《义务教育数学课程标准(2011年版)》与原试验稿之比较

时间:2019-05-14 21:59:23下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《《义务教育数学课程标准(2011年版)》与原试验稿之比较》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《《义务教育数学课程标准(2011年版)》与原试验稿之比较》。

第一篇:《义务教育数学课程标准(2011年版)》与原试验稿之比较

《义务教育数学课程标准(2011年版)》与原实验稿之比较

新修订课标主要呈现以下九大变化:

1.基本理念“三句”变“两句”,“6条”改“5条”:

“三句话”:

——人人学有价值的数学

——人人都能获得必需的数学

——不同的人在数学上得到不同的发展

“两句话”:

——人人都能获得良好的数学教育

——不同的人在数学上得到不同的发展

(修订后与过去的提法相比:有更深的意义和更广的内涵,落脚点是数学教育而不是数学内容,有更强的时代精神和要求(公平的、优质的、均衡的、和谐的教育。)

“6条”改“5条”:

在结构上由原来的6条改为5条,将原《标准》第2条关于对数学的认识整合到理念之前的文字之中,新增了对课程内容的认识,此外,将“数学教学”与“数学学习”合并为数学“教学活动”。

——原课标:数学课程——数学——数学学习——数学教学——评价——信息技术

——修改后:数学课程——课程内容——教学活动——学习评价——信息技术

2.理念中新增加的提法:

——要处理好四个关系

——有效的教学活动是什么

——数学课程基本理念(两句话)

——数学教学活动的本质要求

——培养良好的数学学习习惯

——注重启发式

——正确看待教师的主导作用

——处理好评价中的关系

——注意信息技术与课程内容的整合 3.关于数学观的修改:

原课标:

——数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。

——数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。

——数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想像力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。

课标修改稿:

——数学是研究数量关系和空间形式的科学。

——数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具„„

——数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。——要发挥数学在培养人的理性思维和创新能力方面的不可替代的作用

树立正确的数学教学观:教学活动是师生积极参与、交往互动、共同发展的过程。有效的教学活动是学生学与教师教的统一,学生是学习的主体,教师是学习的组织者、引导者与合作者。

数学教学中最需要考虑的是什么?

数学教学活动应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维;要注重培养学生良好的数学学习习惯,使学生掌握恰当的数学学习方法。

4、“双基”变“四基”。

“双基”:基础知识、基本技能;

“四基”:基础知识、基本技能、基本思想、基本活动经验

“四基”与数学素养:

——掌握数学基础知识

——训练数学基本技能

——领悟数学基本思想

——积累数学基本活动经验

《国家数学课程标准》制定组组长、东北师大校长史宁中教授提出了“数学教学的四基”,引起了数学教育界的广泛关注。以前强调的双基是指基础知识、基本技能,双基教学重视基础知识、基本技能的传授,讲究精讲多练,主张‘练中学’,相信‘熟能生巧’,追求基础知识的记忆和掌握、基本技能的操演和熟练,以使学生获得扎实的基础知识、熟练的基本技能和较高的学科能力为其主要的教学目标。现在提出的四基不但包括了基础知识、基本技能、还增加了基本思想、基本活动经验。

史宁中教授指出:“‘基本思想’主要是指演绎和归纳,这应当是整个数学教学的主线,是最上位的思想。”关于基本思想方法,四大育人功能:一是有利于完善学生的数学认知结构;二是可以提升学生的原来认知水平;三是可以发展学生的思维能力;四是有利于培养学生解决问题的能力。小学阶段涉及到的数学思想方法包括分类、转化、归纳、数形结合、数学建模、猜想、符号化、方程与函数、极限等数学思想方法。我们要了解这些数学思想方法的意义、在小学数学教学中的作用和价值以及应用时的注意事项,认识到在教学中关注数学思想方法的重要性,在教学中渗透数学思想方法的必要性。“双基”变“四基”,为数学教师提出了更高的要求,要求数学教师必须为儿童的学习和个人发展提供了最基本的数学基础、数学准备和发展方向,促进儿童的健康成长,使人人获得良好的数学素养,不同的人在数学得到不同的发展。“双基”变“四基”,任重而道远。

常用的小学数学思想方法:对应思想方法、假设思想方法、比较思想方法、符号化思想方法、类比思想方法、转化思想方法、分类思想方法、集合思想方法、数形结合思想方法、统计思想方法、极限思想方法、代换思想方法、可逆思想方法、化归思维方法、变中抓不变的思想方法、数学模型思想方法、整体思想方法等等。

5、关于设计思路的修改:

——学段划分保持不变;

——对课程目标动词及水平要求的设计基本保持不变,增加了目标动词的同义词;

——对四个学习领域的名称作适当调整;

——对学习内容中的若干关键词作适当调整对其意义作更明确的阐释。

6.四个领域名称的变化:

原课标:数与代数、空间与图形、统计与概率、实践与综合应用

修改后:数与代数、图形与几何、统计与概率、综合与实践

(变“空间与图形”为“图形与几何”,重提几何直观、推理能力、运算能力、逻辑思维能力,用词更加规范,体现了课标的严肃;综合与实践,在《实验稿》里它有三个名称:第一学段是“实践活动”,在第二学段是“综合应用”,在第三学段是“课题学习”,小学是 前两个学段所以就叫做“实践与综合应用”,《修订稿》把三个学段都统一叫做:“综合与实践”,这样比较规范、严谨。)

7、主要的关键词的变化:

——原课标:数感、符号感、空间观念、统计观念、应用意识、推理能力

——修改后:数感、符号意识、运算能力、模型思想、空间观念、几何直观、推理能力、数据分析观念、应用意识

最近一次修改又加上了:创新意识。

符号感为何改为符号意识?

——符号感(SymbolSense)

——原课标:

“符号感”主要表现在:能从具体情境中抽象出数量关系和变化规律,并用符号来表示;理解符号所代表的数量关系和变化规律;会进行符号间的转换;能选择适当的程序和方法解决用符号所表达的问题。”

——修改稿:

“符号意识”主要是指能够理解并且运用符号表示数、数量关系和变化规律;知道使用符号可以进行一般性的运算和推理。建立符号意识有助于学生理解符号的使用是数学表达和进行数学思考的重要形式。”

——符号感与数感都用“感”,“感”的表述过多。符号感主要的不是潜意识、直觉。符号感最重要的内涵是运用符号进行数学思考和表达,进行数学活动。“意识”有两个意思:第一,用符号可以进行运算,可以进行推理;第二,用符号进行的运算和推理得到的结果具有一般性。所以这是一个“意识”问题,而不是“感”的问题。数学的本质是概念和符号,并通过概念和符号进行运算和推理。所以只能用“意识”。

8、关于课程目标的修改:

在总体目标中突出了“培养学生创新精神和实践能力”的改革方向和目标价值取向。

课程目标提法上的一些变化:

——明确了使学生获得数学的基础知识、基本技能、基本思想、基本活动经验(数学“四基)。

——提出了培养学生发现问题、提出问题、分析问题和解决问题能力(数学“四能”,“双能”变“四能”)。

——目标具体从“知识技能”“数学思考”“问题解决”“情感态度”四个方面阐述。

——学段目标的表述方式有所改变

9、关于内容标准的修改

结构上的变化:

数与代数的变化:(在内容结构上没有变化。)

第一学段:

① 增加“能进行简单的整数四则混合运算(两步)”

② 使一些目标的表述更加准确。例如将“能灵活运用不同的方法解决生活中的简单问题,并能对结果的合理性进行判断”,修改为“能运用数及数的运算解决生活中的简单问题,并能对结果的实际意义作出解释”。

第二学段:

① 增加的内容:

——增加“经历与他人交流各自算法的过程,并能表达自己的想法”。

——增加“了解公倍数和最小公倍数;了解公因数和最大公因数”。

——增加“在具体情境中,了解常见的数量关系:总价=单价×数量、路程=速度×时间,并能解决简单的实际问题”。

——增加“结合简单的实际情境,了解等量关系,并能用字母表示”。② 调整的内容:

——将“理解等式的性质”,改为“了解等式的性质”

——将“会用等式的性质解简单的方程(如3x+2=5,2x-x=3)”,改为“能解简单的方程(如3x+2=5,2x-x=3)”。

③ 使一些目标的表述更加准确和完整。例如将“会用方程表示简单情境中的等量关系”,改为“能用方程表示简单情境中的等量关系,了解方程的作用”。

图形与几何的变化:

第一学段

① 删除的内容

——删除“能在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形”,并将相关要求放在第二学段。

——删除“能在方格纸上画出简单图形的轴对称图形”,并将相关要求放在第二学段。

——删除“会看简单的路线图”,相关要求放入第二学段。

——删除“体会并认识千米、公顷”,相关要求放入第二学段。

② 降低要求

对于“东北、西北、东南、西南”四个方向,不要求给定一个方向辨认其余方向,降低要求为知道这些方向。

③使一些目标的表述更加准确和完整。例如将“辨认从正面、侧面、上面观察到的简单物体的形状”改为“能根据具体事物、照片或直观图辨认从不同角度观察到的简单物体的形状”。

第二学段:

①删掉“了解两点确定一条直线和两条相交直线确定一个点”。

②增加“知道扇形”。

③ 使一些目标的表述更加准确和完整。例如将“探索并掌握圆的周长公式”改为“通过操作,了解圆的周长与直径的比为定值,掌握圆的周长公式”。

统计内容主要变化如下:

——第一学段与《标准》相比,最大的变化是鼓励学生运用自己的方式(包括文字、图画、表格等)呈现整理数据的结果,不要求学生学习“正规”的统计图(一格代表一个单位的条形统计图)以及平均数(这些内容放在了第二学段)。

——第二学段与《标准》相比,在统计量方面,只要求学生体会平均数的意义,不要求学生学习中位数、众数(这些内容放在了第三学段)。

——加强体会数据的随机性。在以前的学习中,学生主要是依靠概率来体会随机思想的,《标准(修改稿)》希望通过数据分析使学生体会随机思想。

概率内容主要变化如下:

——第一学段、第二学段的要求降低。在第一学段,去掉了《标准》对此内容的要求。第二学段,只要求学生体会随机现象,并能对随机现象发生的可能性大小做定性描述。

——明确指出所涉及的随机现象都基于简单随机事件:所有可能发生的结果是有限的、每个结果发生的可能性是相同的。

第一学段:

①鼓励学生运用自己的方式(包括文字、图画、表格等)呈现整理数据的结果,删除“象形统计图、一格代表一个单位的条形统计图”、“平均数”的内容,相关要求放在了第二学段。

② 删除“知道可以从报刊、杂志、电视等媒体中获取数据信息”。

③ 删除“不确定现象”部分,相关要求放在了第二学段。

第二学段:

① 删除“中位数”、“众数”的内容,相关要求放在了第三学段。② 删除“体会数据可能产生的误导”。

③ 降低了“可能性”部分的要求,只要求学生体会随机现象,并能对随机现象发生的可能性大小做定性描述,定量描述放入第三学段。

加强体会数据的随机性

——这是修改后的一个重要变化。

原来,学生主要是依靠概率来体会随机思想的,现在希望学生通过数据来体会随机思想。

——这种变化从“数据分析观念”核心词的表述也可以看出。

综合与实践的变化:

——统一了三个学段的名称,进一步明确了其目地和内涵。

——“综合与实践”是一类以问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验、培养学生应用意识与创新意识的重要途径。

——针对问题的情景,学生综合所学的知识和生活经验,独立思考或与他人合作经历发现问题和提出问题,分析问题和解决问题的全过程,感悟数学各部分内容之间、数学与生活实际之间、数学与其他学科之间的联系,加深对所教数学内容的理解。

——《标准》增设“联系与综合”部分的目的是让学生在各个知识领域的学习过程中,有意识地体会数学与他们的生活经验、现实社会和其他学科的联系,以及数学在人类文明发展与进步过程中的作用;体会数学知识内在的联系。同时,采用过“综合实践活动”这种新的学习形式,通过学生的自主探索与合作交流,使他们获得综合运用数学知识和方法解决实际问题、探索数学规律的能力,逐步发展对数学的整体认识。

——新的数学课程新技术对数学课程提出了新的要求,指出了新技术包括数学课程的目的、数学学习的内容以及教与学的方式等方面产生了巨大影响。因此,《标准》提出在第二学段引入计算器,并鼓励把计算器和计算机作为研究、解决问题的强有力的工具。这样可以免除学生做大量繁杂、重复的运算,从而在探索性、创造性的数学活动中投入更多的精力,解决更为广泛的现实问题。

——在课程实施建议中强调,有条件的地区应尽可能在教学过程中使用现代教育技术,增加数学课程的技术含量,充分利用现代教育技术在增加师生互动、形象化表示数学内容、有效处理复杂的数学运算等方面的优势,去改进学生的数学学习方式、增进学生对数学的理解,最终提高数学教学的质量。

对综合与实践的理解-------实践性﹑综合性﹑探索性

——“综合与实践”应当保证每个学期至少有一次,它可以在课堂上完成,,也可以在课外或课内外相结合完成。

——“综合与实践”的核心是发现和提出问题,分析和解决问题,不同学段有不同的特点。

第一学段

内容安排强调实践性和趣味性。

第二学段

通过应用、探索和反思,加深对所学知识的理解,通过探索、引发学生学习的兴趣和培养思考的习惯,通过交流,发展理解他人、团结互助的合作精神。

第二篇:义务教育数学课程标准解析

《义务教育数学课程标准(2011年版)》解析

8月28日下午,西北师范大学教育大学(教师培训学院)副院长吕世虎教授为学员做了“《义务教育课程标准(2011年版)》解析”的专题讲座。

吕世虎教授主要从《课标(实验稿)》的修订过程以及《课标(修订稿)》的主要变化这两个方面对课程标准进行了解析。首先吕世虎教授给学员们讲述了课标修订的漫长组织与过程,随后重点讲解了《课标(修订稿)》在体例结构,内容上的变化。吕世虎教授讲到《课标(修订稿)》在对数学的认识方面更加清晰,指出“数学是研究数量关系和空间形式的科学”,在课程理念方面指出:使得人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。这种理念是一种清晰明了的科学思想。接着在数学学习与数学教学的认识中,吕世虎教授解析到要做到认真听讲、积极思考、动手实践、自主探索、合作交流等,这些都是学习数学的重要方式。在课程设计思路方面的变化上吕世虎教授告诉学员们应当注重发展学生的数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和模型思想。还要特别注重发展学生的应用意识和创新意识。在数学课程目标上,吕世虎教授解析新课标提出了“四基”也就是基础知识、基本技能、基本思想、基本活动经验,还有四种重要的能力,分别是发现问题和提出问题的能力,分析问题和解决问题的能力。并且要让学生养成良好的数学学习习惯,这些对于学生的数学学习具有深远的影响。最后吕世虎教授还对教学建议方面做了一些讲解,讲到数学教学活动要注重课程目标的整体实现。进一步明确教师与学生的角色定位,更多的指向对教师具体行为的描述。

第三篇:义务教育数学课程标准(学习心得)

《义务教育数学课程标准(2011年版)》学习心得

新兴县六祖小学

陈小东

学习了《义务教育阶段数学课程标准(2011年版)》这个课程以后,我觉得新课标更理性些、数学教材更完美些、数学教学更本真些,教材的结构也发生了一定的变化,教学内容的编排更为科学合理,我想:无论是课标还是教材的修订,其最终目的是促使数学课程更加完善,适应社会发展与教育改革的需要,从而最大限度地发挥其应用的价值。古人云:师者传道、授业、解惑也。又说:授之鱼,不如授之以渔。

(一)数学课程应致力于实现义务教育阶段的培养目标,要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展,数学思想蕴涵在数学知识形成、发展和应用的过程中,是数学知识和方法在更高层次上的抽象与概括,如抽象、分类、归纳、演绎、模型等。学生在积极参与教学活动的过程中,通过独立思考、合作交流,逐步感悟数学思想。例如,分类是一种重要的数学思想。学习数学的过程中经常会遇到分类问题,如数的分类,图形的分类,代数式的分类等。在研究数学问题中,常常需要通过分类讨论解决问题,分类的过程就是对事物共性的抽象过程。教学活动中,要使学生逐步体会为什么要分类,如何分类,如何确定分类的标准,在分类的过程中如何认识对象的性质,如何区别不同对象的不同性质。通过多次反复的思考和长时间的积累,使学生逐步感悟分类是一种重要的思想。学会分类,可以有助于学习新的数学知识,有助于分析和解决新的数学问题。

(二)课程内容要反映社会的需要、数学的特点,要符合学生的认知规律。它不仅包括数学的结果,也包括数学结果的形成过程和蕴含的数学思想方法。课程内容的选择要贴近学生的实际,有利于学生体验与理解、思考与探索。

(三)教学活动是师生积极参与、交往互动、共同发展的过程。有效的教学活动是学生学与教师教的统一,学生是学习的主体,教师是学习的组织者、引导者与合作者。数学活动经验的积累是提高学生数学素养的重要标志。帮助学生积累数学活动经验是数学教学的重要目标,是学生不断经历、体验各种数学活动过程的结果。数学活动经验需要在“做”的过程和“思考”的过程中积淀,是在数学学习活动过程中逐步积累的。

(四)学习评价的主要目的是为了全面了解学生数学学习的过程和结果,激励学生学习和改进教师教学。应建立目标多元、方法多样的评价体系。评价既要关注学生学习的结果,也要重视学习的过程;既要关注学生数学学习的水平,也要重视学生在数学活动中所表现出来的情感与态度,帮助学生认识自、建立信心。激励不只是表面的表扬一下,在学习过程中,不仅是对学生学习成绩的评价,也包括对学生学习过程的评价,对学生学习态度的评 价,都是一个激励的过程。改进教师的教学,不仅是看学生学的怎么样,还应该通过学生学的怎么样,来看教师教学的组织和教学的效果,透过学生的学来看教师的教,反应了教学过程的效果和效率。

(五)信息技术的发展对数学教育的价值、目标、内容以及教学方式产生了很大的影响。数学课程的设计与实施应根据实际情况合理地运用现代信息技术,要注意信息技术与课程内容的整合,注重实效。

另外,“轻负高效”是新课程标准的一个重要内容,很重要的一个点就体现在关于作业习题的布置。精选数学练习题,即教师要根据教学内容和学生具体情况,有针对性的筛选或自行设计数学练习题,保证练习题的质与量,让学生通过练习切实得到巩固与发展。因而我觉得对于不同程度的学生是否可以要求不同程度的习题练习?对于程度差的同学要不断巩固基础知识,反复练习;对于程度好的同学要在掌握基础的同时,适当的做一些拔高练习。这样一来也许不仅适合学生本身的接受能力、减轻他们的负担,也能让老师的教学更有效果。

通过学习,我们将会以新的姿态站在教育前沿。无论遇到多大的艰难险阻,我们紧跟着新课标、新理念,才不会迷失自己的方向,切实为学生的全面发展服务。

第四篇:《义务教育数学课程标准》学习体会

《义务教育数学课程标准》学习体会

教师:刘成兰

新学期,我认真学习了《义务教育数学课程标准》,通过学习, 我充分认识到义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使教学教育面向全体学生。既要加强学生的基础性学习,又要提高学生的发展性学习和创造性学习。我们教师必须更新原有的教学观念,改变原有的教学模式,不断钻研教材,学习新理念,新方法,全面了解自己的学生,切实地完成好教学任务,把自己的教育教学水平提高到一个新的层次,只有这样才能适应现代教学的需要。本人通过对新课程的学习,对如何让学生学好数学有了进一步的认识。下面谈一下自己的感受:

一、数学观的改变。

《新课程标准(修订稿)》,将数学观更改为:数学是研究数量关系和空间形式的科学。数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具。数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。新课标强调从学生已有的生活经验出发,让学生在生动、具有现实的情境中去学习数学。作为一名数学教师,我们首先要改变自己的数学观念,以适应新时代的要求。

二、关于数学课程。

数学课程应致力于实现义务教育阶段的培养目标,体现基础性、普及性和发展性。义务教育阶段的数学课程要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。

1、人人都能获得良好的数学教育:

良好的数学教育,就是不仅懂得了知识,还懂得了基本思想,在学习过程中得到磨练。义务教育阶段的数学课程具有公共基础的地位,要着眼于学生的整体素质的提高,促进学生全面、持续、和谐发展。

课程设计要满足学生未来生活、工作和学习的需要,使学生掌握必需的数学基础知识和基本技能,发展学生抽象思维和推理能力,培养应用意识和创新意识,在情感、态度与价值观等方面都要得到发展;要符合数学科学本身的特点、体现数学科学的精神实质;要符合学生的认知规律和心理特征、有利于激发学生的学习兴趣;要在呈现作为知识与技能的数学结果的同时,重视学生已有的经验,让学生体验从实际背景中抽象出数学问题、构建数学模型、得到结果、解决问题的过程。要处理好人人都能获得良好的数学教育与不同的人在数学上得到不同的发展之间的关系;要处理好强调学生主体作用与突出教师组织和引导作用之间的关系;要处理好 “四基”:基础知识、基本技能、基本思想、基本活动经验之间的关系。并把“四基”与数学素养的培养进行整合,掌握数学基础知识,训练数学基本技能,领悟数学基本思想,积累数学基本活动经验。

2、不同的人在数学上得到不同的发展:

现代学生观认为,在每一个学生身上都蕴藏着巨大的教育潜能,我们的教育必须充分尊重学生的内在素质,即自然天性,小心加以呵护、开发。要面对每一个有差异的个体,适应每一个学生不同发展的需要,要为每一个学生提供不同的发展机会与可能。数学课程必须立足于关注学生的一般发展,它应当是“为了每一个孩子”健康成长的课程,而不能成为专门用来淘汰的“筛子”。要改变陈旧的学习方式,学生学习应当是一个生动活泼的、主动地和富有个性的过程,除接受学习外,动手实践、自主探索与合作交流也是数学学习的重要方式,学生应当有足够的时间和空间经历观察、实验、猜测、验证、推理、计算、证明等活动过程。教师要牢记两条,一是除了知识传授之外,还必须充分调动学生学习的积极性,引发学生的思考;二是既能培养学生良好的学习习惯,也能让学生掌握有效的学习方法。

课标解读工作自上而下如火如荼的进行着,2012年3月12日上午,我们在市实验二小参加了2011版《义务教育数学课程标准》的解读会,感触颇多;特别是秦院长对于数学素养的解读,及其风趣的举例,更让我印象深刻。在这个活动中,我的体会颇多。

1.《小学数学新课程标准》以全新的观点将小学数学内容归纳为“数与代数”“空间与图形”“统计与概率”“实践与综合应用”四个学习领域,特别突出地强调了6个学习内容的核心概念:数感、符号感、空间观念、统计观念、应用意识和推理能力。

2、通过新课标解读,教学不再是简单的知识灌输过程,应当是学生和教师互相作用的过程。学生将不再是知识的容器,而是自主知识的习得者。面对知识更新周期日益缩短的时代,我意识到:必须彻底改变过去那种把老师知识的储藏和传授给学生的知识比为“一桶水”与“一杯水”的陈旧观念,而要努力使自己的大脑知识储量成为一条生生不息的河流,筛滤旧有,活化新知,积淀学养。有句话说的好:“一个教师,不在于他读了多少书和教了多少年书,而在于他用心读了多少书和教了多少书。”用心教、创新教与重复教的效果有天渊之别。

学习2011版《义务教育数学课程标准》心得体会

草长莺飞的三月,我有幸在市实验小学参加了小学数学新课标解读会,秦院长带领我们全面完整地学习了新课标,让我受益匪浅。使我进一步认识到2011版数学课程标准从基本理念、课程目标、内容标准到实施建议都更加准确、规范、明了和全面。为广大数学教师深刻领会数学新课改精神,有效的进行数学教学改革指明了新的方向。下面就谈一谈这次学习新课标的几点体会:

一、教学中教师要面向全体灵活选择教法

新课程标准的五大基本理念之一是“人人都能获得良好的数学教育,不同的人在数学上得到不同的发展”。在教学过程中我们要面向全体学生,关注并促进每一位学生的发展,尤其是那些学习上暂时有困难的学生,同样应给予足够的重视,而非岐视,要因材施教,因势利导,通过多种途径和方法,满足他们的学习需求,发展他们的数学才能。教材中设计了不少如“思考”、“探索”、“讨论”、“观察”、“试一试”、“做一做”等问题,教师可根据实际情况组织学生小组合作学习,在小组成员的安排上优、中、差各级知识水平学生要合理搭配,以优等生的思维方式来启迪差生,以优等生的学习热情来感染差生。在让学生独立思考时,要尽量多留一些时间,不能让优等生的回答剥夺差生的思考。对于数学成绩较好的学生,教师也可另外选择一些较灵活的问题让他们思考、探究,以扩大学生的知识面,提高数学成绩。

因此教师要深入、全面地学习课程标准,理解课程标准的精神实质,掌握课程标准的思想内涵,通晓课程标准的整体要求,才能目的明确、方向集中地钻研教材,具体、准确地把握教材的重点、难点,创造性地设计教学过程,分散难点、突破疑点,从而得心应手地驾弩教材,灵活自如地选择教法。

二、教学中教师要正确把握自己的角色定位。

在新的课程标准的理念中谈到:数学活动是师生积极参与、交往互动、共同发展的过程。有效的教学活动室学生学与教师教的统一,学生是学习的主体,教师是学习的组织者、引导者与合作者。数学教学应该以学生的认知发展水平和已有的经验为基础面向全体学生注重启发式和因材施教。教师要创设有助于学生自主学习的问题情境,给学生足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程,让学生获得知识,形成技能,发展思维,学会学习,促使学生在教师指导下的生动活泼地、主动地、富有个性地学习。要善于激发学生的学习潜能,鼓励学生大胆创新与实践。它实际上是一种探究性的学习,教师是探究性学习的组织者,在学习中对学生提供经验和帮助,做好组织协调工作。教师要想方设法开阔学生的视野,启发学生的思维,要善于发现学生思维的闪光点,适当地给予一些建议,老师要向学生提供经验,帮助他们进行判断、检查自己想法的正确性,提醒他们注意探究中可能出现的问题和困难,要深思熟虑地、周全地统筹学生活动。教学中可让学生充分讨论,在这个过程中,学生思维会变得开阔,富有独特性和创造性,同时也提高了他们的认识水平和口头表达能力,逐步由过去的“学会”向“会学”转变。例如《三角形的面积》这节课我就采用了先猜想~论证~归纳教学过程。这样让学生在探究中获得知识,发展思维,培养合作精神,教师在这个过程中是一个组织者、引导者和合作者。

三、教学中教师要进行多元化的评价让学生体验成功

新课标指出:“要关注学生学习的结果,也要重视他们的学习过程;要关注学生数学学习的水平,也要关注他们数学活动中所表现出来的情感与态度,帮助学生认识自我,建立信心。”这就要求我们教师对学生的评价要全面、多元,多用激励性评语。要多一些宽容,少一些指责,允许学生犯错。我们必须清楚地认识到:每个学生的基础是有差异的,学习数学的进程也会有差别,如果用同一个标准去衡量评价学生的学习,必然要制造出许多的失败者。

因此,评价要因人而异,不要用“同一把尺”,要注重评价个体在原有基础上的进步,帮其树立学好数学的信心。“兴趣是最好的老师。”只要我们时时刻刻把学生放在首位,努力充实自己,让学生爱学、乐学,必定会获得教学上的进步。

在新课标的学习与实践之中,新理念、新思路、新方法不断冲击着站在课改浪尖上的教师们。我们曾经困惑,不知所措,但通过学习,我们又会新的姿态站在教育前沿。无论遇到多大的艰难险阻,我们紧跟着新课标、新理念,才不会迷失自己的方向,切实为学生的全面发展服务。

第五篇:2011年版义务教育小学数学课程标准与原标准的对比

2011年版义务教育小学数学课程标准与原标准的对比

【新旧课标比较】

与旧课标相比,新课标从基本理念、课程目标、内容标准到实施建议都更加准确、规范、明了和全面。具体变化如下:

一、总体框架结构的变化

2001年版分四个部分:前言、课程目标、内容标准和课程实施建议。2011年版把其中的“内容标准”改为“课程内容”。前言部分由原来的基本理念和设计思路,改为课程基本性质、课程基本理念和课程设计思路三部分。

二、关于数学观的变化 2001年版:

数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。

数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。2011年版:

数学是研究数量关系和空间形式的科学。

数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具。

数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。

三、基本理念“三句”变“两句”,“6条”改“5条” 2001年版“三句话”:

人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。

2011年版“两句话”:

人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。“6条”改“5条”:

在结构上由原来的6条改为5条,将2001年版的第2条关于对数学的认识整合到理念之前的文字之中,新增了对课程内容的认识,此外,将“数学教学”与“数学学习”合并为数学“教学活动”。

2001年版:数学课程——数学——数学学习——数学教学活动——评价——现代信息技术

2011年版:数学课程——课程内容——教学活动——学习评价——信息技术

四、理念中新增加了一些提法

要处理好四个关系

数学课程基本理念(两句话)

数学教学活动的本质要求

培养良好的数学学习习惯

注重启发式

正确看待教师的主导作用

处理好评价中的关系

注意信息技术与课程内容的整合五、“双基”变“四基”

2001年版: “双基”:基础知识、基本技能;

2011年版 “四基”:基础知识、基本技能、基本思想、基本活动经验。并把 “四基”与数学素养的培养进行整合:

掌握数学基础知识,训练数学基本技能,领悟数学基本思想,积累数学基本活动经验。六、四个领域名称的变化

2001年版:数与代数、空间与图形、统计与概率、实践与综合应用。2011年版:数与代数、图形与几何、统计与概率、综合与实践。

七、课程内容的变化

更加注意内容的系统性和逻辑性。如在数与代数领域的第一学段:增加了认识小括号,能进行简单的整数四则混合运算。综合与实践领域的要求更加明确和具有可操作性。

八、实施建议的变化

不再分学段阐述,而是分教学建议、评价建议、教材编写建议、课程资源利用和开发建议。在强调学生主体作用的同时,明确提出教师的组织和引导作用。

根据几年课程改革实验的经验和出现的问题,在深入调查、认真研讨和广泛征求意见的基础上,数学课程标准修改组形成了的《标准》(修改稿)。标准(修改稿修改的主要内容包括以下几个方面。1.体例与结构做了适当调整

本次修改,在保持原课程标准基本结构不变的基础上,经充分讨论,在结构上有两处调整。

一是前言内容做了较大的调整。在前言重点阐述了《标准》的指导思想、意义与功能。明确了《标准》应以《义务教育法》和全面推进素质教育,培养创新型人才为依据。明确了《标准》的意义和功能。在前言中指出,“《标准》提出的数学课程理念和目标对义务教育阶段的数学课程与教学具有指导作用,所规定的课程目标和内容标准是义务教育阶段的每一个学生应当达到的基本要求。《标准》是教材编写、教学、评估和考试命题的依据。”

二是将课程目标中的关键术语的解释和所有比较完整的案例统一放在附录中,案例进行统一编号,便于查找和使用,同时减少了《标准》正文的篇幅。

2、修改和完善了数学课程的基本理念

《标准》提出的基本理念总体上反映了基础教育改革的方向,对个别表述的方式进行了修改。如将原来“人人学有价值的数学,人人获得必需的数学,不同的人在数学上得到不同的发展”,改为“人人都能获得良好的数学教育,不同的人在数学上得到不同的发展”。

3、理清了《标准》的设计思路

《标准》中设计思路表述的不够清晰,修改稿对设计思路做了较大的修改。主要是对四个方面的课程内容“数与代数”,“图形与几何”,“统计与概率”,“综合与实践”做了明确的阐述。将“空间与图形”改为“图形与几何”。确立了“数感”、“符号意识”等七个义务教育阶段数学教育的关键词,并给出较清晰的描述。

4、对学生培养目标做了修改

学生的培养目标在具体表述上做了修改,提出了“四基”:基础知识、基本技能、基本思想和基本活动经验;提出了“两能”:发现问题和提出问题的能力、分析问题和解决问题的能力。

5、具体内容做了适当的修改,表述方式更加合理

对于三个学段的具体内容进行了适当调整。对“数与代数”,“图形与几何”的内容也做了一定的调整,增加了一些论证的要求;对“统计与概率”的内容进行了梳理,增强了三个学段内容的层次性;

为了削弱形式化,明确指出,几何证明不限于“综合证明法”。为了减轻学生的负担,修改中适当减少的一些知识点。如“图形与几何”中减少10个左右的知识点;在“数与代数”中删去了“一元不等式组的应用”等。具体修改情况如下:

数与代数 第一学段

1、增加“能进行简单的四则混合运算(两步)第二学段

1、增加“结合现实情境感受大数的意义,并能进行估计”。

2、增加“了解公倍数和最小公倍数;了解公因数和最大公因数”。

3、删除“会口算百以内一位数乘、除两位数。

4、理解等式的性质,会用等式的性质解简单方程,改为“能解简单的方程(如3x+2=5,2x-x=3)。”

图形与几何

1、内容的结构的调整:

《标准(实验稿)》的“空间与图形”分为四个部分:

第一、二学段为(1)图形的认识;(2)测量;(3)图形与变换;(4)图形与位置。

《标准(修改稿)》的“图形与几何”,第一、二学段仍分为四部分,具体表示有所变动,(1)图形的认识;(2)测量;(3)图形的运动;(4)图形与位置。

其中,第(1)部分大体整合了《标准(实验稿)》的第(1)、(4)部分的内容,以利于在探索、发现、确认、证明图形性质过程的过程中,体现两种推理(合情推理与演绎推理)相辅相成的关系;体现《标准(修改稿)》在总体目标中提出的增强学生“发现和提出问题,分析和解决问题”的能力的要求。第(2)部分除了《标准(实验稿)》第(2)部分的图形的轴对称、旋转、平移、相似外,还包括了图形的投影。这部分内容强调了图形的运动是研究图形性质的一种有效方法。第(3)部分包括两部分内容——坐标与图形的位置、坐标与图形的运动,比《标准(实验稿)》的第(3)部分内容有所增加,要求也更加具体、明确。

2、主要内容的修改 第一学段

(1)“能在方格纸上画出简单图形沿水平方向、垂直方向平移后的图形”放在第二学段(2)“能在方格纸上画出简单图形的轴对称图形”放在第二学段。(3)在东、南、西、北和东北、西北、东南、西南中,给定一个方向,辨认其余七个方向,并能用这些词语描绘物体所在的方向;会看简单的路线图。改为:给定东、南、西、北四个方向中的一个方向,能辨认其余三个方向,知道东北、西北、东南、西南四个方向,能用这些词语描绘物体所在的方向。第二学段

(1)删掉“两点确定一条直线和两条相交直线确定一个点”。(2)增加“通过操作,了解圆的周长与直径的比为定值”。

统计与概率

1.统计

与《标准》相比,《标准修改稿》对统计内容做了适当调整,使三个学段统计内容学习的层次性方面更加明确。主要变化如下:

(1)第一学段与《标准》相比,最大的变化是鼓励学生运用自己的方式(包括文字、图画、表格等)呈现整理数据的结果,不要求学生学习“正规”的统计图(一格代表一个单位的条形统计图)以及平均数(这些内容放在了第二学段)。这种变化主要原因有三:第一,更加突出了学生对数据分析的体验,鼓励学生用自己的方式去分析数据;第二,早期经验的多样化可以为以后学习“正规”的统计图表和统计量奠定比较牢固的基础;第三,使得统计内容在第一、二学段的要求层次更加明确。

在收集数据方法方面,考虑到学生年龄特征,要求学生了解测量、调查等的简单方法,不要求学生从报刊、杂志、电视等媒体中获取数据信息。

(2)第二学段与《标准》相比,在统计量方面,只要求学生体会平均数的意义,不要求学生学习中位数、众数(这些内容放在了第三学段)。这种变化主要原因有二:第一,平均数是一个非常重要的刻画数据平均水平的统计量,需要学生重点体会;第二,考虑到学生的年龄特征,其他刻画数据平均水平的统计量不宜集中学习。

另外,删去“体会数据可能产生的误导”这一要求。

(3)加强体会数据的随机性

实际上,体会数据的随机性是《标准修改稿》的一个重要特点,也是一个重要变化。在以前的学习中,学生主要是依靠概率来体会随机思想的,《标准修改稿》希望通过数据使学生体会随机思想。这种变化从“数据分析观念”核心词的表述,以及案例

21、案例

43、案例73中也可以看到。

(4)增加了一些案例,特别是对案例在数学上、教学上做了比较详细的阐述,希望对教师有所启发。2.概率

与《标准》相比,《标准修改稿》的主要变化如下:

(1)第一学段、第二学段的要求降低。

在第一学段,去掉了《标准》对此内容的要求;第二学段,只要求学生体会随机现象,并能对随机现象发生的可能性大小做定性描述。

(2)明确指出所涉及的随机现象都基于简单随机事件:所有可能发生的结果是有限的、每个结果发生的可能性是相同的。在第三学段,学生通过列出简单随机现象所有可能的结果、以及指定事件发生的所有可能结果,来了解随机现象发生的概率。

(3)增加了一些案例,特别是对案例在数学上、教学上做了比较详细的阐述,希望对教师有所启发。

综合与实践

在标准的修改中,根据课程实验积累的经验,进一步理清了思路,主要变化为:

一、把三个学段的名称作了统一,统称为“综合与实践”,进一步明确了“综合与实践”的目的和内涵:

“综合与实践”是一类以问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验、培养学生应用意识与创新意识的重要途径。针对问题情境,学生综合所学的知识和生活经验,独立思考或与他人合作,经历发现问题和提出问题、分析问题和解决问题的全过程,感悟数学各部分内容之间、数学与生活实际之间、数学与其他学科之间的联系,加深对所学数学内容的理解。

二、提出了明确的要求:

“综合与实践”应当保证每学期至少一次。它可以在课堂上完成,也可以在课外完成,还可以课内外相结合。

三、对三个学段的差异作了进一步的明确,一方面突出了创新的核心是“发现和提出问题、分析和解决问题”,另一方面突出了不同学段的特点。第一学段:

内容安排应强调问题情境相对简单、生动有趣、学生容易参与,可以把操作活动作为主要形式。教师在组织教学活动时要力求使学生明白解决问题的目标和步骤,引导学生多动手、多思考、多提问题,争取更多的学生获得成功的体验,鼓励学生之间的合作交流。具体目标

1.经历实际操作的过程,在解决问题的过程中了解所学内容之间的关联,加深对学习内容的理解。

2.获得一些初步的数学实践活动经验,感受数学在日常生活中的作用,知道能够运用所学的知识和方法解决简单问题。第二学段:

学生将在教师的指导下,经历有目的、有设计、有步骤的综合与实践活动,进一步获得数学活动的经验。通过应用和反思,加深对所学知识的理解;通过探索,引发学习的兴趣和培养思考的习惯;通过交流,发展理解他人、团结互助的合作精神。

教师应通过问题设计、求解过程的引导,鼓励学生多动手、多思考;发现问题、提出问题;克服困难、积极进取;主动与同伴合作、积极与他人交流。具体目标

1.通过应用和反思,加深对于所用知识和方法的理解,了解所学过知识之间的联系。

2.初步获得在给定目标下,设计解决问题方案的经验。

3.结合实际背景,初步体验发现问题、提出问题和解决问题的过程。

【结合教学实际提出学习新课标过程中存在的问题】

1、新课标将于2012年9月开始实行,而教材跟不上新课标的理念,造成老师教学

不便,如:新课标将平移中的“能在方格纸上画出简单图形沿水平方向、垂直方向平移后的图形”改为放在第二学段,而现在所用的人教版在二年级就有这个教学要求了。

2、新课标中把旧课标里的理解等式的性质,会用等式的性质解简单方程,改为“能解简单的方程(如3x+2=5,2x-x=3)。”是否理解为“只要求会解简单方程就可以,什么方法都可以”?

3、《数学课程标准》的基本理念中明确指出“评价的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学;应建立评价目标多元、评价方法多样的评价体系。对数学学习的评价要关注学生学习的结果,更要关注他们学习的过程;要关注学生数学学习的水平,更要关注他们在数学活动中所表现出来的情感与态度,帮助学生认识自我,建立信心。” 数学课堂教学中教师的评价性语言,能激发学生的学习兴趣,调动学生的积极思维,培育良好的情感。但在我们的实际教学中,却存在着很大的问题:评价重诊断性,轻激励性,淡过程性。

4、伴随着新课程改革的新理念和新思想,我们的课堂教学发生了翻天覆地的变化。

以往的“师问生答”变成了“畅所欲言”,“纹丝不动”变成了“自由活动”。“师说生听”变成了“自主探索”,学生的个性得到了张扬,教学气氛异常活跃。然而在这些花样繁多、热闹非凡的很多课堂教学中,我们的学生却没有得到真正有效的发展,课堂教学的有效性不高。

下载《义务教育数学课程标准(2011年版)》与原试验稿之比较word格式文档
下载《义务教育数学课程标准(2011年版)》与原试验稿之比较.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    义务教育数学课程标准解读心得体会

    义务教育数学课程标准解读心得体会1 和20xx年版的课标相比,新课标完善了培养目标,优化了课程设置,并且细化了实施要求,原来的课程标准缺乏对“学到什么程度”的具体规定,教师把......

    义务教育小学数学课程标准(2011年版)

    义务教育小学数学课程标准(2011年版) 目录第一部分前言. 1 一、课程性质. 1 二、课程基本理念. 2 三、课程设计思路. 4 第二部分课程目标. 9 一、总目标. 9 二、学段目标. 10......

    《义务教育数学课程标准(2011年版) 》解读

    《义务教育数学课程标准(2011年版) 》解读 主讲内容 一、修订课程标准的基本过程 二、修订课程标准的基本原则 三、修订课程标准的主要内容 四、几点建议 一、修订课程标准的......

    《义务教育数学课程标准》(2011年版)解读

    《义务教育数学课程标准》(2011年版)解读 《义务教育数学课程标准》(2011年版)解读 与2001年版相比,数学课程标准从基本理念、课程目标、内容标准到实施建议都更加准确、规范、明......

    《义务教育数学课程标准(2011版)》测试题

    《义务教育数学课程标准(2011版)》测试题 姓名 得分 一、单项选择题(12分) 1、数学教学活动是师生积极参与,( )的过程。 A、交往互动 B、共同发展 C、交往互动、共同发展 2、......

    学习《义务教育数学课程标准》心得体会

    学习《义务教育数学课程标准》心得体会 新课标教师培训,再一次为我们教师创造良好的学习机会,提供了优越的学习条件。在培训学习期间,我积极参与学习,认真听取专家讲座,学习了“......

    学习《义务教育数学课程标准》心得体会

    学习《义务教育数学课程标准》心得体会 乌丹实验小学 高玉红 学习了《义务教育数学课程标准(2011年版)》后,让我们感触很深,受益匪浅。通过这次学习活动,让我对新课标有了更全......

    《义务教育数学课程标准》学习心得体会

    本学期,我又进一步认真学习了《义务教育数学课程标准》,通过本次学习, 我更充分熟悉到义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使教学教育面向全体学生。既......