电磁兼容性实现途径及方法

时间:2019-05-15 02:46:38下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《电磁兼容性实现途径及方法》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《电磁兼容性实现途径及方法》。

第一篇:电磁兼容性实现途径及方法

电磁兼容性实现途径及方法

这要从分析形成电磁干扰后果的基本要素出发。由电磁骚扰源发射的电磁能量,经过耦合途径传输到敏感设备,这个过程称为电磁干扰效应。因此,形成电磁干扰后果必须具备三个基本要素:

1、电磁骚扰

任何形式的自然现象或电能装置所发射的电磁能量,能使共享同一环境的人或其它生物受到伤害,或使其他设备分系统或系统发生电磁危害,导致性能降级或失效,这种自然现象或电能装置即称为电磁骚扰源。

2、耦合途径

耦合途径即传输电磁骚扰的通路或媒介。

3、敏感设备(Victim)

敏感设备是指当受到电磁骚扰源所发射的电磁能量的作用时,会受到伤害的人或其它生物,以及会发生电磁危害,导致性能降级或失效的器件、设备、分系统或系统。许多器件、设备、分系统或系统可以既是电磁骚扰源又是敏感设备。

为了实现电磁兼容,必须从上面三个基本要素出发,运用技术和组织两方面措施。所谓技术措施,就是从分析电磁骚扰源、耦合途径和敏感设备着手,采取有效的技术手段,抑制骚扰源、消除或减弱骚扰的耦合、降低敏感设备对骚扰的响应或增加电磁敏感性电平;为个对人为骚扰进行限制,并验证所采用的技术措施的有效性,还必须采取组织措施,制订和遵循一套完整的标准和规范,进行合理的频谱分配,控制与管理频谱的使用,依据频率、工作时间、天线方向性等规定工作方式,分析电磁环境并选择布置地域,进行电磁兼容性管理等。

电磁兼容性是电子设备或系统的主要性能之一,电磁兼容设计是实现设备或系统规定的功能、使系统效能得以充分发挥的重要保证。必须在设备或系统功能设计的同时,进行电磁兼容设计。

电磁兼容设计的目的是使所设计的电子设备或系统在预期的电磁环境中实现电磁兼容。其要求是使电子设备或系统满足EMC标准的规定并具有两方面的能力:

1.能在预期的电磁环境中正常工作,无性能降低或故障;

2.对该电磁环境不是一个污染源。

为个实现电磁兼容,必须深入研究以下五个问题:

第一,对于电磁骚扰源的研究,包括电磁骚扰源的频域和时域特性,产生的机理以及抑制措施等的研究。

第二,对于电磁骚扰传播特性的研究,即研究电磁骚扰如何由骚扰源传播到敏感设备,包括对传导骚扰和辐射骚扰的研究。传导骚扰是指沿着导体传输的电磁骚扰,辐射骚扰即由器件、部件、连接线、电缆或天线,以及设备呀系统辐射的电磁骚扰。

第三,对于敏感设备抗干扰能力的研究。这种抗干扰能力常心电磁敏感性或抗扰度表征,电磁敏感性电平越小,抗扰度越低,抗干扰能力越差。

第四,对于测量设备测量方法与数据处理方法的研究。由于电磁骚扰十分复杂,测量与评价需要有许多特殊要求,例如测量接收机要有多种检波方式,多种测量带宽、大过载系数、严格的中频滤波特性等,还要求测量场地的传播特性与理论值符合得很好等。如何评价测量结果,也是个重点问题,需要应用概率论、数理统计等数学工具。

第五,对于系统内、系统间电磁兼容性的研究。系统内电磁兼容性是指在给定系统内部的分系统、设备及部件之间的电磁兼容性,而给定系统与它运行时所处的电磁环境,或与其他系统之间的电磁兼容性即系统间电磁兼容性,这方面的研究需要广泛的理论知识与的丰富的实践经验。

还应当指出,由于电磁兼容是抗电磁骚扰的扩展与延伸,它研究的重点则是设备或系统的非预期效果和非工作性能,非预期发射和非预期响应,而在分析骚扰的迭加和出现概率时,还需按最不利的情况考虑,即所谓的“最不利原则”,这些都比研究设备或系统的工作性能复杂得多。

总之,电磁兼容学是一门综合性的边缘学科,其核心仍然是电磁波,其理论基础包括数学、电磁场理论、电路理论、微波理论与技术、天线与电波传播理论、通信理论、材料科学、计算机与控制理论、机械工艺学、核物理学、生物医学以及法律学、社会学等内容。现在,电磁兼容学已成为国内外瞩目的迅速发展的学科,预计在21世纪,它还将获得更加迅速的发展。

第二篇:电磁兼容性基础知识及其实现-接地(连载5)

电磁兼容性基础知识及其实现-接地(连载5)

3.1屏蔽的理论方法

3.1.1电缆选择原则

选择导线电缆,是根据传输信号电平或功率电平,频率范围,敏感情况,隔离要求确定,只有分析信号电平与波形,才能正确规定选用导线电缆。

一般原则如下: ·电源线,如此等380伏交流,220伏交流,27伏直流,一般不用屏蔽电缆,但电源线干扰大时例外。·低频信号线,隔离要求很严格的多点接地和单点接地线路,用屏蔽双绞线。

·单点接地的音频线路和内部电源线,用双绞线。

·在重要发射射频脉冲、高频、宽频带内阻抗匹配等处,用同轴线。

·数字电路,脉冲电路,用绞合屏蔽电缆,有时需要单独屏蔽。

·高电平电源线,用镀锌钢管屏蔽。

·多点接地的音频或电源线,需要用屏蔽线。

·对低频仪表,可用单芯、单屏蔽导线。当传输中等信号电平并有良好接地系统时,效果比较好。

3.1.2屏蔽的理论方法

电磁波理是经典的理论。麦克斯威尔、法拉第和其它人在电子学之前就建立了描述电场和磁场的基本方程式。

然而,对实际中的复杂硬件几乎不能直接应用这些方程式。电场和磁场的衰减用从试验中得到的方程式能够更好的表达,这些方程式在屏蔽的设计中广泛应用。有许多因素会影响电磁能量源周围的场。

源的种类赋予了场一些特征,如辐射幅度。距离源的距离和电磁波传输的媒介的特性都会影响场与屏蔽之间的相互作用。

在电磁屏蔽中,波阻抗Zw是联系这些参数的有用的概念。波阻抗定义为电场E与磁场H的比值。

源上的驱动电压决定了干扰的特性。例如,环天线中流动的电流与较低的驱动电压对应。结果是在天线附近产生较小的电场和较大的磁场,具有较低的波阻抗。

另一方面,四分之一波长的距离上,所有源的波的阻抗趋近于自由空间的特征阻抗,377欧姆。这时,称为平面波,作为参考,1MHz的波长是300m。

按照到源的距离,电磁波可以进一步分为两种,近场和远场。两种场的分界以波长λ除以2π的距离为分界点。λ/2π附近的区域称为过渡区。源与过渡区是近场,超过这点为远场。近场波的特性主要由源特性决定,而远场波的特性由传播媒介决定。如果源是大电流、低电压。则在的近场以磁场波为主。高电压、小电流的源产生电场为主的波。

在设计屏蔽控制辐射时,这个概念十分有用。由于这时屏蔽壳与源之间的距离通常在厘米数量级,相对于屏蔽电磁波为近场的情况。在远场,电场和磁场都变为平面波,即,波阻抗等于自由空间的特性阻抗。

知道干扰辐射的近场波阻抗对于设计控制方法是十分有用的。用能将磁通分流的高导磁率铁磁性材料可以屏蔽200KHz以下的低阻抗波。反过来,用能将电磁波中电矢量短路的高导电性金属能够屏蔽电场波和平面波。入射波的波阻抗与屏蔽体的表面阻抗相差越大,屏蔽体反射的能量越多。因此,一块高导电率的薄铜片对低阻抗波的作用很小。屏蔽效能SE等于吸收因子A加上反射因子R,加上多次返射修正因子B,所有因子都以dB表示。SE=A+R+B 表3.1和表3.2给出了不同的屏蔽效能,吸收损耗的计算公式如下:

对于任何电磁干扰,屏蔽作用由三种机理构成。入射波的一部分在屏蔽体的前表面反射,另一部分被吸收,还有一部分在后表面反射.表3.1信号强度的衰减 表3.2屏蔽衰减极限值 dB 衰减的百分比 10 90 20 99 30 99.9 40 99.99 50 99.999 60 99.9999 70 99.99999 dB 评价 0~10 屏蔽很少 10~30 有意义的屏蔽的下限 30~60平均屏蔽量 60~90 屏蔽较好 90~120 屏蔽很好 120以上 现有技术的极限

表3.3给出了一些常用屏蔽材料的相对导电率和导磁率。如果吸收因子6dB以上,多次反射因子B可以忽略,仅当屏蔽层很薄或频率低于20KHz时,B才是重要的。在设计磁屏蔽时,特别是14KHz以下时,除了吸收损耗外,其它因素都可以忽略。同样,在设计电场或平面波屏蔽时,只考虑反射因子。当一束电磁波碰到屏蔽体时,在表面上感应出电流。屏蔽的一个作用是将这些电流在最小扰动的情况下送到大地,如果在电流的路径上有开口,电流受到扰动要绕过开口。较长的电流路径带来附加阻抗,因此在开口上有电压降。这个电压在开口上感应出电场并产生辐射。当开口的长度达到λ/4时,就变成效率很高的辐射体,能够将整个屏蔽体接收到的能量通过开口发射出去。为了限制开口效应,一个一般的规则是,如果屏蔽体的屏蔽效能要达到60dB,开口长度在感兴趣的最高频率处不能超过0.01λ。每隔一定间隔接触的复合或用指形簧片连接的缝隙可以作为一系列开口来处理。值得指出的是,材料本身的屏蔽特性并不是十分重要的,相比之下缝隙开口等屏蔽不连续性是更应该注意的因素。表3.3用于屏蔽的金属特性 金属 相对收导率σr 相对磁导率μr 银 1.05 1 铜 1.00 1 铝 0.61 1 锌 0.29 1 黄铜 0.26 1 镍 0.20 1 铁 0.17 1000 铜 0.10 1000 化学镀镍 0.02 1

·最少保证24小时的粘接时间。铆钉安装 铆钉安装可以提供紧固长久的接触,塑料铆钉或铜铆钉都可以使用。点焊 安装需要采用基本点焊方式。焊接 需要标准的低温焊接技术完成,焊接剂通常为洁净的液态非酸性物质。金属丝网缠带 连载3曾经介绍过编织金属丝网衬垫。对于金属网缠带。它是由一根单一的连续金属丝编制而成的。这种形状不会因温度的变化而改变。缠带的末端可以焊接,压接或用环氧导电胶粘接。将丝网缠带以半重叠的方式绕制在电缆上时,它可能为电缆提供一层有效的屏蔽层。金属丝网缠带通常为双层网状,如有特殊需要,也可以生产成四层甚至更多层数。较宽的丝网缠带还可以用于建造法拉第笼使用。通常此种衬垫是用蒙乃尔合金丝、镀锡铜丝、不锈钢丝、铜丝、镀银铜丝、铝丝或锡铜合金丝编制而成的。螺旋管衬垫 另外一种在美国较受欢迎的衬垫是使用合金材料,通常是铍青铜或者不锈钢带绕制成具有弹性,导电性和较低成本的螺旋管衬垫。屏蔽性能 这种衬垫可以提供极佳的屏蔽性能,它具有较低的接触阻抗,它边缘的镀层可以为衬垫提供优良的防腐蚀性能,适量的压缩可以保证设备终生的优良接触。这种衬垫的屏蔽效果一般在80dB以上。地于环境密封性要求更高的场合,可以使用由天然硅橡胶条和金属螺旋管衬垫结合在一起的复合型衬垫,如下图所示。在美国另外一种较受欢迎的衬垫是在有弹性的泡沫芯材上涂覆金属化的物质。它有弹性的外涂覆层可以提供比丝网衬垫多60%-70%,比指型簧片多40%的接触面,以便 /> 螺旋管衬垫——D型多重密封衬垫可同时提供RFI/EMI防护和环境密封金属化的弹性衬垫

保证在两个有细微不规则的金属交配面间提供良好的接触。有效的环境密封性能有时也可以通过特殊泡沫内芯提供。它多维的细胞结构滑入空隙和空格,柔软的泡沫使得机箱的门更加易于开关和锁紧。屏蔽性能 对于这种材料从30MHz到1GHz可以达到平均60dB的衰减。安装磁屏蔽胶带 对于小器件或者屏蔽要求不严格的场合可以用薄胶带卷起来达到屏蔽的效果,很难确定需要绕多少圈。因为磁导率的下降与被屏蔽物体的形状有关,通常要绕数圈,这相当于多层屏蔽。因此最后的方法是边绕边进行实际的测试,这种方法很容易进行修改,但很难获得比较好的屏蔽效果。

机壳上的出入口问题,使用以前讨论过的技术和材料,不难使一个机壳在从直流直到可见光电磁波频率范围内提供110dB的屏蔽效能。当然,除了低频磁场屏蔽,但在实际中不可能获得理论上的屏蔽效果,因为机壳所必须的出入口和穿透孔破坏了机壳的完整性,使屏蔽效能降低,如下图所示:

一些破坏机壳完整性的因素 加载硅树脂填料。另一方法是指形物支撑,采用铜铍合金指形支撑物应小心使用,那么就不太容易损坏。一般来讲,最好的方法是采用编织导线网或加有金属微粒的硅树脂填料 第3章讨论了在屏蔽门上用适当的填料的实践,第9章讨论了屏蔽室的门结构。但是,除了门以外,在屏蔽的设计中需要考虑以下的一些或全部因素:

·盖板;

·通用孔;

·测量仪表的指示窗;

·显示窗;

·电位器轴;

·指示灯;

·保险丝;

·开关; ·电源线和信号线连接器。控制轴 使用金属控制轴的地方,如电位器,控制轴要穿透屏蔽外壳。因此,它们应通过填充导电填料来密封,通常使用编织金属网,控制轴应穿过填充的金属绝缘管。典型的结构如图6.8所示,其中绝缘管与机壳面板电气相连。

作者: 王清洲 日期: 2001-7-19

------------------

第三篇:通信开关电源的电磁兼容性

通信开关电源的电磁兼容性: 摘要:简要介绍了通信开关电源的电磁兼容性要求、国内外标准、电磁兼容性的成因、研究解决方法及国内通信开关电源的电磁兼容性现状.引言

通信开关电源因具有体积小、重量轻、效率高、工作可靠、具有远程监控等原因,广泛的应用于程控交换、光数据传输、无线基站、有线电视系统及IP网络中,是信息技术设备正常工作的核心动力.随着信息技术的发展,信息技术设备遍布祖国大江南北,从发达的中心城市至贫穷落后的偏远山区,为人与人间的沟通交流及数据传输提供了极大的便利.通信设备的电网供电质量由于城乡间的差异,即有稳定的大电网如核电、火电、水电等并网的供电方式,同时也有独立的小水电单独供电方式.特别是在小水电站供电方式下,因水量的变化复杂、用户用电量的变化较大及设备工作的不稳定,造成电网波形失真严重及其电网电压和大幅波动,同时因配电系统的接线不规范,对通信开关电源也造成了严峻的考验.铁路通信及电力通信正在发展壮大.由于电力机车经过之处,产生很强的感应电压,使地线电压产生很大的波过,从而引起电网电压的很大的波动,强大的电场容易引起开关电源设备工作的瞬时不稳定.在高压电网运行的通信开关电源,虽然电网电压稳定,但容易受电网负载变化等引起的强电磁场的搔扰影响.用于基站的通信用开关电源,由于多安装在较高的建筑物上或是山顶,更容易受到雷电的袭击.因此,通信开关电源要有很强的抗电磁搔扰的能力,特别是对雷击、浪涌、电网电压、静电、电场、磁场及电磁波等要有足够的抗扰动能力,保证自身能够正常工作以及通信设备供电的不间断而且稳定.另一方面,因通信开关电源内部的功率开关管、整流或续流二极管及主功率变压器,在高压、大电流及高频开关的方式下工作,其电压电流波形多为方波.在高压大电流的方波切换过程中,方波电压电流将产生丰富的谐波电压及谐波电流,这些谐波电压及谐波电流可通过电源输入线或开关电源的输出线传出,对与通信电源在同一电网上供电的其它设备及电网产生搔扰,同时对由通信电源供电的设备如程控交换设备、无线基站、光传输设备及有线电视设备等产生搔扰,使设备不能正常工作.由于电压差可以产生电场、电流的流动可以产生磁场,丰富的谐波电压电流的高频部分,在开关电源内部产生电磁场,造成开关电源内部工作的不稳定,使电源的性能降低.有部分电磁场通过开关电源机壳的缝隙,向周围空间辐射,与通过电源线、直流输出线产生的辐射电磁场,一起通过空间传播的方式,对其它高频设备及对电磁场比较敏感的设备造成搔扰,引起其它设备工作异常.因此,要限制通信开关电源对由负载线、电源线产生的传导搔扰量对空间产生的辐射电磁场搔扰量,使之能与处于同一环境中的其它电信设备均能够正常工作,互不产生搔扰.电磁兼容性的国内国外标准

电磁兼容性是指设备或系统在其电磁环境中能正常工作且不对该环境中的任何事物构成不能随的电磁搔扰的能力

要彻底消除设备的电磁搔扰及对外部一切电磁搔扰信号不敏感是不可能的.只能通过制订系统内设备与设备之间的相互允许产生的电磁搔扰大小及抵抗电磁搔扰的能力,才能使电气设备及系统间达到电磁兼容性的要求.国内外大量的电磁兼容性标准,为系统内的设备相互达到电磁兼容性要求制订了约束条件.国际无线电干扰特别委员会(CISPR)是国际电工委员会(IEC)下属的一个电磁兼容标准化组织,早在1934年就开展EMC标准的研究,下设六个分会.其中第六分会(SCC)主要负责制订关于干扰测量接收机及测量方法的研究.CISPR16《无线电干扰和抗扰度测量设备规范》对电磁兼容性测量接收机、辅助设备的性能以及校准方法作出了详细的要求.CISPR17《无线电干扰滤波器及抑制元件的抑制特性测量》制订了滤波器的测量方法.CISPR22《信息技术设备的无线电搔扰限值和测量方法》规定了信息技术设备在0.15-1000MHz频率范围内产生的电磁搔扰限值.CISPR24《信息技术设备抗扰度限值和测量方法》规定了信息技术设备对外部搔扰信号的时域及频域的抗搔扰性能要求.其中CISPR16、CISPR22及CISPR24构成了信息技术设备包括通信开关电源设备的电磁兼容性测试内容及测试方法要求.是目前通信开关电源电磁兼容性设计的最基本要求.IEC最近也出版了大量的基础性电磁兼容标准.其中最有代表性的是IEC61000系列标准,规定了电子电气设备的雷击浪涌(SURGE)、静电放电(ESD)、电快速瞬变脉冲群(EFT)、电流谐波、电压跌落、电压瞬变及短时中断、电压起伏和闪烁、辐射电磁场、由射频电磁场引起的传导搔扰抗扰度、传导搔扰及辐射搔扰等的电磁兼容性要求.另外,美国联邦委员会制订的FCC15、德国电气工程师协会制订的VDC0871-1A1、VDE0971-2A2、VDE0878,都对通信设备的电磁兼容性提出了要求.我国对电磁兼容性标准的研究比较晚.采取的最主要的办法是引进、消化、吸收.洋为中用是国内电磁兼容性标准的制订的最主要的方法.1998年,信息产业部根据CISPR22、IEC61000系列标准及ITU-T 0.41标准,制订了UD/T983-1998《通信电源设备电磁兼容性限值及测量方法》,详尽的规定了通信电源设备包括通信开关电源的电磁兼容性的具体测试项目、要求及测试方法,为通信电源电磁兼容性的检验、达标并通过入网检测明确了设计目标.国标也等同采用了相应的检测明确了国际标准.如GB/T 17626.1-12系列标准等同采用了IEC61000系列标准;GB9254-1998《信息技术设备的无线电搔扰限值及测量方法》等同采用CISPR22;GB/T17618-1998《信息技术设备抗扰度限值和测量方法》等同采用CISPR24.开关电源引起电磁兼容性的原因

通信开关电源因工作在高电压大电流的开关工作状态下,其引起电磁兼容性问题的原因是相当复杂的.从整机的电磁兼容性讲,主要有共阻抗耦合、线间耦合、电场耦合、磁场耦合电磁波耦合几种.电磁兼容产生的三个要素为:搔扰源、传播途径及受搔扰体.共阻耦合主要是搔扰源与受搔扰体在电气上存在的共同的阻抗,通过该阻抗使搔扰信号进入受搔扰对象.线间耦合主要是产生搔扰电压及搔扰电流的导线或PCB线,因并行布线而产生的相互耦合.电场耦合主要是由于电位差的存在,产生的感应电场对受搔扰体产生的耦合.磁场耦合主要是大电流的脉冲电源线附近,产生的低频磁场对搔扰对象产生的耦合.而电磁场耦合,主要是由于脉动的电压或电流产生的高频电磁波,通过空间向外辐射,对相应的受搔扰体产生的耦合.实际上,每一种耦合方式是不能严格区分的,只是侧重点不同而已.在开关电源中,主功率开关管在很高的电压下,以高频开关方式工作,开关电压及开关电流的接近方波,从频谱分析知,方波信号含有丰富的高次谐波,该高次谐波的频谱可达方波频率的1000次以上.同时,由于电源变压器的漏电感及分布电容,以及主功率开关器件的工作状态非理想,在高频开或关时,常常产生高频高压的尖峰谐波振荡,该谐波振荡产生的高次谐波,通过开关管与散热器间的分布电容传入内部电路或通过散热器及变压器向空间辐射.用于整流及续流二级管,也是产生高频搔扰的一个重要原因.因整流及续流二极管工作在高频开关状态,由于二极管的引线寄生电感、结电容的存在以及反向恢复电流的影响,使之工作在很高的电压及电流变化率下,且产生高频振荡.因整流及续流二极管一般离电源输出线较近,其产生的高频搔扰最容易通过直流输出线传出.通信开关电源为了提高功率因数,均采用了有源功率因数效正电路.同时,为了提高电路的效率及可靠性,减小功率器件的电应力,大量的采用了软开关技术.其中零电压、零电流或零电流开关技术应用最为广泛.该技术极大的降低了开关器件所产生的电磁搔扰.但是,软开关无损吸收电路,多数利用L、C进行能量转移,利用二极管的单向导电性能实现能量的单向转换,因而,该谐振电路中的二极管成为电磁搔扰的一大搔扰源.通信开关电源中,一般利用储能电感及电容器,组成L、C滤波电路,实现对差模及共模搔扰信号的滤波,以及交流方波信号转换为平滑的直流信号.由于电感线圈的分布电容,导致了电感线圈的自谐振频率降低,从而使大量的高频搔扰信号穿过电感线圈,沿交流电源线或直流输出线向外传播.滤波电容器,随着搔扰信号频率的上升,由于引线电感的作用,导致电容量及滤波效果不断的下降,直至谐振频率以上时,完全失去电容器的作用而变为感性.不正确的使用滤波电容及引线过长,也是产生电磁搔扰的一个原因.通信开关电源由于功率密度高、智能化程度高,带MCU微处理器,因而,从高至近千伏的电压信号,到低至几伏的电压信号;从高频的数字信号,至低频的模拟信号,电源内部的场分布相当复杂.PCB布线不合理、结构设计不合理、电源线输入滤波不合理、输入输出电源线布线不合理及CPU、检测电路的设计不合理,均会导致系统工作的不稳定或如静电放电、电快速瞬变脉冲群、雷击、浪涌及传导搔扰、辐射搔扰及辐射电磁场抗扰性能力的降低.电磁兼容性研究及解决方法

电磁兼容性的研究,一般运用CISPR16及IEC61000中规定的电磁场检测仪器及各种搔扰信号模拟器、辅助设备,在标准测试场地或实验室内部,通过详尽的测试分析、结合对电路性能的理解与改进来进行分析研究.从电磁兼容性的三要素讲,要解决开关电源的电磁兼容性,可从三个方面入手.第一:减小搔扰源产生的搔扰信号.第二:切断搔扰信号的传播途径.第三,增强受搔扰体的抗搔扰能力.在解决开关电源内部的兼容性时,可以综合运用上述三个方法,以成本效益比及实施的难易性为前提.因而,开关电源产生的对外搔扰,如电源线谐波电流、电源线传导搔扰、电磁场辐射搔扰等,只能用减小搔扰源的方法来解决.一方面,可以增强输入输出滤波电路的设计,改善APFC电路的性能,减小开关管及整流续流二极管的电压电流变化率,采用各种软开关电路拓扑及控制方式等.另一方面,加强机壳的屏蔽效果,改善机壳的缝隙泄漏,并进行良好的接地处理.而对外部的抗搔扰能力,如浪涌、雷击应优化交流输入及直流输出端口的防雷能力,通常,对1.2/50us开路电压及8/20US短路电流的组合雷击波形,因能量较小,采用氧化锌压敏电阻与气体放电管等的组合方法来解决.对于静电放电,通常在通信端口及控制端口的小信号电路中,采用TVS管及相应的接地保护、加大小信号电路与机壳等的电距离来解决或选用具有抗静电搔扰的器件.快速瞬变信号含有很宽的频谱,很容易以共模的方式传入控制电路内,采用防静电相同的方法并减小共模电感的分布电容、加强输入电路的共模信号滤波(加共模电容或插入损耗型的铁氧体磁环等)来提高系统的抗扰性能.减小开关电源的内部搔扰,实现其自身的电磁兼容性,提高开关电源的稳定性及可靠性,应从以下几方面入手:注意数字电路与模块电路PCB布线的正确分区、数字电路与模拟电路单点的接地、大电流电路与小电流特别是电流电压取样电路的单点接地以减小共阻搔扰、减小地环的影响、布线时注意相邻线间的间距及信号性质,避免产生串扰、减小高压大电流回路特别是变压器原边与开关管、电源滤波电容回路所包围的面积,减小输出整流回路及续流二极管回路与直流滤波器所包围的面积,减小变压器的漏电、滤波电感的分布电容、运用谐振频率高的滤波电容器等.MCU与液晶显示器的数据线、地址线工作频率较高,是产生辐射发射的主要搔扰源:小信号电路是抗外界搔扰的最薄弱环节,适当的增设提高抗搔扰能力的TVS及高频电容、铁氧体磁珠等元器件,以提高小信号电路的抗搔扰能力;与机壳距离较近的小信号电路,应加适当的绝缘体耐压处理等.功率器件的散热器、主变压器的电磁屏蔽层要适当的接地,综合考滤各种接地措施,有助于提高整机的电磁兼容性.各控制单元间的大面积接地用接地板屏蔽,可以改善开关电源内部工作的稳定性.整流器的机架上,要考虑各整流器间的电磁耦合、整机地线布置、交流输入中线、地线及直流地线、防雷地线间的正确关系、电磁兼容级的正确分配等.开关电源对内、外的搔扰及抗搔扰中,共模信号与开关器件的工作方式、散热器的安装及整机PCB板与机壳的连接有相当复杂的关系,共模信号在一定的条件下又可转变成差模信号.解决共模搔扰最简单的方法是解决好各电路单元与整机端口、机壳间的问题.整机屏蔽难以实施且成本较高,在无可赖何的情况下才采用该措施.国内通信开关电源的电磁兼容性改进现状

自YD/T983标准开始起草以来,国内通信电源制造商纷纷开始电磁兼容性的研究.由于电磁兼容性测试仪器、试验场地建设费用很高,且需要有经验的研发人员,很多制造商不能有自己的试验室,对电磁兼容性的研究造成了一定的困难.YD/T983标准中,抗扰度指标选用了国外标准中较低等级.除雷击浪涌、ESD及EFT指标外,其它抗扰度指标均比较容易达到要求.电磁搔扰指标如传导搔扰及辐射搔扰指标,由于很难满足标准的要求,是目前电磁兼容性研究的热点内容.国内只有极少数的厂家可以完全达到相关的标准的要求.中兴通信建立了自己的电磁兼容性试验室,在通信开关电源研发的初期,就致力于电磁兼容性的研究工作.其通信开关电源的前级运用最先进的有源功率因数校正技术加无损吸收电路,后级DC-DC采用零电压零电流(ZVZCS)相移谐振软开关技术或双管正激无损吸收软开关技术,通过专业的电源输入输出滤波器设计及防雷设计,以及对整机的安全性、数字接口电路的抗静电设计及抗快速瞬变脉冲群设计,对整机结构洽到好处的电磁静电设计及抗快速瞬变脉冲群设计,对整机结构洽到好处的电磁屏蔽设计,不仅使整机内部的电磁环境良好,工作稳定,可靠性提高,也使通信开关电源对外的电流谐波、电起伏和闪烁、传导搔扰及辐射搔扰达到或超过CISJPR22标准规定的A级要求.使输入交流电源线能够承受至少±6KV(1.2/50us与8/20us的综合波)浪涌电压搔扰、直流电源线能够承受至少±2KV的浪涌电压;整机外部能够承受至少±8KV的静电放电及3V/M的高频电磁场搔扰,300A/M的工频磁场搔扰.宽广的交流输入电压范围,使整机的电压跌落、电压瞬变及电压短时中断等搔扰过后,开关电源能够正常工作.专业的采集全国各地的电网搔扰电压,均在中兴开关电源上经过验证分析.中兴通信系列开关电源的电磁兼容性指标,已完全满足并超过了YD/T983-1998《通信开关电源设备电磁兼容性要求及测量方法》中所规定的所有项目的指标,部分产品已通过CE认证及FCC认证中的全部电磁兼容性指标,是真正的环保型通信开关电源.特别适合于移动基站、程控交换设备、IP电话、有线电视等数据通信传输设备以及铁路、水电、火电站等强的电磁场搔扰的场合使用.

第四篇:开关电源的电磁兼容性技术

开关电源的电磁兼容性技术 引言

电磁兼容是一门新兴的跨学科的综合性应用学科。作为边缘技术,它以电气和无线电技术的基本理论为基础,并涉及许多新的技术领域,如微波技术、微电子技术、计算机技术、通信和网络技术以及新材料等。电磁兼容技术应用的范围很广,几乎所有现代化工业领域,如电力、通信、交通、航天、军工、计算机和医疗等都必须解决电磁兼容问题。其研究的热点内容主要有:电磁干扰源的特性及其传输特性、电磁干扰的危害效应、电磁干扰的抑制技术、电磁频谱的利用和管理、电磁兼容性标准与规范、电磁兼容性的测量与试验技术、电磁泄漏与静电放电等。

电磁兼容的英文名称为Electromagnetic Compatibility,简称EMC。所谓电磁兼容是指设备(分系统、系统)在共同的电磁环境中能一起执行各自功能的共存状态。这里包含两层意思,即它工作中产生的电磁辐射要限制在一定水平内,另外它本身要有一定的抗干扰能力。这便是设备研制中所必须解决的兼容问题。电磁兼容技术涉及的频率范围宽达0 GHz ~400GHz,研究对象除传统设备外,还涉及芯片级,直到各种舰船、航天飞机、洲际导弹甚至整个地球的电磁环境。

电磁兼容三要素是干扰源(骚扰源)、耦合通路和敏感体。切断以上任何一项都可解决电磁兼容问题,电磁兼容的解决常用的方法主要有屏蔽、接地和滤波。2 电磁兼容技术名词(1)电磁兼容性

电磁兼容性是指设备或者系统在其电磁环境中能正常工作,且不对该环境中任何事物构成不能承受的电磁骚扰的能力。(2)电磁骚扰

电磁骚扰是指任何可能引起设备、装备或系统性能降低或者对有生命或者无生命物质产生损害作用的电磁现象。电磁骚扰可引起设备、传输通道或系统性能的下降。它的主要要素有自然和人为的骚扰源、通过公共地线阻抗/内阻的耦合、沿电源线传导的电磁骚扰和辐射干扰等。电子系统受干扰的路径为:经过电源,通过信号线或控制电缆、场渗透,经过天线直接进入;通过电缆耦合,从其他设备来的传导干扰;电子系统内部场耦合;其他设备的辐射干扰;电子设备外部耦合到内部场;宽带发射机天线系统;外部环境场等(3)电磁环境

电磁环境是一种明显不传送信息的时变电磁现象,它可能与有用信号叠加或组合。(4)电磁辐射

电磁辐射是指电磁波由源发射到空间的现象。“电磁辐射”一词的含义有时也可引申,将电磁感应现象也包含在内。RFI/EMI可以通过任何一种设备机壳的开口、通风孔、出入口、电缆、测量孔、门框、舱盖、抽屉和面板以及机壳的非理想连接面等进行辐射。RFI/EMI也可由进入敏感设备的导线和电缆进行辐射,任何一个良好的电磁能量辐射器也可以作为良好的接收器。(5)脉冲

脉冲是指在短时间内突变,随后又迅速返回至其初始值的物理量。(6)共模干扰和差模干扰

电源线上的干扰有共模干扰和差模干扰两种方式。共模干扰存在于电源任何一相对大地或电线对大地之间。共模干扰有时也称纵模干扰、不对称干扰或接地干扰。这是载流导体与大地之间的干扰。差模干扰存在于电源相线与中线及相线与相线之间。差模干扰也称常模干扰、横模干扰或对称干扰。这是载流导体之间的干扰。共模干扰提示了干扰是由辐射或串扰耦合到电路中的,而差模干扰则提示了干扰是源于同一条电源电路。通常这两种干扰是同时存在的,由于线路阻抗的不平衡,两种干扰在传输中还会相互转化,所以情况十分复杂。干扰经长距离传输后,差模分量的衰减要比共模大,这是因为线间阻抗与线-地阻抗不同的缘故。出于同一原因,共模干扰在线路传输中还会向邻近空间辐射,而差模则不会,因此共模干扰比差模更容易造成电磁干扰。不同的干扰方式要采取不同的干扰抑制方法才有效。判断干扰方法的简便方法是采用电流探头。电流探头先单独环绕每根导线,得出单根导线的感应值,然后再环绕两根导线(其中一根是地线),探测其感应情况。如感应值是增加的,则线路中干扰电流是共模的;反之则是差模的。(7)抗扰度电平和敏感性电平

抗扰度电平是指将某给定的电磁骚扰施加于某一装置、设备或者系统并使其仍然能够正常工作且保持所需性能等级时的最大骚扰电平。也就是说,超过此电平时该装置、设备或者系统就会出现性能降低。而敏感性电平是指刚刚开始出现性能降低的电平。所以,对某一装置、设备或者系统而言,抗扰度电平与敏感性电平是同一数值。(8)抗扰度裕量

抗扰度裕量是指装备、设备或者系统的抗扰度电平限值与电磁兼容电平之间的插值。3 开关电源的电磁兼容性

开关电源因工作在高电压大电流的开关工作状态下,引起电磁兼容性问题的原因是相当复杂的。从整机的电磁性讲,主要有共阻抗耦合、线间耦合、电场耦合、磁场耦合及电磁波耦合几种。共阻耦合主要是骚扰源与受骚扰体在电气上存在的共同阻抗,通过该阻抗使骚扰信号进入受骚扰体。线间耦合主要是产生骚扰电压及骚扰电流的导线或 PCB线因并行布线而产生的相互耦合。电场耦合主要是由于电位差的存在,产生感应电场对受骚扰体产生的场耦合。磁场耦合主要是指在大电流的脉冲电源线附近,产生的低频磁场对骚扰对象产生的耦合。电磁场耦合主要是由于脉动的电压或电流产生的高频电磁波通过空间向外辐射,对相应的受骚扰体产生的耦合。实际上,每一种耦合方式是不能严格区分的,只是侧重点不同而已。在开关电源中,主功率开关管在很高的电压下,以高频开关方式工作,开关电压及开关电流均接近方波,从频谱分析知,方波信号含有丰富的高次谐波。该高次谐波的频谱可达方波频率的1000次以上。同时,由于电源变压器的漏电感及分布电容以及主功率开关器件的工作状态非理想,在高频开或关时,常常产生高频高压的尖峰谐波震荡。该谐波震荡产生的高次谐波,通过开关管与散热器间的分布电容传入内部电路或通过散热器及变压器向空间辐射。用于整流及续流的开关二极管,也是产生高频骚扰的一个重要原因。因整流及续流二极管工作在高频开关状态,二极管的引线寄生电感、结电容的存在以及反向恢复电流的影响,使之工作在很高的电压及电流变化率下,且产生高频震荡。整流及续流二极管一般离电源输出线较近,其产生的高频骚扰最容易通过直流输出线传出。开关电源为了提高功率因数,均采用了有源功率因数校正电路。同时,为了提高电路的效率及可靠性,减少功率器件的电应力,大量采用了软开关技术。其中零电压、零电流或零电压/零电流开关技术应用最为广泛。该技术极大的降低了开关器件所产生的电磁骚扰。但是,软开关无损吸收电路多数利用L、C进行能量转移,利用二极管的单向导电性能实现能量的单向转换,因此,该谐振电路中的二极管成为电磁骚扰的一大骚扰源。

开关电源一般利用储能电感及电容器组成L、C滤波电路,实现对差模及共模骚扰信号的滤波。由于电感线圈的分布电容,导致了电感线圈的自谐振频率降低,从而使大量的高频骚扰信号穿过电感线圈,沿交流电源线或直流输出线向外传播。滤波电容器随着骚扰信号频率的上升,引线电感的作用导致电容量及滤波效果不断的下降,甚至导致电容器参数改变,也是产生电磁骚扰的一个原因。4 电磁兼容性的解决方法

从电磁兼容的三要素讲,要解决开关电源的电磁兼容性问题,可从三个方面入手:第一,减小骚扰源产生的骚扰信号;第二,切断骚扰信号的传播途径;第三,增强受骚扰体的抗骚扰能力。在解决开关电源内部的兼容性时,可以综合利用上述三个方法,以成本效益比及实施的难易性为前提。因而,开关电源产生的对外骚扰,如电源线谐波电流、电源线传导骚扰、电磁场辐射骚扰等只能用减小骚扰源的方法来解决。一方面,可以增强输入/输出滤波电路的设计,改善APFC电路的性能,减小开关管及整流、续流二极管的电压、电流变化率,采用各种软开关电路拓扑及控制方式等;另一方面,加强机壳的屏蔽效果,改善机壳的缝隙泄漏,并进行良好的接地处理。而对外部的抗骚扰能力(如浪涌、雷击)应优化交流电输入及直流输出端口的防雷能力。通常,对1.2/50?s开路电压及8/20?s短路电流的组合雷击波形,因能量较小,通常采用氧化锌压敏电阻与气体方电管等的组合方法来解决。对于静电放电,通常在通信端口及控制端口的小信号电路中,采用TVS管及相应的接地保护、加大小信号电路与机壳等的电距离来解决或选用具有抗静电骚扰的器件。快速瞬变信号含有很宽的频谱,很容易以共模的方式传入控制电路内,采用与防静电相同的方法并减小共模电感的分布电容、加强输入电路的共模信号滤波(加共模电容或插入损耗型的铁氧体磁环等)来提高系统的抗扰性能。

减小开关电源的内部骚扰,实现其自身的电磁兼容性,提高开关电源的稳定性及可靠性,应从以下几个方面入手:①注意数字电路与模块电路PCB布线的正确分区;②数字电路与模拟电路电源的去耦;③数字电路与模拟电路单点接地、大电流电路与小电流特别是电流电压取样电路的单点接地以减小共阻骚扰,减小地环地影响,布线时注意相邻线间的间距及信号性质,避免产生串扰,减小输出整流回路及续流二极管回路与支流滤波电路所包围的面积,减小变压器的漏电、滤波电感的分布电容,运用谐振频率高的滤波电容器等。5 滤波器结构

滤波是一种抑制传导干扰的方法。例如,在电源输入端接上滤波器,可以抑制来自电网的噪声对电源本身的侵害,也可以抑制由开关电源产生并向电网反馈的干扰。电源滤波器作为抑制电源线传导干扰的重要单元,在设备或系统的电磁兼容设计中具有极其重要的作用。它不仅可以抑制传输线上的传导干扰,同时对传输线上的辐射发射也具有显著的抑制效果。在滤波电路中,选用穿心电容、三端电容、铁氧体磁环,能够改善电路的滤波特性。进行适当的设计或选择合适的滤波器,并正确的安装滤波器是抗干扰技术的重要组成部分。在交流电输入端加装的电源滤波器电路如图1所示。图中Ld、Cd用于抑制差模噪声,一般取Ld为100 mH-700mH,Cd取1?F-10?F。Lc、Cc用于抑制共模噪声,可根据实际情况加以调整。所有电源滤波器都必须接地(厂家特别说明允许不接地的除外),因为滤波器的共模旁路电容必须在接地时才起作用。一般的接地方法是除了将滤波器与金属外壳相接之外,还要用较粗的导线将滤波器外壳与设备的接地点相连。接地阻抗越低,滤波效果越好。滤波器尽量安装在靠近电源入口处。滤波器的输入及输出端要尽量远离,避免干扰信号从输入端直接耦合到输出端。

如在电源输出端加输出滤波器、加装高频电容、加大输出滤波电感的电感量及滤波电容的容量,则可以抑制差模噪声。如果把多个电容并联,则效果会更好。6 EMI滤波器选用与安装

开关电源EMI滤波器中的4只电容器用了两种不同的下标“x”和“y”,不仅说明了它们在滤波网络中的作用,还表明了它们在滤波网络中的安全等级。无论是选用还是设计EMI滤波器,都要认真的考虑Cx和Cy的安全等级。在实际应用中,Cx电容接在单相电源线的L和N之间,它上面除加有电源额定电压外,还会叠加L和N之间存在的EMI信号峰值电压。因此,要根据EMI滤波器的应用场合和可能存在的EMI信号峰值,正确选用适合安全等级的Cx电容器。Cy电容器是接在电源供电线L、N与金属外壳(E)之间的,对于220V、50Hz电源,它除符合250V峰值电压的耐压要求外,还要求这种电容器在电气和机械性能方面具有足够的安全裕量,以避免可能出现的击穿短路现象。7 结语

在开关电源设计中,为了少走弯路和节省时间,应充分考虑并满足抗干扰性的要求,避免在设计完成后去进行抗干扰的补救措施。

第五篇:IGBT模块电磁兼容性设计

IGBT模块电磁兼容性设计

(1)IGBT模块的优化布局

变流器主电路在空间产生的磁场强度随输入、输出母线中通过电流的强弱而变化,同时IGBT模块产生的空间交变电磁场的强度随其两端电压和电流突变的剧烈程度而变化。这些干扰信号很容易耦合到IGBT模块的驱动线上。通过合理的布局,可以使在功率驱动端附近和驱动线一带的空间交变电磁场强度最小,即干扰信号最小。设计中应采取以下措施。1)从滤波电容到IGBT模块的直流连接采用双层镀锡铜板叠加技术。2)输入、输出母线与外部直流输入端和外部交流输出端采用铜条连接。

这种结构不仅可以减小寄生电感,而且对于IGBT模块产生的空间交变电磁场起到了很好的屏蔽作用。

(2)IGBT模块的接地设计

当IGBT模块的栅极驱动或控制信号与主电流共用一个接地回路时,在开关过渡过程中,由于主电流具有很高的di/dt,功率电路漏电感上有感应电压存在。一旦发生这种情况,电路中应该为“地”电位的各点实际上会处于高于“地电位”几伏的电位上。这个电压会出现在IGBT模块的栅极,从而使IGBT模块有可能误导通。为了避免这个问题的出现,需要慎重考虑栅极驱动与控制电路的设计。在设计中应采取以下措施。

1)下桥臂每个栅极IGBT驱动电路都采用了分离绝缘措施,且各自的电源零线按在IGBT模块的辅助端子上,不与主电流共用电流支路,以消除接地回路噪声问题。2)在功率器件关断期间,使用负的反向偏置电压,以避免噪声干扰。

经过电磁兼容性设计的变流器,在实际运行中可以获得良好的技术性能指标,对此可以得到以下结论。

1)变流器所处的电磁环境十分复杂,带来很多电磁干扰,良好的电磁兼容性设计是变流器安全可靠运行的关键。

2)吸收电路设计是变流器电磁兼容设计的难点,由于在功率母线的设计中采用了独特的双层镀锡铜板叠加技术,母线电感足够小,吸收电路只需简单的无感电容即可。3)在设备或系统设计的初始阶段应同时进行电磁兼容设计,把电磁兼容的大部分问题解决在设计定型之前,这样可得到最高的性能价格比。

下载电磁兼容性实现途径及方法word格式文档
下载电磁兼容性实现途径及方法.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高速电路板电磁兼容性分析

    毕 业 论 文 论文题目: 高速电路板电磁兼容性分析 系 部: 专业名称: 班 级: 学 号: 姓 名: 指导教师: 完成时间: 年月 日 高速电路板电磁兼容性分析 摘要:本文首先对电磁兼容的基本......

    关于开关电源的电磁兼容性技术及解决方法

    关于开关电源的电磁兼容性技术及解决方法 1 引言 电磁兼容是一门新兴的跨学科的综合性应用学科。作为边缘技术,它以电气和无线电技术的基本理论为基础,并涉及许多新的技术领......

    开关电源的电磁兼容性技术及解决方法(五篇)

    开关电源的电磁兼容性技术及解决方法 ⒈引言 电磁兼容是一门新兴的跨学科的综合性应用学科。作为边缘技术,它以电气和无线电技术的基本理论为基础,并涉及许多新的技术领域,如微......

    电磁兼容性整改的几种方案

    电磁兼容性整改的几种方法 电磁兼容性整改的几种方法 EMC Retifying Methodsfor Electric and Electronic quipment 科学技术的发展使越来越多的电气和电子设备进入社会各个......

    通信设备的电磁兼容性设计

    通信设备的电磁兼容性设计 李宏坚 (陕西烽火电子股份有限公司) 摘要:本文从印制板设计、内部走线设计和机壳结构设计三方面,介绍了通信设备的一些电磁兼容性设计方法。 关键字......

    政府职能及实现途径

    政府职能及实现途径一、政府职能1.以实现社会公平为原则政府职能就是政府运用政策手段来维护社会公正。社会公正是政府职能的原则和目标,政府做任何事情都要以实现社会公平为......

    接地处理对电磁兼容性的作用

    接地处理对电磁兼容性的作用 圈子类别:电子 (未知) 2010-3-19 18:18:00 [我要评论] [加入收藏] [加入圈子] 按照工程要求,许多电气电子设备或系统必须进行电磁兼容性设计......

    电磁兼容性的检测技术与方法赵鑫哲(范文模版)

    电磁兼容性的检测技术与方法 电磁兼容(EMC)技术是以电磁场理论为依据,以近代统计学和计算机为手段,以试验为基础,涉及到众多技术领域的一门综合性系统工程。面对今日的技术进步......