第一篇:核磁共振方法研究蛋白质结构
核磁共振方法研究蛋白质结构
维特里希教授创建的方法是对水溶液中的蛋白质样品测定一系列不同的二维核磁共振图谱,然后根据已确定的蛋白质分子的一级结构,通过对各种二维核磁共振图谱的比较和解析,在图谱上找到各个序列号氨基酸上的各种氢原子所对应的峰。有了这些被指认的峰,就可以根据这些峰在核磁共振谱图上所呈现的相互之间的关系得到它们所对应的氢原子之间的距离。可以想象,正是因为蛋白质分子具有空间结构,在序列上相差甚远的两个氨基酸有可能在空间距离上是很近的,它们所含的氢原子所对应的NMR峰之间就会有相关信号出现。通常,如果两个氢原子之间距离小于0.5纳米的话,它们之间就会有相关信号出现。一个由几十个氨基酸残基组成的蛋白质分子可以得到几百个甚至几千个这样与距离有关的信号,按照信号的强弱把它们转换成对应的氢原子之间的距离,然后运用计算机程序根据所得到的距离条件模拟出该蛋白质分子的空间结构。该结构既要满足从核磁共振图谱上得到的所有距离条件,还要满足化学上有关原子与原子结合的一些基本限制条件,如原子间的化学键长、键角和原子半径等。
从1980年代初维特里希教授发展出这种方法至今,核磁共振技术在生物大分子的结构研究方面有了飞速的发展,一方面是由于仪器技术本身的发展,能够产生的磁场越来越强;计算机的计算速度也越来越快,更多地是由于实验方法上的创新和发展,由二维的核磁共振实验发展成三维甚至更多维的实验;借助于基因技术可以得到同位素富集的蛋白质样品,核磁共振的实验也从原来单一的核发展到三种甚至四种核同时在一个实验中共振而产生相关信号。核磁共振方法的应用范围也从原来单一的蛋白质分子的空间结构研究发展到蛋白质动力学方面的研究,蛋白质与蛋白质、蛋白质与核酸以及小分子的相互作用和药物筛选中蛋白质分子与药物分子的结合等方面。随着人类基因组学和蛋白质组学研究的不断深入,蛋白质结构组学的研究也会随之兴起,核磁共振技术在这方面的应用会更多更广。这些应用的需求反过来也会促进核磁共振技术本身的进步和发展,使之更趋成熟和完善
H-HCOSY是确定质子间偶合关系的有力工具,就这种作用来说,它相当于多次质子同核自旋去偶实验,但二者各有长处。H-HCOSY中的相关峰(或称交叉峰)主要反映的是2J和3J偶合关系,偶尔会出现远程相关峰。
TOCSY(全相关谱,TOtal Correlation Spectroscopy)
可以找到同一偶合体系中所有氢核的相关信息,也就是说,从某一个氢核的信号出发,能找到与它处在同一个自旋系统中所有质子的相关峰。这是一种很有用的2DNMR技术。
COSY通常只能看到相邻碳的氢的相关,(有时稍微远一点)。但是TOCSY顺着化学键可以看到相隔若干个碳的氢相关。因此TOCSY谱图繁杂得多,不过也确实很有用。所需要时间和COSY差不多。
核磁共振ROESY和NOESY的区别及 适用范围
核磁共振ROESY和NOESY的区别及 适用范围
答案一: 在1000~3000用ROESY,小于1000大于3000用NOESY。
答案二: ROESY是旋转坐标系下的NOESY。小分子的NOE是反相的,大分子是正相的。当分子量接近2000时,NOE趋于0。在旋转坐标系下NOE始终为正,故测2000左右的样品时须用ROESY。
答案三:
NOESY:Nuclear Overhauser Effect Spectroscopy 二维NOE谱
ROESY:Rotating Frame Overhauser Effect Spectroscopy 旋转坐标系NOE谱
相同点:
1)都是二维核磁共振实验(包括同核和异核实验)。同核实验主要有1H-1H COSY,TOCSY,E.COSY, NOESY,ROESY,relay-NOESY等实验,主要用于自旋体系(残基内部)的谱峰确认,耦合常数的测定,顺序识别,以及由NOE交叉峰的强度得出质子间距离约束条件。这也是非标记样品所能进行的主要实验。
2)都是检测 H-H 的空间相关, 距离3.5-5 A,可以考察化合物的立体结构;
不同点:
1)分子量在 1000-3000范围,建议使用 roesy;小于1000和大于3000的化合物宜做NOESY。
2)noesy 是相敏图, 在对角峰附近的分辨率较差;
3)roesy 得到的都是吸收谱,因此有相信号点(交叉峰)距离对角峰近的可以考虑使用 roesy。
氢原子在分子中的化学环境不同,而显示出不同的吸收峰,峰与峰之间的差距被称作化学位移;化学位移的大小,可采用一个标准化合物为原点,测出峰与原点的距离,就是该峰的化学位移,现在一般采用(CH3)4Si(四甲基硅烷TMS)为标准化合物,其化学位移值为0 ppm.处在不同环境中的氢原子因产生共振时吸收电磁波的频率不同,在图谱上出现的位置也不同,利用化学位移,峰面积和积分值以及耦合常数等信息,进而推测其在碳骨架上的位置.二维核磁共振波谱的基本原理
二维核磁共振谱的出现和发展,是近代核磁共振波谱学的最重要的里程碑。极大地方便了核磁共振的谱图解析。
二维核磁共振谱是有两个时间变量,经两次傅里叶变换得到的两个独立的频率变量图一般把第二个时间变量t2表示采样时间,第一个时间变量t1则是与 t2无关的独立变量,是脉冲序列中的某一个变化的时间间隔。
二维核磁共振谱的特点是将化学位移、耦合常数等核磁共振参数展开在二维平面上,这样在一维谱中重叠在一个频率坐标轴上的信号分别在两个独立的频率坐标轴上展开,这样不仅减少了谱线的拥挤和重叠,而且提供了自旋核之间相互作用的信息。这些对推断一维核磁共振谱图中难以解析的复杂化合物结构具有重要作用。
划分区域
一个二维核磁共振试验的脉冲序列一般可划分为下列几个区域:
预备期(preraration)—演化期 t1(evolution)—混合期tm(mixing)—检测期t2(detection)。检测期完全对应于一维核磁共振的检测期,在对时间域t2进行Fourier变换后得到F2频率域的频率谱。二维核磁共振的关键是引入了第二个时间变量演化期 t1。当样品中核自旋被激发后,它以确定频率进动,并且这种进动将延续相当一段时间。在这个意义上讲,我们可以把核自旋体系看成有记忆能力的体系,Jeener就是利用这种记忆能力,通过检测期间接演化期中核自旋的行为。
氢的核磁共振谱提供了三类极其有用的信息:化学位移、偶合常数、积分曲线。应用这些信 息,可以推测质子在碳胳上的位置。
根据前面讨论的基本原理,在某一照射频率下,只能在某一磁感应强度下发生核磁共振。例如:照射频率为60 MHz,磁感应强度是 14.092 Gs(14.092×10^-4 T),100 MHz—23.486
Gs(23.486×10^-4
T),200
MHz—46.973 Gs(46.973×10^-4 T)。600 MHz—140.920 Gs(140.920×10^-4 T)。但实验证明:当1H在分子中所处化学环境(化学环境是指1H的核外电子以及与1H 邻近的其它原子核的核外电子的运动情况)不同时,即使在相同照射频率下,也将在不同的共振磁场下显示吸收峰。下图是乙酸乙酯的核磁共振图谱,图谱表明:乙酸乙酯中的8个氢,由 于分别处在a,b,c三种不同的化学环境中,因此在三个不同的共振磁场下显示吸收峰。同种核由于在分子中的化学环境不同而在不同共振磁感应强度下显示吸收峰,这称为化学位移(chemical shift)。化学位移是怎样产生的?分子中磁性核不是完全裸露的,质子被价电子包围着。这些电子 在外界磁场的作用下发生循环的流动,会产生一个感应的磁场,感应磁场应与外界磁场相反(楞次定律),所以,质子实际上感受到的有效磁感应强度应是外磁场感应强度减去感应磁场强度。即
B有效=B0(1-σ)=B0-B0σ=B0-B感应
外电子对核产生的这作用称为屏蔽效应(shielding effect),也叫抗磁屏蔽效应(diamagnetic effect)。称为屏蔽常数(shielding constant)。与屏蔽较少的质子比较,屏蔽多的质子对外磁场感受较少,将在较高的外磁场B0作用下才能发生共振吸收。由于磁力线是闭合的,因此感应磁 场在某些区域与外磁场的方向一致,处于这些区域的质子实际上感受到的有效磁场应是外磁场B0加上感应磁场B感应。这种作用称为去屏蔽效应(deshielding effect)。也称为顺磁去屏蔽效应(paramagnetic effect)。受去屏蔽效应影响的质子在较低外磁场B0作用下就能发生共振吸收。综上所述:质子发生核磁共振实际上应满足:
ν射=γB有效/2π
因在相同频率电磁辐射波的照射下,不同化学环境的质子受的屏蔽效应各不相同,因此它们发生 核磁共振所需的外磁场B0也各不相同,即发生了化学位移。
对1H化学位移产生主要影响的是局部屏蔽效应和远程屏蔽效应。核外成键电子的电子云 密度对该核产生的屏蔽作用称为局部屏蔽效应。分子中其它原子和基团的核外电子对所研究的 原子核产生的屏蔽作用称为远程屏蔽效应。远程屏蔽效应是各向异性的。化学位移的差别约为百万分之十,要精确测定其数值十分困难。现采用相对数值表示法,即选用一个标准物质,以该标准物的共振吸收峰所处位置为零点,其它吸收峰的化学位移值根据这 些吸收峰的位置与零点的距离来确定。最常用的标准物质是四甲基硅(CH3)4Si简称TMS。选TMS为标准物是因为:TMS中的四个甲基对称分布,因此所有氢都处在相 同的化学环境中,它们只有一个锐利的吸收峰。另外,TMS的屏蔽效应很高,共振吸收在高场出现,而且吸收峰的位置处在一般有机物中的质子不发生吸收的区域内。现规定化学位移用δ来 表示,四甲基硅吸收峰的δ值为零,其峰右边的δ值为负,左边的δ值为正。测定时,可把标准物与样品放在一起配成溶液,这称为内标准法。也可将标准物用毛细管封闭后放人样品溶液中进 行测定,这称为外标准法。此外,还可以利用溶剂峰来确定待测样品各个峰的化学位移。
由于感应磁场与外磁场的B0成正比,所以屏蔽作用引起的化学位移也与外加磁场B0成正 比。在实际测定工作中,为了避免因采用不同磁感应强度的核磁共振仪而引起化学位移的变化,δ一般都应用相对值来表示,其定义为
δ=(ν样-ν标)/ν仪×10^6 ④
在式④中,ν样和ν标分别代表样品和标准化合物的共振频率,ν仪为操作仪器选用的频率。多数有机物的质子信号发生在0~10处,零是高场,10是低场。需注意也有一些质子的信号是在小于0的地方出现的。如安扭烯的环内的质子,受到其外芳环磁各向异性的影响,甚至可以达到-2.99。此外,在不同兆数的仪器中,化学位移的值是相同的。化学位移取决于核外电子云密度,因此影响电子云密度的各种因素都对化学位移有影响,影 响最大的是电负性和各向异性效应。
⑴电负性(诱导效应)
电负性对化学位移的影响可概述为:电负性大的原子(或基团)吸电子能力强,1H核附近的吸电子基团使质子峰向低场移(左移),给电子基闭使质子峰向高场移(右移)。这是因为吸电子基团降低了氢核周围的电子云密度,屏蔽效应也就随之降低,所以质子的化学位 移向低场移动。给电子基团增加了氢核周围的电子云密度,屏蔽效应也就随之增加,所以质子的 化学位移向高场移动。下面是一些实例。
实例一: 电负性 C 2.6 N 3.0 O 3.5 δ C—CH3(0.77~1.88)N—CH3(2.12~3.10)O—CH3(3.24~4.02)实例二: 电负性 Cl 3.1 Br 2.9 I 2.6 δ CH3—Cl(3.05)CH2—Cl2(5.30)CH—Cl3(7.27)CH3—Br(2.68)CH3—I(2.16)电负性对化学位移的影响是通过化学键起作用的,它产生的屏蔽效应属于局部屏蔽效应。
⑵各向异性效应
当分子中某些基团的电子云排布不呈球形对称时,它对邻近的1H核产 生一个各向异性的磁场,从而使某些空间位置上的核受屏蔽,而另一些空间位置上的核去屏蔽,这一现象称为各向异性效应(anisotropic effect)。
除电负性和各向异性的影响外,氢键、溶剂效应、van der Waals效应也对化学位移有影响。氢键对羟基质子化学位移的影响与氢键的强弱及氢键的电子给予体的性质有关,在大多数情况 下,氢键产生去屏蔽效应,使1H的δ值移向低场。有时同一种样品使用不同的溶剂也会使化学位移值发生变化,这称为溶剂效应。活泼氢的溶剂效应比较明显。
当取代基与共振核之间的距离小于van der Waals半径时,取代基周围的电子云与共振核周围的电子云就互相排 斥,结果使共振核周围的电子云密度降低,使质子受到的屏蔽效应明显下降,质子峰向低场移动,这称为van der Waals效应。氢键的影响、溶剂效应、van der Waals效应在剖析NMR图谱时很有用。
(3)共轭效应
苯环上的氢若被推电子基取代,由于P-π共轭,使苯环电子云密度增大,质子峰向高场位移。而当有拉电子取代基则反之。对于双键等体系也有类似的效果。
第二篇:核磁共振研究的历史
核磁共振研究的历史
刘志军
(中科院自然科学史研究所,北京 100190;忻州师范学院物电系,山西 034000)
摘要:本文选取不论是对于众多学科的基础理论方面,还是在人类的生产、生活方面都有重大贡献的核磁共振研究作为典型案例进行研究,清晰地呈现出了核磁共振研究鲜明的阶段性特征,以及由这一典型案例所揭示出的基础研究与应用研究之间动态变化着的、复杂的互动关系。最后通过分析和总结,得出了这一典型案例对我国的科技发展和科技创新的一些启示。
关键词:核磁共振;诺贝尔奖;基础理论;应用研究 中图分类号:04-09
1二战结束之前核磁共振实验的发展
1.1核磁共振研究的开端,这个时期主要以物理学的纯基础理论研究为特征 自从十九世纪末,二十世纪初人类对于微观世界的科学探究真正起步后,不论是在实验还是在理论方面都在不断取得突破和进展。正如麻省理工学院物理系电子研究实验室的丹尼尔·克莱普纳(Daniel Kleppner)所说,二十世纪初那些深刻改变了我们的世界观的,物理学天才们的思想和成就,主要是建立在当时重要的物理实验发现之上的[1]。可以说,物理实验是物理基础理论创新和发展的主要源泉和基础。
核磁共振研究是从斯特恩(Otto Stern)的分子束实验开始的。斯特恩(Otto Stern)1888年2月17日出生于德国的索劳(Sorau)。1912年,他从德国的布雷斯劳大学(University of Breslau)获得物理化学博士学位后,作为爱因斯坦的助手,追随爱因斯坦,先后到过布拉格大学和苏黎世大学任教。1914他开始在法兰克福大学工作,职务是理论物理学的无薪教师(Privatdocent),服兵役归来后,1919年斯特恩在法兰克福大学开始和玻恩一起工作,玻恩时任该校理论物理系主任。就在这一年,斯特恩观察到,注入高真空室内的原子或分子沿直线运动,形成一束粒子流,在某些方面类似于光束。使斯特恩成名的实验工作就是由此发展起来的。1919年,斯特恩对银原子束首次应用了这一方法,以检验1850年前后气体中分子速率的理论计算结果。1920年,斯特恩在他的助手彼得·勒特斯和盖拉赫的帮助下,用实验事实无可辩驳地说明了在外加非均匀磁场的作用下,原子的空间取向是量子化的,这就是非常著名的斯特恩-盖拉赫实验。空间量子化的概念是索末菲1916 年为了描述氢原子在外磁场和外电场作用下的行为而引入量子理论的。空间量子化可以满意地描述正常塞曼效应(Zeeman effect)和斯塔克效应(Stark effect),对于解释X射线谱线和说明氦谱问题也起过重要作用。然而在斯特恩-盖拉赫实验之前,一直没有人能够以实验证实空间量子化这一客观事实的存在。这一实验不仅支持了玻尔的定态轨道原子理论,并且也为“电子自旋”概念的提出提供了实验基础,大大促进了分子束(原子束)实验方法的发展。
斯特恩也因为发展了分子束的方法以及发现了质子磁矩这两方面的重要贡献而获得了1943年的诺贝尔物理学奖[2]。
包括斯特恩-盖拉赫实验在内的一系列物理理论及实验成就的取得并没有功利和实用性的技术创新的目标因素在其中。从斯特恩实验研究的资金来源方面,也有力的佐证了这一点。当时正值第一次世界大战刚刚结束,玻恩所主持的物理系资金异常紧张。从1920 年1 月 1 始,玻恩连续面向公众做了多次有偿的关于爱因斯坦广义相对论的报告,从中得到了约七千马克的收入[3]。有了这笔资金作保证,斯特恩的实验才得以正常进行。
美国著名科学史家和科学哲学家库恩在1962年对于斯特恩的访谈[4],印证了斯特恩当年的科学研究的出发点完全是基于对于物质世界的本质进行探究的好奇心的,很显然他没有也不可能预见到核磁共振实验对于当今人类生产和生活的巨大影响。
1.2核磁共振实验研究在美国的发展,核磁共振开始向应用研究发展
1927年6月,申请到哥伦比亚大学赴欧留学奖学金的拉比(Isidor Isaac Rabi)携妻子海伦踏上了赴欧求学之路。当时,斯特恩已成为了汉堡大学的物理化学教授和实验室主任,并且创建了颇有影响的分子束实验室。见到斯特恩后,拉比将自己对于分子束实验的一个改进思想告诉给了斯特恩,斯特恩立即建议拉比在他的分子束实验室里将这一想法付诸实践。拉比在均匀磁场中完成了他的第一个分子束实验。1929年回到美国后,在哈罗德·尤里(Harold Urey)的帮助下,拉比在哥伦比亚大学创建了分子束实验室。[5]从此,原本专攻理论物理的拉比开始了他一系列成就非凡的核磁共振实验研究。
1944年,拉比由于发明了精确测定了一些核磁属性的方法而获得了诺贝尔物理学奖。到这个时候,世界上仍没有将核磁共振实验技术转向应用研究发展的端倪出现。
在二战之前,美国政府对科技活动的支持仅限于个别领域,对全国科技如何发展,政府并没有形成全面影响的指导政策。基础研究是以民间支持自由发展为主,政府的功能主要体现在立法上。在宪法中规定了要保护发明人的权益。1790 年制定了保护专利的第一部法律。1802 年成立了联邦专利局。1862 年林肯政府通过了《土地赠与法案》(The Land Grant Act),宽泛地鼓励对教育和研究事业的支持。总的来说,二战前美国基本谈不上什么系统的科技政策,政府主要是对农业部门进行适度的支持[6]。而哥伦比亚大学是一所私立的常春藤盟校,所以拉比的赴欧留学是一种在当时的政策大环境下的个人行为。1963年12月库恩对他进行访谈时,拉比回忆说,他认为在他去欧洲之前,美国本土并没有几个真正懂量子力学的物理学家,他到欧洲学习的主要志向就是要改变美国物理学落后的现状的[9]。在得到在美国访问的海森堡的推荐,回到哥伦比亚大学当讲师后,拉比能建立分子束实验室在很大程度上得益于尤里(Harold Urey,一个1934年获得诺贝尔奖的化学家)的慷慨捐助。尤里将自己7600美元的诺贝尔奖金的一半给了资金遇到困难的拉比,他对别人说:“那个人(拉比)将会获得诺贝尔奖”[7]。
2二战结束之后核磁共振实验技术的发展
2.1核磁共振开始真正进入实用技术领域
接下来对核磁共振研究的理论和实验作出卓越贡献的物理学家是布洛赫(Felix Bloch)和珀塞尔(Edward Mills Purcell)。
与拉比一样,珀塞尔成长于美国本土,作为交换生,1934年珀塞尔到德国卡尔斯鲁厄理工学院(Technische Hochschule, Karlsruhe)跟随光谱学教授卫泽尔(Walter Witzel)学习了一年。回国后,1938年在哈佛获得了博士学位。布洛赫出生于瑞士的一个犹太人家庭,1928年,在莱比锡师从海森堡获得了理论物理学的博士学位。1933年,迫于形势,移居美国接受了斯坦福大学的一个教职。
二战是美国科技政策的一个重要转折点。
二战期间,美国政府向麻省理工学院的辐射实验室(Radiation Laboratory)注入资金,罗斯福总统任命万尼瓦尔·布什为这一实验室的领导人,率领一大批物理学家从事军事研发的工作,这其中就包括拉比、布洛赫和珀塞尔。这一实验室无疑对美国在战后物理学的研究和发展影响深远,意义重大。也正是这一时期与拉比等物理学家的合作和交往为布洛赫和珀塞尔在核磁共振领域的研究和贡献打下了坚实的基础。1945年二战刚一结束,分别回到斯 2 坦福和哈佛的布洛赫和珀塞尔就同时用新的方法,在精确测定物质的核磁属性方面取得了突破和进展[8],并因此而共同荣获了1952年诺贝尔物理学奖。
要强调的是,他们的核磁共振研究并没有政府行为的影响,而且研究所需的经费也不是从政府或是有利益诉求的投资方来取得的。
布洛赫回忆说,当他们想在斯坦福建造一台回旋加速器和购置一些设备时,首先碰到的就是资金来源问题,他们甚至没有得到校方的任何支持和帮助,而最终是从洛克菲勒基金会(Rockefeller Foundation)获取到了资助,而洛克菲勒基金会的宗旨是为了“促进全人类的安康”而进行无偿援助的。并且当时基金会的管理人员也完全清楚布洛赫他们是以纯基础科学研究为目的的[9]。那么同样,当时他们从事核磁共振研究的资金也主要是自筹为主。
1946年7月,帮助军方研究微波雷达的拉塞尔·瓦里安(Russell Varian)也回到了斯坦福,作为物理学教授汉森的实验助手,他却敏锐地意识到了核磁共振技术在化学分析领域的广泛应用前景,捕捉到了其商机所在。虽然布洛赫和汉森对此并不以为然,可瓦里安还是促使他们俩人在1948年共同取得了这一技术的专利权。同年4月,瓦里安兄弟俩共同创建了以核磁共振技术应用为目的的瓦里安公司。
就在布洛赫和珀塞尔获奖的1952年,瓦里安公司研制出了世界上第一台商用核磁共振波谱测定仪(Varian HR-30),同年9月,这台仪器在德州贝城市的一家石油公司(Humble Oil company)里投入使用。
在诺贝尔颁奖宴会演说(Banquet Speech)中,珀塞尔表达了对和他共同研究这一课题的一些国内及国际同行的感激,介绍了他们的一些重要研究成果。并由衷赞赏了科学家同行们在共同研究问题时,互相之间毫无保留的无私精神[10]。这也从一个侧面反映了当时布洛赫及其他科学家的研究在主观上是排除技术创新或是任何商业动机在外的。
2.2核磁共振技术创新、发展和应用的全面繁荣 上世纪五十年代,核磁共振在理论上也不断取得突破和创新,比如在分析和解释弛豫现象方面,先后有1953年布洛赫提出的布洛赫方程(Bloch equations),1955年所罗门提出的所罗门方程(Solomon equations),和1957年雷德菲尔德理论(Redfield theory)等[11]。
从第一台商用核磁共振波谱测定仪诞生之后起,核磁共振技术就迅速向应用技术领域不断取得突破和进展。而这些进展则几乎都和一些科技公司或是技术创新的诉求相联系,已不再像早期发展的那样,主要是以基础科学研究为目的了。
1962年,世界上第一台超导磁体的核磁共振波谱测定仪在瓦里安公司诞生。
1965年,在瓦里安公司工作的恩斯特(Richard R Ernst)提出了利用核磁共振技术来测定物质结构的新方法,将傅立叶变换方法真正引入到了核磁共振技术中,相对于化学界所使用的传统光谱学方法,这一创新数十甚至数百倍的提高了物质结构测定的敏感度。
1966年到1968年间,为了用傅立叶变换方法处理大量的数据,计算机引入到了核磁共振的数据处理和程序控制当中。
1970年,世界上第一台用于商业化目的的超导磁体傅立叶变换核磁共振波谱测定仪在德国的布鲁克公司(Bruker Company)正式生产。
1971年美国科学家雷蒙德·达马迪安(Raymond Damadian)在实验鼠体内发现了肿瘤和正常组织之间核磁共振信号有明显的差别,从而揭示了核磁共振技术在医学领域应用的可能性。
1973年保罗·劳特布尔(Paul C Lauterbur)和彼得·曼斯菲尔德(Peter Mansfield)分别独立地发表文章,来阐述核磁共振成像的原理[12][13]。他们都认为用线性梯度场来获取核磁共振的空间分辨率是一种有效的解决方案,因而为核磁共振成像奠定了坚实的理论基础。就在同一年,世界上第一幅二维核磁共振图像产生。
1974年,劳特布尔获得活鼠的核磁共振图像。1976年曼斯菲尔德获得世界上第一幅人体断层像。
从此,核磁共振成像技术(MRI)向医学临床应用和其他更广泛的领域迅速扩展,引发了众多学科的基础研究和技术发展和应用的深刻变革。
二十世纪八十年代,在约翰·芬恩(John B Fenn)、田中耕一(Koichi Tanaka)和科特·维特里希(Kurt Wüthrich)等科学家的共同努力下,又成功地解决了生物大分子的核磁共振波谱测量技术,这对于生物学和医学基础理论的研究都有不可估量的重要意义[14]。例如,他们的成果几乎立即就对生物制药领域产生了深刻的影响,特别是在上世纪九十年代对艾滋病药物的研制有突出的贡献。他们也因此而荣获了2002年诺贝尔化学奖。
到目前为止,核磁共振技术的发展仍然方兴未艾。该技术在物理学的量子信息处理方面,在化学领域的分子结构测试及有机合成反应等方面,在心理学及精神卫生方面,在生物和食品制造加工方面,在煤层勘探和油气测量方面,在测井技术方面,在木材加工和处理方面,在造纸技术方面等等众多领域基础理论的研究和突破以及应用等方面都有着非常重要的贡献和潜在的技术创新前景。
3结语
核磁共振研究的发展历程告诉我们,这一科学研究在不同的发展阶段是呈现出不同的鲜明特点的。正因为其在基础研究和应用研究两方面形成了良好的双向互动关系,所以在近百年来,核磁共振研究才在人类的众多研究、生产和生活领域中作出了卓越的贡献。
有统计表明,在诺贝尔自然科学奖中,属于重大科学发现和重大理论突破而获奖的比例平均在80%左右[15]。因此,很显然诺贝尔自然科学奖的大部分是属于基础研究的。换言之,一个国家在某个时期内所获的诺贝尔自然科学奖的数量基本可以代表这个国家在那个时期的基础科学的研究水平。到目前为止,有关于核磁共振技术而颁发的十项诺贝尔自然科学奖中,有六项的主要贡献是美国的科学家所做出的,因而核磁共振研究从一个侧面反映和代表了美国在基础研究领域的世界领先地位,体现出了美国的基础科学研究和科技创新之间非常密切的关联度和良性互动关系。这些情况都充分表明,基础研究和应用研究并重对一个国家的科技发展至关重要,只有在它们同时坚实而稳定发展的基础上,形成良好的双向互动关系,才能真正为一个国家的科学、技术、经济、文化等各方面的发展提供持久强劲的推动力。
[参考文献]
[1] Daniel Kleppner.A short history of atmoic physics in the twentieth century[J].Rev.Mod.Phys., Vol.71, No.2, Centenary 1999.[2] The Nobel Foundation.Otto Stern-Biography [EB/OL] [2010-10-13].Stockholm: The Nobel Foundation.http://nobelprize.org/nobel_prizes/physics/laureates/1943/stern.html [3]Greenspan N T.The end of the certain world-the life and science of Max ·Born [M].John Wiley﹠Sons , Ltd , 2005 :92293.[4] Thomas S.Kuhn.Oral History Transcript-Dr.Otto Stern [J/OL](1962-05-29,1963-05-30)[2010-10-15].American Institute of Physics.http:// [5]Thomas S.Kuhn.Oral History Transcript-Dr.I.I.Rabi [J/OL](1963-12-08)[2010-10-15].American Institute of Physics.http:// [6]黄先智,美国科技政策的演变及特点[J].云南科技管理.2003,2:50-52.[7]Jeremy Bernstein.Experiencing Science[M].New York:Basic Books,Inc.,Pub.1978:38-129.[8]F.Bloch, W.W.Hansen, M.Packard.Nuclear Induction[J].Phys.Rev 69, 1948,127.[9]Charles Weiner.Oral History Transcript-Dr.Felix Bloch [J/OL](1968-08-15)[2010-10-15].American Institute of Physics.http:// [10]E.M.Purcell.E.M.Purcell –Banquet Speech [J/OL](1952-12-10)[2010-10-19] Stockholm: The Nobel Foundation.http://nobelprize.org/nobel_prizes/physics/laureates/1952/purcell-speech.html [11] J.W.Emsley,J.Feeney.Forty years of Progress in Nuclear Magnetic Resonance Spectroscopy[R/OL]// Progress in Nuclear Magnetic Resonance Spectroscopy 50 ,2007: 179–198 [2010-10-20].http://www.xiexiebang.com/wps/find/journaldescription.cws_home/525435/description#description [12]P.C.Lauterbur, Image Formation by Induced Local Interactions: Examples Employing Nuclear Magnetic Resonance[J], Nature ,1973,242:190–191.[13]Peter Mansfield,P K Grannell.NMR ‘diffraction’ in solids[J].Physics.C:Solid State Physics, 1973,6:422.[14]傅杰青,禹宽平.2003年诺贝尔医学奖给科学界的多重启示(上)[J].医学与哲学,2004,25(2):18-20.[15]路甬祥.规律与启示_从诺贝尔自然科学奖与20世纪重大科学成就看科技原始创新的规律.西安:西安交通大学学报(社会科学版)[J].2000,12.3-11.The Development and Enlightenment of Nuclear Magnetic Resonance
Liu Zhijun(The Institute for the History of Natural Science,Chinese Academy of Sciences, Beijing 100190)(Department of Physics and Electronics,Xinzhou Teacher’s University,Shanxi Xinzhou 034000,China)
Abstract: It is well known that the development of NMR has made great contributions not only to the basic theories of many disciplines but also to the production and people’s livelihood.It clearly revealed the characteristics of stage on the development of NMR, as well as the dynamic and complicated interaction between the basic science and the applied technology to select the development of NMR as a typical case in this thesis.Finally through the analysis and summary,It puts forward some insight in this thesis for the purpose of progress and innovation in science and technology in our country.Key words:nuclear magnetic resonance(NMR);Nobel Prize;basic theory;applied research
第三篇:核磁共振系统的数字化研究
核磁共振系统的数字化研究
【摘要】:核磁共振(NMR)技术作为一种研究物质结构的重要工具,在物质检测和医学影像等领域中得到了广泛的应用。与此同时,其应用领域的拓展和科学研究的深入,又对核磁共振系统提出了更高的要求。本论文主要针对目前常规商业化NMR谱仪存在的问题,开展了谱仪技术的数字化研究,在保证谱仪功能和性能的前提下,对谱仪结构进行了优化,降低了设计成本。该研究工作为NMR设备的普及奠定了基础。论文的主要内容如下:1.核磁共振系统数字化研究的趋势。首先,介绍了核磁共振技术的发展,指出应用数字化技术是谱仪发展的一个重要方向。在此基础上,针对本论文的主要工作论述了数字化研究的意义。2.基于USB总线的一体化核磁共振谱仪控制台的数字化研究。首先,在总结常规核磁共振谱仪结构的基础上,提出了全数字、一体化的谱仪控制台的设计思想。然后,详细介绍了该谱仪控制台的设计思路和硬件结构。该谱仪控制台采用USB总线,实现了外置式架构。此外,该谱仪控制台将控制/通讯部分、脉冲序列控制部分、射频发射部分与信号接收部分集成于一块板卡之上,还可以实现两种工作模式。最后,采用常规NMR序列实验较好地验证了整套系统的性能。可以看到,在谱仪结构简化的同时保证了性能指标,增强了灵活性,拓宽了应用范围。3.多通道磁共振信号接收方法的数字化研究。首先,讨论了近年来随着相控阵和并行成像技术的飞速发展对信号采集系统的要求。然后,针对现有技术的不足,提出了F_TDM多通道接收方法,并进行了
理论分析。最后,我们设计了基于PCI总线的四通道F_TDM数字接收机,通过成像实验论证了该方法的可行性。4.选择性激发脉冲的数字化研究。为提高射频功率放大器的效率,降低仪器的成本,我们提出了正负相位组合(P/N)选择性激发脉冲。首先,我们将P/N脉冲展开成傅立叶级数,分析了P/N脉冲和软脉冲在选择性激发上的等效性。然后通过密度矩阵的方法模拟了P/N脉冲的激发带宽曲线,并与软脉冲的激发带宽曲线作了比较。最后通过实验测量了P/N脉冲的激发带宽曲线,并给出了采用P/N脉冲选层获得的多层SE2D图像。5.磁共振系统数字化研究的总结与展望。总结了本论文的主要研究工作及其应用方向,对目前工作中存在的问题进行了分析并指出了改进的方向。【关键词】:核磁共振磁共振成像数字化研究一体化USB微处理器时分复用频分复用选择性激发正负相位组合脉冲 【学位授予单位】:华东师范大学 【学位级别】:博士 【学位授予年份】:2008 【分类号】:O482.532 【目录】:论文摘要6-8ABSTRACT8-12第一章绪论12-171.1核磁共振技术的发展概述12-131.2论文的主要研究内容及其意义13-15参考文献15-17第二章基于USB总线的一体化核磁共振谱仪控制台17-562.1核磁共振谱仪的结构及发展17-212.1.1常规PFT-NMR谱仪结构17-202.1.2一体化核磁共振谱仪结构20-212.2基于USB总线的一体化核磁共振谱仪控制台的数字化研究21-462.2.1控制/通讯单元
22-282.2.2脉冲序列控制单元28-312.2.3射频发射单元31-412.2.4信号接收单元41-462.3硬件设计46-482.4实验结果48-522.5总结52-53参考文献53-56第三章F_TDM多通道接收方法56-863.1磁共振信号的检测方法56-583.2相控阵与并行成像技术对信号采集系统的要求58-603.3F_TDM多通道接收方法的理论分析60-683.3.1时分复用(TDM)技术61-633.3.2频分复用(FDM)技术63-653.3.3F_TDM技术65-683.4F_TDM多通道接收机的硬件设计68-763.4.1放大与混频的设计69-703.4.2时分复用的设计70-713.4.3F_TDM信号接收与解调的设计71-753.4.4数字逻辑控制的设计75-763.5实验结果76-823.5.1耦合度76-783.5.2相位相干性78-803.5.3成像实验80-823.6讨论82-83参考文献83-86第四章正负相位组合(P/N)选择性激发脉冲86-1074.1选择性激发脉冲在磁共振成像中的应用86-894.2P/N脉冲的理论分析89-914.3等效性的验证91-984.3.1计算机模拟方法91-934.3.2相位93-944.3.3倾倒角94-974.3.4激发边带97-984.4硬件设计98-994.5实验结果99-1024.6讨论102-105参考文献105-107第五章总结与展望107-1101、基于USB总线的一体化核磁共振谱仪控制台107-1082、多通道磁共振信号接收方法的数字化研究1083、选择性激发脉冲的数字化研究108-110攻读博士学位期间发表的论文110-111攻读博士学位期间申请的国家发明专利111-112致谢112
本论文购买请联系页眉网站。
第四篇:研究蛋白质与蛋白质相互作用方法总结-实验步骤
研究蛋白质与蛋白质相互作用方法总结-实验步骤
蛋白质与蛋白质之间相互作用构成了细胞生化反应网络的一个主要组成部分,蛋白-蛋白互作网络与转录调控网络对调控细胞及其信号有重要意义。把原来spaces空间上的一篇蛋白质与蛋白质间相互作用研究方法转来,算是实验技巧分类目录的首篇。间相互作用的实验方法比较)
一、酵母双杂交系统
酵母双杂交系统是当前广泛用于蛋白质相互作用组学研究的一种重要方法。其原理是当靶蛋白和诱饵蛋白特异结合后,诱饵蛋白结合于报道基因的启动子,启动报道基因在酵母细胞内的表达,如果检测到报道基因的表达产物,则说明两者之间有相互作用,反之则两者之间没有相互作用。将这种技术微量化、阵列化后则可用于大规模蛋白质之间相互作用的研究。在实际工作中,人们根据需要发展了单杂交系统、三杂交系统和反向杂交系统等。Angermayr等设计了一个SOS蛋白介导的双杂交系统。可以研究膜蛋白的功能,丰富了酵母双杂交系统的功能。此外,酵母双杂交系统的作用也已扩展至对蛋白质的鉴定。
二、噬茵体展示技术
在编码噬菌体外壳蛋白基因上连接一单克隆抗体的DNA序列,当噬菌体生长时,表面就表达出相应的单抗,再将噬菌体过柱,柱上若含目的蛋白,就会与相应抗体特异性结合,这被称为噬菌体展示技术。此技术也主要用于研究蛋白质之间的相互作用,不仅有高通量及简便的特点,还具有直接得到基因、高选择性的筛选复杂混合物、在筛选过程中通过适当改变条件可以直接评价相互结合的特异性等优点。目前,用优化的噬菌体展示技术,已经展示了人和鼠的两种特殊细胞系的cDNA文库,并分离出了人上皮生长因子信号传导途径中的信号分子。
三、等离子共振技术
表面等离子共振技术(Surface Plasmon Resonance,SPR)已成为蛋白质相互作用研究中的新手段。它的原理是利用一种纳米级的薄膜吸附上“诱饵蛋白”,当待测蛋白与诱饵蛋白结合后,薄膜的共振性质会发生改变,通过检测便可知这两种蛋白的结合情况。SPR技术的优点是不需标记物或染料,反应过程可实时监控。测定快速且安全,还可用于检测蛋白一核酸及其它生物大分子之间的相互作用。
(另补充2:检测两种蛋白质之
四、荧光能量转移技术
荧光共振能量转移(FRET)广泛用于研究分子间的距离及其相互作用;与荧光显微镜结合,可定量获取有关生物活体内蛋白质、脂类、DNA 和RNA 的时空信息。随着绿色荧光蛋白(GFP)的发展,FRET 荧光显微镜有可能实时测量活体细胞内分子的动态性质。提出了一种定量测量FRET效率以及供体与受体间距离的简单方法,仅需使用一组滤光片和测量一个比值,利用供体和受体的发射谱消除光谱间的串扰。该方法简单快速,可实时定量测量FRET 的效率和供体与受体间的距离,尤其适用于基于GFP 的供体受体对。
五、抗体与蛋白质阵列技术
蛋白芯片技术的出现给蛋白质组学研究带来新的思路。蛋白质组学研究中一个主要的内容就是研究在不同生理状态下蛋白水平的量变,微型化,集成化,高通量化的抗体芯片就是一个非常好的研究工具,他也是芯片中发展最快的芯片,而且在技术上已经日益成熟。这些抗体芯片有的已经在向临床应用上发展,比如肿瘤标志物抗体芯片等,还有很多已经应用再眼就的各个领域里。
六、免疫共沉淀技术
免疫共沉淀主要是用来研究蛋白质与蛋白质相互作用的一种技术,其基本原理是,在细胞裂解液中加入抗兴趣蛋白的抗体,孵育后再加入与抗体特异结合的结合于Pansobin珠上的金黄色葡萄球菌蛋白A(SPA),若细胞中有正与兴趣蛋白结合的目的蛋白,就可以形成这样一种复合物:“目的蛋白—兴趣蛋白—抗兴趣蛋白抗体—SPA|Pansobin”,因为SPA|Pansobin比较大,这样复合物在离心时就被分离出来。经变性聚丙烯酰胺凝胶电泳,复合物四组分又被分开。然后经Western blotting法,用抗体检测目的蛋白是什么,是否为预测蛋白。这种方法得到的目的蛋白是在细胞内天然与兴趣蛋白结合的,符合体内实际情况,得到的蛋白可信度高。但这种方法有两个缺陷:一是两种蛋白质的结合可能不是直接结合,而可能有第三者在中间起桥梁作用;二是必须在实验前预测目的蛋白是什么,以选择最后检测的抗体,所以,若预测不正确,实验就得不到结果,方法本身具有冒险性。
七、pull-down技术
蛋白质相互作用的类型有牢固型相互作用和暂时型相互作用两种。牢固型相互作用以多亚基蛋白复合体常见,最好通过免疫共沉淀(Co-IP)、Pull-down技术或Far-western法研究。Pull-down技术用固相化的、已标记的饵蛋白或标签蛋白(生物素-、PolyHis-或GST-),从细胞裂解液中
钓出与之相互作用的蛋白。通过Pull-down技术可以确定已知的蛋白与钓出蛋白或已纯化的相关蛋白间的相互作用关系,从体外传路或翻译体系中检测出蛋白相互作用关系。
检测两种蛋白质之间相互作用的实验方法比较
研究蛋白-蛋白相互作用是理解生命活动的基础。蛋白质—蛋白质互作网络是生物信息调控的主要实现方式,是决定细胞命运的关键因素。检测蛋白质间相互作用的实验方法有哪些?(补充:研究蛋白质与蛋白质相互作用方法总结1)这些检测方法各有什么优缺点?总结如下。1.生化方法
●共纯化、共沉淀,在不同基质上进行色谱层析(需要补充)
●蛋白质亲和色谱 基本原理是将一种蛋白质固定于某种基质上(如Sepharose),当细胞抽提液经过改基质时,可与改固定蛋白相互作用的配体蛋白被吸附,而没有吸附的非目标蛋白则随洗脱液流出。被吸附的蛋白可以通过改变洗脱液或者洗脱条件而回收下来。
GST pull down技术:为了更有效的利用蛋白质亲和色谱,可以将待纯话的蛋白以融合蛋白的形式表达,即将”诱饵“蛋白与一种易于纯化的配体蛋白融合。例如与GST融合的蛋白再经过GSH的色谱柱时,就可以通过GST和GSH的相互作用而被吸附。当载有细胞抽提物经过柱时,就可以得到能够与“诱饵”蛋白相互作用的目标蛋白了。
Epitope-tag技术:表位附加标记技术 就是将附加的抗原融合到目的蛋白以检测目的蛋白的表达,同时还可以通过亲和层析法来纯化目的蛋白。缺点:表位附加标记可能会使融合蛋白不稳定,改变或使融合蛋白功能丧失。
以上两种方法都要共同的缺点:假阳性。实验所检测到的相互作用可能时由蛋白质所带电荷引起的,并不是生理性的相互作用;蛋白的相互作用可能并不是直接的,可是由第三者作为中介的;有时会检测到两种在细胞中不可能相遇却有极强亲和力的蛋白。因此实验结果还应经其他方法验证。
●免疫共沉淀 免疫共沉淀是以抗体和抗原之间的专一性作用为基础的用于研究蛋白质相互作用的经典方法。改法的优点是蛋白处于天然状态,蛋白的相互作用可以在天然状态下进行,可以避免认为影响;可以分离得到天然状态下相互作用的蛋白复合体。缺点:免疫共沉淀同样不能保证沉淀的蛋白复合物时候为直接相互作用的两种蛋白。另外灵敏度不如亲和色谱高。
●Far-Western 又叫做亲和印记。将PAGE胶上分离好的凡百样品转移到硝酸纤维膜上,然后检测哪种蛋白能与标记了同位素的诱饵蛋白发生作用,最后显影。缺点是转膜前需要将蛋白复性。
2.等离子表面共振技术(Surface plasmon resonance)该技术是将诱饵蛋白结合于葡聚糖表面,葡聚糖层固定于几十纳米厚的技术膜表面。当有蛋白质混合物经过时,如果有蛋白质同“诱饵”蛋白发生相互作用,那么两者的结合将使金属膜表面的折射绿上升,从而导致共振角度的改变。而共振角度的改变与该处的蛋白质浓度成线性关系,由此可以检测蛋白质之间的相互作用。该技术不需要标记物和染料,安全灵敏快速,还可定量分析。缺点:需要专门的等离子表面共振检测仪器。
3.遗传学方法 使某处发生缺损,检测对其他地方的影响。
●基因外抑制子。基因外抑制子是通过一个基因的突变来弥补原有基因的突变。比如相互作用的蛋白A和B,如果A发生了突变使两者不再相互作用,此时B如果再发生弥补性突变就可以使两者的相互作用恢复,那么B就是A的基因外抑制子。缺点:需要知道基因,要有表型,筛选抑制子比较费时。
●合成致死筛选 指两个基因同时发生突变会产生致死效应,而当每个基因单独发生突变时则无致死效应。用于分析两个具有相同重要蛋白之间的相互作用。
4.双杂交技术 原理基于真核细胞转录因子的结构特殊性,这些转录因子通常需要两个或以上相互独立的结构域组成。分别使结合域和激活域同诱饵蛋白和猎物蛋白形成融合蛋白,在真核细胞中表达,如果两种蛋白可以发生相互作用,则可使结合域和激活域在空间上充分接近,从而激活报告基因。缺点:自身有转录功能的蛋白会造成假阳性。融合蛋白会影响蛋白的真实结构和功能。不利于核外蛋白研究,会导致假隐性。
5.荧光共振能量转移技术 指两个荧光法色基团在足够近(<100埃)时,它们之间可发生能量转移的现象。荧光共振能量转移技术可以研究分子内部对某些刺激发生的构象变化,也能研究分子间的相互作用。它可以在活体中检测,非常灵敏,分辩率高,能够检测大分子的构象变化,能够定性定量的检测相互作用的强度。缺点 此项技术要求发色基团的距离小于100埃。另外设备昂贵,还需要融合GFP给蛋白标记。
此外还有交联技术(cross-linKing),蛋白质探针技术,噬菌体展示技术(Phage display)以及生物信息学的方法来检测蛋白质之间相互作用
Western杂交是将蛋白质电泳、印迹、免疫测定融为一体的特异性蛋白质的检测方法。其原理是:生物中含有一定量的目的蛋白。先从生物细胞中提取总蛋白或目的蛋白,将蛋白质样品溶解于含有去污剂和还原剂的溶液中,经SDS-PAGE电泳将蛋白质按分子量大小分离,再把分离的各蛋白质条带原位转移到固相膜(硝酸纤维素膜或尼龙膜)上,接着将膜浸泡在高浓度的蛋白质溶液中温育,以封闭其非特异性位点。然后加入特异抗性体(一抗),膜上的目的蛋白(抗原)与一抗结合后,再加入能与一抗专一性结合的带标记的二抗(通常一抗用兔来源的抗体时,二抗常用羊抗兔免疫球蛋白抗体),最后通过二抗上带标记化合物(一般为辣根过氧化物酶或碱性磷酸酶)的特异性反应进行检测。根据检测结果,从而可得知被检生物(植物)细胞内目的蛋白的表达与否、表达量及分子量等情况。
Western杂交方法灵敏度高,通常可从植物总蛋白中检测出50ng的特异性的目的蛋白
第五篇:1蛋白质的结构与功能习题
第一章
一、名词解释
蛋白质的结构与功能
1、氨基酸的等电点
2、肽键
3、肽单位
4、蛋白质一级结构
5、蛋白质二级结构
6、α-螺旋
7、β-折叠
8、超二级结构(模体)
9、结构域
10、蛋白质变性
11、蛋白质复性
12、蛋白质三级结构
13、蛋白质四级结构
14、别构效应
二、填空题
1. 组成蛋白质的氨基酸分子结构中含有羟基的有______________、______________、______________。2. 氨基酸在等电点(pI)时,以______________离子形式存在,在pH>pI时以______________离子形式存在,在pH
3. 组成蛋白质的氨基酸中,含有咪唑环的氨基酸是______________,含硫的氨基酸有______________和______________。
4. 蛋白质具有两性电离性质,大多数蛋白质在酸性溶液中带______________电荷,在碱性溶液中带______________电荷。当蛋白质处在某一pH溶液中时,它所带正负电荷数相等,此时的蛋白质成为______________,该溶液的pH称为蛋白质的______________。
5. 蛋白质二级结构的形式主要有______________、______________、______________和______________。6. 蛋白质中的______________、______________和______________3种氨基酸具有______________特性,因而使蛋白质在280nm处有最大吸收值。
7. α-螺旋结构是由同一肽链的______________和______________间的______________键维持的,螺距为______________,每圈螺旋含______________个氨基酸残基,每个氨基酸残基沿轴上升高度为______________。天然蛋白质分子中的α-螺旋大都属于______________手螺旋。
8. 球状蛋白质中有______________侧链的氨基酸残基常位于分子表面而与水结合,而有______________侧链的氨基酸残基位于分子的内部。
9. 维持蛋白质的一级结构的化学键有______________和______________;维持二级结构靠______________;维持三级结构和四级结构靠______________键,其中包括______________、______________、______________和______________。
+10. 谷氨酸的pK1(α-COOH)=2.19,pK(=9.67,pK(=4.25,谷氨酸的等电点为______________。2α-NH3)RR)11. 一个α-螺旋片段含有180个氨基酸残基,该片段中有______________圈螺旋,该α-螺旋片段的轴长为______________。
12. 可以按蛋白质的相对分子质量、电荷及构象分离蛋白质的方法是______________。
13. 血红蛋白(Hb)与氧结合的过程呈现______________效应,是通过Hb的______________实现的。14. 组成蛋白质的氨基酸中侧链pK接近中性的氨基酸是______________。无游离(自由)氨基的氨基酸是______________。
15. 在蛋白质分子中,一个氨基酸的α碳原子上的___________与另一个氨基酸α碳原子上的___________脱去一分子水形成的键叫___________,它是蛋白质分子中的基本结构键。
16. 丝氨酸侧链特征基团是____________;半胱氨酸的侧链基团是____________;组氨酸的侧链基团是____________。
17. 蛋白质颗粒表面的____________和____________是蛋白质亲水胶体稳定的两个因素。18. 氨基酸的结构通式为___________________。
19. 在生理pH条件下,蛋白质分子中,____________和____________氨基酸残基的侧链几乎完全带负电,而____________和____________氨基酸残基侧链完全荷正电,而____________的侧链则部分带正电荷(假设该蛋白质含有这些氨基酸组分)
20. 两条相当伸展的肽链(或同一条肽链的两个伸展的片段)之间形成氢键的结构单元称为__________。21. 用电泳方法分离蛋白质的原理是在一定的pH条件下,不同蛋白质的____________、____________和____________不同,因而在电场中移动的____________和____________不同,从而使蛋白质得到分离。
三、1. 单项选择题
在生理pH7的条件下,下列哪种氨基酸带正电荷?()A.丙氨酸 B.酪氨酸 C.赖氨酸 D.甲硫氨酸
2. 下列有关氨基酸的叙述,哪个是错误的?()A.酪氨酸和苯丙氨酸都含有苯环 B.酪氨酸和丝氨酸都含羟基 C.亮氨酸和缬氨酸都是分支氨基酸 D.脯氨酸和酪氨酸都是非极性氨基酸
3. 蛋白质分子在280nm处有吸收峰,它主要是由哪种氨基酸引起都?()A.谷氨酸 B.色氨酸 C.苯丙氨酸 D.组氨酸
4. 天然蛋白质中含有的氨基酸的结构()。A.全部是L-型 B.全部是D-型
C.部分是L-型,部分是D-型 D.除甘氨酸外都是L-型
5. 天然蛋白质中不存在的氨基酸是()。A.半胱氨酸 B.瓜氨酸 C.丝氨酸 D.甲硫氨酸
6. 蛋白质都变性伴随由结构上的变化是()。A.肽链的断裂
B.氨基酸残基的化学修饰 C.一些侧链基团的暴露 D.氨基酸排列顺序的改变
7. 在寡聚蛋白质中,亚基间的立体排布、相互作用以及接触部位间的空间结构称之为()。A.三级结构 B.缔合现象 C.四级结构 D.别构现象
8. 每分子血红蛋白可结合氧的分子数是多少?()A.1 B.2 C.3 D.4 9. 蛋白质典型的α-螺旋为下列哪一种类型?()A.2.610 B.310 C.3.613 D.4.416
10. 下列关于蛋白质结构叙述不正确的是()。A.三级结构具有空间构象
B.各种蛋白质均具有一、二、三和四级结构 C.无规卷曲是在一级结构基础上形成的 D.α-螺旋属于二级结构
11. 关于蛋白质分子三级结构的描述,其中错误的是()。A.天然蛋白质分子均有这种结构
B.具有三级结构的多肽链都具有生物学活性 C.三级结构的稳定性主要是次级键维系 D.亲水基团聚集在三级结构的表面
12. 具有四级结构的蛋白质特征是()。A.分子中必定含有辅基 B.含有两条或两条以上的多肽链 C.每条多肽链都具有独立的生物学活性 D.依赖共价键维系蛋白质分子的稳定
13. 下列关于肌红蛋白的叙述,哪一个是错误的?()A.肌红蛋白是由一条多肽链和一个血红素辅基组成的 B.肌红蛋白含有高比例的α-螺旋 C.血红素位于两个His残基之间
D.大多数非极性侧链位于分子表面,所以肌红蛋白不溶于水
14. 血红蛋白的氧结合曲线形状是()。A.双曲线 B.抛物线 C.S形曲线 D.直线
15. 关于二级结构叙述哪一项不正确()。
A.右手α-螺旋比左手α-螺旋稳定,因为左手α-螺旋中L-构型氨基酸残基侧链空间位阻大,不稳定; B.一条多肽链或某多肽片断能否形成α-螺旋,以及形成的螺旋是否稳定与它的氨基酸组成和排列顺序有极大关系;
C.多聚的异亮氨基酸R基空间位阻大,因而不能形成α-螺旋;
D.β-折叠在蛋白质中反平行式较平行式稳定,所以蛋白质中只有反平行式。
16. 形成稳定的肽链空间结构,非常重要的一点是肽键中的四个原子以及和它相邻的两个α-碳原子处于()。
A.不断绕动状态
B.可以相对自由旋转
C.同一平面
D.随不同外界环境而变化的状态
17. 血红蛋白的氧合动力学曲线呈S形,这是由于()。A.氧可氧化Fe(Ⅱ),使之变为Fe(Ⅲ)
B.第一个亚基氧合后构象变化,引起其余亚基氧合能力增强
C.这是变构效应的显著特点,它有利于血红蛋白质执行输氧功能的发挥 D.亚基空间构象靠次级键维持,而亚基之间靠次级键缔合,构象易变 18. 蛋白质变性是由于()。A.一级结构改变
B.空间构象破坏
C.辅基脱落
D.蛋白质水解
19. 当蛋白质处于等电点时,可使蛋白质分子的()。A.稳定性增加
B.表面净电荷不变
C.表面净电荷增加
D.溶解度最小
20. 蛋白质分子中-S-S-断裂的方法是()。A.加尿素
B.透析法
C.加过甲酸
D.加重金属盐
21. 关于蛋白质分子三级结构的描述,其中错误的是()。A.天然蛋白质分子均有的这种结构 B.具有三级结构的多肽链都具有生物学活性 C.三级结构的稳定性主要是次级键维系 D.亲水基团聚集在三级结构的表面 E.决定盘曲折叠的因素是氨基酸残基
22. SDS凝胶电泳测定蛋白质的相对分子质量是根据各种蛋白质()。A.在一定pH条件下所带净电荷的不同
B.分子大小不同
C.分子极性不同
D.溶解度不同
23. 蛋白质一级结构与功能关系的特点是()。A.相同氨基酸组成的蛋白质,功能一定相同。B.一级结构相近的蛋白质,其功能类似性越大。
C.一级结构中任何氨基酸的改变,其生物活性即消失。不同生物来源的同种蛋白质,其一级结构相同
D.不同生物来源的同种蛋白质,其一级结构相同。
E、以上都不对。
24. “分子病”首先是蛋白质什么基础层次结构的改变()。A.一级
B.二级
C.超二级
D.三级
E.四级
25. 70%的酒精消毒是使细菌蛋白质()。A.变性
B.变构
C.沉淀
D.电离 E.溶解
四、是非题
1.氨基酸与茚三酮反应都产生蓝紫色化合物。()
2.因为羧基碳和亚氨基氮之间的部分双键性质,所以肽键不能自由旋转。()3.蛋白质是两性电解质,它的酸碱性质主要取决于肽链上可解离的R基团。()4.维持蛋白质三级结构最重要的作用力是氢键。()5.蛋白质在等电点时,静电荷为零,溶解度最小。()
6.蛋白质分子中个别氨基酸的取代未必会引起蛋白质活性的改变。()
7.镰刀红细胞贫血病是一种先天性遗传病,其病因是由于血红蛋白的代谢发生障碍。()8.在蛋白质和多肽中,只有一种连接氨基酸残基的共价键,即肽键。()
9.肌红蛋白和血红蛋白的亚基在一级结构上具明显的同源性,它们的构象和功能也很相似,因此这两种蛋白的氧结合曲线也是十分相似的。()
10.蛋白质的亚基(或称亚单位)和肽链是同义的。()11.蛋白质的α-螺旋结构通过侧链之间形成氢键而稳定。()12.构成天然蛋白质的氨基酸,其D-构型和L-型普遍存在。()
13.构型的改变必须有旧的共价健的破坏和新的共价键的形成,而构象的改变则不发生此变化。()14.β-折叠是主肽链相当伸展的结构,因此它仅存在于某些纤维状蛋白质中。()15.天然氨基酸都有一个不对称α-碳原子。()
16.蛋白质的变性是其立体结构的破坏,因此常涉及肽键的断裂。()17.双缩脲反应是肽和蛋白质特有的反应,所以二肽也有双缩脲反应。()
18.同源蛋白质中,保守性较强的氨基酸残基在决定蛋白质三维结构与功能方面起重要作用,因此致死性突变常常与它们的密码子突变有关。()
19.血红蛋白与肌红蛋白均为氧载体,前者是一个典型的别构(或变构)蛋白,因而与氧结合过程中呈现协同效应,而后者却不是。()
20.溶液的pH可以影响氨基酸的等电点。()
21.具有四级结构的蛋白质,当它的每个亚基单独存在时仍能保持蛋白质有的生物活性。()22.肽键上所有原子和它两端的Cα都位于同一刚性平面上。()23.β转角是由四个连续的氨基酸残基构成的。()
五、问答题
1.蛋白质有哪些重要功能?
2.简述蛋白质的α-螺旋和β-折叠的结构要点。
3.稳定蛋白质结构的化学键有哪些?它们分别在哪一级结构中起作用?
4.试比较Gly、Pro与其它常见氨基酸结构的异同,它们对多肽链二级结构的形成有何影响? 5.试述蛋白质结构与功能的关系。(包括一级结构、高级结构与功能的关系)
6.动物体内血红蛋白和肌红蛋白如何协同完成氧的运输与储存?以血红蛋白和肌红蛋白为例论述蛋白质空间结构与功能的关系。
7.镰刀形细胞贫血病的分子病理学机制是什么?以此为例论述蛋白质一级结构与功能的关系。8.通过下面信息确定一个蛋白的亚基组成:
凝胶层析确定分子质量:200kDa SDS-PAGE确定分子质量:100kDa 加巯基乙醇的SDS-PAGE确定分子质量:40kDa和60kDa。
9.胃液(pH=1.5)的胃蛋白酶的等电点约为1,远比其它蛋白质低。试问等电点如此低的胃蛋白酶必须存在有大量的什么样的官能团?什么样的氨基酸才能提供这样的基团?
10.已知氨基酸平均分子量为120Da。有一种多肽的分子量是15120Da,如果此多肽完全以α-螺旋形式存在,试计算此α-螺旋的长度和圈数。