引用 铸钢件超声波探伤检测标准

时间:2019-05-15 02:01:28下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《引用 铸钢件超声波探伤检测标准》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《引用 铸钢件超声波探伤检测标准》。

第一篇:引用 铸钢件超声波探伤检测标准

引用 铸钢件超声波探伤检测标准

本文引用自一次记忆《铸钢件超声波探伤检测标准》

引用

一次记忆 的 铸钢件超声波探伤检测标准 中标与美标之差异

深圳市建设工程质量检测中心——弓明 学习运用两国标准让我们来共同分析一下,两种国情体系下的标准,在超声波探伤检测铸钢件时对铸钢件内部质量要求的差异吧。

铸钢件检测标准

1、《铸钢件超声探伤及质量评定方法》GB7233-87(中国标准文中简称中标)

2、《碳钢、低合金钢和马氏体不锈钢铸件超声波检验标准》ASTM-609/609M:1991(美国标准文中简称美标)

关于适用范围

中标规定:本标准规定了厚度等于或者大于30㎜的碳钢和低合金钢铸件的超声波探伤方法;以及根据超声探伤的结果对铸件进行质量评级的方法。所用的超声探伤方法仅限于A型显示脉冲反射法。

美标规定:1.1本方法包括了用脉冲反射纵波法,对经热处理的碳钢、低合金钢和马氏体不锈钢铸件进行超声波检验的标准和工艺。

4.2.2 双晶探头探测等于或小于1英寸(25mm)的截面,推荐使用5MHz,晶片尺寸为1/2英寸×1英寸(13mm×25mm)夹角为12°的探头。

中标当时制定的时候是把厚度小于30㎜铸钢件排除在本标准以外的。而美标则明确了等于或小于25㎜的铸钢件的具体检测方法。分析两国当时的铸造水平及探伤手段不难看出,中国当时的铸造件还停留在“傻大笨粗”,检测设备也是比较低端的,当时国内有能力生产双晶探头的厂家少,探伤人员可选择的探头有局限性,而且探伤人员很少接触到薄壁探伤,自然双晶探头很少使用甚至没用过。这和我国当时的国情密切相关,而现在我国铸造水平提高很快,此标准“本标准规定了厚度等于或者大于30㎜的碳钢和低合金钢铸件的超声波探伤方法”的开头对不少从事这个行业的工作人员造成不小的误导。很容易让人误认为厚度小于30㎜的铸钢件是不适合超声探伤检测的。其实不然,时代在变,不应用老方法去看待新事物。

关于定量和定性 美标在超声探伤检测上是只定量不定性的。全文只是要求探伤人员在“缺陷总数、位置、波幅和面积”上以数据的形式做出数据上的判断,可操作性强。

而中标则发扬了中国人求真的精神,把缺陷性质细分成为“裂纹、冷隔、未融合、气孔、缩松、缩孔、夹砂、夹渣等”。

要求探伤人员对缺陷的类型、尺寸、位置给出具体数据,尺寸、位置尚能准确给出,但说道类型,虽然中标只需要探伤人员将缺陷类型分为“平面型缺陷”和“非平面型缺陷”即可,但能准确不差的分辨,却非一日之功。定量又要定性使探伤标准因人而异,出现大同小异,尺度不一,造成了目前探伤人员许多的有争议的,不规范的错误操作。中标的可操作性欠佳。

关于缺陷类型的划分

中标规定:1.1平面型缺陷(Planar discontinuity):用本标准规定的方法检测一个缺陷,如果只能测出它的两维尺寸,则称为平面型缺陷。属于这种类型的缺陷有裂纹、冷隔、未融合等。

1.2非平面型缺陷(Non-planar discontinuity):用本标准规定的方法检测一个缺陷,如果能够测出它的三维尺寸,则称为非平面型缺陷。属于这种类型的缺陷有气孔、缩松、夹砂、夹渣等。

凡出现下列任何一种显示情况的位置,都要做上标记:

a.缺陷回波幅度等于或者大于距离波幅曲线的位置;

b.底面回波幅度降低12dB或者12dB以上的位置;

c.不论缺陷回波幅度的大小,凡出现线状和片状特征缺陷显示的位置。

4.4.1平面型缺陷尺寸的测定

对于具有线状和片状特征的缺陷显示,用6dB法画出缺陷的范围。按几何原理,确定缺陷的位置、大小和缺陷在铸钢件厚度方向的尺寸,按中标表2的规定,计算缺陷的面积。

中标表2

4.2.2非平面型缺陷尺寸的测定

4.2.2.1缺陷回波幅度等于或者大于距离波幅曲线者,用6dB法在探伤面上画出缺陷的范围。按中标表3的规定,计算缺陷的面积。

中标表3

当使用纵波检测时,缺陷近探伤面一侧的边界和深度,由缺陷回波脉冲前沿的波幅上升到比距离波幅曲线底6dB的位置来确定。当使用横波斜探头检测时,缺陷的边界,有缺陷回波脉冲前沿幅度上升到比同时显示的最大缺陷回波幅度低6dB的位置来确定。

缺陷在铸钢件厚度方向的尺寸,由不同方向检测所确定的缺陷上部和下部边界而得到。

由于铸钢件几何形状的限制,不能从不同方向检测的缺陷,必须在探伤报告中说明。

美标规定:10.2 验收的质量等级应由需方和供方根据下列准则的一条或几条加以确定:

10.2.1 不允许存在等于或大于DAC曲线且其面积超过美标表2中所用质量等级所规定面积的缺陷。

10.2.2 不允许存在由缺陷引起的底波降低量等于或大于75%,且其面积以超过表2中所

用质量等级所规定面积的缺陷。

10.2.3 产生波高等于或大于DAC曲线的连续缺陷回波,且其尺寸超过所用质量等级规定 的最大长度的缺陷,应予拒收。

10.2.4 买卖双方商定的其他验收准则。

10.3 可采用其他方法来确定根据超声波检验作出的拒收结论的正确性。

美标表2

18.2 线性缺陷——线性缺陷定义为长度等于或大于其宽度三倍的缺陷。象裂缝或条渣类的缺陷即使幅度为0.5英寸(13mm)的也应去除。

18.3 非线性缺陷:

18.3.1 单个缺陷——单个缺陷不得超过美标表3所列的需方订单规定的质量等级。单个缺陷定义为,一个缺陷与相邻缺陷之间的距离,大于相邻两缺陷中较大缺陷的最大尺寸的缺陷。

美标表3

18.3.2 密集缺陷——密集缺陷应定义为在边长为1英寸(25mm)立方体中有两个或两个以上的缺陷。密集缺陷不得超过美标表4中需方订单规定的质量等级。缺陷之间的距离小于密集缺陷中最大缺陷的最小尺寸时,则此密集区应予去除并焊补。

美标表4

18.3.3 两个密集缺陷区之间的距离,必须大于其中任一个密集缺陷区最大缺陷的最小尺寸。否则,含有最大单个缺陷的密集缺陷区应予去除。

18.3.4 所有缺陷,既不管探头在铸件表面上移动所画出的面积,也不管所要求的质量等级,均不得贯穿铸件壁厚的1/3T,T为缺陷处的铸件壁厚。

比较两个标准,貌似中标比美标高了一个级别,当美国人还在盯着铸钢件中的缺陷分析他们是线和面的关系时,我们已经开始分析铸钢件中缺陷的面和体的关系啦!要不说中国人聪明,空间思维好,而且还不厌其烦的用各种探头从各个方向打缺陷的边缘,分析其深度。可见一点中国的标准是不注重效率的:假设一个面积=200×120;深度=25~30;板厚=60~65的缺陷,用美标双晶探头做单面探伤即可确定缺陷数据,假设5分钟能结束检测。而按照中标的方法则需要用双晶探头做三面探伤确定面积、分析深度,加上构件翻转。估计需要30分钟方能确定缺陷数据。所以说中标的超声波检测方法并不先进,到像是在做学术研究,不适于生产,当中国人的铸钢件探伤还停留在分析发现铸造缺陷性质时,美国已经进入标准件生产啦,他们把缺陷量化,而不再考虑协助铸造提高工艺。可见中标是落后的,工业大生产,需要的是标准和量化。当前我国的铸造技术又上了台阶,而检测方法似乎还很落后。

关于探伤方法的划分

中标对探头的选择:

2.2探头

2.2.1纵波直探头的晶片直径在10~30㎜的范围,当被检测的铸钢件的探伤面较粗糙时,建议使用有软保护膜的纵波直探头。

2.2.2应使用在钢中的折射角为45°、60°、70°的横波斜探头,或者用K值为1,1.5,2,2.5,3的横波斜探头。

2.2.3纵波双晶探头两晶片之间的声绝缘必须良好。美标对探头的选择:

4.2 探头

4.2.1 纵波探头

纵波探头应是直径为 1/2~3/2英寸(13~28mm)的圆晶片,或边长为1英寸(25mm)的方晶片。应根据铸件探伤的信噪比状况,在1~5MHz频率范围内选用。本底噪声不得超过距离幅度校正曲线(DAC)的25%。探头应在其额定频率下工作。

4.2.2 双晶探头

探测等于或小于1英寸(25mm)的截面,推荐使用5MHz,晶片尺寸为1/2英寸×1英寸(13mm×25mm)夹角为12°的探头。

4.2.3 为了评价和确认缺陷,也可使用其他频率和尺寸的探头。

S1.1.2 探头——斜探头应能在钢中产生30°~75°范围的斜射声束,此角度是以垂直于受检铸件入射表面的方向量度的。最好应使用频率为0.4~5MHz的探头。

斜探头探伤作为补充要求被列入标准。仅当供需双方一致同意时才使用,其目的是为了有效检出那些由于设计或可能存在的缺陷取向,用纵波不能进行有效检验的铸件关键区。

中标的超声探伤检测方法:4.1.2.1纵波直探头探伤灵敏度的调整a.用AVG曲线板调整;b.用对比试块调整。

4.1.2.2纵波双晶探头探伤灵敏度的调整。

4.1.2.3横波斜探头探伤灵敏的调整。

美标的超声探伤检测方法:方法A——平底孔校准法(图1、2);方法B——底波校正法(图3);方法C——斜探头横孔校正法(图4)。

由此可见中标虽然照猫画虎的列举了各种探头,可具体到探伤时依然是忽视试块的存在,各种土办法都用上了,没有规范各种探头选用的范围、方法和探伤目的不明确。以至于多方探伤尚存在各种争议,严重影响了探伤质量,当读过美标之后才知道这种探头原来是取长补短,对探伤质量各有要求,各有侧重。随着中国铸造业的不断发展,探伤手段方法应该与时俱进。

关于对底波降低存在疑问的处理

中标规定:4.4.2.2对于底面回波降低12dB或者12dB以上的位置,应核查底面是否倾斜或者不平整、耦合接触是否良好。

凡是因存在缺陷而使底面回波降低12dB或12dB以上者,以底面回波降低12dB为条件,在探伤面上画出缺陷的范围,按中标表3注②计算缺陷的面积。

缺陷的深度,由一处连续缺陷回波最左边的波峰的位置来确定。缺陷在铸钢件厚度方向的尺寸,由一处连续缺陷回波中最左边的与最右边的两个波峰之间的宽度来确定。

既无底面回波,又无缺陷回波的位置,应提高探伤灵敏度检测,观察是否存在反射面与入射声束倾斜的缺陷。4.4.4存在疑问的缺陷

对于存在疑问的缺陷显示,允许采用经过验证而行之有效的其他无损检测方法进行检验。如仍不能得出结论,则由供需双方协商处理办法。

美标规定:8.5 检验铸件两壁平行区域时,底波损失75%以上的区域要进行复查,以便判定底波损失是由于接触不良,耦合剂不足,还是缺陷取向倾斜等所致。如果底波损失的原因不明,则认为该区域有疑问,需进一步查明。

10.2.2 不允许存在由缺陷引起的底波降低量等于或大于75%,且其面积以超过美标表2中所用质量等级所规定面积的缺陷。

10.2.4 买卖双方商定的其他验收准则。

10.3 可采用其他方法来确定根据超声波检验作出的拒收结论的正确性。

18.3.7 任何区域,底波损失等于或大于75%,并超过了所用质量等级规定的面积,而不管信号幅度是否超过0.5英寸(13mm)拒收线,均应拒收,除非能确定底波损失不是由于缺陷所造成的。如果提高增益,底波满足要求,按信号幅度百分比又不超过0.5英寸(13mm)拒收线的缺陷,则该区应为合格。

对于底波降低的疑问,相关的超声探伤资料指出超声波探伤中若出现无低波或者低波衰减严重不能忽视一种可能性就是铸钢件材料组织晶粒粗大,铸钢件晶粒粗大是指经过机械加工或进行断口检验时,显示出晶粒组织过分粗大而不适合应用的缺陷,这种晶粒粗大的组织,可能是遍布于铸钢件整体,也可能发生于铸钢件的局部。从本质上讲,晶粒粗大缺陷是一种冶金缺陷。当底波降低的疑义被确定为晶粒粗大时,允许重新热处理,重新热处理后超声探伤检测情况依然则判为不合格。

美标中是明确“任何区域,底波损失等于或大于75%,并超过了所用质量等级规定的面积,而不管信号幅度是否超过0.5英寸(13mm)拒收线,均应拒收”,而中标则是认为“凡是因存在缺陷而使底面回波降低12dB或12dB以上者”底波的降低是因为缺陷的存在而造成的,事实上标准中并没有把晶粒粗大定义为缺陷。这样出现了存在疑问的缺陷的说法,最终变成“由供需双方协商处理办法”。使之不了了之,这样的标准在执行起来困难重重。

我国的铸造水平不断发展,而比较欧美一些发达国家尚有不足,但我国大型国企做为国家的钢铁龙头,每年仍能生产大量高附加值的符合国外标准的铸钢件。国内对铸钢件的质量要求正不断提高,做为我国的铸钢件无损探伤标准是否也应该与时俱进,跟上潮流,期待新的国家标准早日修编。

第二篇:常州钛合金超声波探伤检测

常州钛合金超声波探伤检测 石敏1-7-7-1-5-8-2-8-7-0-7

超声检测是无损检测质量控制的一种重要手段。对于钛合金材料中可能存在的冶金缺陷(如夹杂)、工

艺缺陷(如过热、变形不足、裂纹等)和组织缺陷,生产厂和航空厂都用超声探伤检测进行质量控制,通过超声检测,可以及时淘汰不合格的原始坯料,防止不合格坯料进入加工工序,降低生产过程中的工

作量。同时,超声检测还可以对在役的钛合金工件进行检测,及时监控钛合金工件的状态,从而减少因

钛合金工件失效断裂导致的灾难性事故的发生。

JB/T4730-2005《承压设备无损检测》是由国家发展和改革委员会发布的行业推荐标准。用于指导承压设

备无损检测及验收方法。该标准分为6部分,其中第三部分超声检测规定了承压设备采用A型脉冲反射式

超声波探伤仪器检测工件缺陷的超声检测方法和质量分级要求。该部分适用于金属材料制承压设备用原

材料、零部件、和焊接接头的超声检测,也适用于金属材料制在用承压设备的超声检测。

第三篇:超声波探伤作业指导书

超声波探伤作业指导书 适用范围

本作业指导书适用于母材厚度不小于8mm的铁素体类钢全焊透熔化焊对接焊缝脉冲反射法手工超声波检验。不适用于铸钢及奥氏体不锈钢焊接,外径小于159mm钢管对接焊缝,内径小于等于200mm的管座角焊缝及外径小于250mm和内径小于80%的纵向焊缝。2 引用标准

JB4730-94《压力容器无损检测》

GBll345-89《钢焊缝手工超声波探伤方法和探伤结果分级法》 GB50205-2001《钢结构工程施工质量验收规范》 3 试验项目及质量要求

3.1 试验项目:内部缺陷超声波探伤。3.2 质量要求 3.2.1 检验等级的分级

根据质量要求检验等级分A、B、C三级,检验的完善程度A级最低,B级一般,C级最高。检验工作的难度系数按A、B、C顺序逐级增高,应按照工种2的材质、结构、焊接方法,使用条件及承受荷载的不同,合理的选用检验级别。检验等级应按产品的技术条件和有关规定选择或经合同双方协商选定。3.2.2 焊缝质量等级及缺陷分级 表3.2.2 焊缝质量等级

一级

评定等级 检验等级 探伤比例

II B级 100%

二级 III B级 20% 内部缺陷 超声波探伤

3.2.3 探伤比例的计数方法

探伤比例的计数方法应按以下原则确定:①对工厂制作焊缝,应按每条焊缝计算百分比,且探伤长度不应小于200mm,当焊缝长度不足200mm时,应对整条焊缝进行探伤;②对现场安装焊缝,应按同一类型,同一施焊条件的焊缝条数计算百分比,探伤长度应不小于200mm,并应不少于l条焊缝。3.2.4 检验区域的选择

3.2.4.1 超声波检测应在焊缝及探伤表面经外观检查合格后方可进行,应划好检验区域,标出检验区段编号。

3.2.4.2 检验区域的宽度应是焊缝本身再加上焊缝两侧各相当于母材厚度30%的一般区哉,这区域最小10mm,最大20m。3.2.4.3 接头移动区应清除焊接飞溅、铁屑、油垢及其它外部杂质。探伤区域表面应平整光滑,便于探头的自由扫查,其表面粗糙度不应超过6.3um,必要时进行打磨。a、采用一次反射法或串列式扫查探伤时,探头移动区应大于2.5δk,(其中,δ为板厚,k为探头值);b、采用直射法探伤时,探头移动区域应大于1.5δk。

3.2.4.4 去除余高的焊接,应将余高打磨到与临邻近母材平齐。保留余高焊缝,如焊缝表面有咬边,较大的隆起和凹陷等也应进行适当修磨,并做圆滑过渡以免影响检验结果的评定。3.2.5 检验频率

检验频率f一般在2-5MHZ的范围内选择,推荐选用2—2.5MHZ区称频率检验,特殊情况下,可选用低于2MHZ区或高于2.5MHZ的检验频率,但必须保证系统灵敏度的要求。3.2.6 检验等级,探伤面及使用k值(折射角)见表3.2.6 表3.2.6

板厚mm 探伤面 A 单面单 侧

B

C

探伤法

使用折射角或k值

直射法及一 次性反射法 直射法

70°(k2.5、k2.o)70°或60°(k2.5、k2.o、k1.5)45°或60°;45°和60°,≤25 >25—50

单面双侧或 双面单侧

45°和70°并用(k1.o或k1.5,>50—100 >100 /

(k1.o和k1..5,k1.0和k2.O并用)

双面双侧

45°和60°并用(k1.0和k1.5或k2.O)仪器、试块、耦合剂、探头

4.1 仪器CTS-2000笔记本式数据超声波探伤仪 4.2 试块 CSK-IA 试块 CSK-ⅡA 试块 4.3 耦合剂

应选用适当的液体或模糊状物作耦合剂。耦合剂应具备有良好透声性和适宜流动性,不应对材料和人体有损伤作用。同时应便于检验后清理。典型耦合剂为水、机油、甘油和浆糊。在试块上调节仪器和产品检验应采用相同的耦合剂。4.4 探头:斜探头、直探头 5 仪器的调整的校验 5.1 基线扫描的调节

荧光屏时基线刻度可按比例调节为代表缺陷的水平距离ι,深度h或声程S。

5.1.1 探伤面为平面时,可在对比试块上进行时基线扫描调节,扫描比例依据工作厚度和选用的探头角度来确定,最大检验范围应调到时基线满刻度的2/3以上。

5.1.2 探伤面曲率半径R大于W2/4时,可在平面对比试块上或探伤面曲率相近的曲面对比试块上,进行时基线扫描调节。5.1.3 探伤面曲面半径R小于等于W2/4时,探头楔块应磨成与工件曲面相吻合,按GBll345-89第6.2.3条在对比试块上作时基线扫描调节。

5.2 距离一波幅(DAC)曲线的绘制

5.2.1 距离一波幅曲线由选用的仪器、探头系统在对比试块上实测数据绘制,曲线由判废线、定量线、评定线组成,不同验收级别各线灵敏度见表5.2.1 表中DAC是以上φ2mm标准反射体绘制的距离一波副曲线,即DAC基准线。评定线以上定量线以下为I区,定量线至判废线以下的Ⅱ区,判废线及以上区域为Ⅲ区(判废区)距离——波幅曲线的灵敏度 表5.2.1

级别 板厚mm DAC 判废线 定量线 评定线

DAC-4dB DAC-12dB DAC-18dB

DAC+2dB DAC-8dB DAC-14dB

DAC DAC-6dB DAC-12dB

A

B

C

8—46 >46-120 >46-120

5.2.2 探测横向缺陷时,应将各线灵敏度均提高6dB。

5.2.3 探伤面曲率半径R小于等于W2/4时,距离一波幅曲线的绘制应在曲线面对比试块上进行。

5.2.4 受检工件的表面耦合损失及材质衰减应与试块相同,否则应进行传输损失修整,在1跨距声程内最大传输损差在2dB以内可不进行修整。

5.2.5 距离一波幅曲线可绘制在坐标纸上,也可直接绘制在荧光屏刻板上。5.3 仪器调整的校验

5.3.1 每次检验前应在对比试块上,对时基线扫描比例和距离一波幅曲线<灵敏度>进行调整或校验。校验点不少于两点。5.3.2 在检验过程中每4h之内检验工作结束后应对时基线扫描和灵敏度进行校验,校验可在对比试块或其他等效试块上进行。

5.3.3 扫描调节校验时,如发现校验点反射波在扫描线上偏移超过原校验点刻度读数的10%或满刻度5%(两者取较小值),则扫描比例应重新调整,前次校验后已经记录的缺点,位置参数应重新测定,并予以更正。

5.3.4 灵敏度校验时,如校验点的反射波幅比距离一波幅曲线降低20%或2dB以上,则仪器灵敏度应重新调整,而前次校验后,已经记录的缺陷,应对缺陷尺寸参数重新测定并予以评定。6 初始检验 6.1 一般要求

6.1.1 超声检验应在焊缝及探伤表面经外观检查合格并满足GBll345-89第8.1.3条的要求后方可进行。

6.1.2 检验前,探伤人员应了解受检工件的材质、结构、曲率、厚度、焊接方法、焊缝种类、坡口形式、焊缝余高及背面衬垫、沟槽等情况。

6.1.3 探伤灵敏度应不低于评定线灵敏度。

6.1.4 扫查速度不应大于150mm/S,相邻两次探头移动间隔保证至少有探头宽度10%的重叠。

6.1.5 对波幅超过评定线的反射波,应根据探头位置、方向、反射波的位置及6.1.2条了解焊缝情况,判断其是否为缺陷。判断缺陷的部位在焊缝表面作出标记。6.2平板对接焊缝的检验

6.2.1 为探测纵向缺陷,斜探头垂直于焊缝中心线放置在探伤面上,作锯齿型扫查。探头前后移动的范围应保证扫查到全部焊缝截面及热影响区。在保持垂直焊缝作前后移动的同时,还应作10°~15°左右移动。

6.2.2 为探测焊缝及热影响区的横向缺陷应进行平行和斜平行扫查。B级检验时,可在焊缝两侧边缘使探头与焊缝中心线成10°~20°斜平行扫查。C级检验时,可将探头放在焊缝及热影响区上作两方向的平行扫查,焊缝母材厚度超过lOOmm时,应在焊缝的两面作平行扫查或者采用两种角度探头(45°和60°或45°和70°并用)作单位两个方向平行扫查,亦可用两个45°探头作串列式平行扫查。对电渣焊缝还应增加与焊缝中心线45°的斜想向扫查。

6.2.3 为确定缺陷的位置、方向、形状、观察缺陷动态波形或区分缺陷讯号与伪讯号,可采用前后、左右、转角、环绕等四种探头基本扫查方式。6.3 曲面工作对接焊缝的检验

6.3.1 探伤面为曲面时,按规定选用对比试块,并采用6.2条的方法进行检验。C级检验时,受工件几何形状限制,横向缺陷探测无法实施时,应在检验记录中予以注明。

6.3.2 环缝检验时,对比试块的曲率半径为探伤面曲率0.9-1.5倍的对比试块,均可采用,对比试块的采用。探测横向缺陷时按6.3.3条的方法进行。

6.3.3 纵缝检验时,对比试块的曲率半径与探伤面曲率半径之差应小于10%。

6.3.3.1 根据工件的曲率和材料厚度选择探头角度,并考虑几何临界角的限制,确保声束能扫查到整个焊缝厚度;条件允许时,声束在曲底面的入射角度不应超过70°。

6.3.3.2 探头接触面修磨后,应注意探头入射点和折射点角或K值的变化,并用曲面试块作实际测定。

6.3.3.3 当R大于W2/4采用平面对比试块调节仪器,检验中应注意到荧光屏指示的缺陷深度或水平距离与缺陷实际的径向埋藏深度或水平距离弧长的差异,必要时应进行修正。6.4 其它结构焊缝的检验

尽可能采用平板焊缝检验中已经行之有效的各种方法。在选择探伤面和探头时应考虑到检测各种类型缺陷的可能性,并使声束尽可能垂直于该结构焊缝中的主要缺陷。7 规定检验 7.1 一般要求

7.1.1 规定检验只对初始检验中被标记的部位进行检验。

7.1.2 对所有反射波幅超过定量线的缺陷,均应确定其位置,最大反射波幅所在区域和缺陷指示长度。表7.1.2mm

检验等级

A

灵敏度 评定灵敏度 定量灵敏度 判废灵敏度

7.2 最大反射波幅的测定

7.2.1 对判定的缺陷的部位,采取6.2.3条的探头扫查方式,增加探伤面、改变探头折射角度进行探测,测出最大反射波幅并与距离一波幅曲线作比较,确定波幅所在区域,波幅测定的允许误差为2dB。

Φ3 Φ4 Φ6

Φ2 Φ3 Φ6

Φ2 Φ3 Φ4

B

C

7.1.3 探伤灵敏度应调节到评定灵敏度,见表7.1.2直探头检验等级评定。7.2.2 最大反射波幅A与定量线SL的dB差值记为SL±——dB 7.3 位置参数的测定

7.3.1 缺陷位置以获得缺陷最大反射波的位置来表示,根据相应的探头位置和反射波在荧光屏上的位置来确定如下全部或部分参数。

a、纵坐标L代表缺陷沿焊缝方向的位置。以检验区段编号为标证基准点(即原点)建立坐标。坐标正方向距离上表示缺陷到原点的距离。

b、深度坐标h代表缺陷位置到探伤面的垂直距离(mm),以缺陷最大反射波位置的深度值表示。

c、横坐标q代表缺陷位置离开焊缝中心线的垂直距离,可由缺陷最大反射波位置的水平距离或简化水平距离求得。7.3.2 缺陷的深度和水平距离(或简化水平距离)两数值中的一个可由缺陷最大反射波在荧光屏上的位置直接读出,另一个数值可采用计算法、曲线法、作图法或缺陷定位尺求出。

第四篇:超声波检测相关标准

GB 3947-83声学名词术语

GB/T1786-1990锻制园并的超声波探伤方法

GB/T 2108-1980薄钢板兰姆波探伤方法

GB/T2970-2004厚钢板超声波检验方法

GB/T3310-1999铜合金棒材超声波探伤方法

GB/T3389.2-1999压电陶瓷材料性能测试方法纵向压电应变常数d33的静态测试

GB/T4162-1991锻轧钢棒超声波检验方法

GB/T 4163-1984不锈钢管超声波探伤方法(NDT,86-10)

GB/T5193-1985钛及钛合金加工产品(横截面厚度≥13mm)超声波探伤方法(NDT,89-11)(eqv AMS2631)

GB/T5777-1996无缝钢管超声波探伤检验方法(eqv ISO9303:1989)

GB/T6402-1991钢锻件超声波检验方法

GB/T6427-1999压电陶瓷振子频率温度稳定性的测试方法

GB/T6519-2000变形铝合金产品超声波检验方法

GB/T7233-1987铸钢件超声探伤及质量评级方法(NDT,89-9)

GB/T7734-2004复合钢板超声波检验方法

GB/T7736-2001钢的低倍组织及缺陷超声波检验法(取代YB898-77)

GB/T8361-2001冷拉园钢表面超声波探伤方法(NDT,91-1)

GB/T8651-2002金属板材超声板波探伤方法

GB/T8652-1988变形高强度钢超声波检验方法(NDT,90-2)

GB/T11259-1999超声波检验用钢制对比试块的制作与校验方法(eqv ASTME428-92)

GB/T11343-1989接触式超声斜射探伤方法(WSTS,91-4)

GB/T11344-1989接触式超声波脉冲回波法测厚

GB/T11345-1989钢焊缝手工超声波探伤方法和探伤结果的分级(WSTS,91-2~3)

GB/T 12604.1-2005无损检测术语 超声检测 代替JB3111-82 GB/T12604.1-1990

GB/T 12604.4-2005无损检测术语 声发射检测 代替JB3111-82 GB/T12604.4-1990

GB/T12969.1-1991钛及钛合金管材超声波检验方法

GB/T13315-1991锻钢冷轧工作辊超声波探伤方法

GB/T13316-1991铸钢轧辊超声波探伤方法

GB/T15830-1995钢制管道对接环焊缝超声波探伤方法和检验结果分级

GB/T18182-2000金属压力容器声发射检测及结果评价方法

GB/T18256-2000焊接钢管(埋弧焊除外)—用于确认水压密实性的超声波检测方法(eqv ISO

10332:1994)

GB/T18329.1-2001滑动轴承多层金属滑动轴承结合强度的超声波无损检验

GB/T18604-2001用气体超声流量计测量天然气流量

GB/T18694-2002无损检测 超声检验 探头及其声场的表征(eqv ISO10375:1997)

GB/T 18696.1-2004声学 阻抗管中吸声系数和声阻抗的测量第1部分:驻波比法

GB/T18852-2002无损检测 超声检验 测量接触探头声束特性的参考试块和方法(ISO12715:1999,IDT)

GB/T 19799.1-2005无损检测 超声检测 1号校准试块

GB/T 19799.2-2005无损检测 超声检测 2号校准试块

GB/T 19800-2005无损检测 声发射检测 换能器的一级校准

GB/T 19801-2005无损检测 声发射检测声发射传感器的二级校准

GJB593.1-1988无损检测质量控制规范超声纵波和横波检验

GJB1038.1-1990纤维增强塑料无损检验方法--超声波检验

GJB1076-1991穿甲弹用钨基高密度合金棒超声波探伤方法

GJB1580-1993变形金属超声波检验方法

GJB2044-1994钛合金压力容器声发射检测方法

GJB1538-1992飞机结构件用TC4 钛合金棒材规范

GJB3384-1998金属薄板兰姆波检验方法

GJB3538-1999变形铝合金棒材超声波检验方法

ZBY 230-84A型脉冲反射式超声探伤仪通用技术条件(NDT,87-4/84版)(已被JB/T10061-1999代替)

ZBY 231-84超声探伤仪用探头性能测试方法(NDT,87-5/84版)(已被JB/T10062-1999代替)

ZBY 232-84超声探伤用1号标准试块技术条件(NDT,87-6/84版)(已被JB/T10063-1999代替)

ZBY 344-85超声探伤用探头型号命名方法(NDT,87-6)

ZBY 345-85超声探伤仪用刻度板(NDT,87-6)

ZB G93 004-87尿素高压设备制造检验方法--不锈钢带极自动堆焊层超声波检验

ZB J04 001-87A型脉冲反射式超声探伤系统工作性能测试方法(NDT,88-6)(已被JB/T9214-1999代替)

ZB J74 003-88压力容器用钢板超声波探伤(已废止)

ZB J26 002-89圆柱螺旋压缩弹簧超声波探伤方法

ZB J32 004-88大型锻造曲轴超声波检验(已被JB/T9020-1999代替)

ZB U05 008-90船用锻钢件超声波探伤

ZB K54 010-89汽轮机铸钢件超声波探伤及质量分级方法

ZB N77 001-90超声测厚仪通用技术条件

ZB N71 009-89超声硬度计技术条件

ZB E98 001-88常压钢质油罐焊缝超声波探伤(NDT,90-1)(已被JB/T9212-1999代替)

SDJ 67-83水电部电力建设施工及验收技术规范:管道焊缝超声波检验篇

QJ 912-1985复合固体推进剂药条燃速的水下声发射测定方法

QJ 1269-87金属薄板兰姆波探伤方法

QJ1274-1987玻璃钢层压板超声波检测方法

QJ 1629-1989钛合金气瓶声发射检测方法

QJ 1657-1989固体火箭发动机玻璃纤维缠绕燃烧室壳体超声波探伤方法

QJ 1707-1989金属及其制品的脉冲反射式超声波测厚方法

QJ2252-1992高温合金锻件超声波探伤方法及质量分级标准

QJ 2914-1997复合材料结构声发射检测方法

CB 827-1975船体焊缝超声波探伤

CB 3178-1983民用船舶钢焊缝超声波探伤评级标准

CB/Z211-1984船用金属复合材料超声波探伤工艺规程

CB1134-1985BFe30-1-1管材的超声波探伤方法

CB/T 3907-1999船用锻钢件超声波探伤

CB/T3559-1994船舶钢焊缝手工超声波探伤工艺和质量分级

CB/T 3177-1994船舶钢焊缝射线照相和超声波检查规则

TB 1989-87机车车辆厂,段修车轴超声波探伤方法

TB 1558-84对焊焊缝超声波探伤

TB 1606-1985球墨铸铁曲轴超声波探伤

TB 2046-1989机车新制轮箍超声波探伤方法

TB 2049-1989机车车辆车轴厂、段修超声波探伤标准试块

TB/T1618-2001机车车辆车轴超声波检验

TB/T 1659-1985内燃机车柴油机钢背铝基合金双金属轴瓦超声波探伤

TB/T2327-1992高锰钢辙叉超声波探伤方法

TB/T2340-2000多通道A型显示钢轨超声波探伤仪技术条件

TB/T 2452.1-1993整体薄壁球铁活塞无损探伤球铁活塞超声波探伤

TB/T2494.1-1994轨道车辆车轴探伤方法新制车轴超声波探伤

TB/T2494.2-1994轨道车辆车轴探伤方法在役车轴超声波探伤

TB/T2634-2000钢轨超声波探伤探头技术条件

TB/T2658.9-1995工务作业标准 钢轨超声波探伤作业

TB/T 2882-1998车轮超声波探伤技术条件

TB/T 2452.1-1993整体薄壁球铁活塞无损探伤球铁活塞超声波探伤

TB/T 2959-1999滑动轴承金属多层滑动轴承粘结层的超声波无损检验

TB/T2995-2000铁道车轮和轮箍超声波检验

TB/T 3078-2003铁道车辆高磷闸瓦超声波检验

HB/Z33-1998变形高温合金棒材超声波检验

HB/Z34-1998变形高温合金园并及盘件超声波检验

HB/Z35-1982不锈钢和高强度结构钢棒材超声检验说明书

HB/Z36-1982变形钛合金棒材超声波检验说明书

HB/Z37-1982变形钛合金园并及盘件超声波检验说明书

HB/Z59-1997超声波检验

HB/Z 74-1983航空铝合金锻件超声波检验说明书

HB/Z75-1983航空用小直径薄壁无缝钢管超声波检验说明书

HB/Z 76-1983结构钢和不锈钢航空锻件超声检验说明书

HB/Z 5141-19803Cr3Mo3VNb热作模具钢坯超声波探伤

HB 5141-19803Cr3Mo3VNb热作模具钢坯超声波探伤

HB 5169-1981铂铱25合金板材超声波探伤方法

HB5265-1983航空发动机TC11钛合金压气机盘用并(环)坯及锻件超声波检验说明书

HB5266-1983航空发动机TC11钛合金压气机盘用并(环)坯及锻件超声波检验验收标准

HB 5358.1-1986航空制件超声波检验质量控制标准(NDT,90-6)

HB6108-1986金属蜂窝胶接结构声谐振法检测

HB6107-1986金属蜂窝胶接结构声阻法检测

HB5460-1990蜂窝构件超声波穿透C 扫描检测方法

HB 5461-1990金属蜂窝胶接结构标准样块

MH/T3002.4-1997航空器无损检测 超声检验

YB 943-78锅炉用高压无缝钢管超声波检验方法

YB 950-80专用TC4钛合金锻制并材超声波探伤方法

YB3209-1982锻钢冷轧工作辊超声波探伤方法

YB 4082-1992 钢管自动超声探伤系统综合性能测试方法

YB 4094-1993 炮弹用方钢(坯)超声波探伤方法

YB/T 036.10-1992冶金设备制造通用技术条件锻钢件超声波探伤方法

YB/T144-1998超声探伤信号幅度误差测量方法

YB/T 145-1998钢管探伤对比试样人工缺陷尺寸测量方法

YB/T 898-77钢材低倍缺陷超声波检验方法

YB/T951-2003钢轨超声波探伤方法

YB/T4082-2000钢管自动超声探伤系统综合性能测试方法

YB/T4094-1993炮弹用方钢(坯)超声波探伤方法

JB 1151-1973高压无缝钢管超声波探伤

JB 2674-80合金钢锻制模块技术条件

JB 3963-1985压力容器锻件超声波探伤(NDT,87-8)(已废止)

JB 4010-1985汽轮发电机用钢制护环 超声探伤方法

JB 4125-85超声波检验用铝合金参考试块的制造和控制

JB 4126-85超声波检验用钢质参考试块的制造和控制

JB/T 1152-1981锅炉和钢制压力容器对接焊缝超声波探伤(NDT,82-2)

JB/T 3144-1982锅炉大口径管座角焊缝超声波探伤

JB/T1582-1996汽轮机叶轮锻件超声探伤方法(NDT,86-12)

JB/T1581-1996汽轮机、汽轮发电机转子和主轴锻件超声波探伤方法

JB/T4010-1985汽轮发电机用钢制护环超声探伤方法(NDT,86-12)

JB/T4009-1999接触式超声纵波直射探伤方法 代替JB4009-85

JB/T4008-1999液浸式超声纵波直射探伤方法 代替JB4008-85

JB/T 4730.3-2005承压设备无损检测 第3部分 超声检测 取代JB4730-1994

JB/T5093-1991内燃机摩擦焊气门超声波探伤技术条件

JB/T5439-1991压缩机球墨铸铁零件的超声波探伤

JB/T5440-1991压缩机锻钢零件的超声波探伤

JB/T5441-1991压缩机铸钢零件的超声波探伤

JB/T5754-1991单通道声发射检测仪技术条件

JB/T6903-1993阀门锻钢件超声波检查方法

JB/T6916-1993在役高压气瓶声发射检测和评定方法

JB/T6979-1993大中型钢质锻制模块(超声波和夹杂物)质量分级

JB/T7367.1-2000圆柱螺旋压缩弹簧超声波探伤方法

JB/T7522-2004无损检测 材料超声速度测量方法(代替JB/T7522—1994)

JB/T7524-1994建筑钢结构焊缝超声波探伤

JB/T 7602-1994卧式内燃锅炉T 形接头超声波探伤

JB/T7667-1995在役压力容器声发射检测评定方法

JB/T 7913-1995超声波检验用钢制对比试块的制作与校验方法旧标准GB/TH11259-89(2000年作废)

JB/T8283-1999声发射检测仪性能测试方法 代替JB/T8283-95

JB/T8428-1996校正钢焊缝超声波检测仪器用标准试块

JB/T8467-1996锻钢件超声波探伤方法

JB/T8931-1999堆焊层超声波探伤方法

JB/T9020-1999大型锻造曲轴超声波检验

JB/T9212-1999常压钢质油罐焊缝超声波探伤 代替ZBE98001-88

JB/T9214-1999A型脉冲反射式超声探伤系统工作性能测试方法 代替ZBJ04001-87

JB/T9219-1999球墨铸铁超声声速测定方法

JB/T9377-1999超声硬度计技术条件

JB/T9630.2-1999汽轮机铸钢件 超声波探伤及质量分级方法

JB/T9674-1999超声波探测瓷件内部缺陷

JB/T10061-1999A型脉冲反射式超声探伤仪通用技术条件 代替ZBY230-84

JB/T10062-1999超声探伤仪用探头性能测试方法 代替ZBY231-84

JB/T10063-1999超声探伤用1号标准试块技术条件 代替ZBY232-84

JB/T10326-2002在役发电机护环超声波检验技术标准

JB/T 53070-1993加氢反应器焊缝超声波探伤

JB/T 53071-1993加氢反应器堆焊层的超声波探伤

JB/ZQ 6141-1986超声波检验用钢质对比试块的制作和控制

JB/ZQ 6142-1986超声波检验用铝合金对比试块的制作和控制

JB/ZQ 6159-1985奥氏体钢锻件的超声波检验方法

JB/ZQ 6104-1984汽轮机和发电机转子锻件超声波探伤方法

JB/ZQ 6109-1984铸钢件超声波检测方法

JB/ZQ 6112-1984汽轮发电机用钢质护环的超声波检验方法

JB/Z 262-86超声波探测瓷件内部缺陷(已被JB/T9674-1999代替)

JB/Z 265-86球墨铸铁超声声速测定方法(已被JB/T9219-1999代替)

JG/T3034.1-1996焊接球节点钢网架焊缝超声波探伤及质量分级法

JG/T3034.2-1996螺栓球节点钢网架焊缝超声波探伤及质量分级法(JG--建筑工业行业标准)[NDT2000-12]

JGJ 106-203建筑基桩检测技术规范 声波透射法

JG/T 5004-1992混凝土超声波检测仪

DL 505-1992汽轮机焊接转子超声波探伤规程

DL/T 5048-95电站建设施工及验收技术规范(管道焊接接头超声波检验篇)

DL/T 505-1992汽轮机焊接转子超声波探伤规程

DL/T 542-1994钢熔化焊T形接头角焊缝超声波检验方法和质量分级

DL/T 694-1999高温紧固螺栓超声波检验技术导则

DL/T 714-2000汽轮机叶片超声波检验技术导则

DL/T 718-2000火力发电厂铸造三通、弯头超声波探伤方法

DL/T820-2002管道焊接接头超声波检验技术规程

JJG(航天)53-1988 国家计量检定规程-A型脉冲反射式超声波探伤仪检定规程

JJG(铁道)130-2003 国家计量检定规程-钢轨超声波探伤仪检定规程

JJG(铁道)156-1995 国家计量检定规程-超声波探头检定规程(试行)

JJG(铁道)157-2004 国家计量检定规程-钢轨探伤仪检定仪检定规程

JJG 645-1990 国家计量检定规程-三型钢轨探伤仪检定规程

JJG(豫)107-1999 国家计量检定规程-非金属超声波检测仪检定规程

JJG 403-1986 国家计量检定规程-超声波测厚仪检定规程

JJG 746-2004 国家计量检定规程-超声探伤仪检定规程 代替JJG746-1991

JJG(辽)51-2001 国家计量检定规程-不解体探伤仪检定规程

SY4065-1993石油天然气钢制管道对接焊缝超声波探伤及质量分级

SY 5135-1986SSF 79超深井声波测井仪

SY/T5446-1992油井管无损检测方法 钻杆焊缝超声波探伤

SY/T5447-1992油井管无损检测方法 超声测厚

SY/T 0327-2003石油天然气钢质管道对接环焊缝全自动超声波检测

SY/T 6423.2-1999石油天然气工业 承压钢管无损检测方法电阻焊和感应焊钢管焊缝纵向缺欠的超声波检测

SY/T 6423.3-1999石油天然气工业承压钢管无损检测方法埋弧焊钢管焊缝纵向和/或横向缺欠的超声波检测

SY/T 6423.4-1999石油天然气工业 承压钢管无损检测方法焊接钢管焊缝附近分层缺欠的超声波检测

SY/T 6423.5-1999石油天然气工业 承压钢管无损检测方法焊接钢管制造用钢带/钢板分层缺欠的超声波检测

SY/T 6423.6-1999石油天然气工业 承压钢管无损检测方法无缝和焊接(埋弧焊除外)钢管分层缺欠的超声波检测

SY/T 6423.7-1999石油天然气工业 承压钢管无损检测方法无缝和焊接钢管管端分层缺欠的超声波检测

SY/T 10005-1996海上结构建造的超声检验推荐作法和超声技师资格的考试指南

EJ/T 606-1991压水堆核电厂反应堆压力容器焊缝超声波在役检查

EJ/T 958-1995核用屏蔽灰铁铸件超声纵波探伤方法与验收准则

EJ/T 195-1988焊缝超声波探伤规程与验收标准

EJ/T 768-1993核级容器堆焊层超声波探伤方法与探伤结果分级

EJ/T 835-1994核级容器管座角焊缝超声探伤方法和验收准则

HG/T3175-2002尿素高压设备制造检验方法不锈钢带极自动堆焊层超声波检测

WCGJ 040602-1994燃油锅炉填角焊缝超声波探伤标准

CECS21:2000超声法检测混凝土缺陷技术规程(中国建筑科学研究院结构所)

CECS02:1988超声-回弹综合法检测混凝土抗压强度规程

HJ/T 15-1996超声波明渠污水流量计

YS/T 585-2006铜及铜合金板材超声波探伤方法

超声波检测国家标准/行业标准台湾标准:

CNS 3712 Z8012-74金属材料之超音波探伤试验法

CNS 4120 Z7051-87超音波探测用G型校正标准试块

CNS 4121 Z7052-87超音波探测钢板用N1型校正标准试块

CNS 4122 Z7053-87超音波探测用A1型校正标准试块

CNS 4123 Z7054-87超音波探测用A2型校正标准试块

CNS 4124 Z7055-87超音波探测用A3型校正标准试块

CNS 11051 Z8052-85脉冲反射式超音波检测法通则

CNS 11224 Z8053-85脉冲反射式超音波检测仪系统评鉴

CNS 11399 Z8061-85压力容器用钢板直束法超音波检验法

CNS 11401 Z8063-85钢对接焊道之超音波检验法

CNS 12618 Z8075-89钢结构熔接道超音波检测法

CNS 12622 Z8079-89大型锻钢轴件超音波检测法

CNS 12668 Z8088-90钢熔接缝超音波探伤试验法及试验结果之等级分类

CNS 12675 Z8094-90铝合金熔接缝超音波探伤试验技术检定之试验法

CNS 12845 Z8099-87结构用钢板超音波直束检测法

CNS 13302 A3341-82钢筋混凝土用竹节钢筋瓦斯压接部超音波探伤试验法

CNS 13342 Z8126-83非破坏检测词汇(超音波检测名词)

CNS 13403 Z8127-83无缝及电阻焊钢管超音波检测法

CNS 13404 Z8128-83电弧焊钢管超音波检测法

CNS 14135 Z8135-87金属材料超音波测厚法

CNS 14136 Z8136-87锻钢品超音波检测法

CNS 14138 Z8138-87钛管超音波检测法

第五篇:超声波探伤技术工作总结

小径管超声波探伤技术

开封空分集团有限公司--姜海

小径管指管径较小(DN100以内),管壁较薄(一般为3.5mm~8mm)的小径管。过去对这些小径管焊缝多采用射线检测,但射线探伤方法有其自身的局限性;如裂纹、未熔合等,特别是当其与射线束方向夹角较大时,不易发现,容易漏检。而超声波探伤由于不受场地、环境限制,并且对那些面状缺陷检出率高、且价格低廉并可与其他工种进行交叉作业,可以大大提高效率而在管道探伤中得到了较好的应用,下面我结合自己的工作实践,主要对小径管探伤存在问题、探伤方法、要点及缺陷波识别等,谈谈自己的一些认识:

一 小径管对接焊缝超声波探伤存在以下问题: 1)小径管壁薄,壁厚较薄时超声波声束在管壁中产生的声程较短,易受声压不规则的近场区干扰,给缺陷定性,定量带来困难。2)管壁曲率较大,管内外表面声能损失较大,声束传输路径更复杂,经过多次发散,聚集声压反射异于常规,使声能有一定量损失,降低了探伤灵敏度。3)焊缝焊波高度、焊瘤尺寸与管壁厚度为同一数量级,在较高灵敏度探伤时杂波多,这给缺陷的识别增加了难度。4)同一截面管子在壁厚上有时存在较大的公差,因而给缺陷定位带来了一定的困难。

小径管对接焊缝超声波探伤方法及要点: 小径管对接焊缝进行超声波探伤时,探头应使用高阻尼、短前沿、大K值的单晶横波探头;晶片尺寸一般不大于6mm×6mm,前沿距离≤5mm,偏差<0.5mm,工作频率为5 MHZ。探伤中要注意如下几点:(1)探头耦合问题:

为保证探头与工件表面充分耦合,探头耦合面应修磨成圆弧,使其曲率半径与小径管外表面尽量一致,不同管径的小径管焊缝探伤,应配备专用的探头,避免混用。如果探伤前不认真修磨探头耦合面,而是不同外径的管子混用一个探头,其结果不但使探伤工作受到油面波、变形表面波的干扰,更重要的是随着探头的磨损,使超声场特性发生较大变化,使探伤结果变的不可信;另外,打磨准备工作也是保证探伤顺利进行的重要环节,如飞溅物消除不彻底,会使探头与管壁耦合不好,在检查过程中出现“不起波”或“起杂波‘,必须认真去打磨探头移动区,消除飞溅物、锈斑、油垢等,以便于探头扫查。(2)关于探头参数的测定及复核

准确测定探头的重要参数,是超声波探伤的重要基础,如果探头参数测量不准,就会造成缺陷定位、定性的困难,甚至造成误判或漏判,在小径管探伤检验中,由于工件尺寸小,对缺陷定位更要求准确,对探头主要参数的 测定,准确性尤为重要,在探伤前,探伤人员必须认真测定探头参数,在探伤过程中,对探头主要参数和探伤灵敏度必须复核。(3)关于探伤灵敏度

在超声波探伤中,确定探伤灵敏度是一个关键的步骤,它将直接影响到探伤结果,在小径管焊缝探伤中同样显的极为重要。小径管探头由于晶 片尺寸较小,发射功率较低加上探头前沿尺寸小,加工困难相应增大,因而,探头在探伤灵敏度下杂波很多,但有时在探伤时为了便于观察,往往不适当地降低了探伤灵敏度其结果必然造成漏检,因此,做对比试块时,须选用外径、壁厚以及内外粗糙度与被探管子相同或基本相近的材料。(4)小径管焊缝探伤由于探头晶片尺寸较小,容易产生漏检,所以一定要在焊缝两侧探伤。三

缺陷波的识别与判定: 1 缺陷反射波的识别

当采用一次波探伤时主要观察仪器荧光屏上一次波标记点前面出现的反射波,因为波束扫过焊缝下半部,如果有反射波一般为缺陷反射(除盲区杂波外)。其次是位于一次波最大深度标记点上(焊缝根部)的反射波,当焊缝不存在错口时,要确定反射波对应的反射点的位置,如果反射点位于焊缝中心点或探头侧则判为缺陷。当发现焊缝根部出现一定高度的反射波时、应对该处焊缝两侧的壁厚进行准确测定,仪器的扫描速度要准确调整,以准确定位,并根据探头所在的位置对反射波进行认真分析,缺陷位置出现在一次波最大深度标记点处或以前,对应的反射体位于焊缝中心或探头侧。

当采用二次波探伤时,在一次波标记点和二次波标记点之间出现的反射波,可能为缺陷波,也可能是杂波,在这个区域之前或之后出现的反射波则为非缺陷波。缺陷波可用下述方法来判断:

(1)如果二次波声束在内壁上的转折点位于焊缝区外,反射点位于焊缝中,则该反射波可判为缺陷波。(2)二次波声束在内壁上的转折点在焊缝区内则该反射波不能作为判伤的依据应根据位置、波形等其它情况综合判断。

当从焊缝两侧探伤发现反射波,若反射波出现在焊缝的同一位置,反射波高相同或不同则反射波判为缺陷波。2. 杂波的识别

小径管对接焊缝超声波探伤时,除了缺陷反射波外,还会有一些杂波信号,这些信号干扰了缺陷的判定,易产生误判,因此要认真分析。(1)缝根部成形影响:

当焊缝根部成形较好时,一般在在一次波标记点附近无反射波或反射波强度很弱,当焊缝根部成形不良如存在焊瘤、表面不规则时,从焊缝两侧探伤一般均有反射信号,其位置与根部缺陷很相似,其强度随根部成形所构成的反射条件而异,稍不注意易判为缺陷,可 用下述方法区分: a.准确地调整扫描速度以便从声程差上比较,焊瘤反射波深度略大于一次波标记点,有必要再次强调精确测量管子壁厚。

b.用水平定位法识别:如焊瘤反射波在偏离焊缝中心线远离探头的一侧,而根部缺陷水平位置则应在焊缝中心线上或偏离焊缝中心线靠近探头一侧。

c.通过转动探头观察波形变化也可鉴别,移动探头找到最大反射波后慢慢左右转动探头,观察波形变化,缺陷波涨落大,瞬间消失,焊瘤波升降较缓慢、平稳,同时焊瘤处除产生反射波外,多数还会产生变形纵波或变形横波,并传到焊缝加强面产生回波信号,水平位置在一,二次波标记点中间或二次波标记点附近,可用沾油的手指拍打加强面来识别。(1)焊缝错边反射波:

当焊缝有错边出现时,声束和错边方位将产生反射波,其水平定位在焊缝中心,但从另一侧探伤时因无反射条件则无反射信号。(2)扩散声束引起的加强面反射波的识别:

由于小径管壁薄,当一次波主声束后面的扩散声束经底面反射到焊缝加强面时,在加强面处产生反射波,正好出现在一,二次波标记点之间,有时易误判为焊缝中上部缺陷,可根据探头位置和水平定位或用沾油的手指拍打加强面识别,必要时,用其它检测手段做辅助检查,(1)变形波:

当声束扫查到焊缝根部时,在一定条件下将产生变形波,可根据探头位置和水平定位进行区别,一般情况下变形波水平定位点在焊缝之外。四. 试验验证及结论

通过对不同管径,不同壁厚管子经超声波探伤和射线探伤比较,二者结果是基本吻合的,现场实际应用也证明,小径管对接超声波探伤不仅切实可行,而且也具有较强的可靠性。小径管对接超声波探伤可以克服射线探伤的缺点,但在探伤过程中一定要从焊缝两侧探伤,认真分析波形,对探头参数、仪器一定要调准。

下载引用 铸钢件超声波探伤检测标准word格式文档
下载引用 铸钢件超声波探伤检测标准.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    超声波探伤培训教程

    培训教材之理论基础------ 第一章 无损检测概述 无损检测包括射线检测(RT)、超声检测(UT)、磁粉检测(MT)、渗透检测(PT)和涡流检测(ET)等五种检测方法。主要应用于金属材料制造的机......

    超声波探伤故障总结

    一、为何超声波探伤仪在操作过程中出现死机,且关机后不能再开机? 答:由于超声波探伤仪受到剧烈震动或者误操作或其它原因使存储器内容出现混乱,从而导致出现死机现象,此时关机后......

    超声波探伤通用作业指导书

    超声波探伤通用作业指导书 一、适用范围 超声检测适用场内球铁铸件的检测。 二引用标准 EN 12680-3:2003 铸造 超声检测 第三部分:球墨铸铁件 三、检测范围 就铸件检测部位......

    超声波探伤安全操作规程

    超声波探伤安全操作规程 一、本作业岗位主要危险源(危害)1、未按规定穿戴防护用品,导致人员伤害事故;2、对作业场地缺乏检查,导致人员伤害事故;3、设备电器部件老化、线路破损或PE......

    超声波探伤作业指导书2

    河南第一火电建设公司新疆天富东热电厂热电联产技改工程项目部 超声波检验作业指导书目录 1.范围„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„......

    超声波检测

    超声波无损检测 NDT (Non-destructive testing),就是利用声、光、磁和电等特性,在不损害或不影响被检对象使用性能的前提下,检测被检对象中是否存在缺陷或不均匀性,给出缺陷的大小......

    超声波探伤技术在钢结构检测中的应用

    超声波探伤技术在钢结构检测中的应用 摘 要:随着当代建筑技术日新月异的发展,钢结构在当代建筑中使用率越来越高。采用无损探伤的手段对焊缝进行质量检验是确保钢结构工程质量......

    超声波探伤作业指导书[五篇范文]

    目 录 1.范围 2.引用标准 3.检验人员的职责与要求 4.检验设备 5 校准与复核 6.检测工艺 7.检验程序 8.标识与报告 9.职业健康安全措施 10.环境保护措施 超声波作业指导......