《分数乘法》教学反思
《分数乘法》教学反思1
在教学了分数乘法的基础上又学习了分数加减法混合运算的计算题,以往学生又有非常丰富的整数、小数的简便计算的经验,我原以为这部分知识很简单。没有想到,错的人还真不少。我真佩服学生们的“创造能力”。问题主要有以下三种:一是乘法和加减法计算方法混淆,不少学生做加法时分母加分母,分子加分子,而在我强调之后又出现个别的学生乘法计算时分子和分子进行约分的笑话。二是不能灵活运用运算定律来使计算简便,特别是分数乘法分配律的`相关计算,原先的整数、小数利用乘法分配率进行简便计算就是简便计算的难点,碰到分数更是一塌糊涂啦!三是一般计算题和简便计算题混淆,将不能用简便方法的也给你发明个“简便”方法出来,随意添加括号的现象很普遍!
针对这些现象我采取了以下措施:一引导学生回顾分数乘法和加减法的意义,追溯求本,理解各自的意义;二联系分数乘法和加减法各自的计算方法,并采取针对性练习;三复习整数、小数的与之相关的简便运算,并对常见的分数乘法简便运算的题型予以分类整理,辅之对应练习;四是加强审题的训练,让学生学会判断。五是加强对比练习,认真分析哪些可以简便,哪些不能简便。其实最主要还是抓班级里学习有困难的学生,因为这些错误类型几乎都是由他们所创。
《分数乘法》教学反思2
小学数学的学习能力我认为主要是要有扎实的计算能力和敏捷的思维能力。分数乘法解决问题这节课中主要承载着对学生解决问题方法的引领同时也是为提高学生思考问题的能力提供了一个途径。在翟主任、陈校长、班老师还有全年级组数学老师的共同努力下我顺利的完成了这项任务。下面我就谈谈我的收获。
一、目标定位给一节课带来巨大的变化。
刚开始备课我们的教学目标放在解决“红萝卜地的面积是多少?”这个问题的方法和解决问题的一般步骤上“阅读与理解、分析与解答、检验与总结”仅仅局限在一道题的解答上,后来经过大家的指导做了调整,把课前研究改成了两个大问题,第一个就是给出一些信息,通过这些信息你能解决什么问题?第二个就是出示问题,解决这个问题选择哪些信息?解决问题的方法是什么?这样就很明显的`体现了两种解决问题的策略“阅读信息联想问题”和“聚焦问题,寻找相关信息”使得问题的解决不仅仅局限解答问题上,更多的是引导学生对解决问题的策略感悟和总结分析。从而这节课的教学目标就有了很大的提升。
二、老师与学生要用亲和力。
试讲的过程中不断的涌现出我上课中的种种问题,其中让我感触最深的就是“语言生硬”和“眼神往上看”讲课中与学生距离很远。陈校长说的非常正确我之所以出现这种就是因为平常上课与学生的交往。近几年我都在半路接班,接班的滋味很难受,每次都得费很大的功夫才能让学生原有的坏习惯和行为又算改变,接班时随着对学生的了解越来越多,他们的坏毛病也就随之而来,想一想我都养成了一个坏习惯,在我的眼里更多的是学生坏毛病,很少能够看到哪个学生方方面面都好,所以每次上课或遇到事情都会很严肃的跟他们交流,说话也就生硬。这样的说话习惯在公开课上就显得那么不协调,尤其是用其他班的学生上课,师生之间什么都是陌生的,我的课堂语言显得好乏味。经过这次讲课我想我应该改变一下自己,不仅仅做一个严肃的教师,更好提高自己的亲和力,学会走进学生的心灵,在学习上不应因为知识不懂或不会而给予批评,如果态度不好必须严厉批评,对待学生要针对事情区别对待,该严厉时严,上课讲解题目时要温和一些,走进学生能够进行眼神的交流。
三、备学生是非常重要的。
一节成功的课不在于你有多少花哨的教学环节,而是在于你能否抓住学生的真实思维状态因势利导。这节课我采取的是课前研究课上汇报交流的形式,要想讲好这样的课,必须对学生了如指掌,既了解学生的研究报告写成什么样,更要知道学生能否讲出来,讲的怎么样?如果知道应该指导到什么程度,指导过了就假了,如果任其自然课上就很可能完不成任务,很难拿捏。我试讲了3遍,用了三个班,每个班的情况有很大的区别,但是到了四班时,学生优秀表达能力又强,这节课最后上完感觉有些太简单,又一次没能抓住学生的特点进行教学设计和教学,所以即使是同一节课在不同的班级中上,应该处理的方式,及达成的目标都应该有所不同。所以上好一节成功的课关键在于了解学生,备课时的核心应该是学生不应该仅仅放在教学设计上。
每一次讲课都是一次磨练,这次活动展示了自己的优点更是看到了自己的不足,我想这次能够激励我,慢慢的改变自己的教学能为,不断的提高我的教学水平。
《分数乘法》教学反思3
一、教材分析:
六年级上册第二单元围绕“分数乘法”这个主题。本单元教学内容包括三部分内容:分数乘法,解决问题和倒数。本单元是在整数乘法,分数的意义和性质的基础上进行教学的,同时又是学习分数除法和百分数的重要基础。与整数,小数的计算教学相同,分数乘法的计算同样贯彻《标准》提出的让学生在现实情景中体会和理解数学的理念,通过实际问题引出计算问题,并在练习中安排一定数量的解决实际问题的内容,以丰富练习形式,加强计算与实际应用的联系,培养学生应用数学的意识和能力。
根据本套教材的编写思路,本单元将解决一些特殊数量关系问题的内容单独安排。即把解决“求一个数的几分之几是多少”这一类问题组成“解决问题”一个小节,通过教学使学生理解这类问题的数量关系,掌握解题思路。与整数,小数的计算教学相同,教材体现结合具体情境体会运算意义的要求。不再单独教学分数乘法的意义,而是通过解决实际问题,结合计算过程去理解计算的意义。同时也不再呈现分数乘法的计算法则,简化了算理推导过程的叙述及解决问题思路的提示,通过直观与操作等手段,在重点关键处加以提示和引导,这样可以为学生探索与交流提供更多的空间。
学情分析:
六年级的学生已经掌握整数乘法,小数乘法的计算,对于分数有一定的理解,能够在现实情境中体现和理解数学的理念。思维已经向抽象发展,需要学习透过事物表象揭示事物的本质。
二、单元目标解读
根据第三学段提出的“计算和运用”目标和本单元的特点确定本单元的教学目标:
1、理解并掌握分数乘法的计算方法,会进行分数乘法计算。
2、理解乘法运算定律对于分数乘法同样适用,并会应用这些运算定律进行一些简便计算。
3、会解答求一个数的几分之几是多少的实际问题。
4、理解倒数的意义,掌握求倒数的方法。
本单元的教学重点,难点是:
1、掌握分数乘法的计算方法,会进行分数乘法的计算。
2、会解答求一个数的同分之几是多少的实际问题。
3、理解和掌握求倒数的方法。
三、主题单元教学构想:
(一)注意三个原则
1、在已有知识的基础上,帮助学生自主构建新的知识。
2、让学生在现实情景中学习计算。
3、改变学生学习方式,通过动手操作,自主探索和合作交流的方式学习分数乘法。
(二)设计思路
本单元教学内容计划用15课时。
第一部分:分数乘法(7课时)
1、通过直观与操作帮助学生理解分数乘法的算理,会正确进行计算。
2、加强自主探索与合作交流。
第二部分:解决问题(5课时)
1、紧密联系分数乘法的意义,理解和掌握解决问题的'思路与方法。
2、借助线段图帮助学生理解数量关系。
第三部分:倒数的认识(1课时)
1、让学生充分观察讨论,找出算式的特点。
2、特别理解“互为倒数”的含义
第四部分:整理和复习(2课时)
1、以知识整理措施形式回顾本单元的主要学习内容。
2、安排练习。
四、教学反思
“分数乘法”是这一单元的核心内容,不仅分数除法是以它为基础,很多复合的分数应用题都是在它的基础上扩展的。因此,使学生掌握分数乘法具有重要的意义。教学本单元后我的感受是:
1、分数乘法解决问题对单位“1”的理解,重点应放在在应用题中找单位“1”的量以及怎样找的上面。为以后应用题教学作好辅垫。
2、在以后教学前我还要深钻教材,把握好课本的度。
3、在课堂上多激发学生的兴趣,课后多与学生沟通,了解他们的学习动态。根据实际情况来教学。提高教学质量。
《分数乘法》教学反思4
在备课时一直被如何处理分数乘法意义困惑。后来想一想,如果从数学应用的角度来看,学生只要能从具体的问题中判断两个数据之间存在相乘的关系就可以了,而这个相乘的关系在本单元有了新的拓展,即“求几个相同加数的和”、“求一个数的几倍是多少”和“求一个数的几分之几是多少”。想明白了这一点,回头看看过去的教学,在这方面好像就真的把问题复杂化了。
本单元的重点有两个:一是乘法意义的拓展及简单的应用,二是分数乘法法则的掌握。从教材整体编排上看,这两个重点是交织在一起的:
分数乘法(一)通过对具体问题的解决使整数乘法意义迁移到分数乘法,并使学生在解决问题的过程中理解分数乘整数的计算法则,能正确熟练的计算分数乘整数,正确熟练的解决一些简单的实际问题。
分数乘法(二)通过对具体问题的解决,使乘法的意义得到拓展,认识到“求一个数的几分之几是多少”也用乘法,并能正确地应用之解决实际的问题。
分数乘法(三)通过对具体问题的解决,进一步巩固“求一个数的几分之几是多少”的乘法意义,并探索和理解分数乘分数的计算法则
从以上的分析来看分数乘法(一)作为本单元的起始课就有着至关重要的作用。
在教学中我先放手让学生解决教材上提供的具体问题,在讲评的过程中,有意识的分为两个层次:一是通过沟通不同解决方法之间的联系(图解、加法解、乘法解),将整数乘法迁移到分数乘整数,二是运用分数乘整数的意义解释计算的地过程,使学生理解计算的道理,初步感知挖掘数学概念本身方法的重要性。“涂一涂、算一算”的重点放在“涂”上,使学生巩固意义,同时通过以形论数理解计算的道理。试一试的重点则在分数乘整数计算法则的总结。这节课的教学过程概括起来:以分数乘整数的意义为起点,以分数乘整数的法则为归宿。
分数乘法(二)
今天教学的内容是分数乘法(二),重点是分数乘法意义的拓展——“求一个数的几分之几是多少”,这部分内容既是这个单元的重点,也是这个单元的难点。
从学生认识过程来看,这部分知识的基础是分数意义和整数乘法的意义。在教学中我突出了类比迁移和数形结合的方法,首先改编了教材的例题——“小红有6个苹果,笑笑的苹果数是小红的2倍,淘气的苹果数是小红的1/2”,根据呈现的已知条件学生提出数学问题:“笑笑有几个苹果?淘气有几个苹果”然后教师引导学生先用图形表示出“笑笑的苹果数是小红的2倍,淘气的苹果数是小红的1/2”,再列出算式,最后尝试解释算式表示的意义。这样把将分数意义以图的形式呈现,做到“以形论数”,在通过对图的理解抽象出问题实质就是求“一个数的几倍(几分之几)是多少”,运用类比的方法得出“求6的2倍是多少”和“求6的1/2是多少”都用乘法,进而列出算式,完成“以数表形”,使学生理解“求一个数的几分之几是多少”用乘法的道理。
分数乘法(三)
今天的教学内容是分数乘法(三),重点是巩固和进化理解分数乘法的意义,探索分数乘分数的计算法则。
在教学实践中我继续采用“数形结合”的数学方法,帮助学生达成以上的两个数学目标。对于今天的“探究活动”没有直接放手,这是因为学生对“求一个
数的几分之几是多少”的分数乘法意义的理解还不够深刻,因此在整个得教学过程分为三个层次:
一、引导学生通过用图形表示“一尺之捶,日取其半,万世不竭”的意义,再用算式表示图形,深化“求一个数的几分之几是多少”的分数乘法意义,感知分数乘分数的计算过程。
二、以3/4×1/4为例,让学生先解释算式的意义,然后用图形表示这个意义,最后在根据图形表示出算式的计算过程,这样做的目的是通过“以形论数”和“以数表形”的过程是学生巩固分数乘法的意义,体会分数乘分数的计算过程。
三、学生运用数形结合的方法独立完成教材中的试一试,进一步达成以上目标,并为总结分数乘分数的计算积累认知。
可以说整体教学的效果很好。
通过今天的课我有了一下的认知:
1数形结合的思想在本单元教学中的渗透和其作用。
由于分数乘法的意义和计算法则的道理比较抽象,学生理解起来不是很容易,所以利用图形使抽象的问题直观化,在本单元教学中就显得中观重要了纵观教材中,数形结合思想的渗透也有着不同的层次,例如分数乘法(一)和分数乘法
(二)中是利用具体的实物图形,帮助学生从具体问题中抽象出数学问题;在分数乘法(三)中是利用直观的几何图形,帮助学生理解分数乘分数的计算道理;接下来的分数乘法应用中,我们还将利用线段图帮助学生理解分数乘法应用的问题;使用的图形越来越简约体现了教材对数形结合思想渗透的一个过程。
数形结合的过程不是简单的抽象变为直观的过程,而是抽象变为直观之后,再从直观变为抽象,也就是要讲“以形论数”和“以数表形”两个方面有机的结合起来,只有完整的是学生经历数与形之间的“互动”,才能使他们感知“数形结合”,才能使他们能在解决问题时自觉地应用“数形结合”的方法。
2对学生探索过程的理解。
在本单元的教学目标中,“探索”是一个关键词——“结合具体的情境,在操作活动中,探索并理解分数乘法的意义”、“探索并掌握分数乘法的计算方法,并能正确计算” 。这是由数学目标中“数学过程”“问题解决”两个维度决定的;同时“探索”的过程也是达成“情感、态度和价值观”目标的重要途径。
在教学过程中,组织学生进行对数学知识的探索活动,要根据不同的材料和背景采用不同的策略才能达到是活动有效的目的。例如在本单元的分数乘法(一)中,由于学生有比较坚实的整数乘法意义的基础,所以对于探索分数乘整数的意义和计算法则的探索完全可以让学生独立进行。而在分数乘法(三)中,由于学生刚刚认识“求一个数的几分之几是多少”的分数乘法意义,并且用图形表征分数乘分数的计算过程比较复杂,因此采用“扶一扶,放一放”的策略就比较妥当了。具体的讲就是:教师通过简单的具体事例进行集体引导,这便是“扶一扶”。再通过具体的探索要求帮助学生尝试着探索比较复杂的实例,这便是“放一放”。
单元小结
第一单元的新课已经结束了,接下来的几节课都是练习课,到昨天为止已经上了三节。整理这三节课,对在新课程背景下的数学训练有了一些新的认识:
1在新课程背景,我们还要不要进行数学训练。当前无论是创优课竞赛、各级的研究课,还是论坛、博客,大家都在热衷的讨论一些教材中的新增内容,或是探究、合作的教学方法,大家似乎都不很在意数学训练,有的教师甚至一提到
“训练”马上就“色变”,认为将回到传统教育的老路上去了。我们冷静下来思考一下就会发现:我们现在所热衷的.“组织学生探索数学知识,使他们经历数学知识的形成过程”实际上就是以学生“已有的知识经验”为基础的。如果学生对已有的数学知识理解掌握的不深刻、应用的不灵活,那么又如何能够进行新的认识活动呢?因此数学探索和数学训练往往是相互作用、互为基础的。
2在新课程背景下,我们需要什么样的数学训练。
数学训练不等于“机械、重复”,应该体现对数学基础知识的应用性的训练。
(1)、说理性训练。学生对一个数学知识掌握总是要经历一个由“具体——抽象——具体”的认识过程,其中数学基础知识的形成过程(具体——抽象),可以说是一个抽象概括(数学建模)的过程,而数学基础知识应用的过程(抽象——具体),可以说是一个演绎推理(对模型的解释与应用)的过程。在从具体到抽象的过程中学生认识的是数学基础知识的本质属性,在抽象到具体的过程中学生将认识到数学基础知识的应用范围(概念的外延),这是将起到深化理解概念和灵活应用概念的作用。在此过程中,学生将把数学基础知识的成立条件与具体问题中的条件进行比对,进行一系列的思维活动,由于小学生的思维处于发展的阶段,他们的内部言语并不发达,是片断的、条理性不强的,所以用学生的外部语言表述来促进其内部言语的整合与条理,这就是重视“说理训练”的意义所在。
(2)、图形表征的训练。数与形是数学研究的两大对象,他们相互作用,互为表里。每一个形中多蕴含着一定的数量关系,而每一个数又都能通过图形直观的描述和反映。教学实践是我们有了这样一个认识:学生对数学知识的获得或是应用数学知识解决具体的问题,往往都是完成对数学语言、数学符合、数学图形的翻译过程。因此,有意识的训练学生用图形表征已学的数学知识,将有利于学生深刻的理解和掌握,并能为学生进一步学习积累数学活动的经验。
(3)、计算技能的训练。当一个数学问题的解答思路确定之后,接下来的就是通过计算得到正确答案的过程。无论解决问题的思路多么的完美,如果不能准确、熟烂的计算,那么学生将不会完美的解决一个问题。再有对于比较复杂的问题,如果能通过口算或估算出没一个关键的数值,往往对解决问题有着至关重要的促进作用。因此,我们在教学中应该重视对学生基础口算的训练,加强估算能力的培养。
3新课程背景下,数学训练的地形式
数学训练的内容应该突出基础性和应用性。数学训练的形式不应该是单一的、枯燥的,应该结合训练的内容和学生的具体情况突出趣味性、灵活性、竞争性、多样性。
根据以上的思考自己在这三节课的教学是这样安排的:
第一节:
1通过计算训练整合分数乘法法则。
2口算训练(直接写得数),通过观察发现分数乘法的因数与积之间的关系,在通过图形表征,应用分数乘法意义理解这种关系,深化对分数乘法意义的认识。
3单位转化,初步应用分数乘法意义解决实际问题。
第二节:
1解决具体问题(求一个数得几分之几是多少),感知分数乘法意义的应用。
2集体交流,剖析解题的思路。
3专项训练,理解分数条件(图形表征、语言叙述)。
4巩固练习,渗透对应思想
《分数乘法》教学反思5
《分数与整数相乘》教学反思这节课,我教学的内容是:苏教版小学数学11册第二单元《分数乘法》的第一课时。设计意图:由生活中的问题情景引发计算需求,培养学生运用已有知识和经验迁移、类推、自主探索并解决实际问题的意识,体验探索学习的乐趣。根据这一思路我设计了4个教学环节:一情境导入,理解意义、二自主探究,明白算理、三巩固练习,形成技能、四课堂总结,延伸课外。本节课,我自己比较满意的地方有以下三点:
1、重视创设情境,理解意义。让学生从现实生活中学习数学。本课我创设了同学为迎接国庆节做绸花的实际情境,引导学生根据实际问题的数量关系,列出算式。求三个相同加数的和,可以用加法和乘法列式。这样处理,既有利于学生主动地把整数乘法的意义推广到分数中来,即分数和整数相乘的意义与整数乘法的意义相同,都是求几个相同加数的简便运算,又可以启发学生用加法算出3/ 10×3的结果。
2、重视直观教学,让学生在操作实践中学习数学导入新课时,我主要采用,引导学生涂色表示3个3/10米,目的是让学生认识到求3个3/10可以用加法计算,也可以用乘法计算,再借助所列的.加法算式初步理解分数与整数相乘的意义,并为引导学生探索分数与整数相乘的计算方法进行了知识结构上的铺垫。
3、尝试计算。自主探究新知,理解算理。借助同分母分数加法,自主探索分数和整数相乘的计算方法。由于分数和整数相乘可以转化成几个相同加数连加的算式,因此,例1放手让学生尝试计算,着重让学生说一说计算的思考过程。
4、练习设计具有针对性,多样性,激励性,生活性。在本环节学生的技能得到了巩固和提升,特别是两个常见的改错题引发学生自我反思、自我完善计算方法,已达到算法的自主优化。
存在不足:
1、涂色表示3个3/10米处,由于学生速度慢费时较多;在学生探究3/10×3的算理时的引导还不够简约有效,使本课有前松后紧之弊。
2、对学生约分的格式和规范方面的要求不够,不利于养成良好的计算习惯。教学真的是件憾事,细细反思起来,总有需要改进的东西。今后,我一定要注意这些小细节,争取把课上得更好。
《分数乘法》教学反思6
年级分数除法(三)的内容是用方程解决简单有关分数的实际问题,初步体会方程是解决实际问题的重要模型。教学时,由于我认为很简单,对学生分析不够,过于相信学生,用方程解答完成后,就让学生用别的方法解,同时要求画出线段图。学生虽能列出正确的算术式计算,但不能熟练画图。
发现这个问题后,我就及时的对学生进行画图能力的训练,经过一节课的练习,大部分学生基本掌握画图的'技巧。通过这节课的教学,使我深深的体会到,要想让知识真正地在师生互动中,学生得到理解、接受并掌握起来,教师就要认真地备学生,只有从学生的实际出发,因材施教,才能达到教育的最优化。
《分数乘法》教学反思7
分数乘法应用题涉及到了单位“1”的判断,而单位“1”的正确判断与较复杂的分数乘法应用题的解答息息相关。学生在接触到两种结构分数应用题,很容易把单位“1”搞混淆,出错也是经常的事,在突破这个难点的问题上,我采用的方法是统一两种结构的分数应用题,教会学生找单位“1”,利用画线图和列数量关系的手段去解决问题,取得了不错的效果。下面具体谈谈是如何突破难点,有效的将两种结构的分数应用题统一起来的。
首先,“求一个数的几分之几是多少”这种结构往往比较简单,从学生的练习来看,学生掌握比较好,班上有大部分学生都能在没有教师的指导下完成,但少部分同学面对应用题这种形式,具有胆怯心理,所以我从分数乘分数的意义入手,在新课的复习引入的环节让全班学生完成相应的文字题,学生容易入境,然后放开手让学生以小组形式展开对应用题的探究,并让完成较好的学生说说自己是怎样想的,全班共同交流,共同得出单位“1”,以及分数所表示的是“倍数关系”,并且结合线段图的方式,引导这个分数所对应的量,通过比、画、找的方式让学生自主发现这种类型的应用题和分数乘分数所表达的意义一样,另配合相应的练习,帮助学困生较好地掌握该类型。
其次,在解决“比一个数多(少)几分之几”这种结构问题时,我选择的方法是通过判断句子“比一个数多(少)几分之几”中多或少了谁的几分之几?这个句子从语文的角度来看,其实它是一个省略句,省略的正是多或少了“一个数”的`几分之几,这里所指的“一个数”其实就是前面所提到的“一个数”,如果在这样一个短句中出些两个“一个数”就会重复啰嗦,通过这样的讲解,学生很容易找到单位“1”,从而这种结构和第一种结构很好地结合在一起,再通过画线段及列数量关系的方法,分析对应量及所求量的关系,学生比较轻松的掌握此种类型,从反馈的结果来看,学生在判断单位“1”不容易混淆,这种讲解的方法的效果比较好。
《分数乘法》教学反思8
在教学这部分内容的时候我更加深刻感受到“求一个数的几分之几“用乘法这部分内容需要补充的必要性。同时有以下想法。
1、画线段图现在就应该加强。
学生画线段图的技能相对较弱。在学生这部分内容的时候我加强了学生画线段图的练习。效果不错。同时为后面更加复杂的内容的'学习打好基础。
2、加强对表示两者关系的分数的理解。
虽然学生能够结合线段图理解分数的含义。我觉得还是不够的 ,应该让学生多说,说一说分数所表示的含义究竟是什么,也可以用手“比划“的方法。充分说一说是把谁平均分成多少份,谁相当于其中的多少份。让学生对于单位1有充分的认识。
3、继续巩固求一个数的几分之几用乘法。
让学生结合具体的问题多来说一说为什么用乘法。在理解题意的基础上说一说求谁,就是求谁的几分之几,用乘法计算。说的练习是一个内化的过程。我觉得是非常非常重要的环节。
4、抓住练习题中有代表性的问题加强巩固。
练习四中第4题是存在两个单位1的分数乘法应用题。在解决这个的问题的时候,不能图快。要让班里每一位同学都彻底明白这个问题中存在两个单位1.如何分步进行计算。
《分数乘法》教学反思9
本节课呈现了世界文化遗产北京颐和园图片。图中包含的主要信息是:北京颐和园由昆明湖和万寿山组成,其中昆明湖占地219公顷,万寿山占地面积仅是颐和园的1/4。借助问题“颐和园的占地面积是多少公顷”引入对列方程解决稍复杂的分数问的学习。这节课主要解决整体与部分的关系。教学时,从游览世界文化遗产的话题引入文字信息,激发学生学习的兴趣,然后引导学生根据数据信息提出与本节学习有关问题,展开学习活动。
本节课是在简单分数应用题的基础上进行教学,学生已有了一定基础,因此首先设计三道找单位“1”的复习题,为学生学习新知识做好辅垫。因为学生有了学习简单分数应用题的经验,因此在理解题意之后我放手让学生画线段图分析、解答试做,做完后让学生在小组内交流自己的解题思路讨论,讨论完成请学生上台展示方法。在学习过程中学生充分参与了课堂学习,成为学习的主人,同时培养了学生的口头表达、分析和与人合作的能力。
学生展示时是突出重点突破难点的一个重要环节,我围绕重点难点精心设计提问,并充分利用线段图引导学生理清题中数的`关系,抓住解题关键,明确解题思路,掌握解题方法。并通过对两种不同的解法对比及课后小结,进一步突出本节课的重点、难点。
虽然在教学设计中我作了充分的考虑,也重视引导学生主动探究与积极思考,但在教学中还是显露出了一些问题:反馈形式比较单调,缺乏激励性的语言和形式,学生明白但表述不清楚,个别学生表述单位“1”加几分之几,表示什么意思时,发现还很有点模糊。因此,我觉得今后在常态教学中更应注重学生个体表达,并且不必一定按照教师给的固定模式,应该允许学生用自己的方式、用自己的语言来述说解题思路帮助分析问题。
《分数乘法》教学反思10
本单元教学分数乘法,是在理解了分数的意义,掌握了分数加减法的基础上编排的。它能进一步促使学生理解分数的意义为后面教学分数除法打下基础。本单元教学内容包括分数乘整数,一个数乘分数、分数混合运算、整数乘法运算定律推广到分数乘法、连续求一个数的几分之几是多少的解决问题和求比一个数的多(或少)几分之几的数是多少的解决问题。在实际教学中我做到一下几点:
一、充分利用教材资源,注重数形结合
本单元概念较多,且比较抽象,而小学高年级学生的思维特点是他们的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。因此,在引入新的数学概念时,我运用适当的图形、图示来说明数学概念的含义,化抽象为具体、直观,帮助学生理解。例如,在教学分数乘分数时,例3是李伯伯家有一块1/2公顷的地,种土豆的面积占这块地的1/5,种土豆的面积是多少公顷?若只是空洞地讲学生很难理解,于是我画了一个长方形来表示1公顷的地,先让学生找出1/2公顷有多大,用阴影部分表示,有的竖着分,有的横着分,再找出1/2公顷的1/5,就是把1/2公顷平均分成5份,取其中的1份,用反方向的.阴影部分表示。再观察两个阴影重叠部分占了整个1公顷地几分之几,用虚线分好,这样占了1公顷地几分之几也就是几分之几公顷。结合图示法学生很自然地推导出了分数乘分数的方法。
二、解决问题注重解法多样化,拓展学生思维
学生的思维应该是开放的、发散的,教师在教学中应当鼓励学生从多角度、多方位思考问题,注重算法、解决多样化,让学生更爱动脑,数学水平提高一个层次。例如在教学例9这类求地一个数多(或少)几分之几的数是多少的解决问题时,我先让学生找出单位“1”,画出线段图,看图思考有哪些解法。有的学生想到了可以用单位“1”乘对应分率得到对应的具体的量,有的学生想到可以用单位“1”加上或减去多或少的部分得到对应的具体的量,也有的学生想到先求出1份是多少,再求出多份是多少的办法。这样集中各个学生的思维,大部分同学都掌握了三种方法,解题时可选择自己最理解的方法做,让不同层次的学生得到了不同的发展。
在这样的教学下,大部分学生对本单元知识掌握的较好,只是每次解决问题我基本都让学生画出线段,借助线段图学生较为容易就能解决了,但有的学生比较懒不肯画线段图而往往出错,因为这样的线段图并没有在他脑海中形成,这是我教学中的困惑,我将继续研究。
《分数乘法》教学反思11
新世纪小学数学五年级下册第一单元是《分数乘法》,本单元学习的主要内容有:分数乘整数、分数乘分数以及解决有关简单的实际问题。其中分数乘法(一)的主要内容是求几个相同分数的和,将分数乘法与整数乘法沟通,并探索分数乘整数的计算方法;分数乘法(二)的主要内容是求一个数的几分之几,将分数乘整数的意义加以扩展;分数乘法(三)的主要内容是分数乘分数的意义及计算方法。在教学如何引导学生理解分数乘法的意义时,我进行了一些思考。
一、分数乘法的教学中,在书写顺序中应该不区分被乘数与乘数。
小学数学第一学段学习乘法的认识时就取消了乘数和被乘数的区别,3×5既可以解释为3个5,也可以解释为5个3,学生借助具体情境认识到乘法是几个相同加数的和的简便运算。
本册教材第2页第1题:一个图片占一张彩纸的1/5,3个图片占这张彩纸的几分之几?
教学时,通过沟通不同解决方法之间的联系(图解、加法解、乘法解),将整数乘法迁移到分数乘整数,理解题目的意思就是求3个1/5的和是多少?),让学生列式可以是1/5×3也可以是3×1/5。然后运用分数乘整数的意义解释计算的过程,使学生理解计算的道理,初步感知挖掘数学概念本身方法的重要性。
又如:教材第5页:小红有6个苹果,淘气的苹果数是小红的1/2,淘气有多少苹果?
教学时,通过直观图引导学生理解题目的意思后(6个苹果的1/2是3个苹果),要有意引导“求淘气有多少苹果,就是求6的1/2是多少?”再通过另一种解决问题的方法:把每个苹果都平均分成2份,淘气是6个1/2,也就是6×1/2或1/2×6,从而用6×1/2或1/2×6两种列式方法解决了问题。最后,再引导学生比较两种不同的理解,从而拓宽了分数乘法的意义。也让学生初步体会到求6的1/2是多少?可以用6×1/2解决也可以用1/2×6解决。
二、注意让学生在具体的情境中理解分数乘法中隐藏的数学意义。
书写顺序中不区分被乘数与乘数,更要求我们在教学中一定要注意让学生在具体的情境中,理解情境描述中隐藏的'数学意义!因此,通过具体情境,来呈现对分数乘法意义的多种解释,帮助学生理解分数乘法的意义则显得重要。如:上面所讲教材第2页第1题:一个图片占一张彩纸的1/5,3个图片占这张彩纸的几分之几?教学时,一定要让学生明白是求3个1/5的和是多少?,虽然,学生列出1/5×3或3×1/5解决了问题,但一定要让学生联系本题情境理解算式所表示的意义。
又如:刚才所举的例子:小红有6个苹果,淘气的苹果数是小红的1/2,淘气有多少苹果?当学生用6×1/2或1/2×6解决了问题后,一定要有意让学生明白:本题情境可以理解为求6的1/2是多少?从而让学生体验到求一个数的几分之几是多少可以用乘法计算。
三、要让学生从多角度理解分数乘法的意义
在避开具体的情境下,要让学生从多角度理解分数乘法的意义。如:1/5×3(3×1/5)表示的意义可以是求3个1/5的和是多少?求1/5的3倍是多少?或者把3缩小到原来的1/5实际上就是求3的1/5是多少?等。
又如:求3的1/5是多少?列式解答可以是1/5×3也可以是3×1/5。
关于分数乘法的以上解释,并不是哪一种解释是正确的,重要的是对于一个数学概念,我们应该尽可能多地让学生认识到不同的解释,这对于发展学生的数学概念是非常有益的。
《分数乘法》教学反思12
有了分数乘法的学习基础,学生们能够很快适应这一课的学习方式,我从现实中的分数乘法问题和找一个数的倒数引入,帮助孩子们复习前知,当学生体会到乘除法之间的互逆关系后,由学生提出一个生活中的实际问题,引出分数除法计算的必要性,为后续的学习架好了阶梯。
本课如果仅仅关注学生是否会算了,那是不够的,在设计中,还应有另类关注。如:学生们对算理理解了吗?他们的思维是否得到了实质上的提升?他们的
学习方法
是否得到增进?他们是否有学习的积极态度?等等。因此,在本课教学目标的制定中,我的着眼点是不仅使学生会算,更是通过对意义的理解,让学生们深刻认识这样算的道理,突出“过程性目标”。让学生经历涂一涂、画一画、算一算、说一说的.过程,在探究的过程中,让孩子们形成一种“知其然更要知其所以然”的学习态度,获取一种学习的能力,为学生的可持续发展打基础。教学中,我关注学生经历发现数学知识的过程,给学生提供动手的机会,充分借助图形语言,将抽象变直观,帮助学生体会一个分数除以整数的意义,以及“除以一个整数(零除外)等于乘这个整数的倒数”方法的合理性。接着变换探索的角度,呈现一组算式,在运算、比较的过程中再次使学生验证操作活动中发现的规律。给学生表达学习过程中体验和感悟的空间,如:谁来说一说这种算法是怎样的?你的想法是怎样的?学生在自主表达的过程中逐步积累原始体验,再通过教师的适度点拨,提升学生的数学思维。
《分数乘法》教学反思13
《分数乘法》这一单元学习的主要内容有:分数乘整数、分数乘分数以及解决有关简单的实际问题。其中分数乘法(一)的主要内容是求几个相同分数的和,将分数乘法与整数乘法沟通,并探索分数乘整数的计算方法。在教学如何引导学生理解分数乘法的意义和计算方法时,我进行了一些思考。
一、利用学生已有的知识水平与生活经验,实现新知识的迁移。
在教学分数和整数相乘时,根据学生的已有的知识基础,课前复习设计了复习整理整数乘法的意义和同分母分数的加法的计算法则。在教学分数和整数相乘的计算法则时,我指导学生联系旧知再小组中自行探究,例如:教学1/5×3,首先要让学生明确,要求3个1/5相加的和,也就是求1/5+1/5+1/5是多少,并联系同分母分数加法的.计算得出1+1+1/5,然后让学生分析分子部分3个1连加就是3×1,并算出结果,在此基础上,引导学生观察计算过程,特别是1/5×3与3×1/5之间的联系,从而理解为什么“用分子和整数相乘的积作分子,分母不变”。接着让学生自己尝试练一练3/7×2,然后进行集体交流,理解分数与整数相乘的计算方法。
二、在具体的情境中,引导学生理解分数乘法的意义。
通过具体情境,来呈现对分数乘法意义的多种解释,帮助学生理解分数乘法的意义则显得重要。如:教科书第22页第1题:一个图片占一张彩纸的1/5,3个图片占这张彩纸的几分之几?教学时,一定要让学生明白是求3个1/5的和是多少?,虽然,学生列出1/5×3或3×1/5解决了问题,但一定要让学生联系本题情境理解算式所表示的意义。
三、分数乘法的教学中,在书写顺序中应该不区分被乘数与乘数。
小学数学第一学段学习乘法的认识时就取消了乘数和被乘数的区别,3×5既可以解释为3个5,也可以解释为5个3,学生借助具体情境认识到乘法是几个相同加数的和的简便运算。本册教材第22页第1题:一个图片占一张彩纸的1/5,3个图片占这张彩纸的几分之几?教学时,通过沟通不同解决方法之间的联系(图解、加法解、乘法解),将整数乘法迁移到分数乘整数,理解题目的意思就是求3个1/5的和是多少?),让学生列式可以是1/5×3也可以是3×1/5。然后运用分数乘整数的意义解释计算的过程,使学生理解计算的道理,初步感知挖掘数学概念本身方法的重要性。
总之,在上数学课时尽量地充分调动学生的各种感官,提高学生的学习兴趣,养成良好的学习习惯,使学生学会转变为会学,真正掌握数学学习的方法。
这是一节计算课,看似很简单。可是,从学生的作业反馈情况,并不理想。从学生第一次完成的作业来看,大部分学生都是在结果上约分,这样就导致部分学生没约到最简、或没约分。所以我应出示对比练习,让学生体会在过程上约分的优越性与简便性。从而养成优化方法的习惯。
《分数乘法》教学反思14
分数乘法计算对于学生而言是新的内容,它的计算方法与整数、小数的计算方法有很大区别,记住分数乘法的计算法则并不困难,但让学生理解分数乘法的算理,尤其是分数乘分数的算理,是本节课教学的难点,分数乘法(分数乘分数)教学反思。
《标准》指出,有效的学习活动不能单纯地依赖模仿与记忆。教学中要改变以往以例题、示范、讲解为主的教学方式,改变以记忆法则,机械训练为主的学习方式,引导学生投入到探索与交流的学习活动之中。
学习这节课前,我先让学生自学,让他们试着去解决课本上的几个问题:
课上让学生交流探索的结果,教学反思《分数乘法(分数乘分数)教学反思》。我发现大部分学生能在前一问的基础上可以类推出分数乘分数的方法。
有的学生采用了折纸的方法,一步步的给大家讲解,效果也不错。
学生讲解的头头是道,说实话,这节课给了我很大的'震撼,千万不要低估学生的能力,该放手时一定要放手让学生去做,很多时候他们会给你意想不到的惊喜!
整节课的大部分时间都是安排学生的探究、讨论活动,让学生在讨论研究中提出猜想,最后在举例中检验猜想后达成共识,得到分数乘分数的计算法则,理解算理,由于学生的探究花了大量时间,最后只是对法则进行了总结,从时间的分配上来说,后面的巩固练习时间很少,学生对分数乘分数到底掌握到什么情况心中没数。这让我想到,我们在课堂上无论事先设计的多么完善,都要根据学生的实际情况,跟着学生的思路走,而不能死套教案,一定要灵活处理。
遗憾的地方:能讲解的学生毕竟是少数,大部分的孩子是听会的,个别学生对算理仍然不能很好的理解,对后续学习会有一定影响,对这部分学生要多帮助、多鼓励,树立他们的信心!
《分数乘法》教学反思15
面对新的课程改革,教师首先应该改变教学的行为,即把对新课程的理解转化为自觉的教学行动。这就要求教师在教学行为的层面上,呈现出新课程的所蕴涵的新的教育理念和新的教学方式。在教学“整数乘法运算定律推广到分数乘法”这一课后,我做了深刻的反思:
一、注重了情境的导入,提高孩子们的参与热情。
本节课,开启课时,我注重从孩子的身边挖掘素材,引出整数乘法运算定律,加以复习巩固,紧接着引导学生回忆这些运算定律曾经运用到什么知识中,引导到小数乘法的简算中,为后面的新知学习打下良好的`基础。真正达到了“以旧导新,以旧带新”的效果。
二、鼓励学生大胆的质疑与猜想,激发学生内在的求知动力。
在新授课时,我设计的两个环节,引起了学生强烈的求知欲望。第一,在复习完后,我让学生自己说说,你现在最想研究一个什么样的问题?孩子们表现出空前的热情,比如有的孩子谈到想研究一下整数乘法运算定律是否可以推广到分数乘法?于是我鼓励学生根据已有的知识,去大胆的猜想。孩子们的思维活跃极了,甚至大大超出了我事先的预料;第二,在探究确认上述问题后,我又让学生大胆的质疑,定律推广到分数乘法中会起到什么作用呢?真的能简便吗?孩子的好奇心又一次被激起,他们又乐此不疲的投入到了简算的探究中去。整堂课下来,孩子们始终处在“质疑——猜想——验证”的学习过程中,真正变成了学习的主人。
三、需要改进之处:
①对学生的多样思维应加大评价力度。比如:在开始情境导入这一环节中,学生除了出现4×(2+3) 4×2+4×3两种做法外,还出现了4×2×2+4这样的做法,虽然这种做法与本节课要研究的问题没有多大的联系,但老师却不应忽视孩子多样化的思维方式,应及时给予肯定,并加以合理的评价。再比如:孩子们在猜想整数乘法运算定律是否可以推广到分数乘法时,有一个孩子说到她是想到了整数加法的运算定律可以推广到分数加法,所以断定也能推广到乘法。这里,我给予了肯定,但力度不够。以上可以看出,评价一个孩子,要适时,适当,决不能敷衍,更不能抹杀,否则可能会压制孩子的思维积极性。这一点,在今后的教学中,我还有待加强。
②课前对学生的估计过高,所以使一些事先设计好的练习,没来得及做完。这也提醒我,备课,不仅要备教材,备教案,更重要的还是要备好学生,这是上好一堂课的关键。
总之,通过本节课,使我在教育教学上,在落实新课改的精神上,有了很大的转变和提高,让教为学服务,提高教学质量,关键在课堂。
《分数乘法》教学反思
第二单元《分数乘法》教学反思:
本单元教学所需关注的几个问题:
1、计算,分数乘法切记约分,计算的正确率有待提高,分数乘法教学反思。
2、简便方便:乘法分配律有的学生不能熟练运用,简便方法不能灵活运用,举一反三。
3、注意单位“1”的找法,教学反思《分数乘法教学反思》。
4、分数乘法应用题:要注意是连乘的还是求两个量的,学生易混。
5、倒数的概念教学,它将成为下一单元的教学起点,所以必须落实好。
应用题教学注意:
1、教学中结合实际例子,结合文字式题,结合实际生活,结合线段图。
2、注意对比。例如:
红纸30张,黄纸比红纸多1/2张,黄纸有多少张?
红纸30张,黄纸比红纸多1/2,黄纸有多少张?