分数乘法教学反思
分数乘法教学反思1
《分数乘法》这一单元学习的主要内容有:分数乘整数、分数乘分数以及解决有关简单的实际问题。其中分数乘法(一)的主要内容是求几个相同分数的和,将分数乘法与整数乘法沟通,并探索分数乘整数的计算方法。在教学如何引导学生理解分数乘法的意义和计算方法时,我进行了一些思考。
一、利用学生已有的知识水平与生活经验,实现新知识的迁移。
在教学分数和整数相乘时,根据学生的已有的知识基础,课前复习设计了复习整理整数乘法的意义和同分母分数的加法的计算法则。在教学分数和整数相乘的计算法则时,我指导学生联系旧知再小组中自行探究,例如:教学1/5×3,首先要让学生明确,要求3个1/5相加的和,也就是求1/5+1/5+1/5是多少,并联系同分母分数加法的计算得出1+1+1/5,然后让学生分析分子部分3个1连加就是3×1,并算出结果,在此基础上,引导学生观察计算过程,特别是1/5×3与3×1/5之间的联系,从而理解为什么“用分子和整数相乘的积作分子,分母不变”。接着让学生自己尝试练一练3/7×2,然后进行集体交流,理解分数与整数相乘的计算方法。
二、在具体的情境中,引导学生理解分数乘法的意义。
通过具体情境,来呈现对分数乘法意义的多种解释,帮助学生理解分数乘法的意义则显得重要。如:教科书第22页第1题:一个图片占一张彩纸的1/5,3个图片占这张彩纸的几分之几?教学时,一定要让学生明白是求3个1/5的和是多少?,虽然,学生列出1/5×3或3×1/5解决了问题,但一定要让学生联系本题情境理解算式所表示的意义。
三、分数乘法的教学中,在书写顺序中应该不区分被乘数与乘数。
小学数学第一学段学习乘法的认识时就取消了乘数和被乘数的区别,3×5既可以解释为3个5,也可以解释为5个3,学生借助具体情境认识到乘法是几个相同加数的和的简便运算。本册教材第22页第1题:一个图片占一张彩纸的1/5,3个图片占这张彩纸的几分之几?教学时,通过沟通不同解决方法之间的联系(图解、加法解、乘法解),将整数乘法迁移到分数乘整数,理解题目的意思就是求3个1/5的和是多少?),让学生列式可以是1/5×3也可以是3×1/5。然后运用分数乘整数的意义解释计算的过程,使学生理解计算的道理,初步感知挖掘数学概念本身方法的重要性。
总之,在上数学课时尽量地充分调动学生的各种感官,提高学生的学习兴趣,养成良好的学习习惯,使学生学会转变为会学,真正掌握数学学习的方法。
这是一节计算课,看似很简单。可是,从学生的作业反馈情况,并不理想。从学生第一次完成的作业来看,大部分学生都是在结果上约分,这样就导致部分学生没约到最简、或没约分。所以我应出示对比练习,让学生体会在过程上约分的优越性与简便性。从而养成优化方法的习惯。
分数乘法教学反思2
1、注重启发引导与学生的主动参与相结合
在本节课中,我信任学生对学好数学的愿望和潜能,把学习的主动权交还给学生,同时创设愉快、民主、活泼、开放的课堂气氛,尊重学生的人格,尊重学生对学习方法的选择,鼓励学生用自己的方法去掌握数学知识。如在推导分数乘法的意义过程中,让学生通通过计论、交流,发现分数乘法的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算等。在课堂中,我也积极地创设出有利于学生主动参与的教学情境,如写出几道分数乘法的计算题,让学生口述各题的意义,从而激发学生的学习兴趣,充分地调动学生学习积极性,给学生留有思考和探索的余地,让学生能在独立思考与合作交流中解决学习中的问题。
2、面向全体又尊重学生的个性差异,促进全面发展
新课标指出:人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。在教学中,我注意面向全体学生,使所有学生在数学知识掌握、数学能力发展、思想品德及个性心理品质养成等方面都能有所发展。同时,由于学生的个性素质存在差异,教学中,我也尊重了学生的这种个性差异,要求不同的学生达到不同的学习水平。在本节课中,我有意识地提问学困生,直到他们都懂了才放手,这样既解决了学困生学习难的问题,帮助他们克服了学习上的自卑心理。。同时,对于一些学有余力的学生,我也为他们提供了发展的机会,难度比较大的题,让他们来解决或去帮助有需要的同学,这样既防止他们产生自满情绪,又让他们始终保持着强烈的求知欲望,使他们在完成这种任务的过程中获得更大的发展。
分数乘法教学反思3
这节整理复习课我对分数乘法知识进行一次梳理,给学生建立一个完整的分数乘法知识体系,巩固对乘法知识的掌握和理解应用。
1、讲练结合,发挥学生主体地位
本节课是一节复习练习课,内容学生都已经基本掌握,所以,我放手让学生自想、自做、自讲、自论。先是学生自己思考,独立完成,然后上台解答,自己讲解方法,如有疑问可以自由进行交流,最后集体订正。整个过程都是学生在互相交流、讨论、讲解,每个学生都是那么的认真、积极,似乎比老师问、讲兴趣更高。在没有太大难度的练习题中,一直采用这种方式,学生学的主动、积极。就连学困生也很主动地进行参与。
2、小组合作,培(养学生解决问题的能力
让学生进行解决简单问题的练习。在练习中,通过小组间的合作,优生带差生的方式,在小组合作中,我还重点培养优生的讲题能力,引导优生如何利用实践操作帮助学困生进一步理解和掌握解决关于倍的知识和技能。从而为课堂节约了时间,使老师有了更多的时间去关注学困生。
由于本节课主要是针对全体学生的一次整理复习,所以设计上并没有出现太大难度的题型,使得优生有点浪费时间。在以后练习课中,不仅要考虑到学困生的能力,还要考虑到优生的特点,使每个学生都有大的收获。
分数乘法教学反思4
由“搅乱”引起的反思。
今天象往常一样,在学生理解了一个数乘分数的意义之后,我想继续引导学生,通过画图去探究发现一个数乘分数计算法则的时候。一些同学嚷嚷开了“老师我会!”“老师我知道!”,“是用分子相乘的积作分子,用分母相乘的积作分母”“理由是……”……
在教学中,我们经常会发生这样的现象:老师刚刚开了一个头,一些学生就会把后面的知识讲出来,结果一下子把老师事先设计的思路被学生给“搅乱”了。曾经我有过这样的烦恼和无奈:心理总是责备学生的“插嘴”,觉得这样以来使大多数学生缺少了自主探究克服困难的成功体验,也使我的'教学没了层次,讲课缺乏激情。
对此,我也冷静的思考过,分析其原因:一方面,自己已经习惯做好充分的准备去面对毫无准备的学生,居高临下地将学生的思维牵进预设的圈内,而一旦放手让学生自主探究开了,教师就很难面对自己无法预测的学生众多的想法,缺乏教学的机智。更重要的方面,是教学理念上的差距。其实当他们把自己所掌握的知识告诉其他同学与老师的时候,他们是在享受学习给自己带来的骄傲。并且都是以极大的热情,把自己掌握知识的来龙去脉尽其所能告诉老师与同学。这既是对自身学习进行再思考的过程,也是给其他同学以激励的过程。那么我们教师还有什么理由责备学生、压抑学生呢?
现在的学生头脑灵活,有思想,现有的知识起点也是比较高的,这样对教师自身的素质提出了更高要求。因此,我们老教师应该适应新时代的发展,真正把自己主导下的课堂学习建设成为可供学生交流学习心得,整合学习资源,形成学习能力的促进平台。
分数乘法教学反思5
一、为什么分子相成、分母相乘。
应该说,让学生结合图形理解为什么分母相乘是直观的,从课堂的1/5来看,学生现有5份中的1份,现在1/5的1/2就是把这一份平均分成2份取其中的1 份,那么要平均分成相等的几份,就相当于是把每一份都分成2份,5×2就是10,5×4就是20。那么为什么是分子相乘呢?在自己再次修改之后进行教学的时候,发现2/5×2/3为什么分子是2×2,其实第一个2表示是有2竖,第二个2表示是有2行,2×2就是2/5×2/3涂出的部分。
二、如何从分数乘整数到分数乘分数。
分数乘整数有几个数的几分之几和几个几分之几相加两种意义,到底哪一种意义可以迁移到分数成分当中来呢?1/5的1/2,感觉好像是一个数的几分之几?那么是否可以从这里入手,那么时候可以从3的1/2迁移到1/5的1/2呢?感觉不是非常的好,不利于分数图形的理解。那么情景图中的1/5×3理解成3个1/5,那么1/5×1/2就可以理解成1/2个1/5。比较之后,最终我选择了1/5的3倍来理解,1/5的1/2。进行迁移。
三、给学生一个自主的机会。
练一练在第2小题完成之后,安排了这样一个环节:分数相乘的积一定小于每一个乘数吗?在教学中,两个班,一个班一带而过,一个班花大力气让学生思考,让学生先思考,再从这道题目当中找出有哪几道题是小于的,那几道题目不是的?再让学生观察为什么有的是,有的不是?不是的原因是什么?观察发现当乘大于1的数的时候,就是大于另一个乘数了。这时候引导学生以前有没有这样的结论,小数当中也是如此,让学生把新知建构到旧知当中。
比较两次不同的教学过程,关于时间与效率两者之间的矛盾,该如何有效地进行处理,的确是一个值得去探究的问题。
分数乘法教学反思6
分数乘法这一单元内容包括:分数乘法的意义和计算方法以及分数乘法的应用。内容不仅多并且较抽象,学生理解较难。
分数乘法的意义在整数乘法的基础上有了进一步的拓展和延伸。特别是对一个数乘分数的理解上是这一单元的重点和难点。利用图形使抽象的问题直观化,在本单元教学中就显得重要了。
回顾分数乘法这一单元教学的备课时一直被如何处理分数乘法意义所困惑。后来一想,如果从数学应用的角度来看,学生只要能从具体的实际问题中判断两个数据之间存在相乘的关系就可以了,而这个相乘的关系在本单元有了新的拓展,即“求几个相同加数的和”、“求一个数的几倍是多少”和“求一个数的几分之几是多少”。
在教学分数和整数相乘时,根据学生的已有的知识基础,引导学生回忆复习整理整数乘法的意义和同分母分数的加法的计算法则。另外科学的学习方法,能提高学习效率,能使学生的智慧得到充分发挥。
在教学分数和整数相乘的计算法则时,我指导学生从读一读,说一说,练一练,想一想,议一议五个方面入手,例如:教学3/10×5,首先要让学生明确,要求5个3/10相加的和,也就是求3/10+3/103/10+3/10+3/10是多少,并联系同分母分数加法的计算得出3+3+3+3+3/10,然后让学生分析分子部分5个3连加就是3×5,并算出结果,在此基础上,引导学生观察计算过程,特别是3/10×5与5×3/10之间的联系,从而理解为什么“同分子和整数相乘的积作分子,分母不变”。接着让学生自己尝试练一练6×3/10,然后进行集体交流,看一看能不能在相乘之前的哪一步先约分,比一比在什么时候约分计算可以简便一些,从而明白为了简便,能约分的先约分。
在数量关系的理解时,紧紧依托于图像的直观性,这就是我们通常理解的图形与数量的结合。变抽象为直观,用直观的图示帮助学生理解抽象的文字表述,再逐步使学生脱离直观上升到抽象语句的规律性理解和掌握。例如在教学一个数乘分数的意义时,就要引导学生用图示的方式方法理解把一个数平均分成了几份,表示这样的几份,就是求这个数的几分之几是多少,反之求一个数的几分之几是多少,直接用乘法来列式即可。同时引导学生直观的感知到了积小于被乘数的道理。下一步教学计算时更是要借助图示来帮助理解等于几的道理。用图形表征让学生充分观察理解分数乘分数的这一比较复杂的计算过程。引导归纳得到一个规律性的结论:分子相乘做积的分子,分母相乘做积的分母,能约分的要先约分才比较简便。
在分数乘法的应用时,主要是用画线段图的方式来帮助学生建立数量与分数之间的对应关系。进一步使学生理解和明确分数乘法的应用就是对分数乘法意义的拓展和深化。
数学的理解是离不开图形的辅助的。图形和数量是数学学习的一对相互依附的对象。要学好数学就要教师帮助学生建立用一定的符号、图形来翻译抽象的数学内涵,变深邃为简约,更有利于学生的深刻理解和掌握,为进一步的学习数学知识积累数学活动的经验吧。
在教学《分数乘法》时,我重点让学生掌握分数乘法的计算方法,坚持每天进行口算训练。对于求一个数的几分之几是多少的应用题,能联系一个数乘分数的意义进行教学,注重加强分析题目的数量关系,明确把谁看作单位“1”,但也忽略了单位化聚的方法复习以及一些重点评讲。以后应从以下几点来加强日常教学。
1、在教学中多进行题组训练,突破难点,让学生充分感知提炼方法。
2、教学中要注意用线段图表示题目的条件和问题,这有利于学生弄清以谁为标准,让学生用画图的方式强化理解一个分数的几分之几用乘法计算。
3、帮助学生理解“一个数的几分之几”与“一个数占另一个数的几分之几”的不同。
4、加强单位化聚方法的复习,如时=( )分 吨=( )千克。
通过努力结合现实的问题情境,引导学生理解分数乘法的意义。练习计算是比较单调和枯燥的,为了避免单纯的机械计算,将计算学习与解决问题有机结合。创设学生喜欢的实际情境,引导学生根据实际问题的数量关系,列出算式。学生很容易结合整数乘法的意义,列出乘法算式。这样处理,既有利于学生主动地把整数乘法的意义推广到分数中来,即分数和整数相乘的意义与整数乘法的意义相同,都是求几个相同加数和的简便运算,又可以启发学生用加法算出3/10×5的结果。
总之,在上数学课时尽量地充分调动学生的各种感官,提高学生的学习兴趣,养成良好的学习习惯,使学生学会转变为会学,真正掌握数学学习的方法。
分数乘法教学反思7
今天教学分数乘法应用题,在昨天的预备教学时,我便让学生做了预备题,即写出一句话,让学生先找出单位“1”,再让学生写出数量关系式,通过几题的训练,我觉得学生已经掌握了这种题型的数量关系,开始教学学生例题,学生学得也不错,然后让学生口述练一练的单位“1”与数量关系式,最后让学生解答,学生也顺利解答出来,但在中午所做的家庭作业中不少学生还出现了明显的错误。
中午做学生对19页的练习三第五题有大约二十个同学分不清单位一或数量关系而出错;下午做补充习题时也有学生在填单位“1”时出错,从这儿可以看出,我班学生对单位“1”的确定及数量关系式的确定还存在一定的缺陷,需要加强这方面的练习。如何准确定位单位“1”是一个关键问题,同时,现在还仅仅学习分数乘法应用题,学生还不会混淆、出大错,因此,应在这时让学生进行强化训练,力争使每一个学生都能准确找出单位“1”,定位数量关系式,这样,等到学生学习分数除法应用题与稍复杂的分数应用题时才不会出错。
我想,教学之余,还是多让学生找一些题目中的单位“1”,确定出数量关系式。这样,对学生以后学习分数应用题会有很大的帮助
分数乘法教学反思8
在教学较复杂的分数乘法应用题时,我是这样设计本节课教学过程的:
1、复习时我设计了找单位“1”和写数量相等关系式的练习,是为了学习新课做准备。
2、出示新课,让学生找单位“1”,画线段图分析。
引到学生想:画图时,先画什么,再画什么?怎样画?
3、根据线段图,写关系式。
4、根据关系式列算式,并解答。
学生根据自己的想法,列出了两种不同的数量关系式,根据不同的关系式,列出了两种不同的算式。但是,在讲解算式的每一步算的是什么时,有一部分人对第二种算法中括号部分算的是什么,有点模糊,不能清楚地表述出来。在教学后,我真正感觉到,要让学生理解一个分率表示什么量的重要性,虽然在教学中也注意到了这点,但因为单位1加几分之几这样的分率是学生第一次接触到,因此要更为重视与注意引导学生理解它们的含义。
本课通过教学设计与实践操作,并反思教学过程,颇有收获。在以后的教学中,我要更深入地研究理解教材,把握其重难点,更深入地研究理解学生,考虑他们的学习方式,理解不同的教学设计对学生成长的利弊,力求使教学设计得更有利于他们去体验、去理解,注重对学生学习方法、学习情感的培养,从而真正促进学生的发展,培养他们良好的学习与思维品质。
分数乘法教学反思9
本单元的例3是通过求一个数的几分之几是多少的实际问题,让学生进一步完善对分数乘法意义的认识,巩固对分数与整数相乘的计算方法的理解。教学时我力求做到以下几点:
(1)难点分散。
本节课学生对例3分数句的理解是一个难点,教学时我用多媒体创设情境吸引学生的注意力,借助直观图的形象帮助学生理解分数句,分散了难点。在完成例3教学的过程中,发现学生在我的有效引导下对数量关系的叙述还是正确、清晰的,但在完成第14题填空时,特别是第2题还是出现了错误。于是我又结合线段图让学生来理解数量间的关系。
(2)注重学生的参与。
整堂课的教学,我都让学生观察、分析、比较,鼓励学生互相讨论,大胆的说关系式,大胆的尝试练习,发现每一位学生都积极认真的参与学习。
尽管如此,也有不尽人意的地方。我发现这一段的学习,都是分数乘法,学生更多的时候不认真审题,分析数量关系,往往想也不想看到分数就与整数相乘,就知道列乘法算式,好像在套模式。看来学生对分数乘法的认识还是雾里看花。我想,这儿还没有分数除法应用题,变式的形式太有限了,只有与除法进行对比练习,学生才会感到困难。看来得考虑补充些对比练习。
分数乘法教学反思10
分数乘法简便计算,是学生学习了分数加减法混合运算,整数、小数的简便计算的基础上进行学习的,然而,原以为学生已学过了整数和小数的简便运算,分数乘法简便运算又只应用乘法交换律、结合律和分配律,学生掌握肯定不错。事实证明上课效果还不错,可是作业中错误率极高。
回顾了这节课的教学,整节课通过学生预习反馈,自主举例验证,尝试解决,交流讨论,自主总结等方法,发展学生的自主学习解决问题能力。却忽略了让学生理解知识这个最根本的教学目标。问题主要有以下三种:一是混合运算和简便计算题混淆,乱用简便运算。二是分配律用错的最多,原先的整数、小数利用乘法分配率进行简便计算就是简便计算的难点,碰到分数出错率就更多了。三是分数加减法混合运算与分数乘法计算混淆。
针对这些现象我采取了以下措施:一引导学生回顾分数乘法和加减法的意义,理解各自的意义;二联系分数乘法和加减法各自的计算方法,并采取针对性练习;三复习整数、小数的与之相关的简便运算,并对常见的分数乘法简便运算的题型予以分类整理,辅之对应练习;四是加强审题的训练,让学生学会判断。五是加强对比练习,认真分析哪些可以简便,哪些不能简便。其实最主要还是抓班级里学习有困难的学生,因为这些错误类型几乎都是由他们所创。
分数乘法教学反思11
分数乘除法应用题是较复杂的分数应用题的基础,教者在本节课中的目的主要是为了让学生弄清分数乘法和除法应用题的区别和联系,能够应用“单位“1”的量×分率=比较量“这个数量关系,根据已知量和未知量来判断是分数乘法还是除法应用题。教材为此也安排了例2这个例题:
例2:长江流域约有120种矿产资源,可供开发的占。长江流域的矿产资源种数约占全国的30。3756
(1)长江流域可供开发的矿产资源有多少种?
(2)全国的矿产资源有多少种?
其中第(1)题是一道分数乘法应用题,第(2)题是一道分数除法应用题。教材的编排意图是通过两题的比较,去找到二者的区别和联系。为此,我在教学中的流程也很简明:先学生自己两道题,然后再讨论两道题的联系和区别,最后教师总结。整个过程充分体现了学生的主动性,充分给予时间和空间,让学生参与了知识的形成过程,体验成功的快乐。
然而,我教学中却发现:学生要发现两道题的区别和联系并不容易,课后从学生的作业情况看效果也不是很理想。是什么阻碍了学生知识的形成呢?我在课后经过分析,认为是教材编排的这个例题对于本课的知识目标形成的针对性不强,或者说是例题中包含的其他东西太多干扰了学生对两题的对比。
首先,两道题中包含了3个量即长江流域的矿产资源、长江流域可供开发的矿产资源和全国的矿产资源。这三个量中有两个量都是单位“1”,虽然这并没有超出学生的现有的认知水平,但是却使问题复杂化了,对于本课的教学目的起到了一个干扰作用。
其次,本例中的第(1)题中的单位“1”的量是长江流域的矿产资源,是已知量。而第(2)题中的单位“1”的量是全国的矿产资源,是未知量。两道题的数量关系分别是:长江流域的矿产资源×=长江流域可供开发的资源和全国的矿产资源×30=长江流域的矿产资3756源。两道题的数量关系和单位“1”的量都不一样,也不利于学生比较。这也造成本节课目标达成的难度增加。
最后,例题中文字较多,特别是几个量的文字叙述较多,这也给部分学生,特别是理解能力较差的学生增添了麻烦,他们也许要为弄清题意费上一阵时间。
综上所述,我认为教材在编写这个例题也许太过注重联系生活实际等方面的原因,造成对本课的目标达成难度增大。这个例题是不合适的。为此我设计了这样一个区别比较的例题:
例2:(1)果园里有60果桃树,李树是桃树的,李树有多少棵?
(2)果园里有60果李树,李树是桃树的,李树有多少棵?
这样的设计我认为有这样几个好处:
1、单位“1”不变,都是桃树。
2、数量关系都是一样:桃树×=李树。既然单位“1”不变,数量关系都一样,为什么却一个是乘法,一个是除法呢?学生再通过565656比较,很容易就发现第1题的单位“1”是已知量,求比较量,当然用乘法。第2题的单位“1”是未知量,求单位“1”,当然是用比较量除以分率,是用除法。
通过这样的例题设计,我认为简明扼要,利于学生认清分数乘除法应用题的区别和联系,更好掌握分数乘除法应用题,为后面的较复杂的分数应用题打下基矗
分数乘法教学反思12
《分数乘分数》的教学重点是巩固理解分数乘法的好处,探索分数乘分数的计算算理与法则。
在教学实践中继续采用“数形结合”的数学方法,帮忙学生达成以上两个教学目标。对于这天的“探究活动”没有直接放手,这是因为学生对“求一个数的几分之几是多少”的分数乘法好处的理解还不够深刻,因此在整个的教学过程分为三个层次:
一、引导学生透过用图形表示分数的好处,再用算式表示图形,深化“求一个数的几分之几是多少”的分数乘法好处,感知分数乘分数的计算过程。
二、以1/5*1/4为例,让学生先解释算式的好处,然后用图形表示这个好处,最后再根据图形表示出算式的计算过程,这样做的目的是透过“以形论数”和“以数表形”的过程让学生巩固分数乘法的好处,体会分数乘分数的计算过程。
三、学生运用数形结合的方法独立完成教材中的“试一试”,进一步达成以上目标,并为总结分数乘分数的计算积累认知。能够说整体教学的效果还好。
透过这天的课,我对数形结合的思想有了更进一步的理解。由于分数乘法的好处和计算法则的道理比较抽象,学生理解起来不是很容易,所以利用图形使抽象的问题直观化,在本单元教学中就显得个性重要了。纵观教材,树形结合思想的渗透也有不同的层次,数形结合能帮忙学生从具体问题中抽象出数学问题;在本学期的分数乘分数中是利用直观的几何图形,帮忙学生理解分数乘分数的计算道理;接下来的分数乘法应用中,我们还将利用线段图帮忙学生理解分数乘法应用的问题;使用的图形越来越简约体现了教材对数形结合思想渗透的一个过程。
数形结合的过程不是简单的抽象变为直观的过程,而是抽象变为直观之后,在从直观变为抽象的一个过程,也就是要将“以形论数”和“以数表形”两个方面有机的结合起来。只有完整的让学生经历数与形之间的“互动”,才能使他们感知“数形结合”,才能使他们能在解决问题时自觉地应用“数形结合”的方法。
分数乘法教学反思13
本节课呈现了世界文化遗产北京颐和园图片。图中包含的主要信息是:北京颐和园由昆明湖和万寿山组成,其中昆明湖占地219公顷,万寿山占地面积仅是颐和园的1/4。借助问题“颐和园的占地面积是多少公顷”引入对列方程解决稍复杂的分数问的学习。这节课主要解决整体与部分的关系。教学时,从游览世界文化遗产的话题引入文字信息,激发学生学习的兴趣,然后引导学生根据数据信息提出与本节学习有关问题,展开学习活动。
本节课是在简单分数应用题的基础上进行教学,学生已有了一定基础,因此首先设计三道找单位“1”的复习题,为学生学习新知识做好辅垫。因为学生有了学习简单分数应用题的经验,因此在理解题意之后我放手让学生画线段图分析、解答试做,做完后让学生在小组内交流自己的解题思路讨论,讨论完成请学生上台展示方法。在学习过程中学生充分参与了课堂学习,成为学习的主人,同时培养了学生的口头表达、分析和与人合作的能力。
学生展示时是突出重点突破难点的一个重要环节,我围绕重点难点精心设计提问,并充分利用线段图引导学生理清题中数的关系,抓住解题关键,明确解题思路,掌握解题方法。并通过对两种不同的解法对比及课后小结,进一步突出本节课的重点、难点。
虽然在教学设计中我作了充分的考虑,也重视引导学生主动探究与积极思考,但在教学中还是显露出了一些问题:反馈形式比较单调,缺乏激励性的语言和形式,学生明白但表述不清楚,个别学生表述单位“1”加几分之几,表示什么意思时,发现还很有点模糊。因此,我觉得今后在常态教学中更应注重学生个体表达,并且不必一定按照教师给的固定模式,应该允许学生用自己的方式、用自己的语言来述说解题思路帮助分析问题。
分数乘法教学反思14
《分数乘法(一)》是分数乘法这一单元的第一课时,主要是结合具体情境,学生在具体操作活动中,探索并理解分数乘整数的意义。同时,探索并掌握分数乘整数的计算方法,能进行正确计算,进而能解决简单的分数乘整数的实际问题,体会数学与生活的密切联系。
在教学伊始,我直接出示“1个苹果图占整张纸的1/5,3个这样的图形就占整张纸的几分之几?”问题情境,让学生带着问题去思考,并寻找解决问题的策略。有的学生会通过具体图形语言来数一数;有的学生会直接用算式来计算。在黑板上,呈现所有学生的方法,并引导学生找出之间的联系。紧接着,让学生回忆在整数乘法意义的基础上来学习分数乘法意义,便于学生更好地学习,培养知识迁移能力。在探索分数乘整数的计算方法时,学生运用自己的语言来说明计算结果。接着,学生在结合问题、图形进一步体会分数乘整数的计算方法。
这是一节计算课,看似很简单。可是,从学生的作业反馈情况,并不理想。学生的计算过程虽能正确地写出来,但是在结果上会出现没约分化简。这可能跟自己,在帮助学生理解那两种约分方法所存在的问题。在对比两种约分方法,我是先让学生试着说一说,两种约分方法的不同之处,学生也能说出来。我也做了一个小结:一种是在结果上约分;另一种是在过程上约分。但是,我却忘了让学生体会在过程上约分的优越性与简便性。所以,从学生第一次交上来的作业来看,大部分学生都是在结果上约分,这样就导致部分学生没约到最简、或没约分。仔细地想,自己常常鼓励学生方法多样性,却忽视优化方法。
分数乘法教学反思15
在教学“整数乘法运算定律推广到分数乘法”这一课后,我做了深刻的反思:
首先我不仅注重了情境的导入,提高孩子们的参与热情。
开启课时,我注重从孩子的身边挖掘素材,引出整数乘法运算定律,加以复习巩固,紧接着引导学生回忆这些运算定律曾经运用到什么知识中,引导到小数乘法的简算中,为后面的新知学习打下良好的基础。真正达到了“以旧导新,以旧带新”的效果。
同上我还鼓励学生大胆的质疑与猜想,激发学生内在的求知动力。在新授课时,我设计的两个环节,引起了学生强烈的求知欲望。
第一,在复习完后,我让学生自己说说,你现在最想研究一个什么样的问题?孩子们表现出空前的热情,比如有的孩子谈到想研究一下整数乘法运算定律是否可以推广到分数乘法?于是我鼓励学生根据已有的知识,去大胆的猜想。孩子们的思维活跃极了,甚至大大超出了我事先的预料;
第二,在探究确认上述问题后,我又让学生大胆的质疑,定律推广到分数乘法中会起到什么作用呢?真的能简便吗?孩子的好奇心又一次被激起,他们又乐此不疲的投入到了简算的探究中去。整堂课下来,孩子们始终处在“质疑——猜想——验证”的学习过程中,真正变成了学习的主人,而且也让我懂得的教是为学服务,要想提高教学质量,关键在课堂!
《分数乘法》教学反思
第二单元《分数乘法》教学反思:
本单元教学所需关注的几个问题:
1、计算,分数乘法切记约分,计算的正确率有待提高,分数乘法教学反思。
2、简便方便:乘法分配律有的学生不能熟练运用,简便方法不能灵活运用,举一反三。
3、注意单位“1”的找法,教学反思《分数乘法教学反思》。
4、分数乘法应用题:要注意是连乘的还是求两个量的,学生易混。
5、倒数的概念教学,它将成为下一单元的教学起点,所以必须落实好。
应用题教学注意:
1、教学中结合实际例子,结合文字式题,结合实际生活,结合线段图。
2、注意对比。例如:
红纸30张,黄纸比红纸多1/2张,黄纸有多少张?
红纸30张,黄纸比红纸多1/2,黄纸有多少张?