出现两种以上的放电状态。
11、加工速度Vw或VW(mm/min),vm或Vm(g/min)
加工速度是单位时间(min)内从工件上蚀除加工下来的金属体积(mm;),以质量(g)计算时用vm或Vm表示,也称加工生产率。大功率电源粗加工时vW>500mm/min,但电火花精加工时,通常vw<20mm/min。
12、相对损耗或损耗比(损耗率)θ(%)
相对损耗或损耗比是工具电极损耗速度和工件加工速度之比值,并以此来综合合衡量工具电极的耐损耗程度和加工性能。
13、面积效应:面积效应指电火花加工时,随加工面积大小变化而加工速度、电极损耗比和加工稳定性等指标随之变化的现象。一般加工面积过大或过小时,工艺指标通常降
333
3低,这是由“电流密度”过小或过大引起的。
14、深度效应:随着加工深度增加而加工速度和稳定性降低的现象称深度效应。主要是电蚀产物积聚、排屑不良所引起的
三、电火花加工特点
1:电火花加工速度与表面质量 模具在电火花机加工一般会采用粗、中、精分档加工方式。粗加工采用大功率、低损耗的实现,而中、精加工电极相对损耗大,但一般情况下中、精加工余量较少,因此电极损耗也极小,可以通过加工尺寸控制进行补偿,或在不影响精度要求时予以忽略。
2:电火花碳渣与排渣 电火花机加工在产生碳渣和排除碳渣平衡的条件下才能顺利进行。实际中往往以牺牲加工速度去排除碳渣,例如在中、精加工时采用高电压,大休止脉波等等。另一个影响排除碳渣的原因是加工面形状复杂,使排屑路径不畅通。唯有积极开创良好排除的条件,对症的采取一些方法来积极处理。
3:电火花工件与电极相互损耗 电火花机放电脉波时间长,有利于降低电极损耗。电火花机粗加工一般采用长放电脉波和大电流放电,加工速度快电极损耗小。在精加工时,小电流放电必须减小放电脉波时间,这样不仅加大了电极损耗,也大幅度降低了加工速度。
2.2 电火花成型加工的基本规律
一、加工条件
1)、工具电极和工件电极之间必须加以60V—300V的脉冲电压,同时还需维持合理的距离——放电间隙。大于放电间隙,介质不能被击穿,无法形成火花放电;小于放电间隙,会导致积炭,甚至发生电弧放电,无法继续加工。
2)、两极间必须充满介质。电火花成形加工一般为火花液或煤油,线切割一般为去离子水或乳化液。
3)、输送到两极间脉冲能量应足够大。即放电通道要有很大的电流密度(一般为10—10A/cm)。492 4 4)、放电必须是短时间的脉冲放电。一般为1μs — 1ms。这样才能使放电产生的热量来不及扩散,从而把能量作用局限在很小的范围内,保持火花放电的冷极特性。
5)、脉冲放电需要多次进行,并且多次脉冲放电在时间上和空间上是分散的,避免发生局部烧伤。
6)、脉冲放电后的电蚀产物能及时排放至放电间隙之外,使重复性放电顺利进行。
二、影响加工因素
1、极性效应
2、覆盖效应
3、二次放电
4、加工速度
5、火花放电通道
6、工具电极损耗
7、放电间隙
8、放电产物排除
2.3 电火花加工设备
数控电火花成型加工机床由于功能的差异,导致在布局和外观上有很大的不同,但其基本组成是一样的,都由脉冲电源、数控装置、工作液循环系统、伺服进给系统、基础部件等组成。
主轴头:主轴头是电火花成型加工机床的一个关键部件,由伺服进给机构、导向和防扭机构、辅助机构三部分组成,控制工件与工具电极之间的放电间隙。
一、对主轴头的要求
主轴头的好坏直接影响加工的工艺指标,因此主轴头应具备以下条件:
1、有一定的轴向和侧向刚度及精度;
2、有足够的进给和回升速度;
3、主轴运动的直线性和防扭转性能好;
4、灵敏度要高,无爬行现象;
5、不同的机床要具备合理的承载电极的能力。
二、主轴头运动控制方式
1、电液伺服进给
2、步进电机伺服进给
3、直(交)流伺服进给
进给装置:火花放电加工是一种无切削力不接触的加工手段,要保证加工继续,就必须始终保持一定的放电间隙S。这个间隙必须在一定的范围内,间隙过大就不能击穿放电介质,过小则容易短路。因此,电极的进给速度 Vd 必须大于电腐蚀的速度 Vw,如图 7-4 所示。同时,电极还要频繁的靠近和离开工件,以便于排渣,而这种运动是无法用手动来控制的,故必须由伺服系统来自动控制电极的的运动。
自动进给调节系统就是用来改变、调节进给速度,使进给速度接近并等于电腐蚀速度,维持一定的放电间隙,使放电加工稳定进行,获得比较好的加工效果。
工作液循环过滤装置:
如图 7-5 所示,电火花成型加工用的工作液循环过滤系统包括工作液泵、容器、过滤器及管道等,使工作液强迫循环,其中 a)、b)为冲油式,c)、d)为抽油式。冲油是把经过过滤的清洁工作液经液压泵加压,强迫冲入电极与工件之间的放电间隙里,将放电蚀除的电蚀产物随同工作液一起从放电间隙中排除,以达到稳定加工。在加工时,冲油的压力可根据不同工件和几何形状及加工的深度随时改变,一般压力选在 0~200KPa 之间。对不通孔加工,)所示,从图中可看出采用冲油的方法循环效果比抽油更简单,特别在型腔加工中大都采用这种方式,可以改善加工的稳定性。
下图为工作液循环系统油路图,它既能冲油又能抽油。其工作过程是:储油箱的工作液首先经过粗过滤器
1、单向阀 2 吸入液压泵 3,这时高压油经过不同形式的精过滤器 7 输向机床工作液槽,溢流安全阀 5 控制系统的压力不超过 400KPa,快速进油控制阀 10 供快速进油用,待油注满油箱时,可及时调节冲油选择阀 13,由阀 9 来控制工作液循环方式及压力,当阀 13 在冲油位置时,补油冲油都不通,这时油杯中油的压力由阀 9 控制。当阀 13 在抽油位置时,补油和抽油两路都通,这时压力工作液穿过射流抽吸管 12,利用流体速度产生负压,达到实现抽油的目的。
工作液循环过滤装置的过滤对象主要是金属粉屑和高温分解出来的碳黑,其过滤方式和点
脉冲电源:
一、作用
电火花成型加工用脉冲电源的原理及作用与电火花线切割相同。
二、分类
1、按其作用原理和所用的主要元件、脉冲波形等可分为多种类型,见表 7-3。
2、按功能可分为等电压脉宽(等频率)、等电流脉宽脉冲电源,以及模拟量、数字量、微机控制、适应控制、智能化等脉冲电源。
工作台与工作液箱:工作台主要用来支承和装夹工件。在实际加工中,通过转动纵向丝杠来改变电极和工件的相对位置。工作台上装有工作液箱,用来容纳工作液,使电极和工件浸泡在工作液中,起到冷却和排屑的作用。
2.4 电火花加工技术的发展
电火花加工技术在制造业领域占有重要地位,是实现难加工材料、复杂零件精密加工的有效手段。我们应借鉴其他加工技术发展的成功经验,扬长避短,充分利用现代科技发展的相关成果,在深入研究电火花放电机理的基础上,指导电火花加工工艺理论和控制理论的研究,改善机床结构和设计方法,实现智能控制技术与电火花加工技术的有机结合,同时高度重视操作安全和环境保护,全面推动电火花加工技术更快发展。