adams运动仿真教学

时间:2019-05-15 00:57:53下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《adams运动仿真教学》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《adams运动仿真教学》。

第一篇:adams运动仿真教学

起重机的建模和仿真,如下图所示。

1)启动ADAMS 1.运行ADAMS,选择create a new model;2.modal name 中命名为lift_mecha;3.确认gravity 文本框中是earth normal(-global Y),units文本框中是MKS;ok 4.选择setting——working grid,在打开的参数设置中,设置size在X和Y方向均为20 m,spacing在X和Y方向均为1m;ok 5.通过缩放按钮2)建模

1.查看左下角的坐标系为XY平面

2.选择setting——icons下的new size图标单位为1 3.在工具图标中,选择实体建模按钮中的box按钮4.设置实体参3.53.数;

,使窗口显示所有栅格,单击F4打开坐标窗口。On ground Length :12 Height:4 Depth:8 5.鼠标点击屏幕上中心坐标处,建立基座部分 6.继续boxNew part Length :3 Height:3 Depth: 3.5 设置完毕,在基座右上角建立座架Mount部件 建立Mount座架部件,设置参数:

7.左键点击立体视角按钮架到基座中间部位:,查看模型,座架Mount不在基座中间,调整座

①右键选择主工具箱中的position按钮图标

中的move按钮

②在打开的参数设置对话框中选择Vector,Distance项中输入3m,实现Mount移至基座中间位置

③设置完毕,选择座架实体,移动方向箭头按Z轴方向,Distance项中输入2.25m,完成座架的移动

右键选择座架,在快捷菜单中选择rename,命名为Mount 8.选择setting—working grid 打开栅格设置对话框,在set location中,选择pick 选择Mount.cm座架质心,并选择X轴和Y轴方向,选择完毕,栅格位于座架中心

选择主工具箱中的视角按钮,观察视图 将spacing—working grid,设置spacing中X和Y均为0.5 10.选择圆柱实体绘图按钮New part Length:10m Radius:1m 选择座架的中心点,点击左侧确定轴肩方向,建立轴肩,单击三维视图按钮,观察视图,设置参数:

11.继续圆柱工具① 设置参数: New part Length: 13m Radius: 0.5m ② 选择Mount.cm作为创建点,方向同轴肩,建立悬臂,绘制悬臂

③ 右键选择新建的悬臂,在快捷菜单中选择part_4——Rename,命名为boom ④选择悬臂,移动方向沿X轴负向,实现悬臂的向左移动:

1)右键选择工具箱中的position按钮中的move按钮

2)在打开的参数对话框中,选择vector,distance中输入2m,点击悬臂,实现移动

⑤ 右键点击实体建模按钮设置圆角半径为1.5m ⑥ 左键选择座架上侧的两条边,点击右键,完成倒角,在弹出的下一级菜单中选择导圆角工具,12.选择box按钮图标① 设置参数: New part Length : 4.5 Height: 3.0 Depth: 4.0 ② 选择悬臂左侧中心点,命名为bucket,建立铲斗,创建铲斗

③ 右键选择position按钮下一级按钮move按钮

④ 在打开的参数对话框中,选择vector,distance中输入2.25m,选择铲斗,移动方向沿全部坐标系X轴负方向,实现铲斗的横向移动

⑤ 在主工具箱中,选择三维视图按钮,察看铲斗

⑥ 继续选择move按钮,设置参数中选择vector,distance中输入2.0m,选择铲斗,移动方向沿全部坐标系 Z轴负方向,实现铲斗的纵向移动

⑦ 移动完毕,选择主工具箱中的渲染按钮render,察看三维实体效果,再次选择render按钮,实体图则以线框显示

⑧ 右键点击实体建模按钮,再弹出的下一级按钮中选择倒角工具的参数设置对话框中,设置倒角Width为1.5m,⑨ 选择铲斗下侧的两条边,完毕单击右键,完成倒角

⑩ 右键选择实体建模工具按钮,再下一级按钮中选择Hollow按钮的参数设置对话框中设置参数Thickness为0.25m 选择铲斗为挖空对象,铲斗上平面为工作平面,完毕点击右键挖空铲斗,在打开,在打开

3)添加约束

根据图示关系,添加链接 ① 在主工具箱中,选择转动副bod——1 loc和pick feature,下方的参数设置对话框中,设置参数2 ② 选择基座和座架,然后选择座架中心Mount.cm,旋转轴沿y轴正向,建立座架与基座的转动副

③ 继续用转动副按钮,建立轴肩与座架间的转动副,设置参数为2 bod——1 loc和Normal to grid,选择轴肩和座架,再选择座架中心点,建立转动副 ④ 继续用转动副按钮,建立铲斗与悬臂间的转动副,设置参数为2 bod——1 loc和Normal to grid,选择铲斗与悬臂,再选择铲斗下侧中心点,建立转动副 ⑤ 选择主工具箱中的平动副,设置参数2 bod——1 loc和pick feature,选择悬臂与轴肩,再选择悬臂中心标记点,移动方向沿X轴正方向,建立悬臂和轴肩间的平动副

⑥ 右键点击窗口右下角的Information 信息按钮,选择约束按钮,观察是否按要求施加约束,关闭信息窗口 ⑦ 检查完毕,选择仿真按钮运动 4)添加运动

① 选择主工具箱中的旋转运动按钮,右键点击座架中心标记点,在弹出的,对系统进行仿真,观察系统在重力作用下的选择窗口中,选择JOINT_mount_ground,给座驾与基座的转动副添加转动运动 ② 选择俯视图按钮,观察旋转运动副的箭头图标

③ 右键点击该运动,在弹出的快捷菜单中选择motion_mount_ground——modify在修改对话框中,修改function项为360d*time ④ 重复上述动作,在轴肩和座架之间建立旋转运动Motion_shoulder_ground, ⑤ 右键点击该运动,在弹出的快捷菜单中选择motion_shoulder_ground——modify在修改对话框中,修改function项为-STEP(time,0,0,0.10,30d)⑥ 重复上述动作,在铲斗和悬臂之间建立旋转运动Motion_bucket_boom ⑦ 设置运动函数为45d*(1-cos(360d*time))

⑧ 右键点击主工具箱中旋转运动按钮,选择下一级平行运动按钮,点击悬臂中心平动副,在悬臂和座架间建立平行运动

⑨ 设置平行运动函数为STEP(time,0.8,0,1,5)

⑩ 选择主工具箱中的仿真按钮,设置仿真参数END Time:1;Steps:100,进行仿真

5)测量和后处理

① 鼠标右键点击铲斗,打开右键快捷键,选择测量measure ② 系统打开参数设置对话框,将Characteristic设置为CM Point,Component 设置为Y,测量Y向位移。

③ 点击Apply,出现空白的测量窗口 ④ 点击总工具箱中测量长度按钮,测量悬臂左端点与轴肩右端点间的距离

保存文件qizhongji在E:jiben0520053377目录中,推出系统。

其它CAD图与ADAMS软件的接口

1)在solid-edge、solid-working、p-re、UG等三维造型软件中,绘制三维图形,下图所示为装载机的工作装置CAD三维图;

装载机工作装置中包含许多零部件,为简化仿真模型,可以在建立三维图形时,将链接螺栓等非传动件忽略,将其质量添加到相连的传动件上即可,切记:在CAD软件装配图绘制完三维图后,将文件保存为.igs为后缀的格式退出。2)将三维CAD图形文件调入ADAMS软件

打开ADAMS软件,进入ADAMS界面,进行以下操作:

① 在File菜单,选择Import命令,显示文件输入对话框。

② 在File Type栏,选择输入的CAD文件格式,后缀为.igs格式,显示输入的CAD文件对话框,如上图所示。

③ 在File To Read右边的空框内输入文件名,方法为:鼠标放在空框内,点击右键,选择browse,打开文件浏览对话框,找到已保存的后缀为.igs的文件,双击即可。

④ 在Part Name 栏,输入ADAMS数据库名。

⑤ 选择OK按钮,即可将CAD文件调入ADAMS软件中。

1)点击放大缩小图标示调入的图形;

2)修改个零部件的物理特性:视图在由CAD软件调入ADAMS软件后,其各部件的物理特性丢失,只保留了几何特性,所以,为进行系统仿真,需要对每一个零部件添加材料特性,方法如下:

① 将鼠标放在要修改的零部件上,点击右键,依次选择:浮动菜单的第一项part—modify,打开修改对话框;,将鼠标放在绘图视窗内,按下左键,移动鼠标,显

② 在category栏选择mass properties;在define mass by栏选择geometry and material type;在material type 栏,输入零件的材料

③ 点击修改对话框下角的show calculated inertia,计算零件的质量和转动惯量等参数;

④ Ok退出,即完成零件的物性修改,其它零件类推。

3)根据前面仿真分析方法对导入后的装载机工作装置进行仿真分析。4)测量输出起升油缸的作用力,保存文件,退出系统。

第二篇:Adams振动仿真心得

Adams单自由度隔振扫频研究心得:

1.对于box刚体,讨论y方向单自由度,对box需要两点移动副约束,两点要求是棱角点

或者中心点,而且两点不能在一个y的高度上(猜测可能有冗余约束)。

2.Box上的两点移动副约束要求:first body 与second body 要求互换,即同一零件不能作

为两个移动副的first body。如果还不行,在满足说说的条件下,多尝试几种组合。

3.重力场的加载与否不影响频响应函数的得出及结果。频响函数纵坐标单位为分贝,即振

幅的常用对数的20倍。

4.幅频特性曲线,无阻尼对应相位差180°,有阻尼对应相位差小于180°。

5.加载重力加速度后,时域仿真会整体自由落体,静态求解会报错,但是不影响频响求解。

6.当弹簧阻尼系数设置过大时,(共振峰值近似消除),频响求解会报错,可能是振动模块

无法仿真过阻尼状态。

1.2.3.非线性弹簧下,对于质量块,如何建立力? 右键弹簧功能图标,选择“箭头指向一点”的图表,确定详细栏中为:Two Bodies、constant,选择质量块→选择ground→选择质量中心→方向确定点。对新建的力以后,要modify一下,因为通过刚度外部数据需由常数改为函数。函数-AKISPL(DM(MAKER_11,PART_3.CM)-400,0,SPLINE_1,0),大括号内依次表

示,MAKER_11和PART_3.CM两标记点之间的距离减参考坐标(即第一变量为变形),没有第二变量,曲线名称为SPLINE_1,微分阶数为零。

研究非线性弹簧弹簧力和位移的关系,要用非线性力取代弹簧。得到的力-位移曲线曲率大的部分放大后会发现是具有滞回特性的。

需建立两个测量,监测力和位移。

研究有阻尼弹簧振幅衰减过程,可定义衰减系数指标,表示前两个峰值之比。4.5.6.1.导入的参数文件如果是csv格式,在导入后,time column index 可以不输入1,如果是

txt格式需要输入1才能读入数据曲线。

2.利用模型确认工具,可以发现模型自由度数目不对,或者模型有问题时,利用children

按钮可以找到问题所在;需要删除零质量零件但是又找不到零件时,在菜单栏view 下面的part only 或者model里面可以找到并删除。

3.输入设计变量要干脆,不要修改,否则出现编号杂乱无章,变量过多,暂时不知道怎么

删除无用编号。

1.通过绘制垂直方向(或水平方向)频响的幅值曲线与相位曲线,可以看出影响垂直方向

(或水平方向)响应的最大的模态频率。

2.通过绘制功率谱密度或PSD曲线,可以显示振动分析中各种频率输入的传递能量。会看

到在模态频率处曲线纵坐标开始有较大的降幅。

3.通过绘制模态坐标,可以查看某一阶模态对应的振动响应。在单个坐标系里得到各阶模

态对应的振动响应,从而找到对系统振动响应影响最大的模态。

4.对于三维频响图,y轴标记为run:1.0~2.0,暂不知道表示什么意思。

查看创建某一part的measure,查看振动情况时,选择坐标方向而不是mag(幅值)项,这里的mag(幅值)项还不知道什么意思,从mag(幅值)的结果来看不是振幅的意思,也不是各个方向振幅的模值。

第三篇:野火运动仿真教学

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

机构仿真之运动分析---天使笔记

机构仿真是PROE的功能模块之一。PROE能做的仿真内容还算比较好,不过用好的兄弟不多。当然真正专做仿真分析的兄弟,估计都用Ansys去了。但是,Ansys研究起来可比PROE麻烦多了。所以,学会PROE的仿真,在很多时候还是有用的。坛子里关于仿真的教程也有过一些,但很多都是动画,或实例。偶再发放一份学习笔记,并整理一下,当个基础教程吧。希望能对学习仿真的兄弟有所帮助。术语

创建机构前,应熟悉下列术语在PROE中的定义:

主体(Body)定义并约束相对运动的主体之间的关系。

自由度(Degrees of Freedom)在屏幕上用鼠标拾取并移动机构。动态(Dynamics)作用于旋转轴或平移轴上(引起运动)的力。齿轮副连接(Gear Pair Connection)不移动的主体。其它主体相对于基础运动。

接头(Joints)研究机构的运动,而不考虑移动机构所需的力。环连接(Loop Connection)主体受电动机或负荷作用时的移动方式。

放置约束(Placement Constraint)记录并重放分析运行的结果。

伺服电动机(Servo Motor)与主体相关的局部坐标系。LCS 是与主体中定义的第一个零件相关的缺省坐标系。UCS全局坐标系。组件的全局坐标系,它包括用于组件及该组件内所有主体的全局坐标系。运动分析的定义

在满足伺服电动机轮廓和接头连接、凸轮从动机构、槽从动机构或齿轮副连接的要求的情况下,模拟机构的运动。运动分析不考虑受力,它模拟除质量和力之外的运动的所有方面。因此,运动分析不能使用执行电动机,也不必为机构指定质量属性。运动分析忽略模型中的所有动态图元,如弹簧、阻尼器、重力、力/力矩以及执行电动机等,所有动态图元都不影响运动分析结果。如果伺服电动机具有不连续轮廓,在运行运动分析前软件会尝试使其轮廓连续,如果不能使其轮

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

廓连续,则此伺服电机将不能用于分析。使用运动分析可获得以下信息:

几何图元和连接的位置、速度以及加速度

元件间的干涉

机构运动的轨迹曲线

作为 Pro/ENGINEER 零件捕获机构运动的运动包络 重复组件分析

WF2.0以前版本里的“运动分析”,在WF2.0里被称为“重复组件分析”。它与运动分析类似,所有适用于运动分析的要求及设定,都可用于重复组件分析,所有不适于运动分析的因素,也都不适用于重复组件分析。重复组件分析的输出结果比运动分析少,不能分析速度、加速度,不能做机构的运动包络。

使用重复组件分析可获得以下信息: 几何图元和连接的位置 元件间的干涉

机构运动的轨迹曲线 运动分析工作流程

创建模型:定义主体,生成连接,定义连接轴设置,生成特殊连接 检查模型:拖动组件,检验所定义的连接是否能产生预期的运动 加入运动分析图元:设定伺服电机

准备分析:定义初始位置及其快照,创建测量 分析模型:定义运动分析,运行

结果获得:结果回放,干涉检查,查看测量结果,创建轨迹曲线,创建运动包络 装入元件时的两种方式:接头连接与约束连接

向组件中增加元件时,会弹出“元件放置”窗口,此窗口有三个页面:“放置”、“移动”、“连接”。传统的装配元件方法是在“放置”页面给元件加入各种固定约束,将元件的自由度减少到0,因元件的位置被完全固定,这样装配的元件不能用于运动分析(基体除外)。另一种装配元件的方法是在“连接”页面给元件加入各种组合约束,如“销钉”、“圆柱”、“刚体”、“球”、“6DOF”等等,使用这些组合约束装配的元件,因自由度没有完全消除(刚体、焊接、常规除外),元件可以自由移动或旋转,这样装配的元件可用于运动分析。传统装配法可称为“约束连接”,后一种装配法可称为“接头连接”。

约束连接与接头连接的相同点:都使用PROE的约束来放置元件,组件与子组件的关系相同。约束连接与接头连接的不同点:约束连接使用一个或多个单约束来完全消除元件的自由度,接头连接使用一个或多个组合约束来约束元件的位置。约束连接装配的目的是消除所有自由度,元件被完整定位,接头连接装配的目的是获得特定的运动,元件通常还具有一个或多个自由度。“元件放置”窗口:(yd1)

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

接头连接的类型

接头连接所用的约束都是能实现特定运动(含固定)的组合约束,包括:销钉、圆柱、滑动杆、轴承、平面、球、6DOF、常规、刚性、焊接,共10种。

销钉:由一个轴对齐约束和一个与轴垂直的平移约束组成。元件可以绕轴旋转,具有1个旋转自由度,总自由度为1。轴对齐约束可选择直边或轴线或圆柱面,可反向;平移约束可以是两个点对齐,也可以是两个平面的对齐/配对,平面对齐/配对时,可以设置偏移量。

圆柱:由一个轴对齐约束组成。比销钉约束少了一个平移约束,因此元件可绕轴旋转同时可沿轴向平移,具有1个旋转自由度和1个平移自由度,总自由度为2。轴对齐约束可选择直边或轴线或圆柱面,可反向。

滑动杆:即滑块,由一个轴对齐约束和一个旋转约束(实际上就是一个与轴平行的平移约束)组成。元件可滑轴平移,具有1个平移自由度,总自由度为1。轴对齐约束可选择直边或轴线或圆柱面,可反向。旋转约束选择两个平面,偏移量根据元件所处位置自动计算,可反向。

轴承:由一个点对齐约束组成。它与机械上的“轴承”不同,它是元件(或组件)上的一个点对齐到组件(或元件)上的一条直边或轴线上,因此元件可沿轴线平移并任意方向旋转,具有1个平移自由度和3个旋转自由度,总自由度为4。

平面:由一个平面约束组成,也就是确定了元件上某平面与组件上某平面之间的距离(或重合)。元件可绕垂直于平面的轴旋转并在平行于平面的两个方向上平移,具有1个旋转自由度和2个平移自由度,总自由度为3。可指定偏移量,可反向。

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

球:由一个点对齐约束组成。元件上的一个点对齐到组件上的一个点,比轴承连接小了一个平移自由度,可以绕着对齐点任意旋转,具有3个入旋转自由度,总自由度为3。

6DOF:即6自由度,也就是对元件不作任何约束,仅用一个元件坐标系和一个组件坐标系重合来使元件与组件发生关联。元件可任意旋转和平移,具有3个旋转自由度和3个平移自由度,总自由度为6。

刚性:使用一个或多个基本约束,将元件与组件连接到一起。连接后,元件与组件成为一个主体,相互之间不再有自由度,如果刚性连接没有将自由度完全消除,则元件将在当前位置被“粘”在组件上。如果将一个子组件与组件用刚性连接,子组件内各零件也将一起被“粘”住,其原有自由度不起作用。总自由度为0。

焊接:两个坐标系对齐,元件自由度被完全消除。连接后,元件与组件成为一个主体,相互之间不再有自由度。如果将一个子组件与组件用焊接连接,子组件内各零件将参照组件坐标系发按其原有自由度的作用。总自由度为0。接头连接类型:(yd2)

接头连接约束:常规

常规:也就是自定义组合约束,可根据需要指定一个或多个基本约束来形成一个新的组合约束,其自由度的多少因所用的基本约束种类及数量不同而不同。可用的基本约束有:匹配、对齐、插入、坐标系、线上点、曲面上的点、曲面上的边,共7种。在定义的时候,可根据需要选择一种,也可先不选取类型,直接选取要使用的对象,此时在类型那里开始显示为“自动”,然后根据所选择的对象系统自动确定一个合适的基本约束类型。

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

常规—匹配/对齐:对齐)。单一的“匹配/对齐”构成的自定义组合约束转换为约束连接后,变为只有一个“匹配/对齐”约束的不完整约束,再转换为接头约束后变为“平面”连接。这两个约束用来确定两个平面的相对位置,可设定偏距值,也可反向。定义完后,在不修改对象的情况下可更改类型(匹配

常规—插入:选取对象为两个柱面。单一的“插入”构成的自定义组合约束转换为约束连接后,变为只有一个“插入”约束的不完整约束,再转换为接头约束后变为“圆柱”连接。

常规—坐标系:选取对象为两个坐标系,与6DOF的坐标系约束不同,此坐标系将元件完全定位,消除了所有自由度。单一的“坐标系”构成的自定义组合约束转换为约束连接后,变为只有一个“坐标系”约束的完整约束,再转换为接头约束后变为“焊接”连接。

常规—线上点:选取对象为一个点和一条直线或轴线。与“轴承”等效。单一的“线上点”构成的自定义组合约束转换为约束连接后,变为只有一个“线上点”约束的不完整约束,再转换为接头约束后变为“轴承”连接。

常规—曲面上的点:选取对象为一个平面和一个点。单一的“曲面上的点”构成的自定义组合约束转换为约束连接后,变为只有一个“曲面上的点”约束的不完整约束,再转换为接头约束后仍为单一的“曲面上的点”构成的自定义组合约束。

常规—曲面上的边:选取对象为一个平面/柱面和一条直边。单一的“曲面上的点”构成的自定义组合约束不能转换为约束连接。自由度与冗余约束

自由度(DOF)是描述或确定一个系统(主体)的运动或状态(如位置)所必需的独立参变量(或坐标数)。一个不受任何约束的自由主体,在空间运动时,具有6个独立运动参数(自由度),即沿XYZ三个轴的独立移动和绕XYZ三个轴的独立转动,在平面运动时,则只具有3个独立运动参数(自由度),即沿XYZ三个轴的独立移动。

主体受到约束后,某些独立运动参数不再存在,相对应的,这些自由度也就被消除。当6个自由度都被消除后,主体就被完全定位并且不可能再发生任何运动。如使用销钉连接后,主体沿XYZ三个轴的平移运动被限制,这三个平移自由度被消除,主体只能绕指定轴(如X轴)旋转,不能绕另两个轴(YZ轴)旋转,绕这两个轴旋转的自由度被消除,结果只留下一个旋转自由度。冗余约束指过多的约束。在空间里,要完全约束住一个主体,需要将三个独立移动和三个独立转动分别约束住,如果把一个主体的这六个自由度都约束住了,再另加一个约束去限制它沿X轴的平移,这个约束就是冗余约束。

合理的冗余约束可用来分摊主体各部份受到的力,使主体受力均匀或减少磨擦、补偿误差,延长设备使用寿命。冗余约束对主体的力状态产生影响,对主体的对运动没有影响。因运动分析只分析主体的运动状况,不分析主体的力状态,在运动分析时,可不考虑冗余约束的作用,而在涉及力状态的分析里,必须要适当的处理好冗余约束,以得到正确的分析结果。系统在每次运行分析时,都会对自由度进行计算。并可创建一个测量来计算机构有多少自由度、多少冗余。

PROE的帮助里有一个门铰链的例子来讲冗余与自由度的计算,但其分析实丰有欠妥当,各位想

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

准确计算模型的自由度的话,请找机构设计方面的书来仔细研究一番。这也不是几句话能说明白的,我这里只提一下就是了,不再详.约束转换

接头连接与约束连接可相互转换。在“元件放置”窗口的“放置”页面和“连接”页面里,在约束列表下方,都有一个“约束转换”按钮。使用此按钮可在任何时候根据需要将接头连接转换为约束连接,或将约束连接转换为接头连接。

在转换时,系统根据现有约束及其对象的性质自动选取最相配的新类型。如对系统自动选取的结果不满意,可再进行编辑。转换的规则,可参考PROE的自带帮助。不过,没有很好的空间想像力和耐性的兄弟就不用看了。

需要记住的一个:曲线上的点、曲面上的点、相切约束,在转换时是不会转换成常规连接的。下图显示“约束转换”和“反向”按钮:(yd3)

基础与重定义主体

基础是在运动分析中被设定为不参与运动的主体。

创建新组件时,装配(或创建)的第一个元件自动成为基础。

元件使用约束连接(“元件放置”窗口中“放置”页面)与基础发生关系,则此元件也成为基础的一部份。

如果机构不能以预期的方式移动,或者因两个零件在同一主体中而不能创建连接,就可以使用“重定义主体”来确认主体之间的约束关系及删除某些约束。

进入“机构”模块后,“编辑”—>“重定义主体”进入主体重定义窗口,选定一个主体,将在窗口里显示这个主体所受到的约束(仅约束连接及“刚体”接头所用的约束)。可以选定一个约束,将其删除。如果删除所有约束,元件将被封装。

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

“重定义主体”窗口:(yd4)

特殊连接:凸轮连接

凸轮连接,就是用凸轮的轮廓去控制从动件的运动规律。PROE里的凸轮连接,使用的是平面凸轮。但为了形象,创建凸轮后,都会让凸轮显示出一定的厚度(深度)。

凸轮连接只需要指定两个主体上的各一个(或一组)曲面或曲线就可以了。定义窗口里的“凸轮1”“凸轮2”分别是两个主体中任何一个,并非从动件就是“凸轮2”。

如果选择曲面,可将“自动选取”复选框勾上,这样,系统将自动把与所选曲面的邻接曲面选中,如果不用“自动选取”,需要选多个相邻面时要按住Ctrl。如果选择曲线/边,“自动选取”是无效的。如果所选边是直边或基准曲线,则还要指定工作平面(即所定义的二维平面凸轮在哪一个平面上)。

凸轮一般是从动件沿凸轮件的表面运动,在PROE里定义凸轮时,还要确定运动的实际接触面。选取了曲面或曲线后,将会出线一个箭头,这个箭头指示出所选曲面或曲线的法向,箭头指向哪侧,也就是运动时接触点将在哪侧。如果系统指示出的方向与想定义的方向不同,可反向。关于“启用升离”,打开这个选项,凸轮运转时,从动件可离开主动件,不使用此选项时,从动件始终与主动件接触。启用升离后才能定义“恢复系数”,即“启用升离”复选框下方的那个“e”。因为是二维凸轮,只要确定了凸轮轮廓和工作平面,这个凸轮的形状与位置也就算定义完整了。为了形象,系统会给这个二维凸轮显示出一个厚度(即深度)。通常我们可不必去修改它,使用“自

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

动”就可以了。也可自已定义这个显示深度,但对分析结果没有影响。需要注意:

A.所选曲面只能是单向弯曲曲面(如拉伸曲面),不能是多向弯曲曲面(如旋转出来的鼓形曲面)。B.所选曲面或曲线中,可以有平面和直边,但应避免在两个主体上同时出现。

C.系统不会自动处理曲面(曲线)中的尖角/拐点/不连续,如果存在这样的问题,应在定义凸轮前适当处理。

凸轮可定义“升离”、“恢复系数”与“磨擦”。凸轮定义窗口:(yd5)

特殊连接:齿轮连接

齿轮连接用来控制两个旋转轴之间的速度关系。在PROE中齿轮连接分为标准齿轮和齿轮齿条两种类型。标准齿轮需定义两个齿轮,齿轮齿条需定义一个小齿轮和一个齿条。一个齿轮(或齿条)由两个主体和这两个主体之间的一个旋转轴构成。因此,在定义齿轮前,需先定义含有旋转轴的接头连接(如销钉)。

定义齿轮时,只需选定由接头连接定义出来的与齿轮本体相关的那个旋转轴即可,系统自动将产生这根轴的两个主体设定为“齿轮”(或“小齿轮”、“齿条”)和“托架”,“托架”一般就是用来安装齿

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

轮的主体,它一般是静止的,如果系统选反了,可用“反向”按钮将齿轮与托架主体交换。“齿轮2”或“齿条”所用轴的旋转方向是可以变更的,点定义窗口里“齿轮2”轴右侧的反向按钮就可以,点中后画面会出现一个很粗的箭头指示此轴旋转的正向。

速比定义:在“齿轮副定义”窗口的“齿轮1”、“齿轮2”、“小齿轮”页面里,都有一个输入节圆直径的地方,可以在定义齿轮时将齿轮的实际节圆直径输入到这里。在“属性”页面里,“齿轮比”(“齿条比”)有两种选择,一是“节圆直径”,一是“用户定义的”。选择“节圆直径”时,D1、D2由系统自动根据前两个页面里的数值计算出来,不可改动。选择“用户定义的”时,D1、D2需要输入,此情况下,齿轮速度比由此处输入的D1、D2确定,前两个页面里输入的节圆直径不起作用。速度比为节圆直径比的倒数,即:齿轮1速度/齿轮2速度=齿轮2节圆直径/齿轮1节圆直径=D2/D1。齿条比为齿轮转一周时齿条平移的距离,齿条比选择“节圆直径”时,其数值由系统根据小齿轮的节圆数值计算出来,不可改动,选择“用户定义的”时,其数值需要输入,此情况下,小齿轮定义页面里输入的节圆直径不起作用。

图标位置:定义齿轮后,每一个齿轮都有一个图标,以显示这里定义了一个齿轮,一条虚线把两个图标的中心连起来。默认情况下,齿轮图标在所选连接轴的零点,图标位置也可自定义,点选一个点,图标将平移到那个点所在平面上。图标的位置只是一视觉效果,不会对分析产生影响。要注意的事项:

A.PROE里的齿轮连接,只需要指定一个旋转轴和节圆参数就可以了。因此,齿轮的具体形状可以不用做出来,即使是两个圆柱,也可以在它们之间定义一个齿轮连接。

B.两个齿轮应使用公共的托架主体,如果没有公共的托架主体,分析时系统将创建一个不可见的内部主体作为公共托架主体,此主体的质量等于最小主体质量的千分之一。并且在运行与力相关的分析(动态、力平衡、静态)时,会提示指出没有公共托架主体。齿轮定义窗口:(yd6)

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

特殊连接:槽连接

槽连接是两个主体之间的一个点----曲线连接。从动件上的一个点,始终在主动件上的一根曲线(3D)上运动。槽连接只使两个主体按所指定的要求运动,不检查两个主体之间是否干涉,点和曲线甚至可以是零件实体以外的基准点和基准曲线,当然也可以在实体内部。曲线可以是任何一组相邻曲线(即要求相连,不必相切),可以是基准曲线,也可以是实体/曲面的边,可以是开放的,也可以是封闭的。

点可以是任何一个基准点或顶点,但只能是零件中的,组件中的点不能用于槽连接。

运动时,从动件上的点始终在主动件上的指定曲线上,如果曲线是一条(组)开放曲线,则此曲线(曲线组)的首末两个端点为槽的默认端点,如果是一条(组)封闭曲线,则默认无端点。如果希望运动区间不是在整条曲线(曲线组)上,而只是在其中的一段上,则需要自定义槽的端点。对于开放曲线(曲线组),只要指定新的端点就可以了,对于封闭曲线,指定两个新端点后,系统自动选取被两端点分割出的两段曲线中的一段为运行区间,如果不是所需要的,点“反向”选取另一段。定义槽端点可选取基准点、顶点、曲线/边/曲面,如果选的是曲线/边/曲面,则槽端点为槽曲线与所选曲线/边/曲面的交点。槽连接可定义“恢复系数”与“磨擦”。槽连接定义窗口:(yd7)

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

拖动与快照

拖动,是在允许的范围内移动机械。快照,对机械的某一特殊状态的记录。可以使用拖动调整机构中各零件的具体位置,初步检查机构的装配与运动情况,并可将其保存为快照,快照可用于后续的分析定义中,也可用于绘制工程图。

“机构”----“拖动”,进入“拖动”窗口,此窗口具有一个工具栏,工具栏左第一个按钮为“保存快照”,即将当前屏幕上的状态保存为一个快照,左第二个按钮为“点拖动”,即点取机构上的一个点,移动鼠标以改变元件的位置,左第三个按钮为“主体拖动”,选取一个主体,移动鼠标以改变元件的位置。右侧两个按钮为“撤消”和“恢复”,每一次拖动,系统都会记录入内存,使用此两按钮,可查看已做的各次拖动的结果。“快照”页和“约束”页,分别有一个列表,显示当前已经定义的快照和为当前拖动定义的临时约束。

快照列表左侧有一列工具按钮,第一个为显示当前快照,即将屏幕显示刷新为选定快照的内容;第二个为从其它快照中把某些元件的位置提取入选定快照;第三个为刷新选定快照,即将选定快照的内容更新为屏幕上的状态;第四个为绘图可用,使选定快照可被当做分解状态使用,从而在绘图中使用,这是一个开关型按钮,当快照可用于绘图时,列表中的快照名前会有一个图标;第五个是删除选定快照。

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

约束列表显示已为当前拖动所定义的临时约束,这些临时约束只用于当前拖动操作,以进一步限制拖动时各主体之间的相对运动。

“高级拖动选项”提供了一组工具,用于精确限定拖动时被拖动点或主体的运动。拖动窗口:(yd8)

恢复系数与磨擦

即碰撞系数,其物理定义为两物体碰撞后的相对速度(V2-V1)与碰撞前的相对速度(V10-V20)的比值,即e=(V2-V1)/(V10-V20),它的值介于0到1之间。典型的恢复系数可从工程书籍或实际经验中得到。恢复系数取决于材料属性、主体几何以及碰撞速度等因素。在机构中应用恢复系数,是在刚体计算中模拟非刚性属性的一种方法。完全弹性碰撞的恢复系数为 1。完全非弹性碰撞的恢复系数为 0。橡皮球的恢复系数相对较高。而湿泥土块的恢复系数值非常接近0。

摩擦阻碍凸轮或槽的运动。摩擦系数取决于接触材料的类型以及实验条件。可在物理或工程书籍中查找各种典型的摩擦系数表。需要分别指定静磨擦系数和动磨擦系数,且静磨擦系数应大于动磨擦系数。要在力平衡分析中计算凸轮滑动测量,必须指定凸轮连接的磨擦系数。恢复系数与磨擦可用于凸轮连接和槽连接,也可用于连接轴设置。

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

连接轴设置

“机构”—“连接轴设置”,可为由接头连接(如销钉)产生的连接轴定义一些具体的属性,包括:连接轴的位置,连接轴的零参照,连接轴的再生位置(用于重复组件分析),连接轴的运动限制、恢复系数及磨擦。

进入此窗口后,需先选取一连接轴,然后再对此轴进行各种设置。

“连接轴位置”,这里显示的是连接轴的两个零参照间的位置或距离,未改变时,显示的是当前屏幕上这个位置时的值。如果自己输入一个数值并回车(对于旋转轴,此数值为-180到180,如超出此范围或超出“属性”里设置的限制范围,系统将自动转换成可接受的范围内的值),屏幕上的组件也将临时改变位置以反映当前修改,如果按了“生成零点”,则将当前位置设定为连接轴零点,其它测量都从此零点位置开始。点了“生成零点”后,“指定参照”将无效。如果选了“指定参照”,则“生成零点”无效。“指定参照”可为连接轴的两个主体分别选定零位置的几何参照。选取“再生值”,可让组件在非连接轴零点位置再生,这个用于重复组件分析中。

“启用限制”,设置接头运动时的最大最小运动范围及恢复系数。对于旋转轴,“最小”值为-180到180之间且小于最大值,“最大”值为-180到180之间且大于最小值。恢复系数用来模拟当连接轴运动到限制位置时的冲击力。

“启用磨擦”,设置接头的两个主体之间相互运动的阻力。需指定静磨擦系数和动磨擦系数,对于旋转轴,还应指定一个大于零的接触半径值,它用于定义磨擦扭矩作用于连接轴上的半径。静磨擦系数应大于动磨擦系数。

在任何连接轴上,都不能创建多个连接轴零点。不能为球接头定义连接轴设置。另外,不能编辑属于多旋转 DOF 接头(如 6DOF 或某个一般连接)的旋转连接轴的连接轴设置。连接轴设置窗口:(yd9)

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

连接轴设置:零点参照的要求

定义旋转轴的零点时,要注意以下事项:

点-点零点参照 :以垂直于旋转轴的方向从每一点绘制向量。这两个向量对连接零点应重合。这两个点不能位于连接轴上。

点-平面零参照 : 包含点和旋转连接轴的平面应平行于为连接零点选取的平面。该点不能位于连接轴上。

平面-平面零参照 : 这两个平面在连接零点处平行。两个平面都必须平行于旋转轴。定义平移轴的零点参照时应注意下列事项:

点-点零参照:在连接零点处,两点之间在平移连接轴方向上的距离将为零。

点-平面零参照:在连接零点处,平面和点之间在平移连接轴方向上的距离将为零。该平面必须垂直于连接轴。

平面-平面零参照:在连接零点处,平面间的距离为零。两个平面都必须垂直于连接轴。定义平面或轴承连接的连接轴零点参照时应注意:

平面连接:为避免不可预测的行为,只能为平面平移轴定义点-点或点-平面零点参照。同样,只能为平面旋转轴定义平面-平面零点参照。

轴承连接:必须在包含轴承接头方向定义的主体上选取一个点或平面,即具有点-线约束的直线。系统将此参照与定义轴承连接的点对齐。伺服电动机

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

伺服电动机可规定机构以特定方式运动。伺服电动机引起在两个主体之间、单个自由度内的特定类型的运动。伺服电动机将位置、速度或加速度指定为时间的函数,并可控制平移或旋转运动。通过指定伺服电动机函数,如常数或线性函数,可以定义运动的轮廓。可从多个预定义的函数中选取,也可输入自己的函数。可在一个图元上定义任意多个伺服电动机。

如果为非连续的伺服电动机轮廓选取或定义了位置或速度函数,在进行运动或动态分析时这个伺服电动机将被忽略。但是,可在重复组件分析中使用非连续伺服电动机轮廓。当用图形表示非连续伺服电动机时,系统将显示信息指示非连续的点。

伺服电动机分为两种,一种是连接轴伺服电机,用于定义某一旋转轴的旋转运动,一种是几何伺服电机,用于创建复杂的运动,如螺旋运动。连接轴伺服电机只需要选定一个事先由接头连接(如销钉)所定义的旋转轴,并设定方向即可,连接轴伺服电机可用于运动分析。几何伺服电机需要选取从动件上的一个点/平面,并选取另一个主体上的一个点/平面作为运动的参照,并需确定运动的方向及种类,几何伺服电机不能用于运动分析。连接轴伺服电机选取一根旋转轴,并指定方向。几何伺服电机根据选取的对象分以下几种:

从动“点”,参照“点”,平移;从动“点”,参照“平面”,旋转;从动“平面”,参照“平面”,旋转;从动“点”,参照“平面”,平移;从动“平面”,参照“平面”,平移。其中,前三种需要再选取一条直边来定义运动方向,后两种不需要。

电机轮廓也即是从动件的运动规律,对于平移运动,它是长度(单位:mm)对时间的函数,对于旋转,它是角度(单位:度)对时间的函数。点最下方的“图形”按钮,将会以图形的方式显示出电机的轮廓,其横轴就是时间,其纵轴,就是位置或速度或加速度。“模”定义的就是图形的形状,“规范”里定义的就是“模”所定义的图形的纵轴所代表的意义。模有九种:常数、斜坡、余弦、SCCA、摆线、抛物线、多项式、表、用户定义的。规范有三种:位置、速度、加速度。其中模里的SCCA这一种,只能用于描述加速度(即对应的“规范”只能是加速度)。“规范”为位置时,无需自己定义初始位置,为速度时,需定义“初始角”,为加速度时,需定义“初始角”和“初始角速度”,默认位置为当前屏幕上的位置。

点“规范”下的那个按钮,可进入“连接轴设置”窗口,对当前电机所用的连接轴进行设置。伺服电动机定义窗口:(yd10)

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

电动机的轮廓(模)

电动机的模用来描述电动机的轮廓,定义模时,需选定模函数并输入函数的系数值。对于伺机服电动机,函数中的X为时间,对于执行电动机,函数中的X为时间或选取的测量参数。

模函数一共有九种:常数、斜坡、余弦、SCCA、摆线、抛物线、多项式、表、用户定义的。下面先说说常数、斜坡、余弦、摆线、抛物线、多项式这六种。常数,函数为q=A,A为一常数。此用于需要恒定轮廓时。

斜坡,即线性,函数为q=A+B*X,A为一常数,B为斜率。用于轮廓随时间做线性变化时。余弦,函数为q=A*cos(360*X/T+B)+C,A为幅值,B为相位,C为偏移量。用于轮廓呈余弦规律变化时。

摆线,函数为q=L*X/T-L*sin(2*pi*X/T)/2*pi,L为总高度,T为周期。用于模拟凸轮轮廓输出。抛物线,函数为q=A*X+(1/2)*B*X^2,A为线性系数,B为二次项系数。用于模拟电动机的轨迹。多项式,函数为q=A+B*X+C*X^2+D*X^3,A为常数,B为线性系数,C为二次项系数,D为三次项系数。用于模拟一般的电动机轨迹。电动机的模:SCCA

此函数只能用于加速度伺服电机,不能用于执行电机。它用来模拟凸轮轮廓输出。它称做“正弦-常数-余弦-加速度”运动,缩写为SCCA。它一共有五个参数: A = 渐增加速度归一化时间部分 B = 恒定加速度归一化时间部分 C = 递减加速度的归一化时间部分

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

H = 幅值 T = 周期

其中A + B + C = 1,用户必须提供 A 和 B 的值、幅值和周期。SCCA 设置的值按下表计算:

y = H * sin [(t*pi)/(2*A)]

0 <= t < A 时

y = H

A <= t <(A + B)时 y = H * cos [(tB)*pi/(2*C)]

(A+B)<= t <(A + B + 2C)时

y =H * cos [(t2B-2C)*pi/(2*A)]

(A+2B+2C)<= t <= 2*(A + B + C)时 上式中的t 是归一化时间,按下式进行计算: t=ta*2/T(ta:实际时间;T:SCCA轮廓周期)如果ta大于T,轮廓将重复自身。电动机的模:七种函数图例

下图给出了七种函数的模所代表的电机轮廓。各函数的参数值: 常数:A=8。斜坡(线性):A=18,B=-1.2。余弦:A=6,B=40,C=3,T=5。摆线:L=12,T=8 抛物线:A=4,B=-0.6 多项式:A=7,B=-1.5,C=1,D=-0.1 SCCA:A=0.4,B=0.3,H=5,T=10 图例:(yd11)电动机的模:表

电动机的模类型选择为“表”,也就是指定N个点,以这些点为节点,按线性或样条插值的方式构建一条通过所有点的曲线,这条曲线就是电动机的轮廓。如电动机的模是指定给“位置”或“速度”的(即“规范”为位置或速度),插值方式可选“线性拟合”或“样条拟合”之一,如是指定给“加速度”并用于伺服电机(即“规范”为加速度),则插值方式只能是“线性拟合”。样条拟合构建的曲线比线性拟合构建的曲线平滑一点。

类型选为“表”后,在“模”类型的下方会出现一个列表框,可用框右侧的“增加行”/“删除行”来向列表中加增加或删除行。这个表由N行两列构成,第一列是时间(即电机轮廓的横轴,如是执行电机或力,也可能是别的测量变量而不是时间),第二列是模(即电机轮廓的纵轴)。每一行有一个时间值和一个模值,这两个数代表电机轮廓上的一个点。输入时要注意的时,时间列只能是递增或递减的。

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

下图示例的取值为:第一列:1,2,3,4,5;第二列:5,8,11,15,22;线性拟合。(yd12)

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

创建并执行运动分析

“机构”----“分析”----“新建”。

类型里选择“运动学”或“重复的组件”。然后设置“优先选项”页和“电动机”页。对于运动分析和重复组件分析,“外部负荷”页是不可用的。

“优先选项”页里设置运动的起止时间及定义动画时域,并可设定主体锁定、连接锁定及初始位置。主体锁定使两个主体在运动分析(或重复组件分析)期间不做相对运动,由接头连接设定的自由度在分析期间不起作用。连接锁定使选定的连接在分析期间保持当前配置。设置主体锁定需选择一个先导主体,如果选择先导主体时用了中键,则用基体作为先导主体。连接锁定可以用于接头

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

连接、凸轮连接、槽连接,不能用于齿轮连接,对于齿轮副,只能锁定产生齿轮轴的接头连接。初始位置选取当前位置作为分析起点,或用一先前保存的快照作分析起点。

“电动机”页里设置用于分析的电动机。对于运动分析和重复组件分析,只能用连接轴伺服电动机,几何伺服电动机及执行电动机都不可用。可以设定各个电动机的作用时间,以实现多个电动机分时段起作用。

定义结束后点“运行”,将执行分析,并产生一个结果集。分析定义窗口:(yd13)

回放:干涉与动画

“回放”用来查看机构中零件的干涉情况、将分析的不同部分组合成一段影片、显示力和扭矩对机构的影响,以及在分析期间跟踪测量的值。可以将运动分析结果捕捉为MPEG动画文件或一系列的JPG、TIF或BMP文件。可以创建运动包络。“机构”----“回放”,启动“回放”窗口。在“结果集”里,选择将用于回放的运动分析(或重复组件分析)结果集。

“干涉”页面设置干涉检查选项。检查模式有四种:无干涉、快速检查、两个零件、全局干涉。“无干涉”即不检查干涉;“快速检查”是进行较低层次的检查,选用此模式将自动选中“停止回放”选项;“两个零件”是只检查所选定的两个零件之间的干涉情况;“全局干涉”是检查所有零件的所有类型的干涉。检查选项有两个:包括面组、停止回放。“包括面组”是曲面也将参与干涉检查;“停止回放”是一旦检查到干涉,回放就停止。

“影片进度表”页设置回放的结果片段。“显示时间”,如选中,则在回放时会在屏幕左上角显示回

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

放已进行的时间。“缺省进度表”选中则回放整个结果集,如取消此项,则在其下方的时间段列表启动,可自已输入要播放的时间段,如果输入多个时间段,则按从上到下的次序依次播放,同一时间段可多次输入,以实现此小段的重复播放,如某时间段的“开始”时间大于“结束”时间,则此小段将反向播放。要修改某一时间段的起止时间,先在列表中选中此时间段,再输入新的开始、结束时间,点“更新”按钮确认修改。默认情况下,“显示时间”和“缺省进度表”都是选中的。

回放分析结果时,可显示代表与分析相关的测量、力、扭矩、重力和执行电动机的大小和方向的三维箭头。使用显示箭头可查看负荷对机构的相对影响。对于力、线性速度和线性加速度矢量,显示单头箭头,对于力矩、角速度和角加速度矢量显示双头箭头。箭头的颜色取决于测量或负荷的类型。回放分析结果时,箭头的大小将改变,以反映测量值、力或扭矩的计算值。箭头方向随计算矢量方向而改变。“显示箭头”页里的“测量”列表中,列出所选结果集中所有可用箭头显示的测量,“输入负荷”列表中,列出所选结果集中所有可用箭头显示的负荷。

设置好以上各参数后,点“回放”窗口左上角的“播放”按钮,则进入“动画”窗口。在此窗口可按前面的设置对回放结果进行动画演示。“捕捉”按钮,可将动画结果保存为MPEG动画文件或一系列的JPG、TIF或BMP文件。选中“照片级渲染帧”,输出结果的图片质量较高。回放窗口:(yd14)动画捕捉:(yd15)

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

回放:可用箭头显示的测量与负荷

不是所有的测量与负荷都可以用箭头显示。可用箭头显示的测量有:

连接反作用(接头):青色箭头。顶端位于指定连接轴、指向接头的 DOF 方向。

连接反作用(凸轮):青色箭头。法向反作用力,顶端位于两个凸轮的接触点处,指向凸轮的法线方向。切向反作用力,顶端位于两个凸轮的接触点处,并指向凸轮的切线方向。连接反作用(槽):青色箭头。顶端指向从动点和槽之间的接触点处。

连接反作用(齿轮副):青色箭头。顶端指向在上面施加了力或扭矩的齿轮体。净负荷:洋红色箭头。在用于定义图元的点之间延伸,对于电动机它指向连接轴,对于力它指向点,对于扭矩、点对点弹簧和阻尼器它指向主体的质心。箭头指向所施加的力的方向。测力计反作用: 深绿色箭头。指向力的作用点且与力同向。速度: 黄色箭头。顶端位于指定点或连接轴、指向运动方向。加速度: 红色箭头。顶端位于指定点或连接轴、指向运动方向。重量: 棕色箭头。指向重力加速度方向。

距离间隔:顶端位于指定点,指向彼此相背离的两个共线的洋红色箭头。

速度间隔:顶端位于指定点的两个共线的黄色箭头。当点作相互远离而运动时,速度值为负,并且显示箭头的指向彼此相对。当点彼此相对运动时,速度值为正,并且显示箭头的指向彼此远离。加速度间隔:顶端位于指定点的两个共线的红色箭头,对于负值其指向彼此相对,对于正值其指向彼此远离。

只有计算方法为“每一时间步距”的以上各种测量才会出现在“回放”窗口的“显示箭头”页面的“测

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

量”列表中。

可用箭头显示的负荷有:

重力:棕色箭头。顶端位于各主体的质量中心、指向重力加速度方向。执行电动机:绿色箭头。顶端位于指定连接轴、指向接头的 DOF 方向。力: 橙色箭头。顶端位于作用点。

扭矩: 双头橙色箭头。指向主体质量中心。

点对点力:顶端位于指定点或顶点的两个共线的洋红色箭头,对于负值力箭头指向彼此相对,对于正值力箭头指向彼此远离。回放:运动包络

“机构”----“回放”,启动“回放”窗口,在“回放”窗口工具栏里,使用“保存”(左起第三个按钮)可将当前的分析结果集(含所作的设置)保存为.pbk文件(机构回放文件),使用“另存为”(左起第五个按钮)可将当前分析结果集保存为.fra文件(框架文件、帧文件),使用“打开”(左起第二个按钮)一个.pbk文件用于回放。

当“结果集”中列表为非空时,工具栏会增加第六个按钮,即“创建运动包络”。点此按钮进入“创建运动包络”窗口。在此窗口可设置包络质量级别、包络所包含的元件、特殊处理、输出文件类型。包络质量级别,等级为1到10共10级,级别数字越小,运算越快,所创建的包络三角形数也越少,质量每提升一级,创建的包络三角形数约增加一倍,相应的,运算所需时间也越多,同一模型的同一设定下,等级10所创建的三角形数约为等级1的512倍。因此,创建时应先选较低的质量级别,如所选质量级别创建的包络不能满足要求,再调整为上一级别。

默认情况下,创建运动包络包含运动分析的全部元件,也可点“选取元件”下方的箭头后,自行选取创建包络需要的元件。

如不希望软件忽略模型的骨架或面组,可清除“特殊处理”下方的“忽略骨架”或“忽略面组”的复选框。

输出格式有四种:零件、轻重量零件、STL、VRML。零件,即输出为普通零件;轻重量零件,即输出为具有轻重量的多面体零件;STL即输出为STL文件(后缀:.stl);VRML文件即输出为VRML文件(后缀:wrl)。选择输出为“零件”或“轻重量零件”,系统将默认选中“使用缺省模板”。

设置好以上项目后,点“预览”,将会在主窗口中计算并显示出当前设置下创建的运动包络效果。如对包络效果的局部细节不满意,可点“颠倒三角对”前面的箭头,然后自已对某些细节处的三角形进行调整。调整完后点“创建”,生成输出文件。

如果保存了.pbk文件,则在标准环境下,点“分析”----“运动分析”,进入“运动分析”窗口,可在此窗口重放运动分析及设置和预览运动包络。如果保存了.fra文件,则在标准环境下点“文件”----“保存副本”,在文件类型里选择“运动包络”,确定后将调出“创建运动包络”窗口,并要求打开一个.fra文件。余下的操作同前。创建运动包络:(yd16)

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

另存为运动包络:(yd19)

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

回放:测量

可以创建测量,用来分析系统在整个运动过程中的各种具体参数,如位置、速度、力等,为改进设计提供资料。创建分析之后即可创建测量,但查看测量的结果则必须有一个分析的结果集,与动态分析相关的测量,一般应在运行分析之前创建。运动分析通常提供以下测量:

位置、速度、加速度、间隔、Pro/ENGINEER特征、自由度、冗余、时间、主体方向、主体角速度、主体角加速度等。

重复组件分析通常提供以下测量: 位置、间隔(距离)、自由度、冗余、时间、主体方向、主体角速度、主体角加速度、Pro/ENGINEER 特征等。

“机构”----“测量”,进入“测量结果”窗口,在此可新建、编辑、删除、复制测量。载入一个结果集后,选择此结果集,可查看所创建的测量在此结果集的结果。点击窗口左上角的“绘制图形”按钮,将以曲线图表示所选测量在当前结果集中的结果。示例:创建一个计算系统自由度的测量,步骤如下:

“机构”----“测量”----点击“测量”下方的第一个图标----在“测量定义”窗口的“类型”下选择“系统”----“属性”里选择“自由度”----确定。测量包括各种类型的测量,每一个测量也有多种计算方法,因此测量是一个内容较多较广的话题,辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

本文只略作介绍,进一步的内容,请兄弟们自己研究或偶下一步再做专讲此内容的教程。测量:(yd17)

回放:轨迹曲线

轨迹曲线用来表示机构中某一元素相对于另一零件的运动。它分为“轨迹曲线”与“凸轮合成曲线”两种。“轨迹曲线”表示机构中某一点或顶点相对于另一零件的运动。“凸轮合成曲线”表示机构中某曲线或边相对于另一零件的运动。

“机构”----“轨迹曲线”进入“轨迹曲线”窗口。首先要选取一个参照零件,即“纸零件”(Paper Part),如选择基础,则按中键即可。然后选取曲线类型,即“轨迹曲线”还是“凸轮合成曲线”,对“轨迹曲线”,要求选取一个点(基准点、顶点、曲线端点),对“凸轮合成曲线”,要求选取一条(组)曲线或边。然后指定曲线类型,选取一个结果集,点“预览”查看将生成的轨迹曲线,点“确定”创建轨迹曲线并保存入参照零件中。

“曲线类型”分2D和3D两种,“轨迹曲线”可选2D或3D,“凸轮合成曲线”则只能是2D。

“轨迹曲线”,2D,系统创建一条由一系列点组成的描述选定点运动的样条曲线,即轨迹曲线,并将它与一个坐标系三个基准平面合并到一个组里,这个组保存入参照零件(纸零件)。

“轨迹曲线”,3D,系统将创建一系列的基准点,这些点的位置由参照零件的初始坐标系确定,再创建一条通过所有基准点的空间样条曲线,基准点与样条曲线合并为一个组,保存在参照零件(纸零件)中。

“凸轮合成曲线”,2D,系统创建两条由一系列点组成的描述选点边(曲线)组的首尾两个端点的运动的样条曲线,即轨迹曲线,并将它们各与一个坐标系三个基准平面合并到一个组里,所创建的两个组保存在参照零件(纸零件)中。

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

创建轨迹曲线:(yd18)

实例:创建模型

前面把运动分析的基本知识都讲过了。下面再来一个实例。各位请用实例part来动手做一做,认真理解前面的内容。

下面是这个实例的大致步骤。

创建模型:即创建用于运动分析的装配体。

1.装配基体,以普通装配将“Engine”装入装配体中,为第一个元件。2.装入左轴承,bearing_L,装于Engine的左侧轴承座,刚性连接。3.装入右轴承,bearing_R,装于Engine的右侧轴承座,刚性连接。4.装入曲轴,Rotate_rod,销钉连接。

5.装入曲柄,Link,装于曲轴上,销钉连接。

6.装入气缸,Piston,与Engine圆柱连接,与Link销钉连接。7.装入大齿轮,Gear_out,销钉连接。

8.装入连杆,Rod_in_long,装于Engine的两根轴线之一上,滑动杆连接。9.装入转动杆,Rod_in_short,装于Engine顶部的独立杆上,销钉连接。10.装入活塞杆,Valve_in,装于Engine后侧的两根轴之一上,滑动杆连接。11.重复8-10步,装入另一组连杆、转动杆、活塞杆。

以上,在标准环境下进行组装。在为接头连接选取对象时要注意,同一个接头连接里可能有几个约束(如销钉有两个),这些约束所选取的对象应属于相同的两个主体,比如,销钉连接不能:轴对齐约束用了A和B主体的轴,而平移约束用A和C主体的点或面。在以上的操作中需要移动某

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

主体时,可用“元件放置”页面里的“移动”。实例:加入特殊连接

上一步在标准环境下组装,所加入的连接,都是接头连接。接下来进入“机构”环境,进行其余的操作。首先,要加入各特殊连接,即根据运动需要,加入凸轮、槽、齿轮连接。本实例三种特殊连接都存在。

1.创建凸轮连接。“机构”----“凸轮”----“新建”,选择Gear_out的左侧凸轮面(选中“自动选取”),选择左侧Rod_in_long的下部圆柱面。

2.创建凸轮连接。选择Gear_out的右侧凸轮面,选择右侧Rod_in_long的下部圆柱面。

3.创建槽连接。“机构”----“槽”----“新建”,选择Rod_in_short上的基准点PNT1,选择Rod_in_long顶部的曲线。

4.重复第三步,创建另一侧的Rod_in_shor与Rond_in_long之间的槽连接。5.创建槽连接。选择Value_in上的基准点PNT1,选择Rod_in_short上的曲线。6.重复第五步,创建另一侧的Value_in与Rod_in_short之间的槽连接。

7.创建齿轮连接。“机构”----“齿轮副”----“新建”,选择上一节第四步(装入曲轴)产生的旋转轴、上一节第7步(装入大齿轮)产生的旋转轴。旋转方向暂不能确定,可先不用管,待运动分析执行时看方向如果反了,再编辑齿轮连接,将旋转轴方向反向一下即可。以上操作,如果需要移动某主体的位置,请用“机构”----“拖动”。实例:加入伺服电机,创建并执行分析、回放

创建好装配体,并创建好所需的特殊连接后,就可以创建伺服电动机、创建测量,接下来创建分析、执行分析。执行分析后可回放结果,将结果保存为动画、创建运动包络、创建轨迹曲线、查看测量结果及测量的图形。

1.创建伺服电动机。“机构”----“伺服电动机”----“新建”,选择Rotate_rod与Link之间的销钉连接生成的旋转轴,“规范”里选“速度”,“模”里选“常数”,A=20。(如A值太大,运动时大齿轮可能会因显示误差及视觉误差而看到回退及反转现象)。

2.创建测量。“机构”----“测量”,进入测量窗口,创建几个测量。

3.定义分析。“机构”----“分析”----“新建”,类型里选“运动学”或“重复的组件”。对于此窗口里的其它项,如不了解,可不用自己去设定。(或模型树中“运动定义”上右键,“新建”)。

4.执行分析。在上一步的窗口里,点“运行”。系统即开始执行分析,在主窗口的最下方,会出现一个进度条。如果出现错误,将弹出一个提示窗口。

5.回放。执行完分析后,就可进行结果的回放。“机构”----“回放”(或模型树“回放”上右键“播放”)。在此可进行干涉检查、编辑动画段、结果输出为动画或图片、创建运动包络。

6.查看测量结果。“机构”----“测量”。在结果集列表里点取刚才执行分析产生的结果集,所有定义出的测量都会显示出结果,并可用图形查看。也可在此创建不必在运行前创建的测量,并即时显示出其结果。

7.创建轨迹曲线。“机构”----“轨迹曲线”。选取要查看其轨迹的点或边,选取轨迹类型,查看或创

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

建轨迹曲线。实例:part

好,运动分析(含重复组件分析)是PROE机构仿真的最基础的一个,也是最简单的一个。弄明白运动分析是做好其它分析的前提。以上内容详细的把运动分析的全过程所要注意的事项及所需要知道的内空都讲了一遍,并提供了一个实例。请各位根据讲解和实例自行试验,确保真正的理解。其它的仿真模块和电动机的自定义模、测量的定义,本文不再讲,希望以后能有时间再整理类似教程。

以下是实例所用文件。

(本实例part由cb87524638兄弟制作,在此表示感谢!)AngelsMove.rar

辅助论坛(http://bbs.caxss.com/)致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模 ProE高级曲面Proe图形控制 Proe高级阵列 手机设计视频

结构设计视频教程的资源网站与技术交流论坛!

第四篇:PROE运动仿真教学

机构仿真之运动分析

关键词:PROE 仿真

运动分析 重复组件分析 连接 回放 运动包络 轨迹曲线机构仿真是PROE的功能模块之一。PROE能做的仿真内容还算比较好,不过用好的兄弟不多。当然真正专做仿真分析的兄弟,估计都用Ansys去了。但是,Ansys研究起来可比PROE麻烦多了。所以,学会PROE的仿真,在很多时候还是有用的。坛子里关于仿真的教程也有过一些,但很多都是动画,或实例。偶再发放一份学习笔记,并整理一下,当个基础教程吧。希望能对学习仿真的兄弟有所帮助。术语

创建机构前,应熟悉下列术语在PROE中的定义:

主体(Body)定义并约束相对运动的主体之间的关系。

自由度(Degrees of Freedom)在屏幕上用鼠标拾取并移动机构。动态(Dynamics)作用于旋转轴或平移轴上(引起运动)的力。齿轮副连接(Gear Pair Connection)不移动的主体。其它主体相对于基础运动。

接头(Joints)研究机构的运动,而不考虑移动机构所需的力。环连接(Loop Connection)主体受电动机或负荷作用时的移动方式。

放置约束(Placement Constraint)记录并重放分析运行的结果。

伺服电动机(Servo Motor)与主体相关的局部坐标系。LCS 是与主体中定义的第一个零件相关的缺省坐标系。UCS全局坐标系。组件的全局坐标系,它包括用于组件及该组件内所有主体的全局坐标系。运动分析的定义

在满足伺服电动机轮廓和接头连接、凸轮从动机构、槽从动机构或齿轮副连接的要求的情况下,模拟机构的运动。运动分析不考虑受力,它模拟除质量和力之外的运动的所有方面。因此,运动分析不能使用执行电动机,也不必为机构指定质量属性。运动分析忽略模型中的所有动态图元,如弹簧、阻尼器、重力、力/力矩以及执行电动机等,所有动态图元都不影响运动分析结果。如果伺服电动机具有不连续轮廓,在运行运动分析前软件会尝试使其轮廓连续,如果不能使其轮廓连续,则此伺服电机将不能用于分析。使用运动分析可获得以下信息:

几何图元和连接的位置、速度以及加速度

元件间的干涉

机构运动的轨迹曲线

作为 Pro/ENGINEER 零件捕获机构运动的运动包络 重复组件分析

WF2.0以前版本里的“运动分析”,在WF2.0里被称为“重复组件分析”。它与运动分析类似,所有适用于运动分析的要求及设定,都可用于重复组件分析,所有不适于运动分析的因素,也都不适用于重复组件分析。重复组件分析的输出结果比运动分析少,不能分析速度、加速度,不能做机构的运动包络。

使用重复组件分析可获得以下信息: 几何图元和连接的位置 元件间的干涉

机构运动的轨迹曲线 运动分析工作流程

创建模型:定义主体,生成连接,定义连接轴设置,生成特殊连接 检查模型:拖动组件,检验所定义的连接是否能产生预期的运动 加入运动分析图元:设定伺服电机

准备分析:定义初始位置及其快照,创建测量 分析模型:定义运动分析,运行

结果获得:结果回放,干涉检查,查看测量结果,创建轨迹曲线,创建运动包络 装入元件时的两种方式:接头连接与约束连接

向组件中增加元件时,会弹出“元件放置”窗口,此窗口有三个页面:“放置”、“移动”、“连接”。传统的装配元件方法是在“放置”页面给元件加入各种固定约束,将元件的自由度减少到0,因元件的位置被完全固定,这样装配的元件不能用于运动分析(基体除外)。另一种装配元件的方法是在“连接”页面给元件加入各种组合约束,如“销钉”、“圆柱”、“刚体”、“球”、“6DOF”等等,使用这些组合约束装配的元件,因自由度没有完全消除(刚体、焊接、常规除外),元件可以自由移动或旋转,这样装配的元件可用于运动分析。传统装配法可称为“约束连接”,后一种装配法可称为“接头连接”。

约束连接与接头连接的相同点:都使用PROE的约束来放置元件,组件与子组件的关系相同。约束连接与接头连接的不同点:约束连接使用一个或多个单约束来完全消除元件的自由度,接头连接使用一个或多个组合约束来约束元件的位置。约束连接装配的目的是消除所有自由度,元件被完整定位,接头连接装配的目的是获得特定的运动,元件通常还具有一个或多个自由度。“元件放置”窗口:(yd1)

接头连接的类型

接头连接所用的约束都是能实现特定运动(含固定)的组合约束,包括:销钉、圆柱、滑动杆、轴承、平面、球、6DOF、常规、刚性、焊接,共10种。

销钉:由一个轴对齐约束和一个与轴垂直的平移约束组成。元件可以绕轴旋转,具有1个旋转自由度,总自由度为1。轴对齐约束可选择直边或轴线或圆柱面,可反向;平移约束可以是两个点对齐,也可以是两个平面的对齐/配对,平面对齐/配对时,可以设置偏移量。

圆柱:由一个轴对齐约束组成。比销钉约束少了一个平移约束,因此元件可绕轴旋转同时可沿轴向平移,具有1个旋转自由度和1个平移自由度,总自由度为2。轴对齐约束可选择直边或轴线或圆柱面,可反向。

滑动杆:即滑块,由一个轴对齐约束和一个旋转约束(实际上就是一个与轴平行的平移约束)组成。元件可滑轴平移,具有1个平移自由度,总自由度为1。轴对齐约束可选择直边或轴线或圆柱面,可反向。旋转约束选择两个平面,偏移量根据元件所处位置自动计算,可反向。

轴承:由一个点对齐约束组成。它与机械上的“轴承”不同,它是元件(或组件)上的一个点对齐到组件(或元件)上的一条直边或轴线上,因此元件可沿轴线平移并任意方向旋转,具有1个平移自由度和3个旋转自由度,总自由度为4。

平面:由一个平面约束组成,也就是确定了元件上某平面与组件上某平面之间的距离(或重合)。元件可绕垂直于平面的轴旋转并在平行于平面的两个方向上平移,具有1个旋转自由度和2个平移自由度,总自由度为3。可指定偏移量,可反向。

球:由一个点对齐约束组成。元件上的一个点对齐到组件上的一个点,比轴承连接小了一个平移自由度,可以绕着对齐点任意旋转,具有3个入旋转自由度,总自由度为3。

6DOF:即6自由度,也就是对元件不作任何约束,仅用一个元件坐标系和一个组件坐标系重合来使元件与组件发生关联。元件可任意旋转和平移,具有3个旋转自由度和3个平移自由度,总自由度为6。

刚性:使用一个或多个基本约束,将元件与组件连接到一起。连接后,元件与组件成为一个主体,相互之间不再有自由度,如果刚性连接没有将自由度完全消除,则元件将在当前位置被“粘”在组件上。如果将一个子组件与组件用刚性连接,子组件内各零件也将一起被“粘”住,其原有自由度不起作用。总自由度为0。

焊接:两个坐标系对齐,元件自由度被完全消除。连接后,元件与组件成为一个主体,相互之间不再有自由度。如果将一个子组件与组件用焊接连接,子组件内各零件将参照组件坐标系发按其原有自由度的作用。总自由度为0。接头连接类型:(yd2)

接头连接约束:常规

常规:也就是自定义组合约束,可根据需要指定一个或多个基本约束来形成一个新的组合约束,其自由度的多少因所用的基本约束种类及数量不同而不同。可用的基本约束有:匹配、对齐、插入、坐标系、线上点、曲面上的点、曲面上的边,共7种。在定义的时候,可根据需要选择一种,也可先不选取类型,直接选取要使用的对象,此时在类型那里开始显示为“自动”,然后根据所选择的对象系统自动确定一个合适的基本约束类型。常规—匹配/对齐:对齐)。单一的“匹配/对齐”构成的自定义组合约束转换为约束连接后,变为只有一个“匹配/对齐”约束的不完整约束,再转换为接头约束后变为“平面”连接。这两个约束用来确定两个平面的相对位置,可设定偏距值,也可反向。定义完后,在不修改对象的情况下可更改类型(匹配

常规—插入:选取对象为两个柱面。单一的“插入”构成的自定义组合约束转换为约束连接后,变为只有一个“插入”约束的不完整约束,再转换为接头约束后变为“圆柱”连接。

常规—坐标系:选取对象为两个坐标系,与6DOF的坐标系约束不同,此坐标系将元件完全定位,消除了所有自由度。单一的“坐标系”构成的自定义组合约束转换为约束连接后,变为只有一个“坐标系”约束的完整约束,再转换为接头约束后变为“焊接”连接。

常规—线上点:选取对象为一个点和一条直线或轴线。与“轴承”等效。单一的“线上点”构成的自定义组合约束转换为约束连接后,变为只有一个“线上点”约束的不完整约束,再转换为接头约束后变为“轴承”连接。

常规—曲面上的点:选取对象为一个平面和一个点。单一的“曲面上的点”构成的自定义组合约束转换为约束连接后,变为只有一个“曲面上的点”约束的不完整约束,再转换为接头约束后仍为单一的“曲面上的点”构成的自定义组合约束。

常规—曲面上的边:选取对象为一个平面/柱面和一条直边。单一的“曲面上的点”构成的自定义组合约束不能转换为约束连接。自由度与冗余约束

自由度(DOF)是描述或确定一个系统(主体)的运动或状态(如位置)所必需的独立参变量(或坐标数)。一个不受任何约束的自由主体,在空间运动时,具有6个独立运动参数(自由度),即沿XYZ三个轴的独立移动和绕XYZ三个轴的独立转动,在平面运动时,则只具有3个独立运动参数(自由度),即沿XYZ三个轴的独立移动。

主体受到约束后,某些独立运动参数不再存在,相对应的,这些自由度也就被消除。当6个自由度都被消除后,主体就被完全定位并且不可能再发生任何运动。如使用销钉连接后,主体沿XYZ三个轴的平移运动被限制,这三个平移自由度被消除,主体只能绕指定轴(如X轴)旋转,不能绕另两个轴(YZ轴)旋转,绕这两个轴旋转的自由度被消除,结果只留下一个旋转自由度。冗余约束指过多的约束。在空间里,要完全约束住一个主体,需要将三个独立移动和三个独立转动分别约束住,如果把一个主体的这六个自由度都约束住了,再另加一个约束去限制它沿X轴的平移,这个约束就是冗余约束。

合理的冗余约束可用来分摊主体各部份受到的力,使主体受力均匀或减少磨擦、补偿误差,延长设备使用寿命。冗余约束对主体的力状态产生影响,对主体的对运动没有影响。因运动分析只分析主体的运动状况,不分析主体的力状态,在运动分析时,可不考虑冗余约束的作用,而在涉及力状态的分析里,必须要适当的处理好冗余约束,以得到正确的分析结果。系统在每次运行分析时,都会对自由度进行计算。并可创建一个测量来计算机构有多少自由度、多少冗余。

PROE的帮助里有一个门铰链的例子来讲冗余与自由度的计算,但其分析实丰有欠妥当,各位想准确计算模型的自由度的话,请找机构设计方面的书来仔细研究一番。这也不是几句话能说明白的,我这里只提一下就是了,不再详.约束转换

接头连接与约束连接可相互转换。在“元件放置”窗口的“放置”页面和“连接”页面里,在约束列表下方,都有一个“约束转换”按钮。使用此按钮可在任何时候根据需要将接头连接转换为约束连接,或将约束连接转换为接头连接。

在转换时,系统根据现有约束及其对象的性质自动选取最相配的新类型。如对系统自动选取的结果不满意,可再进行编辑。转换的规则,可参考PROE的自带帮助。不过,没有很好的空间想像力和耐性的兄弟就不用看了。

需要记住的一个:曲线上的点、曲面上的点、相切约束,在转换时是不会转换成常规连接的。下图显示“约束转换”和“反向”按钮:(yd3)基础与重定义主体

基础是在运动分析中被设定为不参与运动的主体。

创建新组件时,装配(或创建)的第一个元件自动成为基础。

元件使用约束连接(“元件放置”窗口中“放置”页面)与基础发生关系,则此元件也成为基础的一部份。

如果机构不能以预期的方式移动,或者因两个零件在同一主体中而不能创建连接,就可以使用“重定义主体”来确认主体之间的约束关系及删除某些约束。

进入“机构”模块后,“编辑”—>“重定义主体”进入主体重定义窗口,选定一个主体,将在窗口里显示这个主体所受到的约束(仅约束连接及“刚体”接头所用的约束)。可以选定一个约束,将其删除。如果删除所有约束,元件将被封装。“重定义主体”窗口:(yd4)

特殊连接:凸轮连接

凸轮连接,就是用凸轮的轮廓去控制从动件的运动规律。PROE里的凸轮连接,使用的是平面凸轮。但为了形象,创建凸轮后,都会让凸轮显示出一定的厚度(深度)。

凸轮连接只需要指定两个主体上的各一个(或一组)曲面或曲线就可以了。定义窗口里的“凸轮1”“凸轮2”分别是两个主体中任何一个,并非从动件就是“凸轮2”。如果选择曲面,可将“自动选取”复选框勾上,这样,系统将自动把与所选曲面的邻接曲面选中,如果不用“自动选取”,需要选多个相邻面时要按住Ctrl。如果选择曲线/边,“自动选取”是无效的。如果所选边是直边或基准曲线,则还要指定工作平面(即所定义的二维平面凸轮在哪一个平面上)。

凸轮一般是从动件沿凸轮件的表面运动,在PROE里定义凸轮时,还要确定运动的实际接触面。选取了曲面或曲线后,将会出线一个箭头,这个箭头指示出所选曲面或曲线的法向,箭头指向哪侧,也就是运动时接触点将在哪侧。如果系统指示出的方向与想定义的方向不同,可反向。关于“启用升离”,打开这个选项,凸轮运转时,从动件可离开主动件,不使用此选项时,从动件始终与主动件接触。启用升离后才能定义“恢复系数”,即“启用升离”复选框下方的那个“e”。因为是二维凸轮,只要确定了凸轮轮廓和工作平面,这个凸轮的形状与位置也就算定义完整了。为了形象,系统会给这个二维凸轮显示出一个厚度(即深度)。通常我们可不必去修改它,使用“自动”就可以了。也可自已定义这个显示深度,但对分析结果没有影响。需要注意:

A.所选曲面只能是单向弯曲曲面(如拉伸曲面),不能是多向弯曲曲面(如旋转出来的鼓形曲面)。B.所选曲面或曲线中,可以有平面和直边,但应避免在两个主体上同时出现。

C.系统不会自动处理曲面(曲线)中的尖角/拐点/不连续,如果存在这样的问题,应在定义凸轮前适当处理。

凸轮可定义“升离”、“恢复系数”与“磨擦”。凸轮定义窗口:(yd5)

特殊连接:齿轮连接

齿轮连接用来控制两个旋转轴之间的速度关系。在PROE中齿轮连接分为标准齿轮和齿轮齿条两种类型。标准齿轮需定义两个齿轮,齿轮齿条需定义一个小齿轮和一个齿条。一个齿轮(或齿条)由两个主体和这两个主体之间的一个旋转轴构成。因此,在定义齿轮前,需先定义含有旋转轴的接头连接(如销钉)。

定义齿轮时,只需选定由接头连接定义出来的与齿轮本体相关的那个旋转轴即可,系统自动将产生这根轴的两个主体设定为“齿轮”(或“小齿轮”、“齿条”)和“托架”,“托架”一般就是用来安装齿轮的主体,它一般是静止的,如果系统选反了,可用“反向”按钮将齿轮与托架主体交换。“齿轮2”或“齿条”所用轴的旋转方向是可以变更的,点定义窗口里“齿轮2”轴右侧的反向按钮就可以,点中后画面会出现一个很粗的箭头指示此轴旋转的正向。

速比定义:在“齿轮副定义”窗口的“齿轮1”、“齿轮2”、“小齿轮”页面里,都有一个输入节圆直径的地方,可以在定义齿轮时将齿轮的实际节圆直径输入到这里。在“属性”页面里,“齿轮比”(“齿条比”)有两种选择,一是“节圆直径”,一是“用户定义的”。选择“节圆直径”时,D1、D2由系统自动根据前两个页面里的数值计算出来,不可改动。选择“用户定义的”时,D1、D2需要输入,此情况下,齿轮速度比由此处输入的D1、D2确定,前两个页面里输入的节圆直径不起作用。速度比为节圆直径比的倒数,即:齿轮1速度/齿轮2速度=齿轮2节圆直径/齿轮1节圆直径=D2/D1。齿条比为齿轮转一周时齿条平移的距离,齿条比选择“节圆直径”时,其数值由系统根据小齿轮的节圆数值计算出来,不可改动,选择“用户定义的”时,其数值需要输入,此情况下,小齿轮定义页面里输入的节圆直径不起作用。

图标位置:定义齿轮后,每一个齿轮都有一个图标,以显示这里定义了一个齿轮,一条虚线把两个图标的中心连起来。默认情况下,齿轮图标在所选连接轴的零点,图标位置也可自定义,点选一个点,图标将平移到那个点所在平面上。图标的位置只是一视觉效果,不会对分析产生影响。要注意的事项:

A.PROE里的齿轮连接,只需要指定一个旋转轴和节圆参数就可以了。因此,齿轮的具体形状可以不用做出来,即使是两个圆柱,也可以在它们之间定义一个齿轮连接。

B.两个齿轮应使用公共的托架主体,如果没有公共的托架主体,分析时系统将创建一个不可见的内部主体作为公共托架主体,此主体的质量等于最小主体质量的千分之一。并且在运行与力相关的分析(动态、力平衡、静态)时,会提示指出没有公共托架主体。齿轮定义窗口:(yd6)

特殊连接:槽连接

槽连接是两个主体之间的一个点----曲线连接。从动件上的一个点,始终在主动件上的一根曲线(3D)上运动。槽连接只使两个主体按所指定的要求运动,不检查两个主体之间是否干涉,点和曲线甚至可以是零件实体以外的基准点和基准曲线,当然也可以在实体内部。曲线可以是任何一组相邻曲线(即要求相连,不必相切),可以是基准曲线,也可以是实体/曲面的边,可以是开放的,也可以是封闭的。

点可以是任何一个基准点或顶点,但只能是零件中的,组件中的点不能用于槽连接。

运动时,从动件上的点始终在主动件上的指定曲线上,如果曲线是一条(组)开放曲线,则此曲线(曲线组)的首末两个端点为槽的默认端点,如果是一条(组)封闭曲线,则默认无端点。如果希望运动区间不是在整条曲线(曲线组)上,而只是在其中的一段上,则需要自定义槽的端点。对于开放曲线(曲线组),只要指定新的端点就可以了,对于封闭曲线,指定两个新端点后,系统自动选取被两端点分割出的两段曲线中的一段为运行区间,如果不是所需要的,点“反向”选取另

一段。定义槽端点可选取基准点、顶点、曲线/边/曲面,如果选的是曲线/边/曲面,则槽端点为槽曲线与所选曲线/边/曲面的交点。槽连接可定义“恢复系数”与“磨擦”。槽连接定义窗口:(yd7)

拖动与快照

拖动,是在允许的范围内移动机械。快照,对机械的某一特殊状态的记录。可以使用拖动调整机构中各零件的具体位置,初步检查机构的装配与运动情况,并可将其保存为快照,快照可用于后续的分析定义中,也可用于绘制工程图。

“机构”----“拖动”,进入“拖动”窗口,此窗口具有一个工具栏,工具栏左第一个按钮为“保存快照”,即将当前屏幕上的状态保存为一个快照,左第二个按钮为“点拖动”,即点取机构上的一个点,移动鼠标以改变元件的位置,左第三个按钮为“主体拖动”,选取一个主体,移动鼠标以改变元件的位置。右侧两个按钮为“撤消”和“恢复”,每一次拖动,系统都会记录入内存,使用此两按钮,可查看已做的各次拖动的结果。“快照”页和“约束”页,分别有一个列表,显示当前已经定义的快照和为当前拖动定义的临时约束。

快照列表左侧有一列工具按钮,第一个为显示当前快照,即将屏幕显示刷新为选定快照的内容;第二个为从其它快照中把某些元件的位置提取入选定快照;第三个为刷新选定快照,即将选定快照的内容更新为屏幕上的状态;第四个为绘图可用,使选定快照可被当做分解状态使用,从而在绘图中使用,这是一个开关型按钮,当快照可用于绘图时,列表中的快照名前会有一个图标;第五个是删除选定快照。

约束列表显示已为当前拖动所定义的临时约束,这些临时约束只用于当前拖动操作,以进一步限制拖动时各主体之间的相对运动。

“高级拖动选项”提供了一组工具,用于精确限定拖动时被拖动点或主体的运动。拖动窗口:(yd8)

恢复系数与磨擦

即碰撞系数,其物理定义为两物体碰撞后的相对速度(V2-V1)与碰撞前的相对速度(V10-V20)的比值,即e=(V2-V1)/(V10-V20),它的值介于0到1之间。典型的恢复系数可从工程书籍或实际经验中得到。恢复系数取决于材料属性、主体几何以及碰撞速度等因素。在机构中应用恢复系数,是在刚体计算中模拟非刚性属性的一种方法。完全弹性碰撞的恢复系数为 1。完全非弹性碰撞的恢复系数为 0。橡皮球的恢复系数相对较高。而湿泥土块的恢复系数值非常接近0。

摩擦阻碍凸轮或槽的运动。摩擦系数取决于接触材料的类型以及实验条件。可在物理或工程书籍中查找各种典型的摩擦系数表。需要分别指定静磨擦系数和动磨擦系数,且静磨擦系数应大于动磨擦系数。要在力平衡分析中计算凸轮滑动测量,必须指定凸轮连接的磨擦系数。恢复系数与磨擦可用于凸轮连接和槽连接,也可用于连接轴设置。连接轴设置

“机构”—“连接轴设置”,可为由接头连接(如销钉)产生的连接轴定义一些具体的属性,包括:连接轴的位置,连接轴的零参照,连接轴的再生位置(用于重复组件分析),连接轴的运动限制、恢复系数及磨擦。

进入此窗口后,需先选取一连接轴,然后再对此轴进行各种设置。

“连接轴位置”,这里显示的是连接轴的两个零参照间的位置或距离,未改变时,显示的是当前屏幕上这个位置时的值。如果自己输入一个数值并回车(对于旋转轴,此数值为-180到180,如超出此范围或超出“属性”里设置的限制范围,系统将自动转换成可接受的范围内的值),屏幕上的组件也将临时改变位置以反映当前修改,如果按了“生成零点”,则将当前位置设定为连接轴零点,其它测量都从此零点位置开始。点了“生成零点”后,“指定参照”将无效。如果选了“指定参照”,则“生成零点”无效。“指定参照”可为连接轴的两个主体分别选定零位置的几何参照。选取“再生值”,可让组件在非连接轴零点位置再生,这个用于重复组件分析中。

“启用限制”,设置接头运动时的最大最小运动范围及恢复系数。对于旋转轴,“最小”值为-180到180之间且小于最大值,“最大”值为-180到180之间且大于最小值。恢复系数用来模拟当连接轴运动到限制位置时的冲击力。

“启用磨擦”,设置接头的两个主体之间相互运动的阻力。需指定静磨擦系数和动磨擦系数,对于旋转轴,还应指定一个大于零的接触半径值,它用于定义磨擦扭矩作用于连接轴上的半径。静磨擦系数应大于动磨擦系数。

在任何连接轴上,都不能创建多个连接轴零点。不能为球接头定义连接轴设置。另外,不能编辑属于多旋转 DOF 接头(如 6DOF 或某个一般连接)的旋转连接轴的连接轴设置。连接轴设置窗口:(yd9)

连接轴设置:零点参照的要求

定义旋转轴的零点时,要注意以下事项:

点-点零点参照 :以垂直于旋转轴的方向从每一点绘制向量。这两个向量对连接零点应重合。这两个点不能位于连接轴上。点-平面零参照 : 包含点和旋转连接轴的平面应平行于为连接零点选取的平面。该点不能位于连接轴上。

平面-平面零参照 : 这两个平面在连接零点处平行。两个平面都必须平行于旋转轴。定义平移轴的零点参照时应注意下列事项:

点-点零参照:在连接零点处,两点之间在平移连接轴方向上的距离将为零。

点-平面零参照:在连接零点处,平面和点之间在平移连接轴方向上的距离将为零。该平面必须垂直于连接轴。

平面-平面零参照:在连接零点处,平面间的距离为零。两个平面都必须垂直于连接轴。定义平面或轴承连接的连接轴零点参照时应注意:

平面连接:为避免不可预测的行为,只能为平面平移轴定义点-点或点-平面零点参照。同样,只能为平面旋转轴定义平面-平面零点参照。

轴承连接:必须在包含轴承接头方向定义的主体上选取一个点或平面,即具有点-线约束的直线。系统将此参照与定义轴承连接的点对齐。伺服电动机

伺服电动机可规定机构以特定方式运动。伺服电动机引起在两个主体之间、单个自由度内的特定类型的运动。伺服电动机将位置、速度或加速度指定为时间的函数,并可控制平移或旋转运动。通过指定伺服电动机函数,如常数或线性函数,可以定义运动的轮廓。可从多个预定义的函数中选取,也可输入自己的函数。可在一个图元上定义任意多个伺服电动机。

如果为非连续的伺服电动机轮廓选取或定义了位置或速度函数,在进行运动或动态分析时这个伺服电动机将被忽略。但是,可在重复组件分析中使用非连续伺服电动机轮廓。当用图形表示非连续伺服电动机时,系统将显示信息指示非连续的点。

伺服电动机分为两种,一种是连接轴伺服电机,用于定义某一旋转轴的旋转运动,一种是几何伺服电机,用于创建复杂的运动,如螺旋运动。连接轴伺服电机只需要选定一个事先由接头连接(如销钉)所定义的旋转轴,并设定方向即可,连接轴伺服电机可用于运动分析。几何伺服电机需要选取从动件上的一个点/平面,并选取另一个主体上的一个点/平面作为运动的参照,并需确定运动的方向及种类,几何伺服电机不能用于运动分析。连接轴伺服电机选取一根旋转轴,并指定方向。几何伺服电机根据选取的对象分以下几种:

从动“点”,参照“点”,平移;从动“点”,参照“平面”,旋转;从动“平面”,参照“平面”,旋转;从动“点”,参照“平面”,平移;从动“平面”,参照“平面”,平移。其中,前三种需要再选取一条直边来定义运动方向,后两种不需要。

电机轮廓也即是从动件的运动规律,对于平移运动,它是长度(单位:mm)对时间的函数,对于旋转,它是角度(单位:度)对时间的函数。点最下方的“图形”按钮,将会以图形的方式显示出电机的轮廓,其横轴就是时间,其纵轴,就是位置或速度或加速度。“模”定义的就是图形的形状,“规范”里定义的就是“模”所定义的图形的纵轴所代表的意义。模有九种:常数、斜坡、余弦、SCCA、摆线、抛物线、多项式、表、用户定义的。规范有三种:位置、速度、加速度。其中模里的SCCA这一种,只能用于描述加速度(即对应的“规范”只能是加速度)。“规范”为位置时,无需自己定义初始位置,为速度时,需定义“初始角”,为加速度时,需定义“初始角”和“初始角速度”,默认位置为当前屏幕上的位置。

点“规范”下的那个按钮,可进入“连接轴设置”窗口,对当前电机所用的连接轴进行设置。伺服电动机定义窗口:(yd10)

电动机的轮廓(模)

电动机的模用来描述电动机的轮廓,定义模时,需选定模函数并输入函数的系数值。对于伺机服电动机,函数中的X为时间,对于执行电动机,函数中的X为时间或选取的测量参数。

模函数一共有九种:常数、斜坡、余弦、SCCA、摆线、抛物线、多项式、表、用户定义的。下面先说说常数、斜坡、余弦、摆线、抛物线、多项式这六种。常数,函数为q=A,A为一常数。此用于需要恒定轮廓时。

斜坡,即线性,函数为q=A+B*X,A为一常数,B为斜率。用于轮廓随时间做线性变化时。余弦,函数为q=A*cos(360*X/T+B)+C,A为幅值,B为相位,C为偏移量。用于轮廓呈余弦规律变化时。

摆线,函数为q=L*X/T-L*sin(2*pi*X/T)/2*pi,L为总高度,T为周期。用于模拟凸轮轮廓输出。抛物线,函数为q=A*X+(1/2)*B*X^2,A为线性系数,B为二次项系数。用于模拟电动机的轨迹。多项式,函数为q=A+B*X+C*X^2+D*X^3,A为常数,B为线性系数,C为二次项系数,D为三次项系数。用于模拟一般的电动机轨迹。电动机的模:SCCA 此函数只能用于加速度伺服电机,不能用于执行电机。它用来模拟凸轮轮廓输出。它称做“正弦-常数-余弦-加速度”运动,缩写为SCCA。它一共有五个参数: A = 渐增加速度归一化时间部分 B = 恒定加速度归一化时间部分 C = 递减加速度的归一化时间部分 H = 幅值 T = 周期

其中A + B + C = 1,用户必须提供 A 和 B 的值、幅值和周期。SCCA 设置的值按下表计算:

y = H * sin [(t*pi)/(2*A)]

0 <= t < A 时

y = H

A <= t <(A + B)时 y = H * cos [(tB)*pi/(2*C)]

(A+B)<= t <(A + B + 2C)时

y =H * cos [(t2B-2C)*pi/(2*A)]

(A+2B+2C)<= t <= 2*(A + B + C)时 上式中的t 是归一化时间,按下式进行计算: t=ta*2/T(ta:实际时间;T:SCCA轮廓周期)如果ta大于T,轮廓将重复自身。电动机的模:七种函数图例

下图给出了七种函数的模所代表的电机轮廓。各函数的参数值: 常数:A=8。斜坡(线性):A=18,B=-1.2。余弦:A=6,B=40,C=3,T=5。摆线:L=12,T=8 抛物线:A=4,B=-0.6 多项式:A=7,B=-1.5,C=1,D=-0.1 SCCA:A=0.4,B=0.3,H=5,T=10 图例:(yd11)电动机的模:表

电动机的模类型选择为“表”,也就是指定N个点,以这些点为节点,按线性或样条插值的方式构建一条通过所有点的曲线,这条曲线就是电动机的轮廓。如电动机的模是指定给“位置”或“速度”的(即“规范”为位置或速度),插值方式可选“线性拟合”或“样条拟合”之一,如是指定给“加速度”并用于伺服电机(即“规范”为加速度),则插值方式只能是“线性拟合”。样条拟合构建的曲线比线性拟合构建的曲线平滑一点。

类型选为“表”后,在“模”类型的下方会出现一个列表框,可用框右侧的“增加行”/“删除行”来向列表中加增加或删除行。这个表由N行两列构成,第一列是时间(即电机轮廓的横轴,如是执行电机或力,也可能是别的测量变量而不是时间),第二列是模(即电机轮廓的纵轴)。每一行有一个时间值和一个模值,这两个数代表电机轮廓上的一个点。输入时要注意的时,时间列只能是递增或递减的。

下图示例的取值为:第一列:1,2,3,4,5;第二列:5,8,11,15,22;线性拟合。(yd12)

创建并执行运动分析 “机构”----“分析”----“新建”。

类型里选择“运动学”或“重复的组件”。然后设置“优先选项”页和“电动机”页。对于运动分析和重复组件分析,“外部负荷”页是不可用的。

“优先选项”页里设置运动的起止时间及定义动画时域,并可设定主体锁定、连接锁定及初始位置。主体锁定使两个主体在运动分析(或重复组件分析)期间不做相对运动,由接头连接设定的自由度在分析期间不起作用。连接锁定使选定的连接在分析期间保持当前配置。设置主体锁定需选择一个先导主体,如果选择先导主体时用了中键,则用基体作为先导主体。连接锁定可以用于接头连接、凸轮连接、槽连接,不能用于齿轮连接,对于齿轮副,只能锁定产生齿轮轴的接头连接。初始位置选取当前位置作为分析起点,或用一先前保存的快照作分析起点。

“电动机”页里设置用于分析的电动机。对于运动分析和重复组件分析,只能用连接轴伺服电动机,几何伺服电动机及执行电动机都不可用。可以设定各个电动机的作用时间,以实现多个电动机分时段起作用。

定义结束后点“运行”,将执行分析,并产生一个结果集。分析定义窗口:(yd13)

回放:干涉与动画

“回放”用来查看机构中零件的干涉情况、将分析的不同部分组合成一段影片、显示力和扭矩对机构的影响,以及在分析期间跟踪测量的值。可以将运动分析结果捕捉为MPEG动画文件或一系列的JPG、TIF或BMP文件。可以创建运动包络。“机构”----“回放”,启动“回放”窗口。在“结果集”里,选择将用于回放的运动分析(或重复组件分析)结果集。

“干涉”页面设置干涉检查选项。检查模式有四种:无干涉、快速检查、两个零件、全局干涉。“无干涉”即不检查干涉;“快速检查”是进行较低层次的检查,选用此模式将自动选中“停止回放”选项;“两个零件”是只检查所选定的两个零件之间的干涉情况;“全局干涉”是检查所有零件的所有类型的干涉。检查选项有两个:包括面组、停止回放。“包括面组”是曲面也将参与干涉检查;“停止回放”是一旦检查到干涉,回放就停止。

“影片进度表”页设置回放的结果片段。“显示时间”,如选中,则在回放时会在屏幕左上角显示回放已进行的时间。“缺省进度表”选中则回放整个结果集,如取消此项,则在其下方的时间段列表启动,可自已输入要播放的时间段,如果输入多个时间段,则按从上到下的次序依次播放,同一时间段可多次输入,以实现此小段的重复播放,如某时间段的“开始”时间大于“结束”时间,则此小段将反向播放。要修改某一时间段的起止时间,先在列表中选中此时间段,再输入新的开始、结束时间,点“更新”按钮确认修改。默认情况下,“显示时间”和“缺省进度表”都是选中的。

回放分析结果时,可显示代表与分析相关的测量、力、扭矩、重力和执行电动机的大小和方向的三维箭头。使用显示箭头可查看负荷对机构的相对影响。对于力、线性速度和线性加速度矢量,显示单头箭头,对于力矩、角速度和角加速度矢量显示双头箭头。箭头的颜色取决于测量或负荷的类型。回放分析结果时,箭头的大小将改变,以反映测量值、力或扭矩的计算值。箭头方向随计算矢量方向而改变。“显示箭头”页里的“测量”列表中,列出所选结果集中所有可用箭头显示的测量,“输入负荷”列表中,列出所选结果集中所有可用箭头显示的负荷。

设置好以上各参数后,点“回放”窗口左上角的“播放”按钮,则进入“动画”窗口。在此窗口可按前面的设置对回放结果进行动画演示。“捕捉”按钮,可将动画结果保存为MPEG动画文件或一系列的JPG、TIF或BMP文件。选中“照片级渲染帧”,输出结果的图片质量较高。回放窗口:(yd14)动画捕捉:(yd15)

回放:可用箭头显示的测量与负荷

不是所有的测量与负荷都可以用箭头显示。可用箭头显示的测量有:

连接反作用(接头):青色箭头。顶端位于指定连接轴、指向接头的 DOF 方向。

连接反作用(凸轮):青色箭头。法向反作用力,顶端位于两个凸轮的接触点处,指向凸轮的法线方向。切向反作用力,顶端位于两个凸轮的接触点处,并指向凸轮的切线方向。连接反作用(槽):青色箭头。顶端指向从动点和槽之间的接触点处。

连接反作用(齿轮副):青色箭头。顶端指向在上面施加了力或扭矩的齿轮体。净负荷:洋红色箭头。在用于定义图元的点之间延伸,对于电动机它指向连接轴,对于力它指向点,对于扭矩、点对点弹簧和阻尼器它指向主体的质心。箭头指向所施加的力的方向。测力计反作用: 深绿色箭头。指向力的作用点且与力同向。速度: 黄色箭头。顶端位于指定点或连接轴、指向运动方向。

加速度: 红色箭头。顶端位于指定点或连接轴、指向运动方向。重量: 棕色箭头。指向重力加速度方向。

距离间隔:顶端位于指定点,指向彼此相背离的两个共线的洋红色箭头。

速度间隔:顶端位于指定点的两个共线的黄色箭头。当点作相互远离而运动时,速度值为负,并且显示箭头的指向彼此相对。当点彼此相对运动时,速度值为正,并且显示箭头的指向彼此远离。加速度间隔:顶端位于指定点的两个共线的红色箭头,对于负值其指向彼此相对,对于正值其指向彼此远离。

只有计算方法为“每一时间步距”的以上各种测量才会出现在“回放”窗口的“显示箭头”页面的“测量”列表中。

可用箭头显示的负荷有:

重力:棕色箭头。顶端位于各主体的质量中心、指向重力加速度方向。执行电动机:绿色箭头。顶端位于指定连接轴、指向接头的 DOF 方向。力: 橙色箭头。顶端位于作用点。

扭矩: 双头橙色箭头。指向主体质量中心。

点对点力:顶端位于指定点或顶点的两个共线的洋红色箭头,对于负值力箭头指向彼此相对,对于正值力箭头指向彼此远离。回放:运动包络

“机构”----“回放”,启动“回放”窗口,在“回放”窗口工具栏里,使用“保存”(左起第三个按钮)可将当前的分析结果集(含所作的设置)保存为.pbk文件(机构回放文件),使用“另存为”(左起第五个按钮)可将当前分析结果集保存为.fra文件(框架文件、帧文件),使用“打开”(左起第二个按钮)一个.pbk文件用于回放。

当“结果集”中列表为非空时,工具栏会增加第六个按钮,即“创建运动包络”。点此按钮进入“创建运动包络”窗口。在此窗口可设置包络质量级别、包络所包含的元件、特殊处理、输出文件类型。包络质量级别,等级为1到10共10级,级别数字越小,运算越快,所创建的包络三角形数也越少,质量每提升一级,创建的包络三角形数约增加一倍,相应的,运算所需时间也越多,同一模型的同一设定下,等级10所创建的三角形数约为等级1的512倍。因此,创建时应先选较低的质量级别,如所选质量级别创建的包络不能满足要求,再调整为上一级别。

默认情况下,创建运动包络包含运动分析的全部元件,也可点“选取元件”下方的箭头后,自行选取创建包络需要的元件。

如不希望软件忽略模型的骨架或面组,可清除“特殊处理”下方的“忽略骨架”或“忽略面组”的复选框。

输出格式有四种:零件、轻重量零件、STL、VRML。零件,即输出为普通零件;轻重量零件,即输出为具有轻重量的多面体零件;STL即输出为STL文件(后缀:.stl);VRML文件即输出为VRML文件(后缀:wrl)。选择输出为“零件”或“轻重量零件”,系统将默认选中“使用缺省模板”。

设置好以上项目后,点“预览”,将会在主窗口中计算并显示出当前设置下创建的运动包络效果。如对包络效果的局部细节不满意,可点“颠倒三角对”前面的箭头,然后自已对某些细节处的三角形进行调整。调整完后点“创建”,生成输出文件。

如果保存了.pbk文件,则在标准环境下,点“分析”----“运动分析”,进入“运动分析”窗口,可在此窗口重放运动分析及设置和预览运动包络。如果保存了.fra文件,则在标准环境下点“文件”----“保存副本”,在文件类型里选择“运动包络”,确定后将调出“创建运动包络”窗口,并要求打开一个.fra文件。余下的操作同前。创建运动包络:(yd16)

另存为运动包络:(yd19)回放:测量

可以创建测量,用来分析系统在整个运动过程中的各种具体参数,如位置、速度、力等,为改进设计提供资料。创建分析之后即可创建测量,但查看测量的结果则必须有一个分析的结果集,与动态分析相关的测量,一般应在运行分析之前创建。运动分析通常提供以下测量:

位置、速度、加速度、间隔、Pro/ENGINEER特征、自由度、冗余、时间、主体方向、主体角速度、主体角加速度等。

重复组件分析通常提供以下测量: 位置、间隔(距离)、自由度、冗余、时间、主体方向、主体角速度、主体角加速度、Pro/ENGINEER 特征等。

“机构”----“测量”,进入“测量结果”窗口,在此可新建、编辑、删除、复制测量。载入一个结果集

后,选择此结果集,可查看所创建的测量在此结果集的结果。点击窗口左上角的“绘制图形”按钮,将以曲线图表示所选测量在当前结果集中的结果。示例:创建一个计算系统自由度的测量,步骤如下:

“机构”----“测量”----点击“测量”下方的第一个图标----在“测量定义”窗口的“类型”下选择“系统”----“属性”里选择“自由度”----确定。测量包括各种类型的测量,每一个测量也有多种计算方法,因此测量是一个内容较多较广的话题,本文只略作介绍,进一步的内容,请兄弟们自己研究或偶下一步再做专讲此内容的教程。测量:(yd17)

回放:轨迹曲线

轨迹曲线用来表示机构中某一元素相对于另一零件的运动。它分为“轨迹曲线”与“凸轮合成曲线”两种。“轨迹曲线”表示机构中某一点或顶点相对于另一零件的运动。“凸轮合成曲线”表示机构中某曲线或边相对于另一零件的运动。

“机构”----“轨迹曲线”进入“轨迹曲线”窗口。首先要选取一个参照零件,即“纸零件”(Paper Part),如选择基础,则按中键即可。然后选取曲线类型,即“轨迹曲线”还是“凸轮合成曲线”,对“轨迹曲线”,要求选取一个点(基准点、顶点、曲线端点),对“凸轮合成曲线”,要求选取一条(组)曲线或边。然后指定曲线类型,选取一个结果集,点“预览”查看将生成的轨迹曲线,点“确定”创建轨迹曲线并保存入参照零件中。

“曲线类型”分2D和3D两种,“轨迹曲线”可选2D或3D,“凸轮合成曲线”则只能是2D。

“轨迹曲线”,2D,系统创建一条由一系列点组成的描述选定点运动的样条曲线,即轨迹曲线,并将它与一个坐标系三个基准平面合并到一个组里,这个组保存入参照零件(纸零件)。

“轨迹曲线”,3D,系统将创建一系列的基准点,这些点的位置由参照零件的初始坐标系确定,再创建一条通过所有基准点的空间样条曲线,基准点与样条曲线合并为一个组,保存在参照零件(纸零件)中。

“凸轮合成曲线”,2D,系统创建两条由一系列点组成的描述选点边(曲线)组的首尾两个端点的运动的样条曲线,即轨迹曲线,并将它们各与一个坐标系三个基准平面合并到一个组里,所创建的两个组保存在参照零件(纸零件)中。创建轨迹曲线:(yd18)

实例:创建模型

前面把运动分析的基本知识都讲过了。下面再来一个实例。各位请用实例part来动手做一做,认真理解前面的内容。

下面是这个实例的大致步骤。

创建模型:即创建用于运动分析的装配体。

1.装配基体,以普通装配将“Engine”装入装配体中,为第一个元件。2.装入左轴承,bearing_L,装于Engine的左侧轴承座,刚性连接。3.装入右轴承,bearing_R,装于Engine的右侧轴承座,刚性连接。4.装入曲轴,Rotate_rod,销钉连接。

5.装入曲柄,Link,装于曲轴上,销钉连接。

6.装入气缸,Piston,与Engine圆柱连接,与Link销钉连接。7.装入大齿轮,Gear_out,销钉连接。

8.装入连杆,Rod_in_long,装于Engine的两根轴线之一上,滑动杆连接。9.装入转动杆,Rod_in_short,装于Engine顶部的独立杆上,销钉连接。10.装入活塞杆,Valve_in,装于Engine后侧的两根轴之一上,滑动杆连接。11.重复8-10步,装入另一组连杆、转动杆、活塞杆。

以上,在标准环境下进行组装。在为接头连接选取对象时要注意,同一个接头连接里可能有几个约束(如销钉有两个),这些约束所选取的对象应属于相同的两个主体,比如,销钉连接不能:轴对齐约束用了A和B主体的轴,而平移约束用A和C主体的点或面。在以上的操作中需要移动某主体时,可用“元件放置”页面里的“移动”。实例:加入特殊连接

上一步在标准环境下组装,所加入的连接,都是接头连接。接下来进入“机构”环境,进行其余的操作。首先,要加入各特殊连接,即根据运动需要,加入凸轮、槽、齿轮连接。本实例三种特殊连接都存在。

1.创建凸轮连接。“机构”----“凸轮”----“新建”,选择Gear_out的左侧凸轮面(选中“自动选取”),选择左侧Rod_in_long的下部圆柱面。

2.创建凸轮连接。选择Gear_out的右侧凸轮面,选择右侧Rod_in_long的下部圆柱面。

3.创建槽连接。“机构”----“槽”----“新建”,选择Rod_in_short上的基准点PNT1,选择Rod_in_long顶部的曲线。

4.重复第三步,创建另一侧的Rod_in_shor与Rond_in_long之间的槽连接。5.创建槽连接。选择Value_in上的基准点PNT1,选择Rod_in_short上的曲线。6.重复第五步,创建另一侧的Value_in与Rod_in_short之间的槽连接。

7.创建齿轮连接。“机构”----“齿轮副”----“新建”,选择上一节第四步(装入曲轴)产生的旋转轴、上一节第7步(装入大齿轮)产生的旋转轴。旋转方向暂不能确定,可先不用管,待运动分析执行时看方向如果反了,再编辑齿轮连接,将旋转轴方向反向一下即可。以上操作,如果需要移动某主体的位置,请用“机构”----“拖动”。实例:加入伺服电机,创建并执行分析、回放

创建好装配体,并创建好所需的特殊连接后,就可以创建伺服电动机、创建测量,接下来创建分析、执行分析。执行分析后可回放结果,将结果保存为动画、创建运动包络、创建轨迹曲线、查看测量结果及测量的图形。

1.创建伺服电动机。“机构”----“伺服电动机”----“新建”,选择Rotate_rod与Link之间的销钉连接生成的旋转轴,“规范”里选“速度”,“模”里选“常数”,A=20。(如A值太大,运动时大齿轮可能会因显示误差及视觉误差而看到回退及反转现象)。

2.创建测量。“机构”----“测量”,进入测量窗口,创建几个测量。

3.定义分析。“机构”----“分析”----“新建”,类型里选“运动学”或“重复的组件”。对于此窗口里的其它项,如不了解,可不用自己去设定。(或模型树中“运动定义”上右键,“新建”)。

4.执行分析。在上一步的窗口里,点“运行”。系统即开始执行分析,在主窗口的最下方,会出现一个进度条。如果出现错误,将弹出一个提示窗口。

5.回放。执行完分析后,就可进行结果的回放。“机构”----“回放”(或模型树“回放”上右键“播放”)。在此可进行干涉检查、编辑动画段、结果输出为动画或图片、创建运动包络。

6.查看测量结果。“机构”----“测量”。在结果集列表里点取刚才执行分析产生的结果集,所有定义出的测量都会显示出结果,并可用图形查看。也可在此创建不必在运行前创建的测量,并即时显示出其结果。

7.创建轨迹曲线。“机构”----“轨迹曲线”。选取要查看其轨迹的点或边,选取轨迹类型,查看或创建轨迹曲线。实例:part

好,运动分析(含重复组件分析)是PROE机构仿真的最基础的一个,也是最简单的一个。弄明白运动分析是做好其它分析的前提。以上内容详细的把运动分析的全过程所要注意的事项及所需要知道的内空都讲了一遍,并提供了一个实例。请各位根据讲解和实例自行试验,确保真正的理解。其它的仿真模块和电动机的自定义模、测量的定义,本文不再讲,希望以后能有时间再整理类似教程。

第五篇:运动仿真总结

一.用于变形物体或特殊轨迹运动的物体

1.做关联动画时,注意“会变形的零件”要在“装配体中”(插入新零件)建模得到,好让新零件与其他零件相应部位关联,从而使改变这些原有零件的位置重新建模后可以实现新零件的变形。

2.我们可以做个类似带轨道的相机撬,然后让动作物体跟这个撬联系,再让撬动起来,则物体相应的就动了起来。

3.做牵引块带动的动画时,一般要先给个牵引块的目标键码点,然后拖动牵引块到所需位置,右键替换这个键码点,最后重新建模,才会出现动画效果。比如:在制作压缩弹簧动画时,压盖就是牵引块,要先给它个目标键码(时间线可以不到这里),然后拖动牵引块到目标地点,替换键码点,然后再重建模型。

4. 牵引快可以是跟装配体无关的一个附加零件,作为辅助对象,提供一些装配体其他零件不能提供的关联关系,在录制动画时隐藏就行了。比如:瓶子装水。

5.在装配体里,FeaturesManager的装配体项右键单击,在树显示下选择查看配合与从属关系,设计树中显示每个零件的配合,特征打包放置。

6.移动、旋转运动可以通过添加尺寸约束,然后通过编辑尺寸值来实现,可以取代有些马达。此操作要在动画窗口的模型树中更改,否则无效。

7.要实现联动可以通过编辑尺寸和马达在同一段时间添加不同的运动,然后点击计算运动算例图标。

8.关联动画制作需更改模型树中的东西时,要在动画窗口的模型树中更改。要拖动某零件时,也要在动画模式下拖动,不能再模型模式下拖动,否则做过的动画将出现零点不重合现象而报废。

二.录制技巧

1.录制动画时采取默认的设置效果还可以,并且视频不大,用“全帧非压缩”出来文件太大,播放不流畅。录制时可以改变场景颜色,并将屏幕菜单栏都隐藏了,效果最好。三.键码点

1.键码点代表了零件的各种状态,包括视图键码点也是,如果复制一个键码点到一个位置,当动画到这里时,相应零件就是这个状态。通过”复制粘贴“我们可以省掉好多重复性的工作,比如:我们可以让一个东西转一圈,再让他转好多圈,最后还能回到最初状态。2.另外也可以让它从不精确的状态再恢复到原来状态。比如我们压缩弹簧,然后将弹簧压缩,然后复制它原来的状态到后面,那么就会形成伸展弹簧的效果。四.我们可以用一个机器的装配体拆开的过程“反过来录制”让它显示装配的过程,同时在加入零件的单个展示,最后将零件抛出视野。视野我们可以用相机视图,就可以改变视角,加特写远近景等,使动画多样化。四.相机撬

1.我们可以用相机撬来拉动相机,从而展示一些模型或建筑的内部结构,可以做某些部件的跟踪拍摄。相机撬我们可以限制它的自由度从而使它的运动规则化,视角稳定性大大提高。如果视角不好,我们还可以再次编辑相机撬,让它有适当的位置。2.相机撬要做成半个正方体,中间打三个相交圆孔,从而我们可以通过他们的轴线或边线移动或旋转相机撬,规则的控制其六个自由度。

3.只要相机撬运动轨迹做好了,切换到“相机视图”隐藏相机撬,则视角就是相机拍摄视角。在做相机撬的运动轨迹期间,要“禁止视图和屏幕”。做相机撬时要固定相机与其的三个关联。

4.我们可以给相机撬做一个轨道,让相机撬沿轨迹(道)走。五.光源

1.我们还可以在要特写的地方给出“线光源”,从而使特写更清楚,(多)点光源也可以用来做特殊的照明。六.相机及视图

1.相机直接拍摄时注意要“禁用视图和屏幕”选项,每次在一个需要改变视角的时候就对motion菜单栏里右键“相机n”,选“属性”来编辑视角。也同时需要在“视图和光源”上右键选择“相机视图”。2.我们可以用多个相机做镜头切换。

3.做动画时可以建立一系列视图,然后做动画时一一选用,节省时间,增强效果。4.对于相机视图,在一个键码点处修改相机属性,则修改后的视图就属于此键码点,并不属于全部键码点。

5.做动画时一般要先做动画内容,后作视图内容。6.不容易切换的拍摄角度可以用两个相机来切换。七.轨迹线运动

1.我们可以用一个零件上的一点(或n个点)于一条曲线重合,然后拖动零件运动,则可沿着曲线运动。但是不要一次性把零件从起始位置拖动到终止位置,容易出错,中间最好多放些键码点,一段一段来。

2.放置键码点:要先将零件拖动到所需位置,再放置键码点。如果这段没问题新键码点就会和前一个绿线连接。成功放一个键码点后,紧接着将时间线拖过来,再放下一个。最后要进行计算运动算例。八. 草图仿真

1.用草图做“草图块”,然后用约束关系来约束这些草图块,拖动就可以运动了。九. 特别注意

1.注意如果在制作拖动动画中间要保存,那么一定要在模型界面中保存,若在运动算例中保存,则会引起数据不一,从而出问题。

十、一般经验

1.我们要做一个很长很复杂的动画仿真,我们可以将其分为多个段,一个一个做,然后将其连接即可。这样我们要用到运动算例的复制,从而使我们的视图过渡自然。

2.在进行动画制作过程中,不能改变模型,否则运动算例零点状态跟随改变,形成不必要的错误。

下载adams运动仿真教学word格式文档
下载adams运动仿真教学.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    solidworks运动仿真总结

    【声明】 为了帮助广大SW爱好者和学习者更加方便,高效地学习和应用SW运动仿真(动画)来表达自己的作品,下面是作者在学习过程中遇到和总结一些问题,希望能对学者有帮助。 运动仿真......

    基于adams和matlab的一级倒立摆联合仿真

    基于PRO/E,ADAMS和MATLAB/SIMULINK的双回路PID控制一级倒立摆联合仿真 目录 一、倒立摆简介 1、概述 2、倒立摆分类 3、倒立摆控制方法 二、联合仿真流程 三、基于PRO/E的......

    皮带轮模拟运动仿真教程

    皮带轮模拟运动仿真教程~~(继续图文) 仿真的效果 第一步先画皮带轮和皮带 要在皮带的中间草绘条中心线 第二步画个小圆柱,它的长度比皮带的宽度长一点,直径与皮带厚度相同,用轴线......

    基于ADAMS与MATLAB的倒立摆联合仿真实验5篇

    基于ADAMS与MATLAB的倒立摆联合仿真实验 一、实验目的 在传统的机电一体化研究设计过程中,机械工程师和控制工程师虽然在共同设计开发一个系统,但是他们各自都需要建立自己的......

    ADAMS课程设计5篇

    自动制钉机的ADAMS建模与分析 一、 课程设计目的: 虚拟样机技术是随着当代科学的飞速发展,在设计领域发展起来的一门涉及多门学科的新技术。它利用软件建立机械系统的三维实......

    仿真教学总结

    仿真教学工作总结 大同电力高级技工学校 韩云 2010年10月 仿真教学工作总结 大同电力高级技工学校 韩云 我于2006年被评为仿真高级指导教师后,主要从事仿真专业课教学,四多......

    UG教程,齿轮设计,运动仿真,仿真加工

    计算机辅助设计及制造 三次作业练习班 级:机 妍 15 姓 名:左 海 涛 学 号:5220150233 指导老师:曹 建 树 目 录 一、深沟球轴承自顶向下装配设计.................................

    第1讲四连杆机构运动仿真[模版]

    第1讲 四连杆机构运动仿真 一、建立连接 1.设置工作目录 选择【文件】→【设置工作目录】打开工作目录选取面板,如图1所示,选择如图所示2的文件夹为工作目录 。 图1设置工作目......