第一篇:四连杆机构运动分析
游梁式抽油机是以游梁支点和曲柄轴中心的连线做固定杆,以曲柄,连杆和游梁后臂为三个活动杆所构成的四连结构。1.1四连杆机构运动分析:
图1
复数矢量法:
为了对机构进行运动分析,先建立坐标系,并将各构件表示为杆矢量。结构封闭矢量方程式的复数矢量形式:
l1ei1l2ei2l3ei3l(1)应用欧拉公式eicosisin将(1)的实部、虚部分离,得 l1cos1l2cos2l4l3cos3
(2)l1sin1l2sin2l3sin3由此方程组可求得两个未知方位角2,3。
解得
tan(3/2)(BA2B2C2)/(AC)
(4)当要求解3时,应将2消去可得
222l2l3l4l122l3l4cos32l1l3cos(31)2l1l4cos
1(3)2arctanBl3sin
3(5)Al3cos3Al4l1cos1其中:Bl1sin12A2B2l32l2C2l3
(4)式中负号对应的四连杆机构的图形如图2所示,在求得3之后,可利用(5)求得2。
图2 由于初始状态1有个初始角度,定义为10,因此,我们可以得到关于110t,是曲柄的角速度。而通过图形3分析,我们得到OA的角度3因此悬点E的位移公式为s|OA|,速度vdvd2sd2a2|OA|2。
dtdtdt210。
dsd|OA|,加速度dtdt
图3 已知附录4给出四连杆各段尺寸,前臂AO=4315mm,后臂BO=2495mm,连杆BD=3675mm,曲柄半径O’D=R=950mm,根据已知条件我们推出|OO'||O'D||OB||BD|违背了抽油系统的四连结构基本原则。为了合理解释光杆悬点的运动规律,我们对四连结构进行简化,可采用简谐运动、曲柄滑块结构进行研究。
1.2 简化为简谐运动时的悬点运动规律
一般我们认为曲柄半径|O’D|比连杆长度|BD|和游梁后臂|OA|小很多,以至于它与|BD|、|OA|的比值可以忽略。此时,游梁和连杆的连接点B的运动可以看为简谐运动,即认为B点的运动规律和D点做圆周运动时在垂直中心线上的投影的运动规律相同。则B点经过时间t时的位移sB为
sBr(1cos)r(1cost)其中是曲柄转角;
曲柄角速度; t时间。
因此,悬点A的位移sA|OA||OA|'sB|OD|(1cost)|OB||OB| A点的速度为
AA点的加速度为
dsA|OA|'|OD|sint dt|OB|aAdA|OA|'|OD|2cost dt|OB|
图4
图5
图6
1.3 简化为曲柄滑块结构的选点运动规律
由于简谐运动只能在不太精确的近似计算和分析中应用,而在实际中抽油机的曲柄/杆长值不能忽略不计,特别是冲程长度较大时,忽略会引起很大误差。把B点绕游梁支点的弧线运动看做直线运动,则四杆运动可被简化为图所示的曲柄滑块运动。
0时,游梁与连杆的连接点B在B’点,为距曲柄轴心最远的位置,相应于悬点A的下死点。180时,游梁与连杆的连接点B在B’’点,为距曲柄轴心最远的位置,相应于悬点A的上死点。因此,我们有|O'B'||BD||OD'|,|O'B''||BD||OD'|,B点的最大位移sB2|O'D|。
B点在任意时刻的位移sB为
sB|BB'||O'B'||O'B|1|O'D||O'B|
在O'DB中有:
'|O'B||OC||BC||O'D|cos|BD|cos
则
sB|BD||O'D||O'D|cos|BD|cos |OD|[1cos'1(1cos)]
|O'D|式中。
|BD|通过转化分析,我们得到B点的位移:
sB|O'D|(1cos2sin2)
则sA为
sAsB|OA||OA||O'D|(1cossin2)|OB|2|OB|速度A为
AdsA|OA||O'D|(sinsin2)dt2|OB|加速度aA为
aA
dA|OA| 2|O'D|(coscos2)dt|OB|
22u(x,t)u(x,t)2u(x,t)ac 22txta是波动速度英尺/秒;
c是阻尼系数,1/秒; t是时间,单位是秒;
x是在无限制杆离光杆之间的距离,单位是英尺;
u(x,t)抽油杆离平衡位置的位移。
c2L
无因次阻尼;
Lx1x2...xm杆的总长度(英尺)。
4.42102L(PRhpHhp)T2 2(A1x1A2x2...Amxm)SPRhp光杆马力;
Hhp液压泵马力; T抽运周期;
A1,A2,...,An每个杆的面积; x1,x2,...,xm杆的区间长度;
S杆的负载。
D(t)L(t)Wr02ncosntnsinnt
n1和
U(t)02vncosntnsinnt
n1是角速度;
D(t)动态光杆负载函数; L(t)总负载函数;
Wr流动的杆重;
U(t)光杆的位移函数。
2D(t)cosntdt,n0,1,2,...,n0
2D(t)sinntdt,n0,1,2,...,n1n01n把t得
1n2D()cosndt,n0,1,2,...,n 02p,p0,1,2,...,K KD2pDD K对于一个数学例子,是个离散变量
采用简单的标记
我们可以用梯形公式写出
2n02n12n12n2DcosDcosDcosDcos1120KKKK...12221nK2n(K1)2nKDcosDcosK1KKK2
因此,我们可以得出
1nDKcos(2n)2D0cos02n2n2。DcosDcos...12K22KK对于周期函数,由于cos0cos2n,则我们得到D0Dk,即
2K2npDcos,n0,1,...,n 1npKp1K同样得到其他傅里叶展开系数
2K2npDsin,n1,2,...,n 1npKp1K2K12npUsin,n0,1,...,n 1npK1p1K12K12npUsin,n1,2,...,n p1nK1p1K1通过分离变量法求解,得到特征根的形式
nnin
其中
2ncn11 a2n和
2ncn11
a2n通过变化分析,我们得到
D(t)EA(knnnn)cosnt(knnnn)sinnt
n1n1因此,我们有充分的利用定义新的常数
nEA(knnnn),n0,1,2,...nEA(knnnn),n1,2,...02EA
通过上述方程我们得到
knnnnn,n1,2,3,...2EA(nn2)n通过上面一系列的推导,我们得到
nnnn,n1,2,3,...2EA(nn2)u(x,t)02EA02(On(x)cosntPn(x)sinnt)
n1其中
On(x)(kncoshnxnsinhnx)sinnx(ncoshnxnsinhnx)cosnx Pn(x)(knsinhnxncoshnx)sinnx(nsinhnxncoshnx)sinnx
根据胡可定理,力F(x,t)可以被计算为
F(x,t)EA因此,我们得到
u(x,t)x0'F(x,t)EA(On(x)cosntPn'(x)sinnt)
2EAn1其中
'On(x)nsinhnx(nnnn)coshnxsinnxEA
ncoshx()sinhxnnnnnncosnxEA和
Pn'(x)ncoshnx(nnnn)sinhnxcosnxEA
nsinhx()coshxnnnnnnsinnxEA工程量的递归计算
j10vj0xjEAjj0
j1nj1vjOn(xj)
njPn(xj)j1j1j10j0'nEAjjOn(xj)
nEAjjPn'(xj)
j1j1knnnj1nn2EAj1(nn2)j1nnj1nnj1n2EAj1(nn2)
j1On(xj1)(j1kncoshnxj1j1nsinhnxj1)sinnxj1(j1nsinhnxj1j1ncoshnxj1)cosnxj1j1Pn(xj1)(j1knsinhnxj1j1ncoshnxj1)cosnxj1(j1ncoshnxj1j1nsinhnxj1)sinnxj1
j1nsinhnxj1(j1nnj1nn)coshnxj1sinnxj1j1O(xj1)EAj1'nj1n coshnxj1(j1nnj1nn)sinhnxj1cosnxj1EAj1'j1nj1nP(xj1)coshnxj1(j1nnj1nn)sinhnxj1cosnxj1EAj1
j1nsinhnxj1(j1nnj1nn)coshnxj1sinnxj1EAj1此处,j1,2,...,m1,n1,2,...,n。因此,泵的位移和负载用下列公式计算
u(xm,t)m02EAmxmm02(mOn(xm)cosntmPn(xm)sinnt)
n1nnm0'F(xm,t)EAm(mOn(xm)cosntmPn'(xm)sinnt)
2EAmn1上冲程悬点静载荷
由于游动阀关闭,悬点静载荷主要包括柱塞上、下流体压力及抽油杆柱重力。
1)抽油杆柱在空气中的重力:
WrArgLpr
式中:
Wr抽油杆柱在空气中的重力,KN; Ar抽油杆截面积,m2;
r抽油杆密度,t/m3;
g重力加速度;
Lp抽油杆柱长度 2)泵排出压力
p0ptLPLg
式中:
pt井口压力,kpa
L液体密度
3)吸入压力
上冲程时的沉没压力导致井内液体流入泵中,此时液流所具有的压力即吸入 压力,此压力作用在柱塞底部,产生的载荷方向向上:
ptpspr
式中:
ps沉没压力,kpa;
pr流体通过泵入口设备产生的压力降,m。
将以上三个力综合可得出上冲程的静载荷:
WupWrp0(ApAr)ptA WrW(ptpc)ApptAr''L
由于上冲程时井口回压与套压造成的悬点载荷方向相反,故可近似为相互抵消,因此上冲悬点载荷可简化为下式
WupWr'WL'
下冲程悬点载荷
下冲程时,游动阀打开使得柱塞上下的液体连通,抽油杆柱受到向上的浮力作用。因此,下冲程时抽油杆柱在液体中的重力等于自身重力减去浮力。而液柱荷载通过固定阀作用在油管上,不作用在悬点上。所以下冲程悬点载荷为:
WdownWr'ptAr
迭代计算
通过分析我们知道,计算阻尼系数必须预先知道泵功图,但是要知道泵功图必须预先知道阻尼系数,故采用迭代法解决这个问题,首先,先给一个任选一个初值c0,根据c0求泵功图,再用式子求c0。
第二篇:对活塞连杆机构运动分析毕业设计
本人自己设计的Pro/e论文,导师评价优秀,另有开题报告、任务书、pro/e图文档,答辩准备和答辩PPT。有需要Pro/e方面的要求和问题也可以联系我。本人QQ:447519384 级毕业设计
论文题目:运用Pro/E对活塞连杆机构进行
运动学分析姓 名:** 学 号:********* 院 系:机电工程学院 专 业:机械制造及自动化
班 级:机自一班 指导老师:***
完成时间:2012年*月*日
目录
内容摘要„„„„„„„„„„„„„„„„„„„„„„„„„„„„1 关键字„„„„„„„„„„„„„„„„„„„„„„„„„„„„„1 Abstract„„„„„„„„„„„„„„„„„„„„„„„„„„„„1 Key words „„„„„„„„„„„„„„„„„„„„„„„„„„1 1.绪论 „„„„„„„„„„„„„„„„„„„„„„„„„„„„2 1.1选题的依据及其意义
„„„„„„„„„„„„„„„„„„„2 1.2国内外研究现状及发展趋势 „„„„„„„„„„„„„„„„3 1.3课题内容
„„„„„„„„„„„„„„„„„„„„„„„„3 2.机构简介„„„„„„„„„„„„„„„„„„„„„„„„„„„4 2.1活塞连杆机构的基本构造
„„„„„„„„„„„„„„„„„4 2.2工作原理 „„„„„„„„„„„„„„„„„„„„„„„„4 3.pro/e装配与运动仿真„„„„„„„„„„„„„„„„„„„„„4 3.1 Pro/E简介 „„„„„„„„„„„„„„„„„„„„„„„4 3.2装配 „„„„„„„„„„„„„„„„„„„„„„„„„„5 3.3运动仿真及分析 „„„„„„„„„„„„„„„„„„„„„9 参考文献„„„„„„„„„„„„„„„„„„„„„„„„„„„„15 致谢„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„16
机电工程学院
内容摘要:活塞连杆是机械行业中常见的曲柄滑块机构,应用该机构最典型的实例就是发动机气缸,它可以将燃气能源转换为机械动能,它的作用是承受气体压力,并将此力通过活塞销传给连杆以推动曲轴旋转。广泛应用到动力机械的动力源,如汽车、轮船、飞机等。本次设计是通过这些特点对活塞连杆进行Pro/E三维建模,并对模型进行整体装配,并完成传动部分的运动仿真,并对其进行运动分析。
关键词:活塞连杆机构、三维建模、装配、运动学分析
Abstract:The piston rod is in the machinery industry common crank slider mechanism.the device Application of the most typical examples is engine cylinder.It can be a gas energy is converted to mechanical energy.It is the role to bear gas pressure.and the force transmitted to the connecting rod by the piston pin to drive the rotation of the crankshaft.Widely applied to mechanical power source, such as automobiles, ships, aircraft and other.This design is through these features of piston rod for Pro/E three-dimensional modeling.the whole assembly model.then the completion of the transmission part of the motion simulation.and its motion analysis.Key words : Piston connecting rod mechanism、Three dimensional modeling、Assembly、Kinematic analysis、机电工程学院
1.绪论
1.1选题的依据及其意义
在产品的开发过程中,有关产品的结构、功能、操作性能、生产工艺、装配性能,甚至维护性能等等许多问题都需要在开发过程的前期解决。一般,人们借助理论分析、CAD和各种比例的实物模型,或参考前期产品的开发经验来解决有关新产品开发的各种问题。由于有关装配、操作和维修的问题往往只会在产品的后期或在最终产品试车过程中、甚至在投入使用一段时间后才能暴露出来,尤其是有关维修的问题往往是在产品已经售出很长时间以后才被发现。为了解决这些问题,有事产品就不得不返回设计构造阶段以便进行必要的设计变更。这样的产品开发程序不但效率低、耗时,费用也高。
为了解决这些问题,虚拟仿真技术应运而生。仿真技术是利用计算机技术对所要进行的生产和制造活动进行全面的建模和仿真,包括产品的设计、加工、装配、各参数的设计改进等等。在产品的设计阶段就实时地模拟出产品的形状和工作状况、制造过程、检查产品的可制造性和设计合理性,以便及时修改设计,更有效地灵活组织生产,缩短产品研制周期,获得最好的产品质量和效益。
在Pro/E环境下,对活塞连杆机构建立了精确的参数化模型。通过定义各种约束,在装配模块中确定了原动件与从动件的关系。并使用机构运动分析模块,通过定义机构的连接与伺服电机,实现了活塞的运动过程仿真。参数化设计的本质是在可变参数的作用下,系统能够自动维护所有的不变参数,参数化设计可以大大提高模型的生成和修改的速度,在产品的系列设计、相似设计及专用CAD系统开发方面都具有较大的应用价值。虚拟装配是在虚拟环境中,利用虚拟现实技术将设计的产品三维模型进行预装配虚拟装配可帮助产品摆脱对于试制物理样机并装配物理样机的依赖,可以有效地提高产品装配建模的质量与速度。通过在计算机软件平台下对整套装置的设计仿真分析,能够及时地发现设计中的缺陷,并根据分析结果进行实时改进。参数化建模、虚拟装配、运动仿真贯穿于整个计算机辅助设计全过程,可显著地缩短研发周期,降低设计成本,提高工作效率。本次建模与运动仿真分析实现了活塞摇杆的电子样机设计,对现实发动机制造过程有一定的指导意义。
机电工程学院
1.2国内外研究现状及发展趋势
当今任何一个国家,若其要在综合国力上取得优势地位,就必须在科学技术上取得优势。九十年代以来,随着以计算机技术为主的信息技术的发展,世界经济格局发生了巨大的变化,逐步形成了一个统一的一体化市场,经济循环加大,加快市场竞争日趋激烈,从而也迫切要求对产品设计的研究能有进一步的突破,为了缩短产品的设计周期、提高生产的质量、降低生产成本,就需要在产品的设计阶段进行预测。计算机辅助设计,将难以用语言表达的复杂的机械结构,应用多媒体技术以多样化的方式表现的屏幕上,达到了以直观和形象的形式学习机械设计知识的目的。九十年代后随着CAD技术的发展,其系统性能提高,价格降低,pro/e开始在设计领域全面普及,成为必不可少设计工具,pro/e之所以在短短的时间内发展如此迅速,是因为它是人类在二十世纪取得的重大科技成就之一,它几乎推动了一切领域的设计革命,彻底改变了传统的手工设计绘图方式,极大的提高了产品开发的速度和精度。应用pro/e技术业进行产品设计,能使设计、生产维修工作快速成而高效地进行,所带来的经济效益是十分明显的。Pro/e技术的发展与应用水平已成为和衡量一个国家的科学技术现代化和工业现代化的重要标志。近几年来,随着计算机技术的飞速发展,pro/e技术已经由发达国家向发展中国家扩展,而且发展的势头非常迅猛。因为当今世界工业产品的市场竞争,归根结底是设计手段和设计水平的竞争,发展中国家的工业产品要在世界市场占有一席之地,就必须采用pro/e技术的研究和开发工作起步相当较晚,自八十年代开始,CAD技术应用工作才逐步得到了开展,随后pro/e也有了应用,国家逐步认识到开展pro/e应用工程的必要性和可靠性,并在全国各个行业大力推广pro/e技术,同时展开pro/e技术的不断研究,开发与广泛应用,对pro/e技术提出越来越高的要求,因此pro/e从本身技术的发展来看,其发展趋势是集成化、智能化和标准化,也只有不断完善,创新才能在日益激烈的竞争中立于不败之地。
1.3课题内容
本课题是利用Pro/E软件的仿真功能对活塞的运动过程进行动画模拟,并对活塞、连杆等进行一些简单的数据分析及计算,以确定设计的合理性,可行性,最终完成设计。
机电工程学院
该设计具体研究方法及主要内容是使用Pro/E软件仿照发动机气缸活塞连杆机构,绘制出活塞、摇杆、及其他零部件实体图。绘制好活塞连杆机构后,然后对设计进行仿真,包括运动干涉检测、活塞运动轨迹、速度及加速度的检测。
2.机构简介
2.1活塞连杆机构的基本构造
活塞连杆组是发动机的传动件,它把燃烧气体的压力传给曲轴,使曲轴旋转并输出动力。活塞连杆组主要由活塞、活塞环、活塞销及连杆等组成活塞连杆组把燃烧气体的压力传给曲轴,使曲轴旋转并输出动力;活塞的顶部还与汽缸盖、汽缸比共同组成燃烧室。
2.2工作原理
活塞的顶部直接与高温燃气接触,活塞的温度也很高,高温使活塞的机械性能下降,热膨胀量增加;活塞在作功行程中,承受燃气的高压冲击(3~5mP),活塞在汽缸中高速运动,平均速度达到8~12m/s,要求活塞质量小,热膨胀系数小,导热性好和耐磨。一般采用铝合金,个别柴油机也采用高级铸铁或耐热钢。
3.Pro/E的装配与运动仿真
3.1Pro/E简介
Pro-E是Pro/Engineer的简称,更常用的简称是ProE或Pro/E,Pro/E是美国参数技术公司(Parametric Technology Corporation,简称PTC)的重要产品,在目前的三维造型软件领域中占有着重要地位。pro-e作为当今世界机械CAD/CAE/CAM领域的新标准而得到业界的认可和推广,是现今主流的模具和产品设计三维CAD/CAM软件之一。
Pro/E第一个提出了参数化设计的概念,并且采用了单一数据库来解决特征的相关性问题。另外,它采用模块化方式,用户可以根据自身的需要进行选择,而不必安装所有模块。Pro/E的基于特征方式,能够将设计至生产全过程集成到一起,实现并行工程设计。它不但可以应用于工作站,而且也可以应用到单机上。
Pro/E采用了模块方式,可以分别进行草图绘制、零件制作、装配设计、钣金设计、加工处理等,保证用户可以按照自己的需要进行选择使用。
(1).参数化设计
机电工程学院
相对于产品而言,可以把它看成几何模型,而无论多么复杂的几何模型,都可以分解成有限数量的构成特征,而每一种构成特征,都可以用有限的参数完全约束,这就是参数化的基本概念。
(2).基于特征建模
Pro/E是基于特征的实体模型化系统,工程设计人员采用具有智能特性的基于特征的功能去生成模型,如 系列化快餐托盘设计[1]腔、壳、倒角及圆角,您可以随意勾画草图,轻易改变模型。这一功能特性给工程设计者提供了在设计上从未有过的简易和灵活,特别是在设计系列化产品上更是有得天独到的优势。
(3).单一数据库
Pro/Engineer是建立在统一基层上的数据库上,不象一些传统的CAD/CAM系统建立在多个数据库上。所谓单一数据库,就是工程中的资料全部来自一个库,使得每一个独立用户在为一件产品造型而工作,不管他是哪一个部门的。换言之,在整个设计过程的任何一处发生改动,亦可以前后反应在整个设计过程的相关环节上。例如,一旦工程详图有改变,NC(数控)工具路径也会自动更新;组装工程图如有任何变动,也完全同样反应在整个三维模型上。这种独特的数据结构与工程设计的完整的结合,使得一件产品的设计结合起来。这一优点,使得设计更优化,成品质量更高,产品能更好地推向市场,价格也更便宜。
(4).直观装配管理
Pro/ENGINEER的基本结构能够使您利用一些直观的命令,例如“贴合”、“插入”、“对齐”等很容易的把零件装配起来,同时保持设计意图。高级的功能支持大型复杂装配体的构造和管理,这些装配体中零件的数量不受限制。
(5).易于使用
菜单以直观的方式联级出现,提供了逻辑选项和预先选取的最普通选项,同时还提供了简短的菜单描述和完整的在线帮助,这种形式使得容易学习和使用。
3.2装配
(1)组装活塞
选择菜单栏的【文件】→【设置工作目录】,系统弹出“选取工作目录”对话框,选择活塞零件图所在文件夹,单击【确定】按钮,完成工作目录的设置。
机电工程学院
选择菜单栏的【文件】→【新建命令】,系统弹出【新建】对话框,点选【组件】,取消【使用缺省模版】的选择,单击【确定】按钮,系统弹出新文件选项对话框,如图
单击【确定】按钮,选择mmns-asm-design,单击【确定】,进入装配设计模块。
(2).创建骨架模块
单击【创建按钮】,系统弹出元件创建对话框,如图1.2
在“元件创建”对话框中,单选【骨架模型】,单击【确定】,系统弹出“创建”选项,单击【空】,单击【确定】,进入元件创建。
单击工具栏【轴】按钮,系统弹出“基准轴”对话框,如图1.3。双选FRONT.RIGHT两个基准面作为参照面,所创建的基准轴穿过两个参照面,单击【确定】,创建基准轴完成。
(3).装配活塞
选择菜单栏的【窗口】→【激活】,激活现在装配模块。
机电工程学院
单击工具栏【装配】,系统弹出“打开”对话框,选择元件prt001,单击【打开】,就将活塞添加到当前模块了.在【将约束转化为机构连接】框中选择“滑动杆”,单击【放置】,单击【轴对齐】,在3D模型中选择上面创建的基准轴和活塞垂直轴线,单击【旋转】,选取活塞的DTM1基准面和组件的RIGHT基准面。
在【放置】的【状态】的“完成连接定义”,单击【完成】。如图1.6
(4).装配底座
单击【装配】,系统弹出“打开”对话框,选择元件prt006,单击【打开】,底座就添加在组件模块中了。
选择【将约束转化为机构连接】中的“用户定义”,单击【放置】,在3D模型中选择底座的基准面和组件的基准面,然后在将其他两个基准面进行约束。
在【状态】框中显示“完成连接定义”,单击【完成】。如图1.7
机电工程学院
(5).装配输出轴
单击【装配】,系统弹出“打开”对话框,选择元件prt0005,单击【打开】,轴就添加在组件模块中了。
选择【将约束转化为机构连接】中的“销钉”,单击【放置】,单击【轴对齐】,在3D模型中选择底座轴线和输出轴的轴线,单击【平移】,在3D模型中选择曲柄的侧面和底座的内侧面。
在【状态】框中显示“完成连接定义”,单击【完成】。如图1
(6).装配连杆
单击【装配】,系统弹出“打开”,选择元件prt0004.单击【打开】,连杆就添加在组件模块中了。
选中【将约束转化为机构连接】中的“销钉”,单击【放置】,单击【轴对齐】,在3D模型中选择输出轴的轴线和连杆空轴线,单击【平移】,在3D模型中选择输出轴曲柄侧面和连杆外侧面。
机电工程学院
单击【放置】→【新建集】,即创建了一个新的连接。
选择【将约束转化为机构连接】中的销钉,单击【放置】,单击【轴对齐】,在3D模型中选择活塞孔的轴线和连杆孔的轴线,单击【平移】,在3D模型中选择活塞内侧面和连杆外侧面。
在【状态】中显示“完成连接定义”,单击【完成】。如图1.10
装配完成。
3.3 运动仿真及分析
运动分析对活塞连杆机构进行运动仿真,可以进一步分析其运动是否合理,结构是否发生运动干涉等信息.(1).添加伺服电机
选择菜单栏的【应用程序】→【机构】,系统进入机构平台。单击【伺服电动机】,系统弹出“伺服电动机”对话框,如图2.1.点选【从动图元】的【运动轴】,单击【选取】,选取旋转轴。如图2.2
机电工程学院
在伺服电动机定义中,单击【轮廓】,选择【规范】中的“速度”,选择【模】中的“常数”,在【A】框中输入50,单击【确定】。完成伺服电动机的创建。
注:速度为50mm/s。(2).自由度分析
单击【机构分析】,系统弹出“分析定义”对话框,如图2.3.选择【类型】中的“力平衡”,单击自由度中的【DOF】右边的按钮,在文本框中显示的数即为自由度。如果没有伺服电动机,自由度则为1.注:一个自由度的机构,只需要一个伺服电动机就能驱动它。
(3).动画
单击【机构分析】,系统弹出“分析定义”对话框,选择【类型】中的“运动学”,在【终止时间】框中输入50.注:给定时间为50秒。
机电工程学院
单击【运行】,模型就开始运动。如下图:
注:生成的视频文件截图
(4).运动包络
单击【回放】,系统弹出“回放”对话框。单击【创建运动包络】,系统弹出“创建运动包络”对话框,单击【读取元件】中的【选取】,在3D模型中选择连杆,单击【预览】。如图2.4
注:连杆的运动轨迹
(5).分析测量结果
单击【测量】,系统弹出“测量结果”对话框,单击【创建新测量】,系统 11
机电工程学院
弹出“测量定义”对话框。
在“测量定义”对话框中,选择【类型】中的“位置”,单击【点或运动轴】中的【选取】,在3d模型中选择活塞的孔轴线,如图2.6
在“测量定义”对话中【测量】中的“measure1”,选中【结果集】中“analysisdefinition3”选项,单击【检测选定结果集所选测量的图形】,系统弹出图形工具对话框。如图框中,单击【确定】,返回“测量结果”对话框
点“测量” 即生成位移曲线。同时可生成速度和加速度曲线。如图1、2、3 12
机电工程学院
图1 注:横轴代表时间,竖轴代表活塞位移
分析: 该图为活塞位移曲线图。活塞顶端为零点,以-90处为中心点,活塞从初始值为-86.9928处开始运动做往复运动,经过50秒在-93.0072处结束运动。可以看出,活塞的总位移成余弦规律,位移图比较平稳。
图2 注:横轴代表时间,竖轴代表活塞速度
分析: 该图为活塞速度曲线图。活塞由最下端以速度为13.0607mm/s开始向上做减速运动,后由0开始做加速运动,由此反复运动,50秒后到最下端结束运动。可以看出,活塞的速度曲线成余弦规律,具有周期性变化规律。
机电工程学院
图3 注:横轴代表时间,竖轴代表活塞加速度
分析: 该图为活塞加速度曲线图。加速度代表活塞的速度快慢的变化.它是速度的导数,因此权限与速度曲线的变化规律基本一致,可以看出,活塞的加速度曲线成正弦规律.仍然具有周期性变化规律。
.注:位移、速度、加速度合图。
分析:由活塞位移、速度和加速度对应曲线可以得出结论:位移达到峰值的时候,加速度也达到了反向的峰值,这时候速度刚好为零。
机电工程学院
参考文献:
【1】 乔建军,proe 5.0动力学与有限元分析从入门到精通,机械工业出版社,2010,340~357.【2】肖继德、陈宁宁,机床夹具,机械工业出版社,2011,5~13 【3】刘建华、杜鑫,机械设计基础,北京交通大学出版社,2010,14~38.【4】魏增菊、李莉,机械制图,科学出版社,2007 【5】林清安,proe机构设计,2004 【6】孙印杰,proe基础与实例教程,北京电子工业出版社,2008 【7】孙恒,机械原理,高等教育出版社,2003 【8】施平,机械工程专业英语,哈尔滨工业大学出版社,2011 【9】孙印杰等,野火中文版Pro/ENGINEER Widfire基础与实例教程【M】,北京,电子工业出版社,2004.机电工程学院
致谢:
经过两个多月的时间,终于完成了这次论文的设计.尽管在论文的设计过程中,遇到了许多困难和不解,但都在老师和同学的帮助下度过了.在这里,尤其要感谢我的指导老师-徐秀芬老师,本课题在选题及研究过程中都得到了徐秀芬老师的悉心指导。徐老师多次询问研究进程,并为我指点迷津,帮助我开拓研究思路,精心点拨、热忱鼓励。徐老师一丝不苟的作风,严谨求实的态度,踏踏实实的精神使我获益良多。对徐老师的感激之情是无法用言语表达的。
第三篇:第4章平面连杆机构的运动分析
第4章平面连杆机构运动分析
习题
4-1.求出下列机构中所有速度瞬心
(a)
(b)
(c)
(d)
图4-1
4-2.在图4-2所示摆动导杆机构中,BAC90,lAB60mm,lAC120mm,曲柄AB的等角速度130rad/s,求构件3的角速度3和角加速度3。
4-3.在图4-3所示机构中,已知145,1100rad/s,方向为逆时针方向,lAB4m,60。求构件2的角速度2和构件3的速度v3。
图4-2
图4-3
第四篇:第1讲四连杆机构运动仿真[模版]
第1讲 四连杆机构运动仿真
一、建立连接 1.设置工作目录
选择【文件】→【设置工作目录】打开工作目录选取面板,如图1所示,选择如图所示2的文件夹为工作目录。
图1设置工作目录
图2 选择文件夹 2.建立新的装配文件
打开PROE软件,点击'文件',选择‘新建’,有如下对话框弹出(如图3所示),在类型项选择‘组件’,子类型项选择‘设计’,名称改为‘2009109120’,不使用缺省模板,点击‘确定’。有下对话框弹出(如图4所示),在模板中选择‘mmns-asm-design’,直接点击‘确定’开始进入制图过程。
图3 新建组件
图4 选择单位
二、装配文件 1.机架的放置
(1)进入PROE的主界面,点击右下角图标‘动仿真四连杆中1ground.prt,单击打开。
’,有如下对话框弹出(如图5所示),选择运
图5 载入文件
在主界面出现一行任务栏动’选项中选择,再在右边单击‘,在‘自
’,如图6所示。
图6 机架1(2)再点击右下角图标‘
’,选择运动仿真四连杆中1-ground-prt,单击‘打开’,则在主界面中出现一行任务栏,如图7所示。
图7 机架2 用鼠标左键选择两平面对齐,如图8所示。
图8平面对齐
在选择两侧面对齐,在任务栏中选择,如图9所示,再单击右边'
'。
图9 侧面对齐
2.曲柄的装配 在单击右下角‘现一行任务栏:义栏中有选择'如图10所示。’,在运动仿真四连杆中选择‘2-crank-prt',单击‘打开’。在主界面出,在用户定
’,在操作区中选择曲柄的轴线与机座的轴线重合,图10 曲柄面匹配
再选择曲柄与该机座的一端面配对,如图11所示。在任务栏中点击‘成该次联结。
’,和‘
’,完
图11 轴对齐
3.摇杆的装配 单击右下角‘ ’,运动仿真四连杆中选择‘4rocker-prt’,单击‘打开’。任务栏:,同理在用户定义中选择‘ 12所示。
’把第4摇杆与另一机座的轴线重合连结,如图
图12 轴对齐
再将该摇杆与机座的端面配对连结,如图13所示。最后在任务栏中单击‘成好该次连结。
’,‘
’完
图13 面匹配
4.连杆的装配 在右下角点击图标‘’在运动仿真四连杆中选择“3connectingrod.prt”,单击‘打开’,进
入主界面和任务栏中,如图14所示:
图14 连杆的装配 在任务栏用户定义栏中选择‘轴线重合连结,如图15所示。
’。把连杆凸轴部分与曲柄孔的图15轴对齐
再将连杆与曲柄的端面配对连结(如图16所示)
图16 面匹配
在任务栏中点击‘放置’出现新的对话框,如图17所示。
图17 放置 点击‘新建集’,再将连杆与摇杆的轴线重合连结,如图18所示。
图18 新建轴对齐
再将连杆与摇杆的两端面配对连结,如图19所示。
图19 新建面匹配
最后单击‘’完成所有组件连结,连结好组件如图20所示。
图20 总装配图 三.运动与仿真 1.参数的设置
(1)单击菜单栏中‘应用程序’,如图21所示。
图21 选择机构菜单
(2)选择单击‘机构’,左下角出现新的对话框,如图22所示。
图22 电动机
单击‘’,单选择并点击‘
’,单击右键,弹出‘
’,并点击新建出现新的对话框,如图23所示。
图23 运动轴选择 图24 轮廓选择
单击‘’,选择组件图中‘’,单击‘轮廓’,如图24所示。在规范选项中选择‘速度’和常数A中输入360,单击‘确定’完成该步骤。
2.运动仿真 在左下角单击‘
’点击鼠标右键弹出新建点击,出现新的对话框,如图25所示。在类型中选择‘运动学’,在‘终止时间’输入5,在‘最小间隔’输入0.02.单击‘确定’,完成机构运动步骤。
图25 分析定义 3.结果回放与输出 点击左下角‘
’弹出对话框,如图26所示。
图26 动画
单击‘27和28所示。’和‘
’控制机构的起停,得到两种不同状态的图形,如图
图27 机构运动状态
图28机构运动状态 4.测量与记录 点击右下角图标‘’弹出对话框,如图29所示。
图29 测量结果
点击测量处‘’,弹出新的对话框,如图30所示。
图30 测量定义 图31运动轴
在类型栏中选择‘速度’,点运动轴选择组件中一运动轴,如图31所示。同理点击‘34所示。
’,都选择‘速度’项分别对组件图中另三处连结点分析,如图
32、图33和图
图32连接点1 图33 连接点2 图34连接点3 点击对话框中击‘’,得出四连结点速度图(如图35所示)。
按住CTRL键,对4个measure全选,并单
图35 运动学图形
四、保存退出
点击【文件】/【保存】完成本次仿真。点击【文件】/【退出】退出pro/e。
第五篇:四连杆机构运动与仿真 周云鹏
吉林电子信息职业技术学院
毕业论文(设计)
题 目: 四连杆机构运动与仿真 系 部: 电气工程学院 专业班级: 14机电15班 指导教师: 田军 姓 名: 周云鹏
目录
摘要..............................................................4 第1章 连杆机构...................................................5
1.1 四杆机构的基本形式.........................................5 1.2 铰链四杆机构中曲柄存在的条件...............................6 1.3 铰链四杆机构的演化..........................................7 第2章 四杆机构的基本特性........................................10
2.1 四杆机构的极位............................................10 2.2 四杆机构从动件的急回特性..................................10 2.3 连杆机构的传力特性........................................10 2.4 死点位置..................................................11 第3章 四连杆的三维造型..........................................12
3.1 机架的三维造型............................................12 3.2 连架杆1的三维造型........................................14 3.3 连架杆2的三维造型........................................17 3.4 连杆的三维造型............................................17 第4章 四连杆的虚拟装配..........................................19
4.1 进入装配模块..............................................19 4.2 添加组件机架..............................................19 4.3 装配连架杆1...............................................20 4.4 装配连架杆2...............................................22 4.5 装配连杆..................................................22 第5章 四连杆机构的运动仿真.....................................26
5.1 新建仿真..................................................26 5.2 新建连杆..................................................27 5.3 创建运动副................................................28 第6章 四连杆的运动仿真分析.....................................31
6.1 运动副图表分析............................................31 6.2 死点位置..................................................34
结 论...........................................................36 致 谢...........................................................37 参考文献.........................................................38
摘要
四连杆机构是由低副(转动副)联接而成的机构,其主要特点是:由于低副为面接触,压强低、磨损量少,而且构成运动副的表面是圆柱面或,制造方便,容易获得较高精度;又由于这类机构容易实现常见的转动、移动及其转换,所以获得广泛应用。
本课题详细的介绍了四杆机构的基本形式、铰链四杆机构中曲柄存在的条件、铰链四杆机构的演化、四杆机构的基本特性,以及使用UG对四连杆机构进
行三维造型、虚拟装配及运动仿真的方法。
关键字: 四连杆 装配 仿真
第1章 连杆机构
1.1 四杆机构的基本形式
铰链四杆机构
所有运动副均为转动副的四杆机构称为铰链四杆机构,它是四杆机构的基本形式,其他四杆机构都可以看成是在它的基础上演化而来的。选定其中一个构件作为机架之后,直接与机架链接的构件称为连架杆,不直接与机架连接的构件称为连杆,能够做整周回转的构件被称作曲柄,只能在某一角度范围内往复摆动的
构件称为摇杆。在铰链四杆机构中,有的连架杆能做整周转动,有的则不能,两构件的相对回转角为360 º的转动副称为整转副。整转副的存在是曲柄存在的必要条件,按照连架杆是否可以做整周转动,可以将其分为三种基本形式,即曲柄摇杆机构,双曲柄机构和双摇杆机构。
曲柄摇杆机构
铰链四杆机构的两个连架杆中若一个为曲柄,另一杆为摇杆,则此机构称为曲柄摇杆机构。曲柄摇杆机构的功能是:将转动转换为摆动,或将摆动转换为转动。
图 1-1 铰链四杆机构
(2)双曲柄机构
铰链四杆机构的两个连架杆若都是曲柄,则为双曲柄机构。在双曲柄机构中,常见的还有正平行四边形机构(又称正平行双曲柄机构)和反平行四边形机构(又称反平行双曲柄机构)。双曲柄机构的功能是:将等速转动转换为等速同向、不等速同向、不等速反向等多种转动。
图1-2平行四边形机构 图 1-3 双摇杆机构
双摇杆机构
铰链四杆机构的两个连架杆都是摇杆,则称为双摇杆机构。双摇杆机构的功能是:将一种摆动转换为另一种摆动。
图 1-4 双摇杆机构 图1-5 鹤式起重机
1.2 铰链四杆机构中曲柄存在的条件
在铰链四杆机构中,有的连架杆能做整周转动,有的则不能。两构件的相对回转角为360º的转动副为整转副。整转副的存在条件是曲柄存在的必要条件,而铰链四杆机构三种基本形式的区别在于机构中是否存在曲柄和有几个曲柄,为此,需要明确整转副和曲柄存在的条件。
(1)整转副存在的条件——长度条件
铰链四杆机构中有四个转动副,其能否做整周转动,取决于四构件的相对长度。在铰链四杆机构中,若最长构件长度lmax与最短构件长度lmin之和小于或等于其余两构件长度之和(其余两构件长度分别为l1、l2),则该机构中必存在整转副,且最短构件两端的转动副为整转副。即整转副存在的长度条件为
lmax+lmin<=l1+l2 反之,若lmax+lmin>l1+l2,则机构中没有整转副。(2)曲柄存在的条件
最短构件与最长构件长度之和小于或等于其余两构件长度之和。连架杆与机架两构件中必有一个是四构件中的最短杆。铰链四杆机构基本类型的判别方法
在铰链四杆机构中最短构件与最长构件长度之和小于或等于其余两构件长度之和时:
a.取最短构件相邻的构件作为机架,则该构件为曲柄摇杆机构; b.若取最短构件作为机架,则该机构为双曲柄机构;
c.若取对短构件对面的构件作为机架,则该机构为双摇杆机构。②当对短构件与最长构件长度之和大于其余两构件长度之和时,则不论取那个构件作为机架,机构均为双摇杆机构。1.3 铰链四杆机构的演化
在实际应用中还广泛采用者滑块四杆机构,它是由铰链四杆机构演化而来的,含有移动副的四杆机构,称为滑块四杆机构,常用的有曲柄滑块机构,导杆机构,摇块机构和定块机构几种形式。
(1)曲柄滑块机构
在如图所示的曲柄摇杆机构中,当曲柄1绕轴A转动时,铰链C将往复摆动。设将摇杆3做成滑块形式,并使其沿原话导轨往复移动,显然其运动性质并未发生改变;但此时铰链四杆机构已演化为曲线导轨的曲柄滑块机构。于是铰链四杆机构将变为常见的曲柄滑块机构。
曲柄转动中心至滑块导路的距离e,称为偏距,若e=0则将其称为对心曲柄滑块机构;若e≠0则将其称为偏心曲柄滑块机构。
设构件AB的长度为l1,构件BC的长度为l2,则保证杆AB杆成为曲柄的条件是:l1+e≤l2。
曲柄滑块机构用于转动与往复移动之间的运动转换,广泛应用于内燃机、空气压缩机、冲床和自动送料机等机械设备中。
曲柄滑块机构中,若取不同构件作为机架,则该机构将演化为定块机构、摇块机构或导杆机构等。
图 1-6 四连杆机构的演化
(a)曲柄摇杆机构;(b)曲柄滑块机构;(c)导杆机构
(2)定块机构
在图所示曲柄滑块机构中,如果将滑块作为机架,则曲柄滑块机构便演化为定块机构。
(3)摇块机构,如图所示曲柄滑块机构中若取2为固定构件,则可得摇块机构,这种机构广泛用于液压驱动装置中。
(4)导杆机构
如图所示曲柄滑块机构中,若取构件1作为机架,则曲柄滑块机构便演化为导杆机构。机构中构件4称为导杆,滑块3相对导杆滑动,并和导杆一起绕A点转动,一般取连杆2为原动件。当l1<l2时,构件2和构件4都能做整周转动,此机构称为转动导杆机构。
当l1>l2时,构件2能做整周转动,构件4只能在某一角度内摆动,则该机构成为摆动导杆机构。
连杆机构机传动特点
1.连杆机构中的运动副一般均为低副,因为低副两元素为面接触,故在传递同样载荷的条件下,两元素间的压强较小,可以承受较大的载荷,而且几何形状简单便于加工制造。
2.在连杆机构中,但原动件以同样的运动规律运动时,如果改变各构件的相对长度关系,便可使从动件得到不同的运动规律。
3.在连杆机构中,连杆上不同点的轨迹是不同形状的曲线(特称为连杆曲线),而且随着各构件相对长度关系的改变,这些连杆曲线的形状也将改变,从而可以得到各种不同形状的曲线,可以利用这些曲线来满足不同轨迹的要求。
4.连杆机构还可以方便的用来达到增力、扩大行程和实现较远距离的传动等目的。
第2章 四杆机构的基本特性
2.1 四杆机构的极位
曲柄摇杆机构、摆动导杆机构和曲柄滑块机构中,当曲柄为原动件作整周连续转动时,从动件做往复摆动或往复移动的左右两个极限位置称为极位。2.2 四杆机构从动件的急回特性
如图示,四杆机构从动件的回程所用时间小于工作行程所用的时间,称为该机构急回特性。
图 2-1 曲柄摇杆机构的急回特性
急回特性用行程速比系数K表示极位夹角θ—— 从动摇杆位于两极限位置时,原动件两位置所夹锐角。θ越大,K越大,急回特性越明显。急回特性能满足某些机械的工作要求,如牛头刨床和插床,工作行程要求速度慢而均匀以提高加工质量,空回行程要求速度快以缩短非工作时间,提高工作效率。2.3 连杆机构的传力特性
传动角与压力角:如图示在机构处于某一定位置时,从动件上作用力与作用点绝对速度方向所夹的锐角α称为压力角。压力角的余角γ(γ=90 º-α)作为机构的传力特性参数,故称为传动角。
在四杆机构运动过程中,压力角和传动角是变化的,为使机构具有良好的传力特性应使压力角越小越好,传动角越大越好。
通常规定: αmax ≤ [α] —— 许用压力角
或 γmin ≤ [γ] —— 许用传动角
最小传动角γmin 出现的位置: 曲柄与机架的两个共线位置,如图示同理,曲柄滑块机构最小传动角出现在曲柄与导路垂直位置。
图 2-2 连杆机构的传力特性
2.4 死点位置
当机构在运动过程中,出现传动角为零时(或压力角为90°),由于Pt = 0,则无论P力多大,均不能驱动从动件运动。这种“顶死”的现象称为机构的死点位置。死点出现在两类机构中:(1)曲柄摇杆机构、曲柄滑块机构和曲柄导杆机构中,作往复运动的构件为主动件时,曲柄与连杆共线位置会出现死点。
(2)平行四边形机构中,当主动曲柄与机架共线时,连杆也与输出曲柄与机架重合,从动件曲柄上传动角等于零,它将可能朝两个方向转动,也称为死点位置。
第3章 四连杆的三维造型
3.1 机架的三维造型
打开UG5.0,新建文件。点击新建按钮,系统弹出文件新建对话框。在名称文本框中输入文件名称jijia;单击确定,进入建模环境。
图 3-1 新建对话框
单击长方体按钮输入长度10,宽度288,高度20。
图3-2 特征工具栏
图3-3 长方体对话框
图3-4 新建长方体
选择边倒圆按钮,输入半径10,在长方体两边倒圆。
图 3-5 特征操作工具栏
图 3-6 边倒圆对话框
图 3-7边倒圆后的长方体
选择圆柱体按钮,在长方体两边建立两个圆柱凸台,输入高度5,圆的直径20
图 3-8 圆柱对话框
图 3-9 在两端加圆柱体凸台
选择圆柱体按钮,在凸台上建立两个圆形孔。
图 3-10 机架
3.2 连架杆1的三维造型
新建文件系统弹出文件新建对话框。在名称文本框中输入文件名称lianjiagan;单击确定,进入建模环境。
图 3-11 新建对话框
单击长方体按钮,输入长度10,宽度200,高度20,单击确定按钮。
图 3-12 长方体对话框
单击边倒圆按钮,在长方体两边倒圆,半径输入10。
图 3-13 边倒圆后的长方体
在一端建立凸台,高度20,直径10。如图4-14
图 3-14在一端建立凸台
在另一端建立一个直径20高度为5的圆柱体,在圆柱体上面建立凸台,直径10,高度15。
图 3-15建立凸台
图3-16 连架杆1 3.3 连架杆2的三维造型
1、新建文件系统弹出文件新建对话框。在名称文本框中输入文件名称lianjiagan;单击确定,进入建模环境。
2、单击长方体按钮,输入长度10,宽度112,高度20,单击确定按钮。
3、单击边倒圆按钮,在长方体两边倒圆,半径输入10。
4、在一端建立凸台,高度20,直径10。
在另一端建立一个直径20高度为5的圆柱体,在圆柱体上面建立凸台,直径10,高度15。
图 3-17 连架杆2 3.4 连杆的三维造型
新建文件,系统弹出文件新建对话框,在名称文本框中输入名称liangan,单击确定,进入建模环境。
图 3-18 新建对话框
单击长方体按钮,输入长度10,宽度208,高度20,单击确定。
图 3-19 长方体对话框
选择边倒圆按钮,在两边倒圆,输入半径10。
图 3-20 边倒圆后的长方体
在两边建立两个直径10的孔。
图 3-21 连杆
第4章 四连杆的虚拟装配
4.1 进入装配模块
1.启动UG NX,新建一个文件。2.单击【标准】工具栏中的配】命令,进入装配模块。4.2 添加组件机架
在菜单栏中选择【装配】【组件】【添加组件】命令,或者单击装配工具栏中的按钮,弹出【添加组件】对话框,如图所示。单击
按钮,弹出【部
按钮,按钮,在弹出的下拉菜单中选择【装件名】对话框,根据组件的存放路径选择组件机架jijia.prt,单击返回到【添加组件】对话框设置定位为“绝对原点”,单击定位于原点,结果如图所示。
按钮,将实体
图 4-1 添加组件对话框
图4-2 添加机架
4.3 装配连架杆1 以“配对”的定位方式打开连架杆1组件lianjiagan1.prt,单击钮进入配对条件对话框。
按
图4-3 配对条件对话框
单击配对按钮面,单击确定按钮。
单击按钮选择图5-6所示的红色的面,再选中如图5-7所示的红色的面,最后得到如图5-8所示
选择如图5-4所示红色的面,再选中如图5-5所示红色的单击确定按钮
图 4-4装配关系
图 4-5装配关系
图 4-6装配关系
图 4-7装配关系
图 4-8 装配连架杆1
4.4 装配连架杆2 同装配连架杆1,以“配对”方式打开连架杆2组件lianjiagan2.prt,单击按钮,装配结果如图5-9所示。
图 4-9 装配连架杆2 4.5 装配连杆
同装配连架杆(1)/(2)一样以“配对”方式打开连杆组件liangan.prt,单击按钮,进入配对条件对话框如图所示,单击配对类型里面的配对按钮,选择如图5-11所示的红色的面,再选中如图5-12所示的红色的面,单击按钮,再单击中心
按钮,选择如图5-13所示的红色的面,再选中如
按钮,再单击
按钮,选择如图5-15所按钮,再单击
按图5-14所示的红色的面,单击示红色的面,再选中如图5-16所示红色的面单击钮,得到最终装配图如图5-17所示。
图 4-10 “配对条件”对话框
图 4-11装配关系
图 4-12装配关系
图 4-13装配关系
图 4-14装配关系
图 4-15装配关系
图 4-16装配关系
图 4-17 完成的装配图
第5章 四连杆机构的运动仿真
四连杆机构的运动分析,就是对机构上的某点的位移、轨迹、速度、加速度进行分析,根据原动件的运动规律,求解出从动件的运动规律。四连杆机构的运动设计方法有很多,传统的有图解法、解析法和实验法。
通过UG NX软件,对四连杆机构进行三维建模,通过预先给定尺,之后建立相应的连杆、运动副及运动驱动,对建立的运动模型进行运动学分析,给出构件上某点的运动轨迹及速度和加速度变化的规律曲线,用图形和动画来模拟机构的实际运动过程,这是传统的分析方法所不能比拟的。
运动仿真是基于时间的一种运动形式,即在指定的时间段中运动,UG的仿真分析过程分3个阶段进行:前处理(创建连杆、运动副和定义运动驱动);求解(生成内部数据文件);后处理(分析处理数据,并转化成电影文件、图表和报表文件)。5.1 新建仿真
打开运动导航器,在文件名上右击新建仿真,选择动力学,单击确定按钮
图 5-1 运动导航器
图 5-2 环境对话框
5.2 新建连杆
单击按钮,打开新建连杆对话框,如图所示
图 5-3连杆对话框
选中连杆1,点击杆loo2,再选中连杆3点击建连杆loo4,最后单击取消。
打开运动导航器
在运动导航器里面可以看到新建的四个连杆,在连杆4上面右击选择固定连杆,把连杆4设置成固定的。如图所示
创建连杆loo1,再选中连杆2点击
创建连杆loo3,再选中连杆4点击
创建连
创
图 5-4 运动导航器中显示的连杆 图 5-5 固定连杆loo4 5.3 创建运动副
考虑到连杆与连杆之间考旋转副连接均作,将建立4个运动副,其中有2个运动副固定,为了使4个连杆的运动有连贯性,必须在创建运动副时,在各连杆之间建立联系,使各部件运动结成一个整体。
单击打开创建运动副对话框,如图所示,选择连杆1,创建旋转副指定
按钮创建旋转副。驱动类型为恒定初速度为10单击
图 5-6 运动副对话框 图 5-7 设置驱动类型
选择连杆2,在咬合连杆上打上勾,让其咬合连杆1,如图所示。单击按钮创建第二个运动副。
图5-8 创建运动副对话框
选中连杆3,在咬合连杆上打上勾,让你咬合连杆2。单击建第三个运动副。
选中连杆3,在连杆3和连杆4咬合的中心建立旋转副,如图所示。单击按钮,创建第四个运动副。
按钮,创
图 5-9 运动副对话框 图 5-10 解算方案对话框
单击按按钮进行解算,设置时间为100,步数为100,勾选步数下的通过进行解算,点击确定进行解算。
经过解算,可对四杆机构进行运动仿真显示及其相关的后处理,通过动画可以观察机构的运动过程,并可以随时暂停、倒退,选择动画中的轨迹选项,可以观察机构的运动过程,还可以生成指定标记点的位移、速度、加速度等规律曲线。
第6章 四连杆的运动仿真分析
我们知道,连杆上转动副为周转副的条件是:最短杆长度+最长杆长度之和≤其余两杆长度之和:组成该周转副的两杆中必有一杆位最短杆。
分析:由预先给定的连杆长度数据,连杆1长度+机架长度≤其余两杆长度之和;所以转动副连杆1和机架之间的转动副为周转副,连杆1为曲柄,所以该机构应该为曲柄摇杆机构。点击运动仿真可以看到连杆正如分析的一样周转起来,确实是个曲柄。6.1 运动副图表分析
曲柄(连杆1)为原动件,在其转动一周后,有两次与连杆2共线,如图所示。
这时摇杆(连杆3)分别处于两个被称为极位的位置,当曲柄以等角速转动一周时,摇杆将在两个极位之间摆动,而且较明显地看到从一个极位到另一个极位要用的时间长,这就是摇杆的急回特性。
摆杆角速度变化
为了用UG定量地说明摇杆的急回特性,可以用UG中的Graphing功能,选定连杆2与连杆3构成的旋转副,Y轴属性请求选择速度,分量选择角度幅值,即表示角速度,接着点击确定输出图标,即可得出如图7-3所示图标。从表可以知道,摆杆从曲柄和连杆重合位置到曲柄和连杆共线位置需要20s,从曲柄和连杆共线到曲柄和连杆重合需要16s,从时间上说明了摆杆的急回特性。
图 6-1摆杆角速度变化曲线
运动副1的分析
因为机架是固定不动的,所以运动副1的角速度应该为0,如图所示
图 6-2 机架的角速度的变化曲线
运动副2的分析
运动副2设置的是恒定角速度为10度/秒,由图7-5所示可以看出其角速度为10度/秒
图 6-3 曲柄的角速度变化曲线
运动副3的分析
图 6-4 连杆的角速度变化曲线
运动副5的分析
图 6-5 摆杆角速度变化曲线
从表可以知道,摆杆从曲柄和连杆重合位置到曲柄和连杆共线位置需要20s,从曲柄和连杆共线到曲柄和连杆重合需要16s,从时间上说明了摆杆的急回特性。6.2 死点位置
当摇杆为主动件进行运动分析时,在如图所示的两个位置会出现不能使曲柄转动的“顶死”现象,机构的这种位置称为死点。在一些运动中我们应尽量避免这种现象的出现,为了使机构能顺利地通过死点而正常运转,可以采取组合机构或者采用安装飞轮加大惯性的方法,借惯性作用使机构闯过死点。
图 6-6 曲柄与连杆重合
图 6-7 曲柄与连杆共线
结 论
本课题介绍了四连杆的设计及运动仿真,给出了用UG建模的步骤和仿真分析的结果。
四连杆机构虽是个简单的机构,但在生活中却很常见,所以我们要熟悉其原理,特性。基本形式,以便在合适的场合使用它。
总体来说,最重要的是在本课题的设计过程中我学到了很多知识,从中受益匪浅。了解了UG软件的基本建模方法,对四连杆机构有了更深入的理解和掌握。这些对我今后的学习和工作都会有很大帮助的。
致 谢
首先感谢老师,在老师的指导、帮助下,我才能顺利完成毕业设计。还要同班的兄弟们在我的毕业设计中对于目录的插入给我很大的帮助,衷心感谢他们。
感谢在毕业设计中帮助过我的所有同学和师兄师姐们。
参考文献
[1]濮良贵 纪名刚 机械设计 北京:高等教育出版社 2008.[2]孙恒 陈作模 机械原理 北京:高等教育出版社.2007 [3]胡仁喜 康士廷 刘昌丽 UG NX5.0中文版从入门到精通 北京:机械工业出版社 2005 [4]于兴之 朱敬超 机械设计基础 武汉:武汉理工大学出版社2008 [5]屈福康 李勇峰 蔡凯武 模具CAD/CAM(UG)北京:清华大学出版社 2009 [6]江洪 康瑛石 吴冬俊 UG NX 5.0基础 北京:机械工业出版社2010 [7]刘家平机械制图 北京:中国人民大学出版社2008 [8]罗忠辉 黄世庆 机械设计与制造 北京:中国人民大学出版社2005
[9]李怀刚 王伟 计算机应用基础 北京:机械工业出版社2009 [10]郑祖斌 通用机械设备 北京:机械工业出版社2010