风电并网对电力系统的影响及改善措施

时间:2019-05-15 03:03:31下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《风电并网对电力系统的影响及改善措施》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《风电并网对电力系统的影响及改善措施》。

第一篇:风电并网对电力系统的影响及改善措施

风电并网对电力系统的影响及改善措施

中国电力工程顾问集团公司-—王敏

[摘要]:由于风电场是一种依赖于自然能源的分散电源,同时目前大多采用恒速恒频异步风力发电系统,其并网运行降低了电网的稳定性和电能质量。着眼于并网风电场与电网之间的相互影响,特别是对系统稳定性以及电能质量的影响,对大型风电场并网运行中的一些基础性的技术问题进行了研究。

[关键词]:风电场;并网;现状分析。

一、引言

风力发电作为一种重要的可再生能源形式,越来越受到人们的广泛关注,并网型风力发电以其独特的能源、环保优势和规模化效益,得到长足发展,随着风电设备制造技术的日益成熟和风电价格的逐步降低,近些年来,无论是发达国家还是发展中国家都在大力发展风力发电。

风力发电之所以在全世界范围获得快速发展,除了能源和环保方面的优势外,还因为风电场本身所具有的独特优点:(1)风能资源丰富,属于清洁的可再生能源;(2)施工周期短,实际占地少,对土地要求低;(3)投资少,投资灵活,投资回收快;(4)风电场运行简单,风力发电具有经济性;(5)风力发电技术相对成熟。

自20世纪80年代以来,大、中型风电场并网容量发展最为迅猛,对常规电力系统运行造成的影响逐步明显和加大,随着风电场规模的不断扩大,风电特性对电网的负面影响愈加显著,成为制约风电场建设规模的严重障碍。因此深入研究风电场与电网的相互作用成为进一步开发风电所迫切要求解决的问题。其局限性主要表现在:(1)风能的能量密度小且不稳定,不能大量储存;(2)风轮机的效率较低;(3)对生态环境有影响,产生机械和电磁噪声;(4)接入电网时,对电网有负面影响。

二、我国风力发电装机容量现状

根据中国风能协会发布《2012年中国风电装机容量统计》报告中数据显示,2012年,中国(不包括台湾地区)新增安装风电机组7872台,装机容量12960MW,同比下降26.5%;累计安装风电机组53764台,装机容量75324.2MW,同比增长20.8%。

2001-2012 年中国新增及累计风电装机容量区域装机情况图(引自《2012年中国风电装机容量统计》)

2006-2012 年中国各区域累计风电装机容量图(引自《2012年中国风电装机容量统计》)

三、风电并网对电力系统的影响

风力发电是一种特殊的电力,它以自然风为原动力,风资源的随机性和间歇性决定了风电机组的输出特性也是波动和间歇的。作为发电机构的异步发电机在发出有功功率的同时,需要从系统吸收无功功率,且无功需求随有功输出的变化而变化。当风电场的容量较小时,这些特性对电力系统的影响并不显著,但随着风电场容量在系统中所占比例的增加,风电场对电力系统的影响会越来越显著。本文主要从以下几个方面讨论并网风电场对电力系统的影响,包括并网过程对电网的冲击、对电网频率、电网电压、电网稳定性、电能质量以及继电保护的影响。

1、并网过程对电网的冲击

异步电机作为发电机运行时,没有独立的励磁装置,并网前发电机本身没有电压,因此并网时必然伴随一个过渡过程。直接并网时,流过5~8倍额定电流的冲击电流,一般经过几百毫秒后转入稳态。异步发电机并网时冲击电流的大小,与并网时网络电压的大小、发电机的暂态电抗以及并网时的滑差有关。滑差越大,则交流暂态衰减时间越长,并网时冲击电流有效值也就越大。风力发电机组与大电网并联时,合闸瞬间的冲击电流对发电机及电网系统安全运行不会有太大影响。但对小容量电网而言,风电场并网瞬间将会造成电网电压的大幅度下跌,从而影响接在同一电网上的其他电器设备的正常运行,甚至会影响到整个电网的稳定与安全。目前可以通过加装软起动装置和风机非同期并网来削弱冲击电 流,但会给电网带来一定的谐波污染。

2、对电网频率的影响

风电场对系统频率的影响取决于风电场容量占系统总容量的比例。当风电容量在系统中所占的比例较大时,其输出功率的随机波动性对电网频率的影响显著,影响电网的电能质量和一些对频率敏感负荷的正常工作。这就要求电网中其他常规机组有较高的频率响应能力,能进行跟踪调节,抑制频率的波动。考虑到风电的不稳定性,当风电由于停风或大失速而失去出力后,会使电网频率降低,特别是当风电比重较大时,会影响到系统的频率稳定性。消除该影响的主要措施是提高系统的备用容量和采取优化的调度运行方式。当然,当电力系统较大、联系紧密时,频率问题不显著。

3、对电网电压的影响

风力发电出力随风速大小等因素而变化,同时由于风力资源分布的限制,风电场大多建设在电网的末端,网络结构比较薄弱(短路容量较小),因此在风电场并网运行时必然会影响电网的电压质量和电压稳定性。另外,风力发电机多采用感应发电机,感应发电机的运行需要无功支持,因此并网运行的风力发电机对电网来说是一个无功负荷。为满足风力发电场的无功需求,每台风力发电机都配有无功补偿装置。目前常用的是分组投切电容器,其最大无功补偿量是根据异步发电机在额定功率时的功率因数设计的。即在额定功率时无功补偿量必须保证功率因数达到设计的额定功率因数,一般大于0.98。由于分组投切电容器不能实现快速连续的电压调节,对快速的电压变化无能为力。风力发电对电网电压的影响主要有慢的(稳态)的电压波动、快的电压波动(1~lJ闪变)、波形畸变(1llJ谐波)、电压不平衡(即负序电压)、瞬态电压波动(1~lJ电压跌落和凹陷)等。

4、对电网稳定性的影响

风电接入系统引起的稳定问题主要是电压稳定问题。这是由于:(1)普通的无功补偿方式为电容器补偿,补偿量与接入点电压的平方成正比,当系统电压水平降低时,无功补偿量下降很多,而风电场对电网的无功需求反而上升,进一步恶化电压水平,严重时会造成电压崩溃,风机被迫停机;

(2)在故障和操作后未发生功角失稳的情况下,部分风电机组由于自身的低电压保护而停机,风电场有功输出减少,相应地系统失去部分无功负荷,从而导致电压水平偏高,甚至使风电场母线电压越限;(3)故障切除不及时,会发生暂态电压失稳;

(4)风电场出力过高有可能降低电网的电压安全裕度,容易导致电压崩溃。总而言之,并网型风电场对于电网稳定性的主要威胁,一方面是风速的波动性和随机性引起风电场出力随时问变化且难以准确预测,导致风力发电接入系统时潜在安全隐患;另一方面是弱电网中风电注入功率过高引起的电压稳定性降低。

5、对电能质量的影响

风电对于电力系统是一个干扰源。风电对电能质量的影响主要有以下三方面(前述对电压的影响是最重要的方面):(1)风速变化、湍流以及风力机尾流效应造成的紊流,会引起风电功率的波动和风电机组的频繁启停,风机的杆塔遮蔽效应使风电机组输出功率存在周期性的脉动;

(2)软起动并网时,由软起动装置引起的各次谐波;

(3)风电经AC/DC/AC并网时,由于脉宽调制变换器产生的谐波。谐波的次数和大小与采用的变换装置和滤波系统有关。

6、对继电保护装置的影响

与常规配电网保护不同,通过风电场与电力系统联络线的潮流有时是双向的。风力发电机组在有风期间都和电网相连,当风速在起动风速附近变化时,为防止风电机组频繁投切对接触器的损害,允许风电机组短时电动机运行,此时会改变联络线的潮流方向,继电保护装置应充分考虑到这种运行方式。其次,并网运行的异步发电机没有独立的励磁机构,在电网发生短路故障时,由于机端电压显著降低,异步发电机仅能提供短暂的冲击短路电流。此外,由于目前一般风机出口电压大都是690V,折算到35kV(威更高电压等级)侧时其阻抗需乘以 =(u35/Uo 6),因此从35kV侧的等值电路来看,风力发电机及相应的低压电缆相当于一个很大的限流电抗,短路电流无法送出,因此风电接入点的保护配置要考虑到风电场的这一特点。总之,风电场故障电流主要由公用电网电源提供,风电场保护的技术困难是如何根据有限的故障电流来识别故障的发生,从而使保护装置快速而准确地动作。

7、大容量风电并网电网故障对潮流的影响

在电网发生事故时,系统电压瞬时发生变化,风机在自身保护特性的作用下,降低了出力,系统潮流重新分布,重要联络线潮流变化明显。通过电网实际故障经模拟计算故障情况下风电机组出力变化对系统潮流的影响,因此在各种工况计算时,应充分考虑风电机组出力对计算结果的影响。积累风电运行经验,对故障期间风电受低电压能机组的实际动作、出力变化情况提供基础数据,以提高仿真计算的精确度,更好地掌握在风电机组并网时的系统运行经验。

8、电网电压不平衡对风力发电机组的影响

潮流计算是获取电网运行情况和分析电网稳定状态的基础工具, 一些风力发电的相关研究已经使用了潮流计算。这些研究近似认为系统三相平衡, 潮流可以采用单相代表三相来处理, 然而为了研究电网的三相不平衡运行, 三相必须分别计算。由于风力发电机并网点电压取决于系统电压, 而风力发电机组吸收的无功功率及机端电容补偿的无功功率与并网点电压有关。因此风力发电机组母线电压、无功均为未知量。风力异步发电机并入电网, 发出有功功率, 吸收无功功率。同时电网通过发电机终端电压影响风力发电机组的运行。风力发电机组与电网的关系实际上是功率和电压之间的关系, 通过适当连接电网和风力发电机组的模型可以进行综合仿真.仿真步骤如下:(1)设t=t0(t0 是仿真周期的起始时间), 给出各母线电压各相初始值;

(2)应用t 时刻风速和风力发电机组终端电压当前值, 进行风力发电机组动态仿真, 计算出风力发电机组有功、无功功率;(3)进行电网三相潮流计算, 得到修正后电压;

(4)应用t 时刻风速和风力发电机组终端电压当前值, 进行风力发电机组动态仿真, 计算出风力发电机组有功、无功功率;(5)如果有功和无功功率的初始值与修正后的修正值非常接近(误差<10-3),则进入第6 步,否则返回第3 步;(6)t=t+$t($t是时间步长);(7)判断: 是否t>tend(tend 仿真周期的截止时间),如果此式成立, 进入第8步,否则返回第2 步。

四、改善风电场对电网影响的措施

风力发电的并网对电网的电能质量和安全稳定运行带来的负面影响,可以通过一些有效措施得到改善,进一步降低风电对电网的影响。

1、无功补偿技术

改善风电系统运行性能的无功补偿技术包括风电场出口安装动态的无功调节装置(svc)、具有有功无功综合调节能力的超导~g(SMES)装置等措施。静止无功补偿器(svc)可以快速平滑地调节无功补偿功率的大小,提供动态的电压支撑,改善系统的运行性能。将SVC安装在风电场的出口,根据风电场接入点的电压偏差量来控制svc~l,偿的无功功率,能够稳定风电场节点电压,降低风电功率波动对电网电压的影响。SMES可以在四象限灵活调节有功和无功功率,为系统提供功率补偿,跟踪电气量的波动。在风电场出口安装SMES装置,充分利用SMES有功无功综合调节的能力,可以降低风电场输出功率的波动,稳定风电场电压。

2、风电场通过轻型直流输电(HVDC Light)与电网相连

轻型直流输电(HVDC Light)是在电压源换流器(VSC)技术、门极可关断晶闸管(GTO)及绝缘栅双极晶体管(IGBT)等全控型功率器件基础上发展起来的。由于使用了基于PWM控制的VSC结构,HVDCLight具有直流输电的优点。HVDC Light不仅解决了分散电源接入的输电走廊问题,而且其灵活的无功、电压调节能力,打破了短路容量比对风电场容量的限制,同时也改善了交流系统的稳定性和电能质量,是风力发电等分散电源与电网相连的一种理想选择。

3、变速恒频风力发电机组

随着电力电子元件的性价比不断提高,未来几年变速恒频电机、双馈电机等新型发电机组开始在风机上推广应用,风电场可以像常规机组一样,承担电压及无功控制的任务,以最大限度提高风能的利用效率。使用变速恒频风电机组有几种方案可供选择:采用通过电力电子装置与电网相连的同步发电机;或者采用变速恒频双馈风力发电机,实现风机以最佳叶尖比运行,比变桨距控制的实现更简单、更经济。

五、结论

风力发电是一种新能源,风能是近期最有大规模开发利用前景的可再生能源,许多国家都制定了风力发电的发展规划和激励政策,以加快技术改进和市场开拓。目前并网风力发电是大规模利用风能最经济的方式,随着技术的发展和规模的扩大,风力发电的成本还将继续下降。中国电力部年决定加快风力发电的商业化进程,将清洁的风能作为世纪能源可持续发展的一个重要组成部分,所以研究风力发电技术刻不容缓。但随着风电机组单机容量和风电场规模的不断增大,风电也对电力系统的稳定运行带来一定的影响。风电机组对电网功率因数的影响和导致局部电网电压水平下降是制约风电场发展的因素。研究大型风力发电场接入电力系统的相互影响,开发相应的研究方法和分析工具,对发展风力发电具有重要的意义和实用价值。

六、参考文献

[1]王承煦,张源.风力发电[M].北京:中国电力出版社,2003;[2]李庚银,吕鹏飞,李广凯,等.轻型高压直流输电技术的发展与展望[J].电力系统自动化,2003;[3]雷亚洲.与风电并网相关的研究课题[J].电力系统自动化,2003;[4] 关宏亮,赵海翔 电力系统对并网风电机组承受低电压能力的要求[J].电网技术,2007;[5] 吴学光, 王伟胜, 戴慧珠.风电系统电压波动特性研究.风力发电, 1998, 4

第二篇:国家电网多项措施促进风电并网

国家电网公司在风电的接网、输送和收购等方面承担着重要职责。公司副总经理舒印彪在1月18日召开的风电并网工作会上表示,将进一步加大工作力度,强化管理,建立有效工作机制,采取多项措施促进风电发展。

措施一:高度重视,建立高效运作的风电管理工作机制。建立促进风电发展工作机制,实现风电管理和研究工作统一归口、分级管理、上下贯通、专业协同。其中,总部统一归口管理,各网省公司负责统计风电场规划、前期、建设、并网、运行等基本信息;国网能源研究院、中国电科院等负责风电发展规划研究、风电发展政策研究、并网检测等工作。

措施二:建立风电信息统计分析平台,为公司和政府提供信息服务。建立风电信息统计分析平台,形成涵盖风电规划、前期、建设、并网、运行等全过程的信息数据库,为公司及政府部门提供准确、及时、公开、透明的风电信息服务。

措施三:加强汇报沟通,建立与各方的协调合作机制。加强与政府有关部门的汇报和沟通,推动风电场和接入系统工程统一规划、同步建设、按计划投产,实现规范管理,有序发展。根据公司“十二五”电网规划确定的目标,积极争取各级政府部门的支持,提高电网大范围优化配置风电的能力,促进风电在更大范围消纳。

措施四:加强风电接入系统工程管理,保证风电并网送出。按照相关要求,做好风电接入系统管理工作。对于大型风电基地项目,提前开展风电场接入系统和送出工程前期工作;对于地方核准的风电项目,强化计划管理。

措施五:加强风电并网管理。加快研究制定并网检测等配套规定,建立强制性入网认证和并网检测制度。加快风电并网检测能力建设,增加测试设备,建设测试人才队伍,适应大规模并网检测需求。

措施六:进一步加强风电运行管理。加快风电功率预测功能建设、风电调度计划管理,加快建立风电场计划申报考核机制。

措施七:深化风电重大问题研究。结合国家能源局提出的风电消纳基本原则,深入开展10%电量在本地消纳相关问题研究。深入研究扩大风电基地的消纳方案,加快跨区输电通道建设。

第三篇:风力发电并网对电力系统造成的影响及其应对措施

风力发电并网对电力系统造成的影响及其

应对措施

风力发电是一种清洁的可再生能源 它能够带来显著的环境效益和社会效益 合理有效地利用风能源对我国实现高速可持续发展具有极其重要的意义 随着风电装机容量在电网中所占比例的增长风力发电对电网的影响范围从局部逐渐扩大 目前 风电接入电网出现了与以往不同的特点 表现为 单个风力发电场容量增大 风电场接入电网的电压等级更高 增加的风电接入容量与接入更高的电压等级使得电网受风电影响的范围更广 在风电穿透功率较大的电网中 由于风电注入改变了电网原有的潮流分布 线路传输功率与整个系统的惯量 并且由于风电机组与传统同步发电机组有不同的稳态与暂态特性 因此风电接入后电网的电压稳定性 暂态稳定性及频率稳定性都会发生变化所以在风电场建设与接入电网之前 进行必要的包含风电场的电力系统分析计算 研究风电场并网后系统运行的稳定性变化情况 无论是对于风电场业主还是电网部门而言 都是非常必要的。风能发电的特点是:

a)风能的稳定性差。风能属于过程性能源,是不可控的,具有随机性、间歇性、不稳定性的特点,风速和风向决定了风力发电机的发电状态以及出力的大小。

b)风能不能储存。对于单机独立运行的风力发电机组,要保证不间断供电,必须配备相应的储能装置。

c)风电场的分布位置通常比较偏远。我国的风电场多数集中在风能资源比较丰富的西北、华北和东北地区。由于风能发电具有以上特点,使得风电的开发和利用较之水力发电困难得多。风电的最大缺点是稳定性差,若风电系统所产生的电能直接并入电网,将影响局部电网运行的稳定。

影响

一、对系统稳定性的影响

大规模风电场接人电力系统时,风电场对无功功率的需求是导致电网电压稳定性降低的主要原因。研究表明:一方面,风电场的有功出力使负荷特性极限功率增大,增强了静态电压稳定性;另一方面,风电场的无功需求使负荷特性的极限功率减少,降低了静态电压稳定性。目前,风力发电多采用异步发电机,需要外部系统提供无功支持。变速恒频风电系统在向电网注入功率的同时需要从电网吸收大量的无功功率,风电场的无功仍可看作是一个正的无功负荷,因此,当风电场的容量较大且无功控制能力不足时,易影响电压的稳定性,严重时会造成电压崩溃。风电场的并网改变了配电网的功率流向和潮流分布,这是既有的电网在规划和设计时未曾考虑的。因此,随着风电注入功率的增加,风电场附近局部电网的电压和联络线功率将超出安全运行范围,影响系统的稳定性。随着各地风力发电的蓬勃发展,风电场的规模不断扩大,风电装机容量在系统中所占的比例不断增加,风电输出的不稳定性对电网的功率冲击效应也不断增大,对系统稳定性的影响就更加明显。情况严重时,将会使系统失去动态稳定性,导致整个系统瓦解。

二、对电能质量的影响

目前,电压波动和闪变是风力发电对电网电能质量的主要负面影响之一。风资源的不确定性和风电机组本身的运行特性使风电机组的输出功率呈波动性,可能会影响电网的电能质量,如电压偏差、电压波动和闪变、谐波等。虽然大多数风电机组采用软并网方式,但在启动时仍会产生5~6倍额定电流的冲击电流,对小容量的电网而言,风电场并网瞬间将造成电网电压的大幅度下跌;正常运行时的风速变化也会导致风机出力的波动而影响电能质量。随着风速的增大,风电机组产生的电压波动和闪变也将增大,并且风电机组公共连接点短路比越大,其引起的电压波动和闪变越小。当风速超过切出风速时,风电机组会从额定出力状态自动退出运行,若风电场所有风电机组几乎同时退出,这种冲击对配电网的影响十分明显。与电压波动和闪变相比,风电并网带来的谐波问题也不容忽视。风电并带来谐波的途径主要有2种:

a)风力发电机本身的电力电子控制装置可能带来谐波问题。对于直接和电网相连的恒速风力发电机,软启动阶段要通过电力电子装置与电网相连,会产生一定的谐波,不过过程很短,通常可以忽略。变速风力发电机通过整流和逆变装置接入系统,如果电力电子装置的切换频率恰好在产生谐波的范围内,则会产生严重的谐波问题。

b)风力发电机的并联补偿电容器可能与线路电抗发生谐振。在实际运行中,曾检测到在风电场出口变压器的低压侧产生大量谐波。

三、对电网频率的影响

当风速大于切入风速时,风电机组启动挂网运行;当风速低于切入风速时,风电机组停机并与电网解列。当风速大于切出风速时,为保证安全,风电机组必须停机。因此,受风速变化的影响,风电机组的出力也随时变化,一天内可能有多次启动并网和停机解列。风电场不稳定的功率输出会给电网的运行带来许多问题。如果风电容量在电网总装机容量中所占比例很小,风电功率的注入对电网频率影响甚微。但是,当风电场与其他发电方式的电源组成一个小型的孤立电网时,可能会对孤立系统的频率造成较大影响。随着电网中风力发电装机容量所占的比例逐步提高,大量风电功率的波动增大了系统调频的难度,而系统频率的变化又会对风电机组的运行状态产生影响。各国风电接入系统导则都要求风电机组能够在一定的频率范围内正常运行,频率超过一定范围后限制出力运行或延迟一定时间后退出运行,以维持系统的频率稳定。

四、对发电计划与调度的影响

传统的发电计划基于电源的可靠性以及负荷的可预测性,以这2点为基础,发电计划的制定和实施有了可靠的保证。如果电力系统内含有风电场,由于风电场的出力具有极大的随机性,因此会对发电计划的制定和实施产生较大的影响。风电场如果参与调度计划,则需预测未来24h的发电曲线。在日交易计划的实施过程中,由于负荷的非预期变化和发电机组的非计划停运等,电网调度中心还要进行在线校正发电计划,而校正计划一般需要提前30 min下发给电厂和供电公司,如果并网风电场能够预测未来1---3 h的出力,则对电网的调度也是有意义的。

五、对系统备用容量的影响

如果风电功率的波动特性与电网负荷的波动特性一致,那么风电就有自然调峰的作用,反之,将会使电网的调峰问题变得更加突出。风电场并网后,电网的可用调峰容量减去用于平衡负荷波动的备用容量后,剩余的可用调峰容量都能够用于为风电调峰。如果整个电网可用于风电的调峰容量有限,无法完全平衡风电场的功率波动时,就需要限制注入电网的风电功率。因为风电功率的波动对于电网而言完全是随机的,最严重的情况就等于整个风电装机容量大小的风电功率在短时问内的波动,这种情况发生的概率很小,但是在实际运行中无法排除这种可能性。因此,系统要有与风电场额定容量相当的备用容量,以保证电网的安全稳定运行。

应对措施

一、改善稳定性的措施

传统的分组快速投切电容器组可对风电场进行无功补偿以改善系统电压的稳定性,但这种分组投切的电容器不能实现连续的电压调节,投切次数有限,动作也有一定的延时,因此对于风速的快速变化造成的电压波动是无能为力的。静止无功补偿器(static var compensator,SVC)可以快速平滑地调节无功补偿功率的大小,提供动态的电压支撑,改善系统的运行性能。将SVC安装在风电场的出口,根据风电场接人点的电压偏差量来控制SVC补偿的无功功率,能够稳定风电场节点电压,降低风电功率波动对电网电压的影响。具有有功和无功功率综合调节能力的超导储能装置(super conducting magnetic energy storagesystem,SMES)代表了柔性交流输电系统(flexibleAC transmision system,FACTS)的新技术方向,将SMES用于风力发电可实现对电压和频率的同时控制。SMES能灵活地调节有功和无功功率,为系统提供功率补偿,跟踪电气量的波动。在风电场出口安装SMES装置可充分利用其综合调节能力,降低风电场输出功率的波动,稳定风电场电压。SMES是一种有源的补偿装置,与SVC相比,其无功功率补偿量对接入点电压的依赖程度小,在低电压时补偿效果更好。

二、改善电能质量的措施

目前,大部分用于改善和提高电能质量的补偿装置都具有抑制电压波动和闪变的功能。如SVC、有源滤波器(active power filter,APF)、动态电压恢复器(dynamic voltage restorers,DVR)等。电压闪变是电压波动的一种特殊反映,闪变的严重程度与负荷变化引起的电压变动相关,在高压或中压配电网中,电压波动主要与无功负荷的变化量及电网的短路容量有关。在电网短路容量一定的情况下,电压闪变主要是由于无功负荷的剧烈变动所致。因此,抑制电压闪变的最常用方法是安装静止无功补偿装置,目前这方面的技术已相当成熟。APF的工作原理与传统的SVC完全不同,是采用现代电力电子技术和数字信号处理技术制成的新型电力谐波治理专用设备。它能生成与电网谐波电流幅值相等、极性相反的补偿电流并注入电网,对谐波电流进行补偿或抵消,主动消除电力谐波。DVR主要用于补偿输电网产生的电压跌落、闪变和谐波等。它可在电源和敏感负载之间插入一个任意幅值和相位的电压。当电源电压畸变时,改变DVR的电压,可达到稳定敏感负载电压的目的。此外,并网风电机组公共连接点短路比和电网线路X/R值(X、R分别为线路的电抗与电阻)也是影响风电机组引起的电压波动和闪变的重要素。风电机组公共连接点短路比越大,其引起的电压波动和闪变越小。合适的X/R值可使有功功率引起的电压波动被无功功率引起的电压波动所补偿,从而使整个平均闪变值有所减小。研究表明,当线路X/R值很小时,并网风电机组引起的电压波动和闪变很大。当线路X/R值对应的线路阻抗角为60或70度时,并网风电机组引起的电压波动和闪变最小。

导师研究方向与风电并网的结合点浅析

本人所在研究团队由罗隆福导师带队,主要研究高压直流输电以及新型换流变压器的研究与应用。在于风电及其并网的结合上,由于风电具有间歇性以及其对电力系统的影响,可以设想一种曲线“并网”方式,由风电电能转化为高压直流,再逆变为交流电,由于并非直接并网谐波和电压都可以由整流变压器和整流装置控制,方便切除与投入。风电电能如果不是很优质的交流电源,则可以由其转化为专属电池充电能源,以供电动汽车专属能源结构,或者直接进行整流供给需要大量直流电的湿法冶金工厂,这样也减少了逆变的损耗。

第四篇:风电绿色施工措施

风电绿色施工措施

8、风电工程施工 8.1植被恢复控制 8.1.1实施原则

(1)以“谁开发谁保护”、“谁造成生态破坏谁治理”为基本原则,在现场踏勘及收集资料的基础上,查清项目区水土流失现状及其特征,根据工程特点,界定项目的水土流失防治职责范围,有针对性地采取防治措施。

(2)坚持“生态保护工程必须与主体工程同时设计、同时施工、同时投产使用”的“三同时”原则。合理安排新增水保措施的实施进度,以环境效益和社会效益为主,把控制水土流失、恢复植被、改善生态环境放在首位,保证生态保护工程尽早发挥效益。

(3)坚持“预防为主”的原则,工程措施和植物措施的布设充分考虑水土流失易发场所。

(4)坚持“生态优先”的原则,开发建设项目生态保护、治理的最终目的是保护和改善建设区域的生态环境,草、树种选择当地适生品种,利于植被的快速恢复。

(5)坚持“重点突出”原则,在设计中通过对防治区域的划分,工程措施与植物措施相结合,遵循全面治理和重点治理相结合、防治与监督相结合的设计思路,合理布置各项防治措施,建立选型正确、结构合理、功能齐全、效果显著的生态保护综合防治体系,使生态保护方案具有较强的针对性和可操作性,同时又能达到控制和防治新增水土流失的目的,使项目建设区生态环境有明显改善。(6)坚持“保护优先、因害设防”的原则,根据南北方水土、植被差异的特点,生态保护过程中,北方地区减少二次动土,防止损毁植被;南方地区雨水较多,及时种植,防止水土流失。

(7)坚持“经济可行”的原则,各项措施制定做到投资少、效益好、可操作性强。

8.1.2控制方法

工程建设过程中,一方面开挖扰动地貌、占压土地和损坏植被,使原地表蓄水保土功能下降;另一方面施工中开挖、填筑等动用的土方量较大。在南方一般属于水力侵蚀为主的红壤丘陵区,主要表现为坡面面蚀和浅沟侵蚀,应采取恢复植被防治水土流失的措施,为有效防治道路挖填形成的裸露地表和边坡的水土流失,对具备植物生长的土路肩、边坡等部位撒播灌草。道路挖填后形成的土石渣边坡立地条件差,撒播灌草前需覆盖耕植土,以利于植物生长,覆土厚度30cm,灌草种可根据当地气侯条件选择(如荆条、狗牙根和高羊茅等),种子播深应符合生长要求,播种前施用有机肥,播种后及时镇压,防止风蚀。局部路堑边坡如不具备撒播植草的立地条件(边坡较陡、岩质边坡等)的,可在坡脚栽植爬山虎。

一般可以分为风电场风机区和风电场变电所区及道路区等进行恢复治理。⑴风机基础区

基础占地区域为工程永久占地区域,施工结束进行整平。必要时进行地面硬化或绿化。

基础开挖时,表土堆置在回填土的下层,堆放在基坑一侧,顶部采取苫盖措施。

⑵风机、箱变施工区

该区域施工结束后,进行土地整治,以便于植被恢复。风机、箱变施工区为临时占地,植被恢复采用植草方式。

风机、箱变施工区堆放的砂石料因其质地疏松、孔隙度大,雨后吸水饱和后,破坏了原有平衡,易造成一定程度的流失,因此施工中要注意在预先做好砂料边坡挖填的稳定性防护。同时,在风大的季节,预先采取苫布进行苫盖,防止风蚀。⑶检修道路区及施工便道区

检修道路堆料区坡脚采取临时拦挡措施,顶面采取苫盖措施。检修道路施工结束后,进行土地整治,采取人工整地方式。检修道路施工便道为临时占地,植被恢复采用植草方式。⑷直埋电缆

直埋电缆敷设占地为临时征地,植被恢复采用植草方式。表土及回填土堆土点四周采取临时拦挡措施,顶部采取苫盖措施。⑸施工生产生活区

施工场地边界四周开挖临时排水土沟,并在排水沟出口处设置沉沙池。在砂石料堆场周边采用砖砌挡墙围护。在临时堆土场四周采用填土草包挡护,开挖土料表面铺苫布进行防护。

施工结束后,占用的土地要进行清理,拆除各种因施工而建的各种临时设施,对拆除的废弃物等建筑垃圾清运至指定的建筑垃圾场进行处理;结合周围自然地势对地面进行平整;及时恢复原有植被。

立地条件、草种选择、种子处理、播种技术等同风机基础区。8.2集电线路直埋电缆施工控制 8.2.1电缆盘放置场地清理

电缆盘放置场地的选择是直接影响施工效率的,确定几个电缆集中的区域作为敷设基准点,以基准点向外辐射敷设,电缆盘架设场地要选择离电缆沟较近宽敞的空地,事先对场地进行回填平整,电缆敷设人员比较多,走动比较频繁,再加上电缆敷设时的拖动,场地清理过程中要提前采取抑制扬尘的措施,措施如下以下:

(1)作业前期,采取洒水、覆盖等措施,达到作业区目测扬尘高度小于1.5m,不扩散到场区外。

(2)对易产生扬尘的堆放材料应采取覆盖措施;场区内可能引起扬尘的材料及建筑垃圾搬运应有降尘措施,如覆盖、洒水等;

(3)施工现场非作业区达到目测无扬尘的要求。对现场易飞扬物质采取有效措施,如洒水、围档、密网覆盖、封闭等,防止扬尘产生。8.2.2电缆直埋沟的开挖

电缆沟开挖主要采用挖机作业,遇到特殊地区可能需要人工或者爆破作业,在施工过程中主要会遇到噪音、粉尘、破坏土壤植被、破坏地下设施、文物和资源保护等问题。

8.2.2.1针对土方开挖可以采取以下措施达到洁净化施工的要求

(1)工程开工前,应对施工场地所在地区的土壤环境现状进行调查,针对土壤情况提出对策,采取科学的保护或恢复措施,防止施工过程中造成土壤侵蚀、退化,减少施工活动对土壤环境的破坏和污染。

(2)电缆敷设路径在最短的基础上尽量考虑利用荒地、劣地、废地或已被污染的土地开挖。严格按照直埋电缆施工规范电缆间距和埋深执行,尽量节约施工用地。(3)施工中开挖的弃土,有场地堆放的应提前进行挖填平衡计算,挖出的弃土暂时无法回填利用的,应堆放在安全的、专用的场地上,同时进行覆盖保护,以免扬尘的发生

(4)采取有效措施,防止由于地表径流或风化引起的场地内水土流失(如保护表层土、稳定斜坡、植被覆盖等)。

(5)对不可再生利用的施工废弃物的处理应符合国家及地方法律、法规要求,防止土壤和地下水被污染。

(6)对开挖电缆沟破坏的植被,造成裸土的地块,有意识的覆盖砂石或种植速生草种,以减少土壤侵蚀。在施工结束后,尽量促使其恢复其原有植被。8.2.2.2对于该工序由于特殊地形(岩石)的爆破等机械作业的噪音、粉尘问题可以由以下措施来减少影响

(1)施工现场应严格按照国家标准《建筑施工场界噪声限值》(GBl2523—90)的要求,将噪声大的机具合理布局,闹静分开。合理安排噪声作业时间,减轻噪声扰民。

(2)空气压缩机等噪声大的机械,尽可能安排远离周围居民区一侧,从空间布置上减少噪声影响。

(3)施工现场空压机尽量使用电能作为动力,以减少柴油机动力的噪音污染;再者,选用能耗低、性能好、技术含量高、噪声小的电动工具。

(4)本工序凿岩等施工噪音控制在85db以上的工作,且尽量安排在白天施工。(5)爆破作业前,做好扬尘控制计划。选择风力小的天气进行爆破作业。(6)对于扬尘可以借鉴场地清理的扬尘处理措施。8.2.3电缆敷设

(1)该施工工序最容易产生的最重点处理的就是垃圾,电缆包装物、制作电缆头产生的垃圾,建筑垃圾的控制也是洁净化施工的一个重要环节,由于直埋电缆敷设大都属于野外作业,对于垃圾的回收要指定专人,当天施工结束,当天回收到指定地点集中填埋。

(2)由于直埋电缆敷设野外施工大都是使用自备发电机针对应选择功率与负载相匹配的施工机械设备,避免大功率施工机械设备低负载长时间运行,产生大量的二氧化碳等有毒有害气体。(3)本工序应合理安排工序,提高各种机械的使用率和满载率,降低各种设备的单位耗能,让洁净化施工的宗旨之一节能得以体现。

(4)在电缆敷设时要使用一些周转材料如道木、滚杠等应尽量选用耐用、维护与拆卸方便的周转材料,使材料得以重复利用避免不必要的浪费。

(5)本工序还有一个特别需要注意的地方就是电缆使用部位的安排,安排不好就会导致电缆的浪费,也体现不出洁净化施工的节材,这就要每根电缆敷设长度做测量的登记然后根据每盘电缆长度进行合理编排。8.2.4电缆防护

(1)电缆应敷设在壕沟里,沿电缆全长的上、下紧邻侧铺以厚度不少于100mm的软土或砂层。尽量利用原土回填到电缆沟,避免其他植被的破坏,做到土方量挖填平衡,以避免扬尘,回填必须平整,土堆的越高植被越不容易覆盖。(2)沿电缆全长应覆盖宽度不小于电缆两侧各50mm的保护板,保护板宜用混凝土制作,以免其他材料对土壤造成二次污染。

(3)位于城镇道路等开挖较频繁的地方,可在保护板上层铺以醒目的标志。避免电缆被挖破,损坏电缆导致更换,造成材料的浪费和其他不必要的经济损失。(4)直埋敷设于冻土地区时,宜埋入冻土层以下,当无法深埋时可在土壤排水性好的干燥冻土层或回填土中埋设,也可采取其他防止电缆受到损伤的措施。(5)直埋敷设的电缆与铁路、公路或街道交叉时,应穿于保护管 且保护范围超出路基、街道路面两边以及排水沟边0.5m以上。(6)直埋敷设电缆在采取特殊换土回填时,回填土的土质应对电 缆外护套无腐蚀性,以免损坏电缆。

(7)位于城郊或空地旷带,沿电缆路径的直线间隔约100m、转弯处接头部位,应竖立明显的方位标志或标桩。使电缆隐蔽后有明显的指示,不至于被其他取土作业破坏。

(8)施工后现场清理平整,对于有毒有害废弃物油漆、涂料等应回收后交有资质的单位处理,不能作为建筑垃圾外运,避免污染土壤和地下水。8.3施工、检修道路控制 8.3.1风电场施工、检修道路概述

我国风能资源较丰富的地区一般有“三北”和东部沿海地区,目前我国的风电场主要也是建设在这些地区。风电场施工道路是指施工期需要的道路,主要用于建筑材料、设备运输、大型起重机的转场等,为临时设施;风电场检修道路是指运行期巡视检修需要的道路,主要用于运行期巡视、检修车辆的通行,为永久设施。大多数风电场施工和检修道路采用永临结合的形式,即检修道路兼作施工道路用。

风电场施工、检修道路按地形的不同,可分为平原道路、滩涂道路和山区道路等型式。平原道路指位于戈壁、草原等平旦地区的道路,其地形坡度不大,地质条件较好,一般直接在原始地面上铺设路基、路面后即作为风电场道路;滩涂道路指位于沿海滩涂地区的道路,其地形较为平坦,但上层土为淤泥质或饱和砂土类的软土,需处理后再铺设路基、路面;山区道路是指位于山地的道路,其地形复杂,需要大量的土石方开挖和回填。8.3.2道路路线及断面控制 8.3.2.1道路路线选择

道路路线走廊是一种不可再生的资源,应遵照统筹规划、合理布局、远近结合、综合利用的原则予以利用。路线设计应综合考虑各种相关因素的关系,尽早做出规划,处理好现有道路和新建工程的关系的布局。在进行总体设计过程中,应对多种线路方案进行比较论证,选择经济合理的路线。

平原地区风电场地形较为简单,路线设计主要考虑就近的原则,尽量减少道路长度、减少运输和检修行驶的距离;滩涂地区风电场虽然地形平坦,但地貌复杂,地面各种设施错综复杂,路线设计除考虑减少道路长度外,还需尽量利用现有道路,避开民房、渔塘等设施;山区风电场地形复杂,路线设计应因地制宜,在满足大件运输的前提下,选择合适的坡度和转弯半径,并尽量减少道路土石方工程量,避免大挖大填。另外路线设计还需尽量避免植被破坏、避开文物或军事设施、减少对现有交通设施及附近居民的影响。8.3.2.2道路断面设计

道路断面设计指道路路基、路面、开挖、回填及横向排水的设计,道路断面设计的好坏,直接影响土石方工程量,减小路面宽度、减小开挖回填、设置挡墙等措施都可以减少道路土石方工程量。

平原地区风电场地形较为平坦,道路断面较为简单,一般在原始地面上直接填筑一定厚度的路基路面即可,但当地气侯较干燥,植被破坏后较难以恢复,所以平原地区道路断面设计需考虑尽量少破坏地表植被,尽量不挖少填。滩涂地区风电场地形较为平坦,原始地面较为低洼,道路断面一般需要大量的土方回填,以抬高路面标高,使路面满足承载力要求,但滩涂地区地貌复杂,河道、渔塘、湿地等水系密布,道路断面设计需考虑尽量少污染和破坏当地水系。山区风电场地形复杂,路线弯曲,断面设计一般为内侧坡开挖、外侧坡回填,土石方开挖和回填工程量往往较大,所以道路断面设计需考虑尽量避免大挖大填的情况,如设置必要的挡墙、支护措施等,并且做好水土保持措施,施工结束后尽快恢复植被。8.3.2.3筑路材料选择

道路的路基、路面填筑需大量的土石料,土石料的开采、运输、填筑过程中可能带来植被破坏、扬尘、噪声污染等环境问题,道路设计需考虑尽量使筑路材料当地化,采用现场开挖料进行回填,以减少土石料的运输。

平原地区风电场一般应做到挖填平衡,现场的开挖料全部用于道路回填;滩涂地区道路由于地形低洼,往往需要外购大量的土石料,筑路材料设计时需尽量利用附近的土石料,以减少土石料的运输;山区风电场道路往往会产生大量弃碴,道路断面设计时需尽量考虑挖填平衡,对弃碴做好保护措施,尽快恢复植被。8.3.3道路施工控制 8.3.3.1边坡安全防护

为预防边坡开挖施工不当而可能造成塌方、滑坡等生产安全事故,要求严格遵守以下安全生产技术规定。

(1)边坡开挖必须严格遵照“自上而下,先岸坡后基础”的原则开展施工,不得采用自下而上的开挖方式,开挖后边坡不允许出现倒坡。(2)施工程序一般应遵守下列规定:

a.严格按照规程规范中建议的土层开挖坡比进行开挖,以利于施工期边坡的稳定。

b.边坡开挖之前应先清除开挖范围坡顶上部的危险源。

c.应严格按照规程对边坡开挖支护的要求进行施工。严格按照设计坡比开挖,且开挖后立即进行支护,消除边坡不稳定造成的安全隐患。

(3)切实做好施工用水的管理工作,严禁在开挖坡面及以上设置水池。做好开挖坡面周围及坡面上的排水措施,拦截地表水,防止施工用水浸溢。

(4)临近交通、人员住宿及施工工厂等人员、设备密集场地的边坡坡面浮土必须及时清理干净,或设置足够安全的防护设施加以保护,确保边坡底部各类人员和设备的安全。

(5)严禁在坡顶大面积人为地弃渣或者堆载,以免影响边坡的稳定。

(6)在暴雨发生后,应检查边坡稳定情况,在确认边坡稳定后,再行施工作业。(7)高边坡施工应根据现场实际情况,选择采用如下安全防护措施:

a.坡高大于5m,坡度大于45º的高边坡开挖作业,应清除设计边线外5m范围内的浮石、杂物。b.修筑坡顶截水沟。

c.坡顶应设置安全防护栏或防护网,防护栏高度不得低于2m,护栏材料宜采用硬杂圆木或竹跳板,圆木直径不得小于10cm。

d.坡面每下降一层台阶应进行一次清坡,对不良地质构造应采取有效的防护措施。

高边坡施工要求边挖边支护,即开挖一级,防护一级,不得一次开挖到底。e.为加强对高边坡的防护强度,施工中应根据现场实际情况,选择采用相应的安全防护措施。8.3.3.2扬尘控制

(1)运送土方、垃圾、设备及建筑材料等,不污损场外道路。运输容易散落、飞扬、流漏的物料的车辆,必须采取措施封闭严密,保证车辆清洁。施工现场出口应设置洗车槽。

(2)土方作业阶段,采取洒水、覆盖等措施,达到作业区目测扬尘高度小于1.5m,不扩散到场区外。

(3)结构施工、安装装饰装修阶段,作业区目测扬尘高度小于0.5m。对易产生扬尘的堆放材料应采取覆盖措施。对粉末状材料应封闭存放。场区内可能引起扬尘的材料及建筑垃圾搬运应有降尘措施,如覆盖、洒水等。浇筑混凝土前清理灰尘和垃圾时尽量使用吸尘器,避免使用吹风器等易产生扬尘的设备。机械剔凿作业时可用局部遮挡、掩盖、水淋等防护措施。高层或多层建筑清理垃圾应搭设封闭性临时专用道或采用容器吊运。(4)施工现场非作业区达到目测无扬尘的要求。对现场易飞扬物质采取有效措施,如洒水、地面硬化、围档、密网覆盖、封闭等,防止扬尘产生。

(5)建构筑物机械拆除前,做好扬尘控制计划。可采取清理积尘、拆除体洒水、设置隔档等措施。补充:

1、卸车:(塔筒、机舱、叶片、箱变、电缆),绿色卸车、碾压问题,现场补漆,2、存放:风机、塔筒、箱变中的绿色事项(含装卸)

3、安装:吊装,机舱罩处理,油脂油品应急处理,废旧物品处理过程、方式,打胶,油位控制;电缆安装

4、大型机械转运

5、风机调试过程中的绿色施工(垃圾存放、转移、移交)

9、输变电工程施工

9.1 输变电工程策划与控制 9.1.1 目的

输变电工程洁净化施工属于绿色施工的范畴,是绿色施工的重要组成部分。洁净化施工目的主要体现在对环境的保护,它使得建设与环境保护两者之间和谐协调,从而更好地保障人类生存与健康(包括建设者本身的健康),同时洁净化施工还能带来产品质量提高,工作效率提高和节省建设成本的功效。9.1.2 控制范围与方式

电力建设工程包括规划、设计、施工直到交付运营各阶段,洁净化应贯穿整个工程建设各阶段,应从规划设计就综合考虑洁净化施工的各种因素,为洁净化施工创造良好条件。实践证明已综合考虑了洁净化施工的规划设计能从根本上改善施工条件,为施工单位实施洁净化施工奠定基础,关于规划设计的洁净化施工要素控制参见第二章与第四章有关勘察设计内容,当然施工阶段的洁净化控制显然是更直接的环节。

洁净化施工的控制方式可以从系统性控制与针对性控制两个角度来进行管理。所谓系统性控制是指通过对施工方案或方式的整体优化来达到改善施工洁净化目的,有时也可理解为总体性控制,它也是洁净化施工的重要环节,洁净化系统性控制往往结合施工总平面布置等以及节能、节水、节材的管理方式同时进行;针对性控制是指对工程中出现的主要非洁净危害因素进行有针对性的控制,如对扬尘、噪声、光污染、水污染、土壤污染等制定针对性的控制措施。9.1.3 洁净化施工过程管理

洁净化施工过程遵循PDCA过程方法管理。

洁净化施工作为绿色施工的一部分,在输电变建设工程中,国家电网公司和南方电网公司中已制订有《输变电工程安全文明施工标准》、《基建标准化管理规定》以及《电力建设安全健康和环境管理工作规定》等有所阐述与规定。为简化管理流程,减少过多管理环节和提高工作效率,电力建设过程中的洁净化施工管理控制可作为强化内容纳入上述管理过程。

洁净化施工管理主要包括组织管理、规划管理、实施管理、评价管理四个方面。

1、组织管理

1)建立洁净化施工管理体系,并制定相应的管理制度与目标。

2)项目经理为洁净化施工第一责任人,负责洁净化施工的组织实施及目标实现,并指定洁净化施工管理人员和监督人员。

2、规划管理

1)编制洁净化施工方案。该方案应在施工组织设计中独立成章,并按有关规定进行审批。

2)洁净化施工方案中的内容应包括系统性控制与针对性控制两部分内容。

3、实施管理

1)洁净化施工应对整个施工过程实施动态管理,加强对施工策划、施工准备、材料采购、现场施工、工程验收等阶段的管理和监督。

2)应结合工程项目的特点,有针对性地对洁净化施工作相应的宣传,通过宣传营造洁净化施工的氛围。

3)定期对职工进行洁净化施工知识培训,增强职工洁净化施工意识。

4、评价管理

1)结合工程特点,对洁净化施工的效果及采用的新技术、新设备、新材料与新工艺,进行自评估。

2)结合输变电工程安全文明施工检查、工程达标创优验收等活动,对洁净化施工方案、实施过程直至项目竣工,进行综合评估。9.1.4 洁净化施工的系统性控制

9.1.4.1 变电站洁净化施工的系统性控制

1、总体布局施工方案优化

1)建立模块化分区管理。变电站现场施工总平面应按实际功能划分为各个功能模块,分为生活办公区、材料加工场、进所道路及大门、施工现场(变电站围墙内)四大模块。工程各模块区主要由现场环形混凝土道路、塑钢网板、铁艺栏杆、钢管栏杆等分隔而成。按区设置安全标志、标识,以达到现场视觉形象统一、整洁、醒目、美观的整体效果。

2)定置化管理。规划、绘制施工平面定置图,机料堆放实现定置化。3)修筑围墙。工程正式开工前,应先期修筑变电站(换流站)围墙,便于进行封闭式管理。

4)施工场地

a)、施工场地应保持平整。基坑、沟道开挖出的土方应及时清运,运输车辆应做到车轮不带泥上公路,运输途中不遗洒。

b)、混凝土搅拌站、砂石堆放场、库房、机械设备材料堆放、材料加工场以及停车场等场地结实、平整,地面无积水。

5)道路

a)、变电站(换流站)施工应做到先修筑进站硬化路面主干道和站区环形混凝土路面主干道路。站区内混凝土道路既可采用一次性浇筑成形的方案,也可采用先浇筑施工层,工程竣工前再浇筑移交层的方案,道路两侧应形成排水坡度。

b)、根据施工需要修筑的临时道路可采用泥结石硬化路面。办公区、生活区、材料加工场的人行便道路面硬化宽度不宜小于1米。

c)、禁止在路面上拌砂浆(混凝土)或堆放各种材料;禁止漏油车辆或履带式吊车在成品路面上行驶。对路面进行定期清扫,保证路面整洁。

6)修筑排水管沟。道路两侧应先期修筑排水管沟,并定期维护,确保全站排水系统畅通。

2、采用先进施工技术和材料合理管理 1)采用先进施工技术

a)推广使用预拌混凝土和商品砂浆。准确计算采购数量、供应频率、施工速度等,在施工过程中进行动态控制。b)推广使用高强钢筋和高性能混凝土,减少资源消耗。c)推广钢筋专业化加工和配送。

d)优化钢筋配料和钢构件下料方案。钢筋及钢结构制作前应对下料单及样品进行复核,无误后方可批量下料。

e)优化钢构架制作和安装方法。大型钢构架宜采用工厂制作,现场拼装、分段吊装等安装方法,减少用材量。

f)门窗、屋面、外墙等围护结构选用耐候性及耐久性良好的材料,施工确保密封性、防水性和保温隔热性。

g)现场办公和生活用房采用周转式活动房。现场围挡应最大限度地利用已有围墙,或采用装配式可重复使用围挡封闭。

2)材料合理管理

a)根据施工进度、库存情况等合理安排材料的采购、进场时间和批次,减少库存。工程材料采购必须符合国家有关安全健康与环境保护的要求。

b)现场材料堆放有序。储存环境适宜,措施得当。保管制度健全,责任落实。

c)材料运输工具适宜,装卸方法得当,防止损坏和遗洒。根据现场平面布置情况就近卸载,避免和减少二次搬运。

3、节水管理与水资源利用

1)、施工中采用先进的节水施工工艺。

2)、施工现场供水管网应根据用水量设计布置,管径合理、管路简捷,采取有效措施减少管网和用水器具的漏损。施工现场喷洒路面、绿化浇灌不宜使用市政自来水。现场搅拌用水、养护用水应采取有效的节水措施,严禁无措施浇水养护混凝土。

3)、现场滤油机械、抽真空机组、车辆冲洗用水必须设立循环用水装置。施工现场办公区、生活区的生活用水采用节水系统和节水器具,提高节水器具配置比率。项目临时用水应使用节水型产品,安装计量装置,采取针对性的节水措施。

4)、大型施工现场,尤其是雨量充沛地区的大型施工现场建立雨水收集利用系统,充分收集自然降水用于施工和生活中适宜的部位。

5)、在非传统水源和现场循环再利用水的使用过程中,应制定有效的水质检测与卫生保障措施,确保避免对人体健康、工程质量以及周围环境产生不良影响。

4、节能和能源利用 1)、节能措施

a)优先使用国家、行业推荐的节能、高效、环保的施工设备和机具,如选用变频技术的节能施工设备等。

b)在施工组织设计中,合理安排施工顺序、工作面,以减少作业区域的机具数量,相邻作业区充分利用共有的机具资源。安排施工工艺时,应优先考虑耗用电能的或其它能耗较少的施工工艺。避免设备额定功率远大于使用功率或超负荷使用设备的现象。

c)施工现场分别设定生产、生活、办公和施工设备的用电控制指标,定期进行计量、核算、对比分析,并有预防与纠正措施。

2)、机械设备与机具管理

a)建立施工机械设备管理制度,开展用电、用油计量,完善设备档案,及时做好维修保养工作,使机械设备保持低耗、高效的状态。

b)合理安排工序,选择功率与负载相匹配的施工机械设备,避免大功率施工机械设备低负载长时间运行,降低各种设备的单位耗能。机电安装可采用节电型机械设备,如逆变式电焊机和能耗低、效率高的手持电动工具等。

3)、生产、生活及办公临时设施合理布置

a)利用场地自然条件,合理设计生产、生活及办公临时设施的体形、朝向、间距和窗墙面积比,使其获得良好的日照、通风和采光。南方地区可根据需要在其外墙窗设遮阳设施。

b)临时设施宜采用节能材料,墙体、屋面使用隔热性能好的的材料,减少夏天空调、冬天取暖设备的使用时间及耗能量。

c)合理配置采暖、空调、风扇数量,规定使用时间,实行分段分时使用,节约用电。

4)、施工用电及照明

a)临时用电优先选用节能电线和节能灯具,临电线路合理设计、布置。采用声控、光控等节能照明灯具。

b)照明设计以满足工作或生活需要的照度为原则。9.1.4.2 输电线路洁净化施工的系统性控制

1、建立模块化分区管理 1)建立模块化分区管理。输电线路现场施工总平面应按实际功能划分为各个功能模块,分为生活办公区、材料站、施工现场三大模块。再将三大模块分成生活、办公、材料、牵、张场、基础、立塔等区域。做到划分合理,满足各区域的使用功能要求。实行常态化区域维护,做到责任到人。

2、重视输电线路建设沿线的环境保护

1)尽量减少塔位的降基量,减少植被的破坏。工程结束后尽可能恢复植被。2)应按设计要求弃土或将弃土远运,严禁将余土随意堆放而造成水土流失,以避免破坏自然地貌、植被。回填后的余土要妥善处理,不允许就地倾倒,可用编织袋将余土装运至塔位附近对环境影响最小的专门堆放场所堆放。

3)施工时应尽量减少对环境的破坏。现场临时设置的土坎、水沟等必须按原地形地貌进行填理、夯实,使其恢复原貌。

4)对现场剩余的砂石料应运至其他桩号使用,或者与土掺合后填至坑内。对剩余的水泥必须运回材料站或仓库。

5)现场废弃的编织袋、塑料制品、线绳等杂物,应及时清理、回收,使施工现场做到工完、料尽、场地清。

6)开挖基础土石方应尽量减少破坏原始地貌和植被,生、熟土分开堆放,回填基础应先生土后熟土。

7)严格按设计及规程规定,砍伐通道林木和拆迁房屋,尽量少砍少拆,以保护生态环境。

8)在施工现场留宿人员以及施工人员在工地用餐时,鼓励和提倡不使用一次性餐具,避免白色污染。

9)接地体的降阻剂在人力运输、装卸过程中应轻拿轻放,避免不必要的损失,剩余材料应回收,严禁乱倒,避免环境污染。

3、成品、半成品防止“二次污染”

1)施工单位必须制订现场成品、半成品保护管理办法及具体保护措施,防止“二次污染”。

2)运输、基础浇制、吊装、架线等工作应采用主动保护原则,防止对其它成品造成污染与损坏。

3)混凝土基础及承台基础完成后四周设置临时排水沟,防止场地雨水流淌污染。4)起重用钢丝绳不得与被吊塔材、绝缘子等直接发生摩擦,连接处必须有软垫物或专用夹具。导线不得直接接触地面。9.1.5 洁净化施工的针对性控制

1、扬尘控制

1)运送设备及材料、土方、垃圾等,不污损站外道路。运输容易散落、飞扬、流漏的物料的车辆,必须采取措施封闭严密,保证运输车辆清洁。施工现场出口应设置洗车槽。

2)在施工安装阶段,对易产生扬尘的堆放材料应采取覆盖措施;对粉末状材料应封闭存放;场区内可能引起扬尘的材料及垃圾搬运应有降尘措施,如覆盖、洒水等;浇筑混凝土前清理灰尘和垃圾时尽量使用吸尘器,避免使用吹风器等易产生扬尘的设备;机械剔凿作业时可用局部遮挡、掩盖、水淋等防护措施。

3)施工现场非作业区达到目测无扬尘的要求。对现场易飞扬物质采取有效措施,如洒水、地面硬化、围档、密网覆盖、封闭等,防止扬尘产生。

2、噪音与振动控制

1)现场噪音排放不得超过国家标准《建筑施工场界噪声限值》(GB12523-90)的规定。

2)在施工场界对噪音进行实时监测与控制。监测方法执行国家标准《建筑施工场界噪声测量方法》(GB12524-90)。

3)使用低噪音、低振动的施工机具,采取隔音与隔振措施,避免或减少施工噪音和振动。

4)变电站周围噪声环境质量应满足国家标准《城市区域环境噪声标准》GB/T14623-93的要求。

5)城市内变电站施工期间,如遇重大事件、社会性考试等,应停止夜间施工。

6)变电站内导线压接时,使用液压压接方式,避免爆破压接。

3、光污染控制

1)尽量避免或减少施工过程中的光污染。夜间施工时户外照明灯加设灯罩,透光方向集中在施工范围。

2)电焊作业采取遮挡措施,避免电焊弧光外泄。

4、水污染控制 1)施工现场污水排放应达到国家标准《污水综合排放标准》(GB8978-1996)的要求。

2)在施工现场应针对不同的污水,设置相应的处理设施,如沉淀池、隔油池、化粪池等。施工现场泥浆和污水,未经处理不得直接排入城市排水设施和各类天然水域。

3)污水排放应委托有资质的单位进行废水水质检测,提供相应的污水检测报告。

4)对于化学品等有毒材料、油料的储存地,应有严格的隔水层设计,做好渗漏液收集和处理。

5、土壤保护

1)保护地表环境,防止土壤侵蚀、流失。因施工造成的裸土,及时覆盖砂石或种植速生草种,以减少土壤侵蚀;因施工造成容易发生地表径流土壤流失的情况,应采取设置地表排水系统、稳定斜坡、植被覆盖等措施,减少土壤流失。

2)变压器、电抗器等充油设备在施工时,应采取措施防止绝缘油泄漏污染地面土壤。

3)沉淀池、隔油池、化粪池等不发生堵塞、渗漏、溢出等现象。及时清掏各类池内沉淀物,并委托有资质的单位清运。

4)对于有毒有害废弃物如电池、打印机墨盒、油漆等应分类回收后处理,避免污染土壤和地下水。

5)施工后应恢复施工活动破坏的植被(一般指临时占地内)。种植当地或其他合适的植物,以恢复剩余空地地貌或科学绿化,补救施工活动中人为破坏植被和地貌造成的土壤侵蚀。

6、垃圾控制

施工现场及生活区设置封闭式垃圾容器。施工、办公、生活产生的废料与垃圾应规划分类存放,专人管理,专车负责清运。

施工现场严禁焚烧建筑垃圾和各类废弃物。

7、人员安全与健康管理

1)制订施工防尘、防毒、防辐射等职业危害的措施,保障施工人员的长期职业健康。

2)合理布置施工场地,保护生活及办公区不受施工活动的有害影响。施工现场建立卫生急救、保健防疫制度,在安全事故和疾病疫情出现时提供及时救助。

3)提供卫生、健康的工作与生活环境,加强对施工人员的住宿条件、膳食、饮用水等生活与环境卫生等管理,改善施工人员的生活条件。9.2 变电站、换流站的噪声控制

随着我国电网建设的快速发展,人们对生活质量要求的提高、社会各界对环保提出的要求也越来越高。超高压交流输电和高压直流输电工程中的噪声污染问题越来越受到人们的关注。下面分别对变电站和换流站的噪声控制进行分析。9.2.1 变电站的噪声控制

1、噪声的产生和特性

变电站一般有变压器、开关室、控制室等组成。变电站噪声主要是变压器运行时产生的电磁噪声和机械噪声。电磁噪声主要是由硅钢片的磁滞伸缩和绕组线圈间的电磁力引起的,远大于母线的电晕噪声。机械噪声则是设备振动、冷却风扇运转引起的。其中电磁噪声属于低频噪音,其声压级最大值范围在250~500Hz之间。风冷机械噪声属中高频噪声,对噪声值贡献最大的频率为1kHz~2kHz。低频噪音与高频噪音不同,高频噪音随着距离越远或遭遇障碍物,能迅速衰减,如高频噪音的点声源,每10 m距离下降6dB,而低频噪声因波长较长,有很强的绕射和透射能力同时在空气中的衰减也很小,随距离衰减较慢,对周围环境影响较大,因此属于难治理噪声。

2、变压器噪声治理技术

新建变电站采用低噪声设备,在有条件的情况下,将现有的高噪声变压器逐步更换为低噪声变压器,也可采取其他治理技术降低噪声对环境的影响。噪声治理主要分三种情况,即噪声源治理、传播途径治理和个人防护。变电站噪声一般从噪声源和传播途径两方面进行治理,降低变压器本身的噪声是最有效、最彻底的治理途径,但噪声源治理技术难度大,甚至需要设备的技术改进和优化;传播途径治理主要是采取隔声、吸声技术,在变压器外部采取消声或隔声措施,使噪声在传播到受声点的过程中衰减,降低到达受声点的噪声强度。

1)电磁性噪声。对变压器本体噪声的降低,一方面可以用高导磁的硅钢片,采用步进搭接工艺使磁滞伸缩减小,以降低铁芯的工作磁密;另一方面可以通过完善铁芯和引线的夹持结构,在铁芯表面涂环氧漆和加橡皮垫,采用避开共振区的结构设计、加大油箱箱壁厚度、加固油箱和附件等措施减缓并吸收磁滞伸缩产生的振动能量。一般情况下,通过控制变压器铁芯的振动,能降低变压器本体噪声3~5 dB;通过控制变压器油箱振动并采用隔、吸声措施,能降低噪声5~10dB。但是,控制铁芯振动改造工作量较大,控制油箱振动也会影响变压器的散热能力,对于定型的变压器进行这类对变压器内部结构、材质进行技术处理的改造,需要停运设备,难度较大,而且改造费用高。

2)冷却装置机械性噪声治理。降低冷却装置噪声的手段主要有:选用大流量低扬程的油泵和通风流量大、风压小的低速风扇(在可能的情况下尽量采用自冷方式),出现风扇有轴偏、振动现象时,应及时更换风扇,降低风扇噪声。

3)壁面吸声、隔声屏治理技术。当声能传到吸声、隔声材料的表面时,吸声材料可以将声能转化为热能和振动能。室内变压器噪声在内壁反射,形成混响声场,在室内墙面涂覆吸声材料或装吸声砖、板,以增加墙面的吸声系数,减小室内噪声,同时安装隔声门、消声百叶窗和消声通风口。室内变电站的变压器紧邻构筑物,变压器声音传至墙壁时发生反射,和直达声混合向外传播,在边界噪声较小,需要降噪量小的情况下,可选择相应吸声材料,在构筑物、隔墙敷设吸声材料,把到达墙面的声音吸收掉,消除反射声,还可以将半封闭的变压器开放的一面封闭起来。

对露天变压器,根据周围环境噪声水平和周围敏感点的分布情况,可采用隔声屏。根据频谱特性、噪声水平和敏感点位置计算隔声墙屏高度、长度、厚度、隔声屏结构,选择适当的吸声材料。隔声屏内层具有噪声透射功能,外层隔声选用隔声性能好的材料,两层之间设骨架和吸声材料。

4)隔声罩治理技术。对于城市市区内距居民住宅较近的变电站,由于变压器发出的低频噪声随距离的增加衰减得较慢,可采用在变压器本体外建隔声间或隔声罩,散热器、套管等置于隔声罩外(隔声罩层面结构和隔声屏相似)。隔声罩采用型钢支架,内层采用穿孔防护板,外层采用隔声性能好的彩钢板,两层护板间为吸声、消声材料。隔声罩固定在变压器基础上,使隔声罩与变压器导管之间没有硬接触。为方便变压器维护和检修,隔声罩采用拼插

市区变电站变压器外封闭图片 组装结构,拆装方便,不影响设备检修。9.2.2 换流站噪声控制

1、换流站噪声源及分析 1)换流变压器

换流变压器噪声包括电磁噪声、冷却风扇噪声和变压器振动引起的结构噪声。因其特殊的结构,换流变压器产生的电磁噪声的基频为工频的2倍(100Hz)。属于低频噪声,同样难以治理。

变压器冷却风扇主要由空气动力性噪声、机壳、管壁及电动机轴承等辐射的机械性噪声和风机振动带动变压器壳体振动辐射的固体声。因风扇转速较高,辐射的噪声主要集中在中高频。

2)平波电抗器。平波电抗器分为油浸式和干式。位于阀厅外直流场中,线圈振动产生的噪声是电抗器的主要噪声,噪声频谱特征为宽频噪声,其中中低频噪声成分稍强,而高频成分稍弱。两侧的防火墙阻挡了设备后部的高频噪声辐射,因此设备向外部的噪声辐射表现为以中低频为主的噪声频谱。平波电抗器的噪声其发声机理、声级强度、频率范围均与换流变压器相同。

3)滤波器组。电容器噪声也是换流站中噪声来源的主要因素之一。换流站通常设有交流和直流滤波器组,且一般分布在站区角上,露天开阔布置。滤波器组噪声能量分布在很宽的频率范围内,在低频段50~300Hz中心频率上出现峰值,在中高频段上趋于平缓。滤波器组中的电抗器和电容器产生的噪声主要是电磁噪声.只是在声级强度上低于换流变压器和平波电抗器的噪声。

2、换流站降噪措施

近年来,我国三常直流工程的政平换流站、三广直流工程的鹅城换流站、三沪直流工程等都进行了噪声专项治理,并取得较好效果。直流工程的噪声治理工作应与工程建设同步进行,并在初步设计阶段就明确解决问题的方法:一是选用低噪声的设备,从源头上控制噪声水平;二是位于露天的设备,必须留出一定的空间以便可以采取一些相应的噪声治理控制措施;三是合理、优化设计换流站的设备布置,尽量将噪声的设备布置到换流站中间位置;四是要有效利用换流站的楼房等建筑物,用来阻挡噪声向站外辐射。在换流站工程实施过程中,主要从以下几个方面采取了措施:

1)换流站站址及设备布置优化 在进行换流站站址选择、站内电气总平面布置及路线进出线走向时,结合站址周围地形地貌及构筑物、河道、村庄的分布实况,合理考虑交流滤波器场地及换流变压器、平波点抗器和直流场等主要噪声设备位置,尽量减小对周围环境的影响。

换流站降噪照片

2)选用低噪声设备结构型式

对于交滤波器组中的电容器组,采用双塔结构布置,降低电容器单塔高度,以降低声源的高度,有效地减小噪声的传播范围。同时将电容器与支撑连接处加装减震胶垫,进一步减少电容器噪声水平。

对于交流滤波组中的电抗器,由于冷却时要求空气能够自由流通,很难完全封闭,并且电抗器辐射的噪声主要是中低频为主的噪声。因此选用低噪声电抗器,在电抗器周围加共振腔式半封闭圆柱状隔声罩,隔声罩上部和下局部敞开,使空气能过自由流通,可降低噪声。

换流阀外冷却系统选用低噪声冷却风扇,并采取屏蔽罩方案,可降低阀冷却塔噪声水平。

3)设置声屏障

受设备设计、制造、造价等客观原因限制,单纯依靠制造和设计方面采取措施对换流站整体噪声水平降低程度有限,因此在换流变、平波电抗器、交流滤波器场等主要噪声源周围或站区围墙上设置声屏障,是降低换流站噪声对周边环境影响的主要措施之一。

对于降低换流变压器噪声,可以采用两种方案。第一种是在换流变压器前部设置可移动组装式通风降噪装置。装置上部加装面向声源带有一定角度的挑檐吸声隔声屏障,下部为消声通风通道。在两侧防火墙顶部设置吸声隔声遮板,遮板的位置及宽度按设备的安全运行距离和通风散热要求确定。在两侧防火墙上、阀厅厂房墙上安装复合式吸声体。第二种是采用Box-in设计,既要求设备制造商在设计时将换流变压器的散热风扇对本体外移留出安装Box-in的布置,将换流变压器本体采用全封闭包起来(Box-in),并设有散热通风系统,在全封闭箱体上设有小门,便于运行人员的日常巡视。在封闭体的内侧和墙面上设置吸声装置,以吸收声音减少反射。

对于平波电抗器,可采取在平波电抗器前设置声屏障,为减小噪声的反射,在平抗阀厅侧防火墙和两侧防火墙粘贴渐变腔式吸声体达到降噪的效果。

对于滤波器组电容器,设计时在电容器组架中加装降噪设备,且可通过分段设计降低电容器组架高度,从而减小噪声水平。

滤波器电抗器。滤波器电抗器,可在电抗器外部加装隔音罩桶,来吸收电抗器产生的噪声辐射。9.2.3 电晕噪声

1、电晕噪声的特性

变电站和换流站除上述的变压器、换流变等主设备噪声外,还有电晕噪声。电晕现象常发生在不均匀电场中电场强度很高的区域内,如高压导线的周围,带电体的尖端附近,出现与日晕相似的光环。发出嗤嗤声,产生臭氧、氧化氮等。变电站电晕现象最为明显的部分除导线外,主要是各种金具。因此要对导线和金具均采取防电晕措施,以降低电晕噪声。

2、降低电晕技术措施平波电抗器降噪图片

换流站围墙降噪图片 为降低变电站电晕引起的噪声,需从设备、设计、金具制造和包装运输、施工各环节同时进行控制,以改善电场分布,提高起晕电压。

1)设备环节

电气设备生产厂家不仅要对设备接线端子自身防电晕进行合理设计,还应将引线夹金具考虑进去。主变压器、断路器、互感器、GIS出线套管等设备接线端子采用双均压屏蔽环措施,提高均压屏蔽环表面加工光洁度。

2)设计环节

设计单位必须选择防晕型金具,从均压环的设置数量和几何尺寸上着手,防电晕措施不遗漏任何设备和部位。对于主要电气设备采取双均压屏蔽环设计,适当加大均压屏蔽环管径,使设备接线端子和引线金具线夹完全处于均压屏蔽环保护范围内。

对软母线引起的电晕噪声主要来自间隔棒固定螺栓尖端和导线上的毛刺,可选用防电晕型间隔棒,固定螺栓为埋入式。另外可增加导线直径和分裂子导线数量,改变分裂导线间距,同时在下料、压接、安装过程防止产生变形和毛刺。

3)金具制造环节

金具制造厂家要严格按照设计要求进行加工,对产品外表面应采用抛光处理,保证金具外观光洁,使金具在正常使用状态不出现电晕。在金具出厂时要进行严格的包装防护,避免产品在装运过程中碰撞、摩擦、挤压变形等。

4)施工阶段环节

施工过程中主要是防止造成导线、金具、均压屏蔽环等自身防电晕性能降低。(1)导线的下料及压接

首先导线外观应完好,凡有断股、松股、扭结、严重腐蚀和明显损伤的不得使用,扩径导线不得有明显的凹陷和变形。导线在展放时地面铺设地毯等防止导线磨损和划伤。导线的压接工艺严格按照SDJl226—1987《架空送电线路导线及避雷线液压施工工艺规程》执行,压接模具规格必须与被压接管配套。压接后耐张线夹外观光滑、无裂纹、无扭曲变形,棱边

导线安装时,铺设地毯防止导线磨损 先用细砂纸打磨光滑后再抛光处理。导线间隔棒采用防电晕型,外观光滑、平整无棱角毛刺。与绝缘子串连接组装后的导线用地毯等包裹来,防止在搬运和架设时受损。

(2)均压屏蔽环的安装

首先均压屏蔽环外观应光滑、无裂纹、无扭曲变形。在安装过程中不得摩擦与碰撞,且安装位置和方向应正确,固定牢靠。金具和设备接线端子之间宜直接连接,确保金具和设备接线端子均处在均压屏蔽环的保护范围内。9.3 森林、草木防火控制 9.3.1 森林、草木防火方针

预防为主,积极消灭,防消结合。9.3.2 组织建设、资源配置

按照森林、草原防火主管部门的规定,建立健全防火组织、防火责任制等制度,划定防火责任区,确定防火责任人。

配备防火设施和设备,设置防火宣传标志,并定期进行检查、维护,确保设施和器材完好、有效。

根据地方森林、草原火灾应急预案制定火灾应急处置办法。建立火灾扑救队伍,定期进行培训和演练。9.3.3 防火宣传

组织经常性的防火宣传活动,普及防火知识,做好火灾预防工作。设置防火警示宣传标志,并对进入防火区域的人员进行防火安全教育。宣传扑救火灾的基本知识。9.3.4 防火措施

施工现场配置灭火器、森林灭火剂、铁锹等消防器材。定期进行森林草原防火安全检查,及时消除火灾隐患。

控制野外用火,杜绝野外吸烟。严格火源(种)管理,未经法定程序批准,不得携火源(种)进入森林、草原。野外施工用火要做好防火措施,并按程序报告。

高火险期内,进入森林、草原高火险区的,应当经地方人民政府批准,严格按照批准的时间、地点、范围活动,做到不准乱扔烟蒂、火柴梗;不准在燃放爆竹、焰火;不准烧火驱兽;不准烧火取暖、烧烤食物;不准玩火取乐,并接受地方人民政府主管部门的监督管理。

施工前,清理施工范围内的林区倒木等可燃物。

需要进入森林防火区进行爆破等活动的,应经林业主管部门批准,并采取防火措施,做好灭火准备工作。

爆破必须用电引爆,杜绝使用导火线。爆炸基坑时,应先将药包下方的树干、杂物、干草等易燃物清楚干净。

动用明火或进行焊接时,必须划定工作范围,消除易燃杂物,并设专人监护。进入森林防火区的各种机动车辆按照规定安装防火装置(如防火罩),采取有效措施,严防漏火、喷火和机车甩瓦引起火灾,并配备灭火器材。

不在防火区内的施工现场设置做饭点。严格执行防火值班制度,保持通讯畅通制度。9.3.5 用火控制

防火戒严管制期内,在森林草原防火戒严管制区域严禁一切野外用火。经批准进行生产性用火的,要有专人负责,事先开好防火隔离带或者采取隔火措施,安排扑火人员,准备扑火工具,并将用火时间提前报告当地森林草原防火部门或通知近邻单位。在做好防范措施的前提下,有组织地在三级风以下的天气用火,确保用火安全。

用火后必须彻底熄灭余火。用火完毕,必须留下人检查,打灭余火,待余火彻底熄灭后,才能全部离开,做到火灭人离,以防死灰复燃,蔓延成灾。

发现森林草原火情,立即进行扑救,并及时向当地人民政府或者森林草原防火指挥部报告。扑救可采用直接扑打林火,或者铲土覆盖、洒水、化学灭火剂喷洒等方法。

第五篇:2014年上半年风电并网运行情况

2014年上半年风电并网运行情况

发布时间:2014-07-28 国家能源局

2014年上半年,全国风电新增并网容量632万千瓦,累计并网容量8277万千瓦,同比增长23%;风电上网电量767亿千瓦时,同比增长8.8%;全国风电弃风电量72亿千瓦时,同比下降35.8亿千瓦时;风电平均利用小时数979小时,同比下降113小时;全国平均弃风率8.5%,同比下降5.14个百分点。2014年上半年,新增并网容量较多的省份是新疆(139万千瓦)、山西(66万千瓦)、山东(60万千瓦)。风电平均利用小时数较高的省份是云南(1681小时)、天津(1332小时)、四川(1294小时),平均利用小时较低的省份是贵州(840小时)、黑龙江(832小时)、吉林(727小时)。

注:数据统计口径为各电网公司调度口径

下载风电并网对电力系统的影响及改善措施word格式文档
下载风电并网对电力系统的影响及改善措施.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    变频器应用 谐波产生对电力系统影响及相应措施

    变频器广泛应用对电力系统的影响 1 引言 变频器主要用于交流电动机转速的调节,是理想的调速方案,随着中国经济的整体快速发展,市场对产品的要求逐步提高,变频调速以其自身所具有......

    审计质量影响因素及改善措施(精选五篇)

    审计质量影响因素审计职业的存在或客观需求在于其可有效降低所有者与管理者之间利益冲突的代理成本,是由其对外提供服务产品的质量决定的。审计质量主要包括审计工作质量和审......

    影响模具零件表面质量的因素及改善措施

    重庆工业职业技术学院 影响模具零件表面质量的因素及改善措施 彭磊 摘要: 模具零件的表面质量对模具的使用性能有很大影响, 如何使工件的表面质量达到要求, 如何减小各因素对......

    影响汽车涂装质量的因素及改善措施

    影响汽车涂装质量的因素及改善措施 摘要:随着汽车消费水平的不断提高,消费者对汽车涂装的质量水平也在不断提高,本文分析了影响涂装质量的主要影响因素,并针对这些问题提出相......

    影响教学质量的不良因素及改善措施浅析

    江西上犹县第三中学 温璐璐新课标强调教学过程中教师是主导,要促进学生在学习过程中充分发挥主体作用,从而提高教学质量。但目前的高中英语教学不论从教师角度还是学生立场来......

    新能源发电对并网的影响[5篇模版]

    现代能量管理系统课程论文 ——新能源发电对系统并网运行的影响及对策姓名 学号 班级 专业摘要: 可再生能源发电的开发利用日益受到重视,其规模的扩大也给电网调度运行带来......

    风电工程质量通病防治措施

    湖北中电纯阳山80MW风电场工程 工程质量通病防治措施 编 制: 审 核: 审 批: 中国能源建设集团湖南火电建设公司 麻城纯阳山风电项目部 2016年4月 1.编制依据 ....................

    风电并网调度管理指导意见-吉林能源局

    附件: 吉林省新能源优先调度工作实施细则 (试 行) 第一章 总则 第一条 为保障吉林电网安全稳定运行,贯彻落实国家可再生能源政策,规范吉林风电场、光伏电站并网调度运行管理,促......