第一篇:通信开关电源的电磁兼容性
通信开关电源的电磁兼容性: 摘要:简要介绍了通信开关电源的电磁兼容性要求、国内外标准、电磁兼容性的成因、研究解决方法及国内通信开关电源的电磁兼容性现状.引言
通信开关电源因具有体积小、重量轻、效率高、工作可靠、具有远程监控等原因,广泛的应用于程控交换、光数据传输、无线基站、有线电视系统及IP网络中,是信息技术设备正常工作的核心动力.随着信息技术的发展,信息技术设备遍布祖国大江南北,从发达的中心城市至贫穷落后的偏远山区,为人与人间的沟通交流及数据传输提供了极大的便利.通信设备的电网供电质量由于城乡间的差异,即有稳定的大电网如核电、火电、水电等并网的供电方式,同时也有独立的小水电单独供电方式.特别是在小水电站供电方式下,因水量的变化复杂、用户用电量的变化较大及设备工作的不稳定,造成电网波形失真严重及其电网电压和大幅波动,同时因配电系统的接线不规范,对通信开关电源也造成了严峻的考验.铁路通信及电力通信正在发展壮大.由于电力机车经过之处,产生很强的感应电压,使地线电压产生很大的波过,从而引起电网电压的很大的波动,强大的电场容易引起开关电源设备工作的瞬时不稳定.在高压电网运行的通信开关电源,虽然电网电压稳定,但容易受电网负载变化等引起的强电磁场的搔扰影响.用于基站的通信用开关电源,由于多安装在较高的建筑物上或是山顶,更容易受到雷电的袭击.因此,通信开关电源要有很强的抗电磁搔扰的能力,特别是对雷击、浪涌、电网电压、静电、电场、磁场及电磁波等要有足够的抗扰动能力,保证自身能够正常工作以及通信设备供电的不间断而且稳定.另一方面,因通信开关电源内部的功率开关管、整流或续流二极管及主功率变压器,在高压、大电流及高频开关的方式下工作,其电压电流波形多为方波.在高压大电流的方波切换过程中,方波电压电流将产生丰富的谐波电压及谐波电流,这些谐波电压及谐波电流可通过电源输入线或开关电源的输出线传出,对与通信电源在同一电网上供电的其它设备及电网产生搔扰,同时对由通信电源供电的设备如程控交换设备、无线基站、光传输设备及有线电视设备等产生搔扰,使设备不能正常工作.由于电压差可以产生电场、电流的流动可以产生磁场,丰富的谐波电压电流的高频部分,在开关电源内部产生电磁场,造成开关电源内部工作的不稳定,使电源的性能降低.有部分电磁场通过开关电源机壳的缝隙,向周围空间辐射,与通过电源线、直流输出线产生的辐射电磁场,一起通过空间传播的方式,对其它高频设备及对电磁场比较敏感的设备造成搔扰,引起其它设备工作异常.因此,要限制通信开关电源对由负载线、电源线产生的传导搔扰量对空间产生的辐射电磁场搔扰量,使之能与处于同一环境中的其它电信设备均能够正常工作,互不产生搔扰.电磁兼容性的国内国外标准
电磁兼容性是指设备或系统在其电磁环境中能正常工作且不对该环境中的任何事物构成不能随的电磁搔扰的能力
要彻底消除设备的电磁搔扰及对外部一切电磁搔扰信号不敏感是不可能的.只能通过制订系统内设备与设备之间的相互允许产生的电磁搔扰大小及抵抗电磁搔扰的能力,才能使电气设备及系统间达到电磁兼容性的要求.国内外大量的电磁兼容性标准,为系统内的设备相互达到电磁兼容性要求制订了约束条件.国际无线电干扰特别委员会(CISPR)是国际电工委员会(IEC)下属的一个电磁兼容标准化组织,早在1934年就开展EMC标准的研究,下设六个分会.其中第六分会(SCC)主要负责制订关于干扰测量接收机及测量方法的研究.CISPR16《无线电干扰和抗扰度测量设备规范》对电磁兼容性测量接收机、辅助设备的性能以及校准方法作出了详细的要求.CISPR17《无线电干扰滤波器及抑制元件的抑制特性测量》制订了滤波器的测量方法.CISPR22《信息技术设备的无线电搔扰限值和测量方法》规定了信息技术设备在0.15-1000MHz频率范围内产生的电磁搔扰限值.CISPR24《信息技术设备抗扰度限值和测量方法》规定了信息技术设备对外部搔扰信号的时域及频域的抗搔扰性能要求.其中CISPR16、CISPR22及CISPR24构成了信息技术设备包括通信开关电源设备的电磁兼容性测试内容及测试方法要求.是目前通信开关电源电磁兼容性设计的最基本要求.IEC最近也出版了大量的基础性电磁兼容标准.其中最有代表性的是IEC61000系列标准,规定了电子电气设备的雷击浪涌(SURGE)、静电放电(ESD)、电快速瞬变脉冲群(EFT)、电流谐波、电压跌落、电压瞬变及短时中断、电压起伏和闪烁、辐射电磁场、由射频电磁场引起的传导搔扰抗扰度、传导搔扰及辐射搔扰等的电磁兼容性要求.另外,美国联邦委员会制订的FCC15、德国电气工程师协会制订的VDC0871-1A1、VDE0971-2A2、VDE0878,都对通信设备的电磁兼容性提出了要求.我国对电磁兼容性标准的研究比较晚.采取的最主要的办法是引进、消化、吸收.洋为中用是国内电磁兼容性标准的制订的最主要的方法.1998年,信息产业部根据CISPR22、IEC61000系列标准及ITU-T 0.41标准,制订了UD/T983-1998《通信电源设备电磁兼容性限值及测量方法》,详尽的规定了通信电源设备包括通信开关电源的电磁兼容性的具体测试项目、要求及测试方法,为通信电源电磁兼容性的检验、达标并通过入网检测明确了设计目标.国标也等同采用了相应的检测明确了国际标准.如GB/T 17626.1-12系列标准等同采用了IEC61000系列标准;GB9254-1998《信息技术设备的无线电搔扰限值及测量方法》等同采用CISPR22;GB/T17618-1998《信息技术设备抗扰度限值和测量方法》等同采用CISPR24.开关电源引起电磁兼容性的原因
通信开关电源因工作在高电压大电流的开关工作状态下,其引起电磁兼容性问题的原因是相当复杂的.从整机的电磁兼容性讲,主要有共阻抗耦合、线间耦合、电场耦合、磁场耦合电磁波耦合几种.电磁兼容产生的三个要素为:搔扰源、传播途径及受搔扰体.共阻耦合主要是搔扰源与受搔扰体在电气上存在的共同的阻抗,通过该阻抗使搔扰信号进入受搔扰对象.线间耦合主要是产生搔扰电压及搔扰电流的导线或PCB线,因并行布线而产生的相互耦合.电场耦合主要是由于电位差的存在,产生的感应电场对受搔扰体产生的耦合.磁场耦合主要是大电流的脉冲电源线附近,产生的低频磁场对搔扰对象产生的耦合.而电磁场耦合,主要是由于脉动的电压或电流产生的高频电磁波,通过空间向外辐射,对相应的受搔扰体产生的耦合.实际上,每一种耦合方式是不能严格区分的,只是侧重点不同而已.在开关电源中,主功率开关管在很高的电压下,以高频开关方式工作,开关电压及开关电流的接近方波,从频谱分析知,方波信号含有丰富的高次谐波,该高次谐波的频谱可达方波频率的1000次以上.同时,由于电源变压器的漏电感及分布电容,以及主功率开关器件的工作状态非理想,在高频开或关时,常常产生高频高压的尖峰谐波振荡,该谐波振荡产生的高次谐波,通过开关管与散热器间的分布电容传入内部电路或通过散热器及变压器向空间辐射.用于整流及续流二级管,也是产生高频搔扰的一个重要原因.因整流及续流二极管工作在高频开关状态,由于二极管的引线寄生电感、结电容的存在以及反向恢复电流的影响,使之工作在很高的电压及电流变化率下,且产生高频振荡.因整流及续流二极管一般离电源输出线较近,其产生的高频搔扰最容易通过直流输出线传出.通信开关电源为了提高功率因数,均采用了有源功率因数效正电路.同时,为了提高电路的效率及可靠性,减小功率器件的电应力,大量的采用了软开关技术.其中零电压、零电流或零电流开关技术应用最为广泛.该技术极大的降低了开关器件所产生的电磁搔扰.但是,软开关无损吸收电路,多数利用L、C进行能量转移,利用二极管的单向导电性能实现能量的单向转换,因而,该谐振电路中的二极管成为电磁搔扰的一大搔扰源.通信开关电源中,一般利用储能电感及电容器,组成L、C滤波电路,实现对差模及共模搔扰信号的滤波,以及交流方波信号转换为平滑的直流信号.由于电感线圈的分布电容,导致了电感线圈的自谐振频率降低,从而使大量的高频搔扰信号穿过电感线圈,沿交流电源线或直流输出线向外传播.滤波电容器,随着搔扰信号频率的上升,由于引线电感的作用,导致电容量及滤波效果不断的下降,直至谐振频率以上时,完全失去电容器的作用而变为感性.不正确的使用滤波电容及引线过长,也是产生电磁搔扰的一个原因.通信开关电源由于功率密度高、智能化程度高,带MCU微处理器,因而,从高至近千伏的电压信号,到低至几伏的电压信号;从高频的数字信号,至低频的模拟信号,电源内部的场分布相当复杂.PCB布线不合理、结构设计不合理、电源线输入滤波不合理、输入输出电源线布线不合理及CPU、检测电路的设计不合理,均会导致系统工作的不稳定或如静电放电、电快速瞬变脉冲群、雷击、浪涌及传导搔扰、辐射搔扰及辐射电磁场抗扰性能力的降低.电磁兼容性研究及解决方法
电磁兼容性的研究,一般运用CISPR16及IEC61000中规定的电磁场检测仪器及各种搔扰信号模拟器、辅助设备,在标准测试场地或实验室内部,通过详尽的测试分析、结合对电路性能的理解与改进来进行分析研究.从电磁兼容性的三要素讲,要解决开关电源的电磁兼容性,可从三个方面入手.第一:减小搔扰源产生的搔扰信号.第二:切断搔扰信号的传播途径.第三,增强受搔扰体的抗搔扰能力.在解决开关电源内部的兼容性时,可以综合运用上述三个方法,以成本效益比及实施的难易性为前提.因而,开关电源产生的对外搔扰,如电源线谐波电流、电源线传导搔扰、电磁场辐射搔扰等,只能用减小搔扰源的方法来解决.一方面,可以增强输入输出滤波电路的设计,改善APFC电路的性能,减小开关管及整流续流二极管的电压电流变化率,采用各种软开关电路拓扑及控制方式等.另一方面,加强机壳的屏蔽效果,改善机壳的缝隙泄漏,并进行良好的接地处理.而对外部的抗搔扰能力,如浪涌、雷击应优化交流输入及直流输出端口的防雷能力,通常,对1.2/50us开路电压及8/20US短路电流的组合雷击波形,因能量较小,采用氧化锌压敏电阻与气体放电管等的组合方法来解决.对于静电放电,通常在通信端口及控制端口的小信号电路中,采用TVS管及相应的接地保护、加大小信号电路与机壳等的电距离来解决或选用具有抗静电搔扰的器件.快速瞬变信号含有很宽的频谱,很容易以共模的方式传入控制电路内,采用防静电相同的方法并减小共模电感的分布电容、加强输入电路的共模信号滤波(加共模电容或插入损耗型的铁氧体磁环等)来提高系统的抗扰性能.减小开关电源的内部搔扰,实现其自身的电磁兼容性,提高开关电源的稳定性及可靠性,应从以下几方面入手:注意数字电路与模块电路PCB布线的正确分区、数字电路与模拟电路单点的接地、大电流电路与小电流特别是电流电压取样电路的单点接地以减小共阻搔扰、减小地环的影响、布线时注意相邻线间的间距及信号性质,避免产生串扰、减小高压大电流回路特别是变压器原边与开关管、电源滤波电容回路所包围的面积,减小输出整流回路及续流二极管回路与直流滤波器所包围的面积,减小变压器的漏电、滤波电感的分布电容、运用谐振频率高的滤波电容器等.MCU与液晶显示器的数据线、地址线工作频率较高,是产生辐射发射的主要搔扰源:小信号电路是抗外界搔扰的最薄弱环节,适当的增设提高抗搔扰能力的TVS及高频电容、铁氧体磁珠等元器件,以提高小信号电路的抗搔扰能力;与机壳距离较近的小信号电路,应加适当的绝缘体耐压处理等.功率器件的散热器、主变压器的电磁屏蔽层要适当的接地,综合考滤各种接地措施,有助于提高整机的电磁兼容性.各控制单元间的大面积接地用接地板屏蔽,可以改善开关电源内部工作的稳定性.整流器的机架上,要考虑各整流器间的电磁耦合、整机地线布置、交流输入中线、地线及直流地线、防雷地线间的正确关系、电磁兼容级的正确分配等.开关电源对内、外的搔扰及抗搔扰中,共模信号与开关器件的工作方式、散热器的安装及整机PCB板与机壳的连接有相当复杂的关系,共模信号在一定的条件下又可转变成差模信号.解决共模搔扰最简单的方法是解决好各电路单元与整机端口、机壳间的问题.整机屏蔽难以实施且成本较高,在无可赖何的情况下才采用该措施.国内通信开关电源的电磁兼容性改进现状
自YD/T983标准开始起草以来,国内通信电源制造商纷纷开始电磁兼容性的研究.由于电磁兼容性测试仪器、试验场地建设费用很高,且需要有经验的研发人员,很多制造商不能有自己的试验室,对电磁兼容性的研究造成了一定的困难.YD/T983标准中,抗扰度指标选用了国外标准中较低等级.除雷击浪涌、ESD及EFT指标外,其它抗扰度指标均比较容易达到要求.电磁搔扰指标如传导搔扰及辐射搔扰指标,由于很难满足标准的要求,是目前电磁兼容性研究的热点内容.国内只有极少数的厂家可以完全达到相关的标准的要求.中兴通信建立了自己的电磁兼容性试验室,在通信开关电源研发的初期,就致力于电磁兼容性的研究工作.其通信开关电源的前级运用最先进的有源功率因数校正技术加无损吸收电路,后级DC-DC采用零电压零电流(ZVZCS)相移谐振软开关技术或双管正激无损吸收软开关技术,通过专业的电源输入输出滤波器设计及防雷设计,以及对整机的安全性、数字接口电路的抗静电设计及抗快速瞬变脉冲群设计,对整机结构洽到好处的电磁静电设计及抗快速瞬变脉冲群设计,对整机结构洽到好处的电磁屏蔽设计,不仅使整机内部的电磁环境良好,工作稳定,可靠性提高,也使通信开关电源对外的电流谐波、电起伏和闪烁、传导搔扰及辐射搔扰达到或超过CISJPR22标准规定的A级要求.使输入交流电源线能够承受至少±6KV(1.2/50us与8/20us的综合波)浪涌电压搔扰、直流电源线能够承受至少±2KV的浪涌电压;整机外部能够承受至少±8KV的静电放电及3V/M的高频电磁场搔扰,300A/M的工频磁场搔扰.宽广的交流输入电压范围,使整机的电压跌落、电压瞬变及电压短时中断等搔扰过后,开关电源能够正常工作.专业的采集全国各地的电网搔扰电压,均在中兴开关电源上经过验证分析.中兴通信系列开关电源的电磁兼容性指标,已完全满足并超过了YD/T983-1998《通信开关电源设备电磁兼容性要求及测量方法》中所规定的所有项目的指标,部分产品已通过CE认证及FCC认证中的全部电磁兼容性指标,是真正的环保型通信开关电源.特别适合于移动基站、程控交换设备、IP电话、有线电视等数据通信传输设备以及铁路、水电、火电站等强的电磁场搔扰的场合使用.
第二篇:开关电源的电磁兼容性技术
开关电源的电磁兼容性技术 引言
电磁兼容是一门新兴的跨学科的综合性应用学科。作为边缘技术,它以电气和无线电技术的基本理论为基础,并涉及许多新的技术领域,如微波技术、微电子技术、计算机技术、通信和网络技术以及新材料等。电磁兼容技术应用的范围很广,几乎所有现代化工业领域,如电力、通信、交通、航天、军工、计算机和医疗等都必须解决电磁兼容问题。其研究的热点内容主要有:电磁干扰源的特性及其传输特性、电磁干扰的危害效应、电磁干扰的抑制技术、电磁频谱的利用和管理、电磁兼容性标准与规范、电磁兼容性的测量与试验技术、电磁泄漏与静电放电等。
电磁兼容的英文名称为Electromagnetic Compatibility,简称EMC。所谓电磁兼容是指设备(分系统、系统)在共同的电磁环境中能一起执行各自功能的共存状态。这里包含两层意思,即它工作中产生的电磁辐射要限制在一定水平内,另外它本身要有一定的抗干扰能力。这便是设备研制中所必须解决的兼容问题。电磁兼容技术涉及的频率范围宽达0 GHz ~400GHz,研究对象除传统设备外,还涉及芯片级,直到各种舰船、航天飞机、洲际导弹甚至整个地球的电磁环境。
电磁兼容三要素是干扰源(骚扰源)、耦合通路和敏感体。切断以上任何一项都可解决电磁兼容问题,电磁兼容的解决常用的方法主要有屏蔽、接地和滤波。2 电磁兼容技术名词(1)电磁兼容性
电磁兼容性是指设备或者系统在其电磁环境中能正常工作,且不对该环境中任何事物构成不能承受的电磁骚扰的能力。(2)电磁骚扰
电磁骚扰是指任何可能引起设备、装备或系统性能降低或者对有生命或者无生命物质产生损害作用的电磁现象。电磁骚扰可引起设备、传输通道或系统性能的下降。它的主要要素有自然和人为的骚扰源、通过公共地线阻抗/内阻的耦合、沿电源线传导的电磁骚扰和辐射干扰等。电子系统受干扰的路径为:经过电源,通过信号线或控制电缆、场渗透,经过天线直接进入;通过电缆耦合,从其他设备来的传导干扰;电子系统内部场耦合;其他设备的辐射干扰;电子设备外部耦合到内部场;宽带发射机天线系统;外部环境场等(3)电磁环境
电磁环境是一种明显不传送信息的时变电磁现象,它可能与有用信号叠加或组合。(4)电磁辐射
电磁辐射是指电磁波由源发射到空间的现象。“电磁辐射”一词的含义有时也可引申,将电磁感应现象也包含在内。RFI/EMI可以通过任何一种设备机壳的开口、通风孔、出入口、电缆、测量孔、门框、舱盖、抽屉和面板以及机壳的非理想连接面等进行辐射。RFI/EMI也可由进入敏感设备的导线和电缆进行辐射,任何一个良好的电磁能量辐射器也可以作为良好的接收器。(5)脉冲
脉冲是指在短时间内突变,随后又迅速返回至其初始值的物理量。(6)共模干扰和差模干扰
电源线上的干扰有共模干扰和差模干扰两种方式。共模干扰存在于电源任何一相对大地或电线对大地之间。共模干扰有时也称纵模干扰、不对称干扰或接地干扰。这是载流导体与大地之间的干扰。差模干扰存在于电源相线与中线及相线与相线之间。差模干扰也称常模干扰、横模干扰或对称干扰。这是载流导体之间的干扰。共模干扰提示了干扰是由辐射或串扰耦合到电路中的,而差模干扰则提示了干扰是源于同一条电源电路。通常这两种干扰是同时存在的,由于线路阻抗的不平衡,两种干扰在传输中还会相互转化,所以情况十分复杂。干扰经长距离传输后,差模分量的衰减要比共模大,这是因为线间阻抗与线-地阻抗不同的缘故。出于同一原因,共模干扰在线路传输中还会向邻近空间辐射,而差模则不会,因此共模干扰比差模更容易造成电磁干扰。不同的干扰方式要采取不同的干扰抑制方法才有效。判断干扰方法的简便方法是采用电流探头。电流探头先单独环绕每根导线,得出单根导线的感应值,然后再环绕两根导线(其中一根是地线),探测其感应情况。如感应值是增加的,则线路中干扰电流是共模的;反之则是差模的。(7)抗扰度电平和敏感性电平
抗扰度电平是指将某给定的电磁骚扰施加于某一装置、设备或者系统并使其仍然能够正常工作且保持所需性能等级时的最大骚扰电平。也就是说,超过此电平时该装置、设备或者系统就会出现性能降低。而敏感性电平是指刚刚开始出现性能降低的电平。所以,对某一装置、设备或者系统而言,抗扰度电平与敏感性电平是同一数值。(8)抗扰度裕量
抗扰度裕量是指装备、设备或者系统的抗扰度电平限值与电磁兼容电平之间的插值。3 开关电源的电磁兼容性
开关电源因工作在高电压大电流的开关工作状态下,引起电磁兼容性问题的原因是相当复杂的。从整机的电磁性讲,主要有共阻抗耦合、线间耦合、电场耦合、磁场耦合及电磁波耦合几种。共阻耦合主要是骚扰源与受骚扰体在电气上存在的共同阻抗,通过该阻抗使骚扰信号进入受骚扰体。线间耦合主要是产生骚扰电压及骚扰电流的导线或 PCB线因并行布线而产生的相互耦合。电场耦合主要是由于电位差的存在,产生感应电场对受骚扰体产生的场耦合。磁场耦合主要是指在大电流的脉冲电源线附近,产生的低频磁场对骚扰对象产生的耦合。电磁场耦合主要是由于脉动的电压或电流产生的高频电磁波通过空间向外辐射,对相应的受骚扰体产生的耦合。实际上,每一种耦合方式是不能严格区分的,只是侧重点不同而已。在开关电源中,主功率开关管在很高的电压下,以高频开关方式工作,开关电压及开关电流均接近方波,从频谱分析知,方波信号含有丰富的高次谐波。该高次谐波的频谱可达方波频率的1000次以上。同时,由于电源变压器的漏电感及分布电容以及主功率开关器件的工作状态非理想,在高频开或关时,常常产生高频高压的尖峰谐波震荡。该谐波震荡产生的高次谐波,通过开关管与散热器间的分布电容传入内部电路或通过散热器及变压器向空间辐射。用于整流及续流的开关二极管,也是产生高频骚扰的一个重要原因。因整流及续流二极管工作在高频开关状态,二极管的引线寄生电感、结电容的存在以及反向恢复电流的影响,使之工作在很高的电压及电流变化率下,且产生高频震荡。整流及续流二极管一般离电源输出线较近,其产生的高频骚扰最容易通过直流输出线传出。开关电源为了提高功率因数,均采用了有源功率因数校正电路。同时,为了提高电路的效率及可靠性,减少功率器件的电应力,大量采用了软开关技术。其中零电压、零电流或零电压/零电流开关技术应用最为广泛。该技术极大的降低了开关器件所产生的电磁骚扰。但是,软开关无损吸收电路多数利用L、C进行能量转移,利用二极管的单向导电性能实现能量的单向转换,因此,该谐振电路中的二极管成为电磁骚扰的一大骚扰源。
开关电源一般利用储能电感及电容器组成L、C滤波电路,实现对差模及共模骚扰信号的滤波。由于电感线圈的分布电容,导致了电感线圈的自谐振频率降低,从而使大量的高频骚扰信号穿过电感线圈,沿交流电源线或直流输出线向外传播。滤波电容器随着骚扰信号频率的上升,引线电感的作用导致电容量及滤波效果不断的下降,甚至导致电容器参数改变,也是产生电磁骚扰的一个原因。4 电磁兼容性的解决方法
从电磁兼容的三要素讲,要解决开关电源的电磁兼容性问题,可从三个方面入手:第一,减小骚扰源产生的骚扰信号;第二,切断骚扰信号的传播途径;第三,增强受骚扰体的抗骚扰能力。在解决开关电源内部的兼容性时,可以综合利用上述三个方法,以成本效益比及实施的难易性为前提。因而,开关电源产生的对外骚扰,如电源线谐波电流、电源线传导骚扰、电磁场辐射骚扰等只能用减小骚扰源的方法来解决。一方面,可以增强输入/输出滤波电路的设计,改善APFC电路的性能,减小开关管及整流、续流二极管的电压、电流变化率,采用各种软开关电路拓扑及控制方式等;另一方面,加强机壳的屏蔽效果,改善机壳的缝隙泄漏,并进行良好的接地处理。而对外部的抗骚扰能力(如浪涌、雷击)应优化交流电输入及直流输出端口的防雷能力。通常,对1.2/50?s开路电压及8/20?s短路电流的组合雷击波形,因能量较小,通常采用氧化锌压敏电阻与气体方电管等的组合方法来解决。对于静电放电,通常在通信端口及控制端口的小信号电路中,采用TVS管及相应的接地保护、加大小信号电路与机壳等的电距离来解决或选用具有抗静电骚扰的器件。快速瞬变信号含有很宽的频谱,很容易以共模的方式传入控制电路内,采用与防静电相同的方法并减小共模电感的分布电容、加强输入电路的共模信号滤波(加共模电容或插入损耗型的铁氧体磁环等)来提高系统的抗扰性能。
减小开关电源的内部骚扰,实现其自身的电磁兼容性,提高开关电源的稳定性及可靠性,应从以下几个方面入手:①注意数字电路与模块电路PCB布线的正确分区;②数字电路与模拟电路电源的去耦;③数字电路与模拟电路单点接地、大电流电路与小电流特别是电流电压取样电路的单点接地以减小共阻骚扰,减小地环地影响,布线时注意相邻线间的间距及信号性质,避免产生串扰,减小输出整流回路及续流二极管回路与支流滤波电路所包围的面积,减小变压器的漏电、滤波电感的分布电容,运用谐振频率高的滤波电容器等。5 滤波器结构
滤波是一种抑制传导干扰的方法。例如,在电源输入端接上滤波器,可以抑制来自电网的噪声对电源本身的侵害,也可以抑制由开关电源产生并向电网反馈的干扰。电源滤波器作为抑制电源线传导干扰的重要单元,在设备或系统的电磁兼容设计中具有极其重要的作用。它不仅可以抑制传输线上的传导干扰,同时对传输线上的辐射发射也具有显著的抑制效果。在滤波电路中,选用穿心电容、三端电容、铁氧体磁环,能够改善电路的滤波特性。进行适当的设计或选择合适的滤波器,并正确的安装滤波器是抗干扰技术的重要组成部分。在交流电输入端加装的电源滤波器电路如图1所示。图中Ld、Cd用于抑制差模噪声,一般取Ld为100 mH-700mH,Cd取1?F-10?F。Lc、Cc用于抑制共模噪声,可根据实际情况加以调整。所有电源滤波器都必须接地(厂家特别说明允许不接地的除外),因为滤波器的共模旁路电容必须在接地时才起作用。一般的接地方法是除了将滤波器与金属外壳相接之外,还要用较粗的导线将滤波器外壳与设备的接地点相连。接地阻抗越低,滤波效果越好。滤波器尽量安装在靠近电源入口处。滤波器的输入及输出端要尽量远离,避免干扰信号从输入端直接耦合到输出端。
如在电源输出端加输出滤波器、加装高频电容、加大输出滤波电感的电感量及滤波电容的容量,则可以抑制差模噪声。如果把多个电容并联,则效果会更好。6 EMI滤波器选用与安装
开关电源EMI滤波器中的4只电容器用了两种不同的下标“x”和“y”,不仅说明了它们在滤波网络中的作用,还表明了它们在滤波网络中的安全等级。无论是选用还是设计EMI滤波器,都要认真的考虑Cx和Cy的安全等级。在实际应用中,Cx电容接在单相电源线的L和N之间,它上面除加有电源额定电压外,还会叠加L和N之间存在的EMI信号峰值电压。因此,要根据EMI滤波器的应用场合和可能存在的EMI信号峰值,正确选用适合安全等级的Cx电容器。Cy电容器是接在电源供电线L、N与金属外壳(E)之间的,对于220V、50Hz电源,它除符合250V峰值电压的耐压要求外,还要求这种电容器在电气和机械性能方面具有足够的安全裕量,以避免可能出现的击穿短路现象。7 结语
在开关电源设计中,为了少走弯路和节省时间,应充分考虑并满足抗干扰性的要求,避免在设计完成后去进行抗干扰的补救措施。
第三篇:通信设备的电磁兼容性设计
通信设备的电磁兼容性设计
李宏坚
(陕西烽火电子股份有限公司)摘要:本文从印制板设计、内部走线设计和机壳结构设计三方面,介绍了通信设备的一些电磁兼容性设计方法。
关键字:电磁兼容、印制板设计、内部走线设计、结构设计
随着电磁环境越来越复杂,通信设备的电磁兼容性要求也越来越高,在设计阶段就应该考虑其电磁兼容性,这样可以将产品在生产阶段出现电磁兼容问题的可能性减少到一个较低的程度。
一、通信设备印制板电磁兼容性设计
造成通信设备辐射超标的原因是多方面的,接口滤波不好,结构屏效低,电缆设计有缺陷都有可能导致辐射发射超标,但产生辐射的根本原因却在PCB的设计,主要关注这几个方面:
1.从减小辐射干扰的角度出发,应尽量选用多层板,内层分别作电源层、地线层,用以降低供电线路阻抗,抑制公共阻抗噪声,对信号线形成均匀的接地面,加大信号线和接地面间的分布电容,抑制其向空间辐射的能力。
2.电源线、地线、印制板走线对高频信号应保持低阻抗。在频率很高的情况下,电源线、地线、或印制板走线都会成为接收与发射干扰的小天线,降低这种干扰的方法除了加滤波电容外,更值得重视的是减小电源线、地线及其他印制板走线本身的高频阻抗,因此,各种印制板走线要短而粗,线条要均匀。
3.电源线、地线及印制导线在印制板上的排列要恰当,尽量做到短而直,以减小信号线与回线之间所形成的环路面积。
4.电路元件和信号通路的布局必须最大限度地减少无用信号的相互耦合。在PCB的不同的设计阶段所关注的问题点不同,在元器件布局阶段需要注意:
1.接口信号的滤波、防护和隔离等器件是否靠近接口连接器放置,先防护,后滤波;电源模块、滤波器、电源防护器件是否靠近电源的入口放置,尽可能保证电源的输入线最短,电源的输入输出分开,走线互不交叉;
2.晶体、晶振、继电器、开关电源等强辐射器件或敏感器件是否远离单板拉手条、连接器;
3.滤波电容是否靠近IC的电源管脚放置,位置、数量适当; 4.时钟电路是否靠近负载,且负载均衡放置; 5.接口滤波器件的输入、输出是否未跨分割区;除光耦、磁珠、隔离变压器、A/D、D/A等器件外,其它器件是否未跨分割区;
在PCB布线阶段需要注意:
1.电源、地的布线处理无地环路,电源及与对应地构成的回路面积小; 2.差分信号线对是否同层、等长、并行走线,保持阻抗一致,差分线间无其他走线;
3.时钟等关键信号线是否布内层(优先考虑优选布线层),并加屏蔽地线或与其他布线间距满足3W原则,关键信号走线是否未跨分割区;
4.是否无其他信号线从电源滤波器输入线下走线,滤波器等器件的输入、输出信号线是否未互相并行、交叉走线;
二、通信设备内部走线电磁兼容性设计 通信设备内部走线混乱,不仅会造成高、低电平信号之间相互干扰,也会给后期采用屏蔽、滤波、接地等补救措施带来不便,会使设计的屏蔽、滤波电路、接地措施起不到应有的作用,在规划内部走线时,需要遵循以下基本原则:
1.机箱内各种裸露走线要尽量短。2.传输不同电平信号的导线分组捆扎,数字电路和模拟电路信号线应分组捆扎,并保持适当距离,减少导线相互影响。
3.对产品中用来传递信号的扁平电缆,应采用地-信号-地-信号-地排列的方式,这样可以有效抑制干扰,增强其抗干扰能力。
4.将低频进线和回线绞合在一起,形成双绞线,减少电磁干扰,如电源线。5.对确定的辐射干扰较大或敏感的导线要加屏蔽措施。
6.屏蔽电缆进出屏蔽体必须保证屏蔽层与屏蔽体之间可靠搭接,一般要求360°环接,并提供足够低的搭接阻抗。
7.非屏蔽电缆原则上禁止直接从屏蔽体中出线。特殊情况下允许直接出线,但是要求屏蔽体内侧(或者外侧)电缆的长度不得越过80mm,注意这个尺寸包括PCB上面的走线,如果有滤波电路,指滤波电路与屏蔽体之间的电缆长度。
8.屏蔽电缆还有一种特殊应用场合,有时系统规定其屏蔽层不得与屏蔽体(实际上就是PGND)连接,典型的例子是同轴电缆。这时的屏蔽电缆可以按照非屏蔽电缆处理(在屏蔽体一侧的长度不得超过80mm),或者采用双层屏蔽电缆。
三、通信设备机壳结构的电磁兼容性设计
通信设备的金属机壳是良好的屏蔽体,但实际上,由于屏蔽体上面不可避免地存在各种缝隙、开孔以及进出电缆等各种缺陷,这些缺陷将对屏蔽体的屏蔽效能有急剧的劣化作用,真正决定实际屏蔽体的屏蔽效能的因素是各种电气不连续缺陷,包括缝隙、开孔、电缆穿透等。
1.机壳接缝
主要为通信设备的壳体与安装盖板之间的接缝,该类缝虽然面积不大,但其最大线度尺寸即缝长却非常大,由于维修、开启等限制,致使该类缝成为电子设备中屏蔽难度最大的一类孔缝,采用导电衬垫等特殊屏蔽材料可以有效地抑制电磁泄漏。该类孔缝屏蔽设计的关键在于:合理地选择导电衬垫材料并进行适当的变形控制。
2.通风孔
该类孔面积和最大线度尺寸较大,通风孔设计的关键在于通风部件的选择与装配结构的设计。在满足通风性能的条件下,应尽可能选用屏效较高的屏蔽通风部件,如在风扇的风道口增加与机壳连接,具有一定深度蜂窝状铜网等。
3.观察孔与显示孔
该类型孔面积和最大线度尺寸较大,其设计的关键在于屏蔽透光材料的选择与装配结构的设计。
4.连接器与机箱的接缝
这类缝的面积与最大线度尺寸均不大,但由于在高频时导致连接器与机箱的接触阻抗急剧增大,从而使得屏蔽电缆的共模传导发射变大,往往导致整个设备的辐射发射出现超标,为此应采用导电橡胶等连接器导电衬垫。
电磁兼容是一个整机性能指标,它与PCB设计、设备内部走线设计、结构设计的好坏有着密切的关系。在设计一个新产品时,一开始就必须考虑到电磁兼容问题,如果忽视了这一问题,到新产品定型时,干扰问题会暴露出来,因此及早地解决电磁干扰问题不仅是行之有效的,而且会大大降低产品成本。
参考文献:
1、电磁兼容的印制板电路设计,(美)Mark I,Montrose著,吕英华 于学平张金玲译,机械工业出版社,2008;
2、产品设计中的EMC技术,(英)威廉姆斯著,李迪 王培清译,电子工业出版社,2004;
3、电磁兼容设计与整改对策及案例分析,朱文立著,电子工业出版社,2012。
第四篇:关于开关电源的电磁兼容性技术及解决方法
关于开关电源的电磁兼容性技术及解决方法 引言
电磁兼容是一门新兴的跨学科的综合性应用学科。作为边缘技术,它以电气和无线电技术的基本理论为基础,并涉及许多新的技术领域,如微波技术、微电子技术、计算机技术、通信和网络技术以及新材料等。电磁兼容技术应用的范围很广,几乎所有现代化工业领域,如电力、通信、交通、航天、军工、计算机和医疗等都必须解决电磁兼容问题。其研究的热点内容主要有:电磁干扰源的特性及其传输特性、电磁干扰的危害效应、电磁干扰的抑制技术、电磁频谱的利用和管理、电磁兼容性标准与规范、电磁兼容性的测量与试验技术、电磁泄漏与静电放电等。
电磁兼容的英文名称为Electromagnetic Compatibility,简称EMC。所谓电磁兼容是指设备(分系统、系统)在共同的电磁环境中能一起执行各自功能的共存状态。这里包含两层意思,即它工作中产生的电磁辐射要限制在一定水平内,另外它本身要有一定的抗干扰能力。这便是设备研制中所必须解决的兼容问题。电磁兼容技术涉及的频率范围宽达0 GHz ~400GHz,研究对象除传统设备外,还涉及芯片级,直到各种舰船、航天飞机、洲际导弹甚至整个地球的电磁环境。
电磁兼容三要素是干扰源(骚扰源)、耦合通路和敏感体。切断以上任何一项都可解决电磁兼容问题,电磁兼容的解决常用的方法主要有屏蔽、接地和滤波。电磁兼容技术名词
(1)电磁兼容性
电磁兼容性是指设备或者系统在其电磁环境中能正常工作,且不对该环境中任何事物构成不能承受的电磁骚扰的能力。
(2)电磁骚扰
电磁骚扰是指任何可能引起设备、装备或系统性能降低或者对有生命或者无生命物质产生损害作用的电磁现象。电磁骚扰可引起设备、传输通道或系统性能的下降。它的主要要素有自然和人为的骚扰源、通过公共地线阻抗/内阻的耦合、沿电源线传导的电磁骚扰和辐射干扰等。电子系统受干扰的路径为:经过电源,通过信号线或控制电缆、场渗透,经过天线直接进入;通过电缆耦合,从其他设备来的传导干扰;电子系统内部场耦合;其他设备的辐射干扰;电子设备外部耦合到内部场;宽带发射机天线系统;外部环境场等。
(3)电磁环境
电磁环境是一种明显不传送信息的时变电磁现象,它可能与有用信号叠加或组合。
(4)电磁辐射
电磁辐射是指电磁波由源发射到空间的现象。“电磁辐射”一词的含义有时也可引申,将电磁感应现象也包含在内。RFI/EMI可以通过任何一种设备机壳的开口、通风孔、出入口、电缆、测量孔、门框、舱盖、抽屉和面板以及机壳的非理想连接面等进行辐射。RFI/EMI也可由进入敏感设备的导线和电缆进行辐射,任何一个良好的电磁能量辐射器也可以作为良好的接收器。
(5)脉冲
脉冲是指在短时间内突变,随后又迅速返回至其初始值的物理量。
(6)共模干扰和差模干扰
电源线上的干扰有共模干扰和差模干扰两种方式。共模干扰存在于电源任何一相对大地或电线对大地之间。共模干扰有时也称纵模干扰、不对称干扰或接地干扰。这是载流导体与大地之间的干扰。差模干扰存在于电源相线与中线及相线与相线之间。差模干扰也称常模干扰、横模干扰或对称干扰。这是载流导体之间的干扰。共模干扰提示了干扰是由辐射或串扰耦合到电路中的,而差模干扰则提示了干扰是源于同一条电源电路。通常这两种干扰是同时存在的,由于线路阻抗的不平衡,两种干扰在传输中还会相互转化,所以情况十分复杂。干扰经长距离传输后,差模分量的衰减要比共模大,这是因为线间阻抗与线-地阻抗不同的缘故。出于同一原因,共模干扰在线路传输中还会向邻近空间辐射,而差模则不会,因此共模干扰比差模更容易造成电磁干扰。不同的干扰方式要采取不同的干扰抑制方法才有效。判断干扰方法的简便方法是采用电流探头。电流探头先单独环绕每根导线,得出单根导线的感应值,然后再环绕两根导线(其中一根是地线),探测其感应情况。如感应值是增加的,则线路中干扰电流是共模的;反之则是差模的。
(7)抗扰度电平和敏感性电平
抗扰度电平是指将某给定的电磁骚扰施加于某一装置、设备或者系统并使其仍然能够正常工作且保持所需性能等级时的最大骚扰电平。也就是说,超过此电平时该装置、设备或者系统就会出现性能降低。而敏感性电平是指刚刚开始出现性能降低的电平。所以,对某一装置、设备或者系统而言,抗扰度电平与敏感性电平是同一数值。
(8)抗扰度裕量
抗扰度裕量是指装备、设备或者系统的抗扰度电平限值与电磁兼容电平之间的插值。开关电源的电磁兼容性
开关电源因工作在高电压大电流的开关工作状态下,引起电磁兼容性问题的原因是相当复杂的。从整机的电磁性讲,主要有共阻抗耦合、线间耦合、电场耦合、磁场耦合及电磁波耦合几种。共阻耦合主要是骚扰源与受骚扰体在电气上存在的共同阻抗,通过该阻抗使骚扰信号进入受骚扰体。线间耦合主要是产生骚扰电压及骚扰电流的导线或PCB线因并行布线而产生的相互耦合。电场耦合主要是由于电位差的存在,产生感应电场对受骚扰体产生的场耦合。磁场耦合主要是指在大电流的脉冲电源线附近,产生的低频磁场对骚扰对象产生的耦合。电磁场耦合主要是由于脉动的电压或电流产生的高频电磁波通过空间向外辐射,对相应的受骚扰体产生的耦合。实际上,每一种耦合方式是不能严格区分的,只是侧重点不同而已。
在开关电源中,主功率开关管在很高的电压下,以高频开关方式工作,开关电压及开关电流均接近方波,从频谱分析知,方波信号含有丰富的高次谐波。该高次谐波的频谱可达方波频率的1000次以上。同时,由于电源变压器的漏电感及分布电容以及主功率开关器件的工作状态非理想,在高频开或关时,常常产生高频高压的尖峰谐波震荡。该谐波震荡产生的高次谐波,通过开关管与散热器间的分布电容传入内部电路或通过散热器及变压器向空间辐射。用于整流及续流的开关二极管,也是产生高频骚扰的一个重要原因。因整流及续流二极管工作在高频开关状态,二极管的引线寄生电感、结电容的存在以及反向恢复电流的影响,使之工作在很高的电压及电流变化率下,且产生高频震荡。整流及续流二极管一般离电源输出线较近,其产生的高频骚扰最容易通过直流输出线传出。开关电源为了提高功率因数,均采用了有源功率因数校正电路。同时,为了提高电路的效率及可靠性,减少功率器件的电应力,大量采用了软开关技术。其中零电压、零电流或零电压/零电流开关技术应用最为广泛。该技术极大的降低了开关器件所产生的电磁骚扰。但是,软开关无损吸收电路多数利用L、C进行能量转移,利用二极管的单向导电性能实现能量的单向转换,因此,该谐振电路中的二极管成为电磁骚扰的一大骚扰源。
开关电源一般利用储能电感及电容器组成L、C滤波电路,实现对差模及共模骚扰信号的滤波。由于电感线圈的分布电容,导致了电感线圈的自谐振频率降低,从而使大量的高频骚扰信号穿过电感线圈,沿交流电源线或直流输出线向外传播。滤波电容器随着骚扰信号频率的上升,引线电感的作用导致电容量及滤波效果不断的下降,甚至导致电容器参数改变,也是产生电磁骚扰的一个原因。电磁兼容性的解决方法
从电磁兼容的三要素讲,要解决开关电源的电磁兼容性问题,可从三个方面入手:第一,减小骚扰源产生的骚扰信号;第二,切断骚扰信号的传播途径;第三,增强受骚扰体的抗骚扰能力。在解决开关电源内部的兼容性时,可以综合利用上述三个方法,以成本效益比及实施的难易性为前提。因而,开关电源产生的对外骚扰,如电源线谐波电流、电源线传导骚扰、电磁场辐射骚扰等只能用减小骚扰源的方法来解决。一方面,可以增强输入/输出滤波电路的设计,改善APFC电路的性能,减小开关管及整流、续流二极管的电压、电流变化率,采用各种软开关电路拓扑及控制方式等;另一方面,加强机壳的屏蔽效果,改善机壳的缝隙泄漏,并进行良好的接地处理。而对外部的抗骚扰能力(如浪涌、雷击)应优化交流电输入及直流输出端口的防雷能力。通常,对1.2/50?s开路电压及8/20?s短路电流的组合雷击波形,因能量较小,通常采用氧化锌压敏电阻与气体方电管等的组合方法来解决。对于静电放电,通常在通信端口及控制端口的小信号电路中,采用TVS管及相应的接地保护、加大小信号电路与机壳等的电距离来解决或选用具有抗静电骚扰的器件。快速瞬变信号含有很宽的频谱,很容易以共模的方式传入控制电路内,采用与防静电相同的方法并减小共模电感的分布电容、加强输入电路的共模信号滤波(加共模电容或插入损耗型的铁氧体磁环等)来提高系统的抗扰性能。
减小开关电源的内部骚扰,实现其自身的电磁兼容性,提高开关电源的稳定性及可靠性,应从以下几个方面入手:①注意数字电路与模块电路PCB布线的正确分区;②数字电路与模拟电路电源的去耦;③数字电路与模拟电路单点接地、大电流电路与小电流特别是电流电压取样电路的单点接地以减小共阻骚扰,减小地环地影响,布线时注意相邻线间的间距及信号性质,避免产生串扰,减小输出整流回路及续流二极管回路与支流滤波电路所包围的面积,减小变压器的漏电、滤波电感的分布电容,运用谐振频率高的滤波电容器等。滤波器结构
滤波是一种抑制传导干扰的方法。例如,在电源输入端接上滤波器,可以抑制来自电网的噪声对电源本身的侵害,也可以抑制由开关电源产生并向电网反馈的干扰。电源滤波器作为抑制电源线传导干扰的重要单元,在设备或系统的电磁兼容设计中具有极其重要的作用。它不仅可以抑制传输线上的传导干扰,同时对传输线上的辐射发射也具有显著的抑制效果。在滤波电路中,选用穿心电容、三端电容、铁氧体磁环,能够改善电路的滤波特性。进行适当的设计或选择合适的滤波器,并正确的安装滤波器是抗干扰技术的重要组成部分。在交流电输入端加装的电源滤波器电路如图1所示。图中Ld、Cd用于抑制差模噪声,一般取Ld为100 mH-700mH,Cd取1?F-10?F。Lc、Cc用于抑制共模噪声,可根据实际情况加以调整。
所有电源滤波器都必须接地(厂家特别说明允许不接地的除外),因为滤波器的共模旁路电容必须在接地时才起作用。一般的接地方法是除了将滤波器与金属外壳相接之外,还要用较粗的导线将滤波器外壳与设备的接地点相连。接地阻抗越低,滤波效果越好。
滤波器尽量安装在靠近电源入口处。滤波器的输入及输出端要尽量远离,避免干扰信号从输入端直接耦合到输出端。
如在电源输出端加输出滤波器、加装高频电容、加大输出滤波电感的电感量及滤波电容的容量,则可以抑制差模噪声。如果把多个电容并联,则效果会更好。
几种滤波器的构成如图2所示。在图2(a)中,阻抗Z=1/(ωC1),高频区域用陶瓷电容、聚酯薄膜电容并联,其滤波效果更好。图2(b)中,噪声能通过电容旁路到地线上,这种滤波器连接时应使接地阻抗尽量小。图2(c)中,C1、C2对不对称噪声有良好的滤波效果,C3对对称噪声有良好的滤波效果,连接时应使电容器的引线及接地线尽量短。图2(d)为常用的噪声滤波电路,L1、L2对噪声呈现高阻抗,而C1则对噪声呈现低阻抗。当L1、L2采用共模电感结构时,对对称和非对称噪声都有较好的滤波效果。图2(e)适用于共模噪声进行滤波,应注意的是其接地阻抗同样应尽量小。
图3是对共模噪声和差模噪声都有效的滤波器电路。其中,L1、L2、C1为抑制差模噪声回路,L3、C2、C3构成抑制共模噪声回路。L1、L2的铁心应选择不易磁饱和的材料及M-F特性优良的铁心材料。C1使用陶瓷电容或聚酯薄膜电容,应有足够的耐压值,其容量一般取0.22?F-0.47?F。L3为共模电感,对共模噪声具有较高的阻抗、较好的抑制效果。EMI滤波器选用与安装
开关电源EMI滤波器中的4只电容器用了两种不同的下标“x”和“y”,不仅说明了它们在滤波网络中的作用,还表明了它们在滤波网络中的安全等级。无论是选用还是设计EMI滤波器,都要认真的考虑Cx和Cy的安全等级。在实际应用中,Cx电容接在单相电源线的L和N之间,它上面除加有电源额定电压外,还会叠加L和N之间存在的EMI信号峰值电压。因此,要根据EMI滤波器的应用场合和可能存在的EMI信号峰值,正确选用适合安全等级的Cx电容器。Cy电容器是接在电源供电线L、N与金属外壳(E)之间的,对于220V、50Hz电源,它除符合250V峰值电压的耐压要求外,还要求这种电容器在电气和机械性能方面具有足够的安全裕量,以避免可能出现的击穿短路现象。
EMI滤波器是具有互异性的,即把负载接在电源端还是负载端均可。在实际应用中,为达到有效抑制EMI信号的目的,必须根据滤波器两端将要连接的EMI信号源阻抗和负载阻抗来选择该滤波器的网络结构和参数。当EMI滤波器两端阻抗都处于失配状态时,即图4中Zs≠Zin、ZL≠Zout时,EMI信号会在其输入和输出端产生反射,增加对EMI信号的衰减。其信号的衰减A与反射Γ的关系为:A=–10Lg(1-|Γ|2)。
在使用开关电源滤波器时,要注意滤波器在额定电流下的电源频率。在安装滤波器时,要特别注意滤波器的输入导线与输出导线的间隔距离,不能把它们捆在一起走线,否则EMI信号很容易从输入线上耦合到输出线上,这将大大降低滤波器的抑制效果。结语
在开关电源设计中,为了少走弯路和节省时间,应充分考虑并满足抗干扰性的要求,避免在设计完成后去进行抗干扰的补救措施。■
第五篇:开关电源的电磁兼容性技术及解决方法
开关电源的电磁兼容性技术及解决方法
⒈引言
电磁兼容是一门新兴的跨学科的综合性应用学科。作为边缘技术,它以电气和无线电技术的基本理论为基础,并涉及许多新的技术领域,如微波技术、微电子技术、计算机技术、通信和网络技术以及新材料等。电磁兼容技术应用的范围很广,几乎所有现代化工业领域,如电力、通信、交通、航天、军工、计算机和医疗等都必须解决电磁兼容问题。其研究的热点内容主要有:电磁干扰源的特性及其传输特性、电磁干扰的危害效应、电磁干扰的抑制技术、电磁频谱的利用和管理、电磁兼容性标准与规范、电磁兼容性的测量与试验技术、电磁泄漏与静电放电等。
电磁兼容的英文名称为Electromagnetic Compatibility,简称EMC。所谓电磁兼容是指设备(分系统、系统)在共同的电磁环境中能一起执行各自功能的共存状态。这里包含两层意思,即它工作中产生的电磁辐射要限制在一定水平内,另外它本身要有一定的抗干扰能力。这便是设备研制中所必须解决的兼容问题。电磁兼容技术涉及的频率范围宽达0 GHz "400GHz,研究对象除传统设备外,还涉及芯片级,直到各种舰船、航天飞机、洲际导弹甚至整个地球的电磁环境。电磁兼容三要素是干扰源(骚扰源)、耦合通路和敏感体。切断以上任何一项都可解决电磁兼容问题,电磁兼容的解决常用的方法主要有屏蔽、接地和滤波。
⒉电磁兼容技术名词(1)电磁兼容性
电磁兼容性是指设备或者系统在其电磁环境中能正常工作,且不对该环境中任何事物构成不能承受的电磁骚扰的能力。
(2)电磁骚扰
电磁骚扰是指任何可能引起设备、装备或系统性能降低或者对有生命或者无生命物质产生损害作用的电磁现象。电磁骚扰可引起设备、传输通道或系统性能的下降。它的主要要素有自然和人为的骚扰源、通过公共地线阻抗/内阻的耦合、沿电源线传导的电磁骚扰和辐射干扰等。电子系统受干扰的路径为:经过电源,通过信号线或控制电缆、场渗透,经过天线直接进入;通过电缆耦合,从其他设备来的传导干扰;电子系统内部场耦合;其他设备的辐射干扰;电子设备外部耦合到内部场;宽带发射机天线系统;外部环境场等。
(3)电磁环境
电磁环境是一种明显不传送信息的时变电磁现象,它可能与有用信号叠加或组合。
(4)电磁辐射
电磁辐射是指电磁波由源发射到空间的现象。“电磁辐射”一词的含义有时也可引申,将电磁感应现象也包含在内。RFI/EMI可以通过任何一种设备机壳的开口、通风孔、出入口、电缆、测量孔、门框、舱盖、抽屉和面板以及机壳的非理想连接面等进行辐射。RFI/EMI也可由进入敏感设备的导线和电缆进行辐射,任何一个良好的电磁能量辐射器也可以作为良好的接收器。
(5)脉冲
脉冲是指在短时间内突变,随后又迅速返回至其初始值的物理量。
(6)共模干扰和差模干扰
电源线上的干扰有共模干扰和差模干扰两种方式。共模干扰存在于电源任何一相对大地或电线对大地之间。共模干扰有时也称纵模干扰、不对称干扰或接地干扰。这是载流导体与大地之间的干扰。差模干扰存在于电源相线与中线及相线与相线之间。差模干扰也称常模干扰、横模干扰或对称干扰。这是载流导体之间的干扰。共模干扰提示了干扰是由辐射或串扰耦合到电路中的,而差模干扰则提示了干扰是源于同一条电源电路。通常这两种干扰是同时存在的,由于线路阻抗的不平衡,两种干扰在传输中还会相互转化,所以情况十分复杂。干扰经长距离传输后,差模分量的衰减要比共模大,这是因为线间阻抗与线-地阻抗不同的缘故。出于同一原因,共模干扰在线路传输中还会向邻近空间辐射,而差模则不会,因此共模干扰比差模更容易造成电磁干扰。不同的干扰方式要采取不同的干扰抑制方法才有效。判断干扰方法的简便方法是采用电流探头。电流探头先单独环绕每根导线,得出单根导线的感应值,然后再环绕两根导线(其中一根是地线),探测其感应情况。如感应值是增加的,则线路中干扰电流是共模的;反之则是差模的。
(7)抗扰度电平和敏感性电平抗扰度电平是指将某给定的电磁骚扰施加于某一装置、设备或者系统并使其仍然能够正常工作且保持所需性能等级时的最大骚扰电平。也就是说,超过此电平时该装置、设备或者系统就会出现性能降低。而敏感性电平是指刚刚开始出现性能降低的电平。所以,对某一装置、设备或者系统而言,抗扰度电平与敏感性电平是同一数值。
(8)抗扰度裕量
抗扰度裕量是指装备、设备或者系统的抗扰度电平限值与电磁兼容电平之间的插值。
⒊开关电源的电磁兼容性
开关电源因工作在高电压大电流的开关工作状态下,引起电磁兼容性问题的原因是相当复杂的。从整机的电磁性讲,主要有共阻抗耦合、线间耦合、电场耦合、磁场耦合及电磁波耦合几种。共阻耦合主要是骚扰源与受骚扰体在电气上存在的共同阻抗,通过该阻抗使骚扰信号进入受骚扰体。线间耦合主要是产生骚扰电压及骚扰电流的导线或PCB线因并行布线而产生的相互耦合。电场耦合主要是由于电位差的存在,产生感应电场对受骚扰体产生的场耦合。磁场耦合主要是指在大电流的脉冲电源线附近,产生的低频磁场对骚扰对象产生的耦合。电磁场耦合主要是由于脉动的电压或电流产生的高频电磁波通过空间向外辐射,对相应的受骚扰体产生的耦合。实际上,每一种耦合方式是不能严格区分的,只是侧重点不同而已。
在开关电源中,主功率开关管在很高的电压下,以高频开关方式工作,开关电压及开关电流均接近方波,从频谱分析知,方波信号含有丰富的高次谐波。该高次谐波的频谱可达方波频率的1000次以上。同时,由于电源变压器的漏电感及分布电容以及主功率开关器件的工作状态非理想,在高频开或关时,常常产生高频高压的尖峰谐波震荡。该谐波震荡产生的高次谐波,通过开关管与散热器间的分布电容传入内部电路或通过散热器及变压器向空间辐射。用于整流及续流的开关二极管,也是产生高频骚扰的一个重要原因。因整流及续流二极管工作在高频开关状态,二极管的引线寄生电感、结电容的存在以及反向恢复电流的影响,使之工作在很高的电压及电流变化率下,且产生高频震荡。整流及续流二极管一般离电源输出线较近,其产生的高频骚扰最容易通过直流输出线传出。开关电源为了提高功率因数,均采用了有源功率因数校正电路。同时,为了提高电路的效率及可靠性,减少功率器件的电应力,大量采用了软开关技术。其中零电压、零电流或零电压/零电流开关技术应用最为广泛。该技术极大的降低了开关器件所产生的电磁骚扰。但是,软开关无损吸收电路多数利用L、C进行能量转移,利用二极管的单向导电性能实现能量的单向转换,因此,该谐振电路中的二极管成为电磁骚扰的一大骚扰源。
开关电源一般利用储能电感及电容器组成L、C滤波电路,实现对差模及共模骚扰信号的滤波。由于电感线圈的分布电容,导致了电感线圈的自谐振频率降低,从而使大量的高频骚扰信号穿过电感线圈,沿交流电源线或直流输出线向外传播。滤波电容器随着骚扰信号频率的上升,引线电感的作用导致电容量及滤波效果不断的下降,甚至导致电容器参数改变,也是产生电磁骚扰的一个原因。
⒋电磁兼容性的解决方法
从电磁兼容的三要素讲,要解决开关电源的电磁兼容性问题,可从三个方面入手:第一,减小骚扰源产生的骚扰信号;第二,切断骚扰信号的传播途径;第三,增强受骚扰体的抗骚扰能力。在解决开关电源内部的兼容性时,可以综合利用上述三个方法,以成本效益比及实施的难易性为前提。因而,开关电源产生的对外骚扰,如电源线谐波电流、电源线传导骚扰、电磁场辐射骚扰等只能用减小骚扰源的方法来解决。一方面,可以增强输入/输出滤波电路的设计,改善APFC电路的性能,减小开关管及整流、续流二极管的电压、电流变化率,采用各种软开关电路拓扑及控制方式等;另一方面,加强机壳的屏蔽效果,改善机壳的缝隙泄漏,并进行良好的接地处理。而对外部的抗骚扰能力(如浪涌、雷击)应优化交流电输入及直流输出端口的防雷能力。通常,对1.2/50μs开路电压及8/20μs短路电流的组合雷击波形,因能量较小,通常采用氧化锌压敏电阻与气体方电管等的组合方法来解决。对于静电放电,通常在通信端口及控制端口的小信号电路中,采用TVS管及相应的接地保护、加大小信号电路与机壳等的电距离来解决或选用具有抗静电骚扰的器件。快速瞬变信号含有很宽的频谱,很容易以共模的方式传入控制电路内,采用与防静电相同的方法并减小共模电感的分布电容、加强输入电路的共模信号滤波(加共模电容或插入损耗型的铁氧体磁环等)来提高系统的抗扰性能。
减小开关电源的内部骚扰,实现其自身的电磁兼容性,提高开关电源的稳定性及可靠性,应从以下几个方面入手:①注意数字电路与模块电路PCB布线的正确分区;②数字电路与模拟电路电源的去耦;③数字电路与模拟电路单点接地、大电流电路与小电流特别是电流电压取样电路的单点接地以减小共阻骚扰,减小地环地影响,布线时注意相邻线间的间距及信号性质,避免产生串扰,减小输出整流回路及续流二极管回路与支流滤波电路所包围的面积,减小变压器的漏电、滤波电感的分布电容,运用谐振频率高的滤波电容器等。
⒌ 滤波器结构
滤波是一种抑制传导干扰的方法。例如,在电源输入端接上滤波器,可以抑制来自电网的噪声对电源本身的侵害,也可以抑制由开关电源产生并向电网反馈的干扰。电源滤波器作为抑制电源线传导干扰的重要单元,在设备或系统的电磁兼容设计中具有极其重要的作用。它不仅可以抑制传输线上的传导干扰,同时对传输线上的辐射发射也具有显著的抑制效果。在滤波电路中,选用穿心电容、三端电容、铁氧体磁环,能够改善电路的滤波特性。进行适当的设计或选择合适的滤波器,并正确的安装滤波器是抗干扰技术的重要组成部分。在交流电输入端加装的电源滤波器电路如图1所示。图中Ld、Cd用于抑制差模噪声,一般取Ld为100 mH-700mH,Cd取1μF-10μF。Lc、Cc用于抑制共模噪声,可根据实际情况加以调整。
所有电源滤波器都必须接地(厂家特别说明允许不接地的除外),因为滤波器的共模旁路电容必须在接地时才起作用。一般的接地方法是除了将滤波器与金属外壳相接之外,还要用较粗的导线将滤波器外壳与设备的接地点相连。接地阻抗越低,滤波效果越好。
滤波器尽量安装在靠近电源入口处。滤波器的输入及输出端要尽量远离,避免干扰信号从输入端直接耦合到输出端。
如在电源输出端加输出滤波器、加装高频电容、加大输出滤波电感的电感量及滤波电容的容量,则可以抑制差模噪声。如果把多个电容并联,则效果会更好。几种滤波器的构成如图2所示。在图2(a)中,阻抗Z=1/(ωC1),高频区域用陶瓷电容、聚酯薄膜电容并联,其滤波效果更好。图2(b)中,噪声能通过电容旁路到地线上,这种滤波器连接时应使接地阻抗尽量小。图2(c)中,C1、C2对不对称噪声有良好的滤波效果,C3对对称噪声有良好的滤波效果,连接时应使电容器的引线及接地线尽量短。图2(d)为常用的噪声滤波电路,L1、L2对噪声呈现高阻抗,而C1则对噪声呈现低阻抗。当L1、L2采用共模电感结构时,对对称和非对称噪声都有较好的滤波效果。图2(e)适用于共模噪声进行滤波,应注意的是其接地阻抗同样应尽量小。
图3是对共模噪声和差模噪声都有效的滤波器电路。其中,L1、L2、C1为抑制差模噪声回路,L3、C2、C3构成抑制共模噪声回路。L1、L2的铁心应选择不易磁饱和的材料及M-F特性优良的铁心材料。C1使用陶瓷电容或聚酯薄膜电容,应有足够的耐压值,其容量一般取0.22μF-0.47μF。L3为共模电感,对共模噪声具有较高的阻抗、较好的抑制效果。
⒍ EMI滤波器选用与安装
开关电源EMI滤波器中的4只电容器用了两种不同的下标“x”和“y”,不仅说明了它们在滤波网络中的作用,还表明了它们在滤波网络中的安全等级。无论是选用还是设计EMI滤波器,都要认真的考虑Cx和Cy的安全等级。在实际应用中,Cx电容接在单相电源线的L和N之间,它上面除加有电源额定电压外,还会叠加L和N之间存在的EMI信号峰值电压。因此,要根据EMI滤波器的应用场合和可能存在的EMI信号峰值,正确选用适合安全等级的Cx电容器。Cy电容器是接在电源供电线L、N与金属外壳(E)之间的,对于220V、50Hz电源,它除符合250V峰值电压的耐压要求外,还要求这种电容器在电气和机械性能方面具有足够的安全裕量,以避免可能出现的击穿短路现象。
EMI滤波器是具有互异性的,即把负载接在电源端还是负载端均可。在实际应用中,为达到有效抑制EMI信号的目的,必须根据滤波器两端将要连接的EMI信号源阻抗和负载阻抗来选择该滤波器的网络结构和参数。当EMI滤波器两端阻抗都处于失配状态时,即图4中Zs≠Zin、ZL≠Zout时,EMI信号会在其输入和输出端产生反射,增加对EMI信号的衰减。其信号的衰减A与反射Γ的关系为:A=–10Lg(1-|Γ|2)。
在使用开关电源滤波器时,要注意滤波器在额定电流下的电源频率。在安装滤波器时,要特别注意滤波器的输入导线与输出导线的间隔距离,不能把它们捆在一起走线,否则EMI信号很容易从输入线上耦合到输出线上,这将大大降低滤波器的抑制效果。
⒎结语
在开关电源设计中,为了少走弯路和节省时间,应充分考虑并满足抗干扰性的要求,避免在设计完成后去进行抗干扰的补救措施。
《新型智能开关电源技术》是我电气专业的一门主要专业基础课。这个课程的主要目的是培养学生的经济素质,将学生培养成为高素质全面发展的人才。通过半个学期的学习,我对电气工程这个专业有了更深的认识,对国际电磁兼容的通用标准也有了很多的认识。这门课不仅仅是开启我对电气这个专业深一步的认识,而且也激发了对未知的领域的探索热情。虽然它作为一门选修课,但同样它拥有着和必修课一样的专业效果。如果将这门技术学到深处的话,还需要好多的努力。