UG教程,齿轮设计,运动仿真,仿真加工

时间:2019-05-12 17:16:28下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《UG教程,齿轮设计,运动仿真,仿真加工》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《UG教程,齿轮设计,运动仿真,仿真加工》。

第一篇:UG教程,齿轮设计,运动仿真,仿真加工

计算机辅助设计及制造

三次作业练习

班 级:机 妍 15 姓 名:左 海 涛 学 号:5220150233 指导老师:曹 建 树

目 录

一、深沟球轴承自顶向下装配设计............................................................................3

1.问题描述.............................................................................................................3 2.实现过程.............................................................................................................4

2.1新建装配和组件.......................................................................................4 2.2设计轮廓图...............................................................................................6 2.3设计轴承外圈...........................................................................................6 2.4设计轴承内圈...........................................................................................9 2.5设计保持架.............................................................................................10 2.6设计滚珠.................................................................................................13 2.7设计完成.................................................................................................15

二、机构运动仿真....................................................................................................17 1.问题描述........................................................................................................17 2.实现过程...........................................................................................................17 2.1新建运动仿真.........................................................................................17 2.2新建连杆.................................................................................................18 2.3新建运动副.............................................................................................19 2.4新建传动副.............................................................................................22 2.5新建3D接触...........................................................................................23 2.6开始仿真.................................................................................................24

三、餐具加工..............................................................................................................27 1.问题描述...........................................................................................................27 2.实现过程...........................................................................................................27 2.1整体粗加工.............................................................................................27 2.2外表面精加工.........................................................................................36 2.3内表面精加工.........................................................................................42

一、深沟球轴承自顶向下装配设计

1.问题描述

试设计如下图所示深沟球轴承,具体尺寸如下所示,要求采用自顶向下的装配设计方法。

图1 轴承装配图

图2 轴承尺寸图 2.实现过程

2.1新建装配和组件

(1)打开NX8.5软件:开始→程序→NX8.5。

(2)新建装配:点击“新建”,出来“新建”对话框,类型为“装配”,修改新文件名里的“名称”和“文件夹”,注意更改的文件夹路径为英文目录下才有效,点击“确定”,如图3所示。

图3 新建装配

(3)点击菜单栏“装配”→组件→新建组件。

(4)在弹出的“新组件文件”对话框里,名称为“模型”,注意修改“新文件名”的名称及文件夹路径,路径应该与开始新建的“装配”一致,如图4所示。(3)按此步骤新建五个组件,分明命名为lunkuo、waiquan、neiquan、baochijia、gunzhu”,如图5所示。

图4 新建组件

图5 整体结构

2.2设计轮廓图

(1)在“装配导航器”里双击“轮廓”,如图6所示。

图6 激活轮廓

(2)创建草图:点击菜单栏“插入”→草图,弹出“创建草图”对话框,选择YZ平面,点击“确定”进入草图绘制界面。(3)绘制如图7所示的草图。

图7轮廓草图

2.3设计轴承外圈

(1)在装配导航器里,双击“装配”文件进行激活,右键点击“lunkuo”→替换引用集→整个部件。此时设计界面内会显示已设计完成的“骨架”图,如图8所示。

图8 轮廓图

(2)在装配导航器里,双击“waiquan”进行激活,点击“插入”→关联复制→WAVE几何链接器。

(3)弹出“WAVE几何链接器”,选择右侧的“矩形框”和“圆”如图9所示。

图9 关联外圈

(4)点击“回转”,弹出“回转”对话框;点击“创建草图”,弹出“创建草图”对话框,选择“YZ平面”;按照“关联复制”的矩形和圆绘制如图10所示的外圈回转草图。

图10 外圈回转草图

(5)点击“完成草图”回到“回转”对话框,选择回转轴为“Z轴”,点击“确定”完成轴承外圈的设计,如图11所示。

图11 轴承外圈

2.4设计轴承内圈

内圈的设计步骤参考外圈的设计步骤,步骤一致,只是回转草图的不同,在“关联复制”是注意选择的是左边矩形和圆。内圈的回转草图如图12所示,内圈设计完成图如图13所示。

图12 内圈回转草图

图13 轴承内圈

2.5设计保持架 由于保持架上有滚珠孔,先设计没有滚珠孔的保持架,其步骤与外圈的设计步骤一样,没有滚珠孔的保持架设计完成图如图13所示。

图13 没有滚珠孔的保持架

设计保持架上的滚珠孔,步骤如下:

(1)在装配导航器里,双击“baochijia”进行激活,点击“插入”→关联复制→WAVE几何链接器,选择“圆”。

(2)点击“回转”,弹出“回转”对话框;点击“创建草图”弹出“创建草图”对话框,选择“YZ平面”;绘制与球相同直径的圆,点击“完成草图”回到“回转”框,创建球体,与保持架求差。

图14 回转求差

图15 一个孔

(3)点击插入→关联复制→阵列特征,“选择特征”保持架上的孔,旋转轴为“Z轴”,“布局”为圆形,“角度方向”间距数量和跨距,数量 10,点击“确定”,保持架设计完成效果如图16所示。

图16 保持架

2.6设计滚珠

(1)在装配导航器里,双击“滚珠”进行激活,点击“插入”→关联复制→WAVE几何链接器,选择“圆”。点击“插入”→关联复制→WAVE几何链接器,选择“圆的中心线”。

(2)点击“回转”,弹出“回转”对话框;点击“创建草图”弹出“创建草图”对话框,选择“YZ平面”;按照关联复制所得的圆绘制滚珠草图,回转轴选择关联复制所得的圆的中心线,生成滚珠如下图所示。

图17 生成滚珠

(3)点击插入→关联复制→阵列特征,“选择特征”为滚珠,旋转轴为“Z轴”,“布局”为圆形,“角度方向”间距数量和跨距,数量 10,点击“确定”,完成滚珠的设计,如图18所示。

图18 轴承滚珠

2.7设计完成

在装配导航器里,双击“装配”文件进行激活,依次右键点击“各个组件”→替换引用集→整个部件,把隐藏的全部显示,完成轴承的设计,设计完成效果如图19所示。

图19 深沟球轴承

二、机构运动仿真

1.问题描述

试对如下图所示机构进行进行运动仿真。

图20 整体结构图

2.实现过程

2.1新建运动仿真

依次点击“开始”-“运动仿真”,在导航器里选中仿真文件,右击“新建仿真”,如下图所示。

图21 新建仿真

2.2新建连杆

(1)选中“motion_1”右击“新建连杆”,如下图所示,依次创建连杆,其中L001为固定连杆,其他为活动连杆。

图22 新建连杆

(2)这里需要注意把大齿轮和与它相连的杆件作为一个连杆处理,如下图所示。

图23 创建连杆三

(3)总共创建了9个连杆,如下图所示。

图24 9个连杆

2.3新建运动副

(1)选中“motion_1”,右击选择“新建运动副”,选择“旋转副”,出现创建旋转副对话框,对小齿轮创建旋转副,并施加驱动。

图25 新建旋转副

图26 小齿轮的旋转副 图27 施加驱动(2)创建滑动副,如下图所示创建滑轮的滑动副,啮合连杆选择“L005”,创建后的滑动副如下图29所示。

图28 创建滑动副

图29 创建后的滑动副(3)依次创建大齿轮的旋转副,大齿轮机构与滑块的旋转副,四个小支撑的旋转副,创建后的旋转副如下图所示。

图30 创建后的运动副

2.4新建传动副

选中“motion_1”,右击选择“新建传动副”-“齿轮副”,进入新建齿轮副对话框,依次选中大小齿轮的旋转副,比率选择2/3,如图31所示,点击确定。

图31 新建齿轮副

图32 齿轮副效果图

2.5新建3D接触

选中“motion-1”,右击选择“新建连接器”-“3D接触”,进入对话框,依次选择大滑块与下侧的小转轮,如下图所示,点击应用。接着建立另一个3D接触。

图33 建立3D接触 至此所有的与运动相关的连杆,运动副,穿动副,连接器都已建完,如下图所示。

图34 运动导航器

2.6开始仿真

(1)选中“motion-1”,右击“新建解算方案”弹出解算方案对话框,时间选择10,步数100,点击确定,如下图所示。

图35 解算方案

(2)选中解算方案“solution-1”右击“求解”,点击“动画”按钮,弹出动画对话框,如图所示,即完成动画仿真。

图36 仿真运动中

三、餐具加工

1.问题描述

试加工如下图所示盘体,要求分三次加工。

图37 餐具实体图

2.实现过程

2.1整体粗加工

(1)进入加工环境:点击工具栏中的开始,在下拉菜单中选择加工。由于第一部是外轮廓加工,是型腔铣,所以类型为:mill-contour,名称可以自己定义,也可以默认。点击确定。在窗体左侧工序导航器中就会出现新的工序。

图38 创建新工序

(2)点击进入创建到具对话框,如下图所示,类型为:mill-contour,刀具子类型:,名称为了与其他区别,可以自己定义,此处定义为T1D14R1。点击确定,进入铣刀参数设置对话框,如上图所示,在工具中的尺寸中,设置直径为14,下半经为1,其它默认,点击确定。

图39 创建刀具 图40 刀具参数设置

(3)点击创建几何体,进入创建几何体对话框。类型:mill-contour,名称:MCS-1。点击确定,进入MCS创建对话框,机床坐标系:默认,安全设置,安全设置选项:平面,选择加工零件的上表面,安全距离:10,点击确定。

图41 创建几何体

图42 设置安全距离

(4)再次点选创建几何体,选择WORKPIECE,位置中的几何体选择刚才创建的坐标系MCS-1,名称:WORKPIECE_1,点击确定,进入工件参数设置对话框。

图43 创建工件

在几何体中的指定部件:点击“指定部件”,进入部件几何体对话框,在窗体中框选整个部件,如下图所示。

图44 指定部件

在几何体中的指定毛坯:点击“指定毛培”,进入毛坯几何体对话框,类型:包容快,限制:XM-6,XM+6,YM-6,YM+6,ZM-0.0,ZM+6,点击确定,返回到工件对话框。点击确定。

图45 指定毛培

(5)点击创建方法,进入创建方法对话框,类型;mill-contour,名称:MILL_METHOD。点击确定,进入铣削方法对话框,部件余量:2,其他默认。

图46 创建方法

(6)点击创建工序,进入创建工序对话框,类型选mill-contour,程序选择刚才创建的程序PROCRAM,刀具选择刚才创建的刀具,几何体选择刚才创建的几何体,方法选择刚才创建的方法,名称:CAVITY_MILL_1。点击确定,进入型铣腔参数设置对话框,如下图所示。

图47 创建工序

(7)点击指定切削区域,进入切削区域对话框,几何体:框选整个零件,点击确定,返回到型铣腔参数设置对话框。

图48 指定切削区域

(8)刀轨设置中的,点击切削参数,进入切削参数对话框,策略中切削,切削顺序:选择深度优先。其它默认。点击确定,返回到型铣腔参数设置对话框。

图49 切削参数设定

(9)点击进给率和速度,进入进给率和速度对话框,主轴速度:1000,其它默认。点击确定,返回到型铣腔参数设置对话框。

图50 进给率和速度

(10)在操作中点击生成,操作界面会变化,点击确认。进入刀轨可视化对话框。点选2D动态,会出现加工动画。

图51 生成刀轨

图52 2D加工

2.2外表面精加工

这里不需要创建新程序。

(1)创建刀具,点击进入创建到具对话框,如下图所示,类型为:mill-planar,刀具子类型:,名称定义T2D10R1。点击确定,进入铣刀参数设置对话框,在工具中的尺寸中,设置直径为10,下半经为1,其它默认,点击确定。

图53 创建刀具

(2)创建方法,如下图所示,部件余量选择0。

图54 创建方法

(3)点击创建工序,类型选mill-planar,位置处的程序选择刚才创建的程序PROCRAM,刀具选择刚才创建的T2D10R1,几何体选择上部创建的几何体,方法选刚才创建的方法,名称:FLOOR_WALL_2,点击确定,进入到平面轮廓铣对话框。

图55 创建工序

(4)点击指定切削区底面,在弹出的对话框中选择上表面,如下图所示。

图56 指定切削区底面

(5)点击切削参数,进入切削参数对话框,设置切削方向:顺铣,切削顺序:深度优先,其它默认。

图57 切削参数设定

(6)点击进给率和速度,进入进给率和速度对话框,设置主轴速度:1000,其它默认。点击确定,返回到平面轮廓铣对话框。

图58 设定主轴速度

(8)在操作中点击生成,再点击确认,进入刀轨可视化界面,选择2D状态,点击播放,结果如下图所示。

图59 生成刀轨

图60 2D仿真加工

2.3内表面精加工

这里仍然不需要创建新程序。

(1)创建刀具,点击进入创建到具对话框,如下图所示,类型为:mill-contour,刀具选择如下所示,名称定义T3D8R0。点击确定,进入到铣刀参数对话框,在工具中的尺寸中,设置直径为8,下半经为0,其它默认,点击确定。

图61 创建刀具

(2)创建方法,如下图所示,部件余量选择0。

图62 创建方法

(3)点击创建工序,进入创建方法对话框,类型mill-contour,工序子程序为深度加工轮廓。位置处的程序:选择刚才创建的程序PROCRAM,刀具选择刚才创建的T3D8R0,几何体选择刚才第一部的几何体,方法选刚才创建的方法,名称:ZLEVEL_PROFILE_3。点击确定,进入到深度加工轮廓铣对话框。

图65 创建工序

图66 切削区域选择

(4)在刀轨设置里每刀的公共深度:残余深度。点击切削参数,进入到切削参数对话框,在策略的切削中切削方向:顺铣,切削顺序:深度优先。点击确定,返回到深度加工轮廓铣对话框。

图67 切削参数设定

(5)点击进给率和速度,进入进给率和速度对话框,主轴速度改为1000,点击确定,返回到深度加工轮廓铣对话框。

(6)在操作中点击生成,在点击确认,进入到刀轨可视化对话框,选择2D,点击播放,结果如下图所示。

图68 生成的刀轨

图69 2D仿真加工

(7)至此所有工序都完成了,导航器里会出现如下文件。

图70 结果文件

第二篇:皮带轮模拟运动仿真教程

皮带轮模拟运动仿真教程~~(继续图文)

仿真的效果

第一步先画皮带轮和皮带

要在皮带的中间草绘条中心线

第二步画个小圆柱,它的长度比皮带的宽度长一点,直径与皮带厚度相同,用轴线和一个断面为参照做一

个基准点

第三步开始装配,先皮带,用缺省或固定都可以

第四步做两个基准轴,等下放皮带轮用

第五步放皮带轮,用销钉连接,这两个简单就不仔细

说明了

然后插入小圆柱,用槽连接

两个对象分别为圆柱上的参照点和带轮上草绘的曲线

选曲线的时候记得按ctrl把整条曲线都选上

第六步新设置一个平面连接,防止小圆柱乱动

两个面可以是圆柱上的端面和皮带轮上的侧面

出现连接失败的时候把偏移里的重合改成偏距

这个小圆柱就定义好了,刚才说让圆柱的长度大于皮带的宽度就是为了看清楚点,防止被埋在里面

然后运动仿真 第七步选应用程序里的机构

然后选插入里的初始条件

第八步定义一个切向槽速度

选圆柱的那个槽连接,给它一个模,就是速度,这个

是线速度

第九步定义一个运动轴速度

选皮带轮的销钉连接

两个皮带轮都要定义

这些速度都要算一下,与上面的切向槽速度要匹配

第十步就可以分析了

选动态和初始条件

运行就可以了

第三篇:运动仿真总结

一.用于变形物体或特殊轨迹运动的物体

1.做关联动画时,注意“会变形的零件”要在“装配体中”(插入新零件)建模得到,好让新零件与其他零件相应部位关联,从而使改变这些原有零件的位置重新建模后可以实现新零件的变形。

2.我们可以做个类似带轨道的相机撬,然后让动作物体跟这个撬联系,再让撬动起来,则物体相应的就动了起来。

3.做牵引块带动的动画时,一般要先给个牵引块的目标键码点,然后拖动牵引块到所需位置,右键替换这个键码点,最后重新建模,才会出现动画效果。比如:在制作压缩弹簧动画时,压盖就是牵引块,要先给它个目标键码(时间线可以不到这里),然后拖动牵引块到目标地点,替换键码点,然后再重建模型。

4. 牵引快可以是跟装配体无关的一个附加零件,作为辅助对象,提供一些装配体其他零件不能提供的关联关系,在录制动画时隐藏就行了。比如:瓶子装水。

5.在装配体里,FeaturesManager的装配体项右键单击,在树显示下选择查看配合与从属关系,设计树中显示每个零件的配合,特征打包放置。

6.移动、旋转运动可以通过添加尺寸约束,然后通过编辑尺寸值来实现,可以取代有些马达。此操作要在动画窗口的模型树中更改,否则无效。

7.要实现联动可以通过编辑尺寸和马达在同一段时间添加不同的运动,然后点击计算运动算例图标。

8.关联动画制作需更改模型树中的东西时,要在动画窗口的模型树中更改。要拖动某零件时,也要在动画模式下拖动,不能再模型模式下拖动,否则做过的动画将出现零点不重合现象而报废。

二.录制技巧

1.录制动画时采取默认的设置效果还可以,并且视频不大,用“全帧非压缩”出来文件太大,播放不流畅。录制时可以改变场景颜色,并将屏幕菜单栏都隐藏了,效果最好。三.键码点

1.键码点代表了零件的各种状态,包括视图键码点也是,如果复制一个键码点到一个位置,当动画到这里时,相应零件就是这个状态。通过”复制粘贴“我们可以省掉好多重复性的工作,比如:我们可以让一个东西转一圈,再让他转好多圈,最后还能回到最初状态。2.另外也可以让它从不精确的状态再恢复到原来状态。比如我们压缩弹簧,然后将弹簧压缩,然后复制它原来的状态到后面,那么就会形成伸展弹簧的效果。四.我们可以用一个机器的装配体拆开的过程“反过来录制”让它显示装配的过程,同时在加入零件的单个展示,最后将零件抛出视野。视野我们可以用相机视图,就可以改变视角,加特写远近景等,使动画多样化。四.相机撬

1.我们可以用相机撬来拉动相机,从而展示一些模型或建筑的内部结构,可以做某些部件的跟踪拍摄。相机撬我们可以限制它的自由度从而使它的运动规则化,视角稳定性大大提高。如果视角不好,我们还可以再次编辑相机撬,让它有适当的位置。2.相机撬要做成半个正方体,中间打三个相交圆孔,从而我们可以通过他们的轴线或边线移动或旋转相机撬,规则的控制其六个自由度。

3.只要相机撬运动轨迹做好了,切换到“相机视图”隐藏相机撬,则视角就是相机拍摄视角。在做相机撬的运动轨迹期间,要“禁止视图和屏幕”。做相机撬时要固定相机与其的三个关联。

4.我们可以给相机撬做一个轨道,让相机撬沿轨迹(道)走。五.光源

1.我们还可以在要特写的地方给出“线光源”,从而使特写更清楚,(多)点光源也可以用来做特殊的照明。六.相机及视图

1.相机直接拍摄时注意要“禁用视图和屏幕”选项,每次在一个需要改变视角的时候就对motion菜单栏里右键“相机n”,选“属性”来编辑视角。也同时需要在“视图和光源”上右键选择“相机视图”。2.我们可以用多个相机做镜头切换。

3.做动画时可以建立一系列视图,然后做动画时一一选用,节省时间,增强效果。4.对于相机视图,在一个键码点处修改相机属性,则修改后的视图就属于此键码点,并不属于全部键码点。

5.做动画时一般要先做动画内容,后作视图内容。6.不容易切换的拍摄角度可以用两个相机来切换。七.轨迹线运动

1.我们可以用一个零件上的一点(或n个点)于一条曲线重合,然后拖动零件运动,则可沿着曲线运动。但是不要一次性把零件从起始位置拖动到终止位置,容易出错,中间最好多放些键码点,一段一段来。

2.放置键码点:要先将零件拖动到所需位置,再放置键码点。如果这段没问题新键码点就会和前一个绿线连接。成功放一个键码点后,紧接着将时间线拖过来,再放下一个。最后要进行计算运动算例。八. 草图仿真

1.用草图做“草图块”,然后用约束关系来约束这些草图块,拖动就可以运动了。九. 特别注意

1.注意如果在制作拖动动画中间要保存,那么一定要在模型界面中保存,若在运动算例中保存,则会引起数据不一,从而出问题。

十、一般经验

1.我们要做一个很长很复杂的动画仿真,我们可以将其分为多个段,一个一个做,然后将其连接即可。这样我们要用到运动算例的复制,从而使我们的视图过渡自然。

2.在进行动画制作过程中,不能改变模型,否则运动算例零点状态跟随改变,形成不必要的错误。

第四篇:基于UG的平面四连杆机构运动与仿真

毕业设计论文

题目: 基于UG的平面四连杆机构设计及运动仿真

专业名称 学生姓名 指导教师 毕业时间

机电设备维修与管理

李小军 季祥 2011年7月

毕业设计任务书

指导教师:季祥

一、设计题目用

基于UG的空间四连杆机构设计及运动仿真

二、设计的目的

1)掌握UG的基本使用方法。

2)掌握四连杆机构的特点及虚拟装配的方法。3)掌握UG中运动仿真的方法。

三、设计要求

1)平面四连杆机构的三维造型。2)平面四连杆机构的虚拟装配

3)UG中平面四连杆机构的运动仿真。4)仿真结果的分析

四、完成的任务

要求说明详细,字迹工整,原理正确,图纸规范,图形清晰,符号标准,线条均匀。

(1)设计与绘制平面四连杆机构,建立运动仿真的模型。(2)毕业设计说明书(8000以上)1)设计题目

2)四连杆机构原理说明

3)四连杆机构的三维造型设计及虚拟装配 4)UG的四连杆运动仿真 5)设计总结及改进意见 6)主要参考资料

五、参考文献

机械设计

高等教育出版社 主编

濮良贵 纪名刚 机械原理

高等教育出版社 主编

孙恒 陈作模

UG NX5.0中文版从入门到精通

机械工业出版社 主编

胡仁喜、康士廷、刘昌丽

目录

摘要..........................................................................................................4 第1章 绪论............................................................................................5

1.1 UG NX5的功能模块.............................................................5

1.1.1 UG NX5用户界面......................................................5 1.1.2主要功能.........................................................................6 1.2 UG NX5的工作环境.............................................................9 1.3 产品设计的一般过程...........................................................12 1.4 三维造型设计步骤...............................................................13 第二章平面连杆机构..........................................................................15

2.1 平面四杆机构的基本形式...................................................15 2.2 铰链四杆机构中曲柄存在的条件.......................................16 2.3 铰链四杆机构的演化.............................................................17 第三章平面四杆机构的基本特性......................................................20

3.1 四杆机构的极位...................................................................20 3.2 四杆机构从动件的急回特性...............................................20 3.3 平面连杆机构的传力特性...................................................20 3.4 死点位置...............................................................................21 第四章 四连杆的三维造型..................................................................22

4.1 机架的三维造型...................................................................22 4.2 连架杆1的三维造型...........................................................26 4.3 连架杆2的三维造型...........................................................28 4.4 连杆的三维造型...................................................................28 第五章 四连杆的虚拟装配..................................................................31

5.1 进入装配模块.......................................................................31

5.2 添加组件机架.......................................................................31 5.3 装配连架杆1........................................................................32 5.4 装配连架杆2........................................................................34 5.5 装配连杆...............................................................................35 第六章

平面四连杆机构的运动仿真................................................40

6.1 新建仿真...............................................................................40 6.2 新建连杆...............................................................................41 6.3 创建运动副...........................................................................43 第七章

平面四连杆的运动仿真分析................................................46

7.1 运动副图表分析...................................................................46 7.2 死点位置...............................................................................49 结

论....................................................................................................51 致

谢....................................................................................................52 参考文献................................................................................................53

摘要

UG NX是集CADCAECAM于一体的三维参数化软件,也是当今世界最先进的设计软件,它广泛应用于航空航天、汽车制造、机械电子等工程领域。还有在系统创新、工业设计造型、无约束设计、装配设计、钣金设计、工程图设计等方面的功能。

平面四连杆机构是由低副(转动副)联接而成的机构,其主要特点是:由于低副为面接触,压强低、磨损量少,而且构成运动副的表面是圆柱面或平面,制造方便,容易获得较高精度;又由于这类机构容易实现常见的转动、移动及其转换,所以获得广泛应用。

本课题详细的介绍了UG NX的功能模块、工作环境、产品设计的一般过程、三维造型设计步骤;平面四杆机构的基本形式、铰链四杆机构中曲柄存在的条件、铰链四杆机构的演化、平面四杆机构的基本特性,以及使用UG对平面四连杆机构进行三维造型、虚拟装配及运动仿真的方法。

关键字:

UG 四连杆

装配

仿真

第1章 绪论

UG NX是Unigraphics Solutions公司推出的CAD/CAM/CAE于一体的三维参数化设计软件,在汽车、交通、航空航天、日用消费品、通用机械及电子工业等工程设计领域得到了大规模的应用。

1.1 UG NX5的功能模块

1.1.1 UG NX5用户界面

图 1-1 UG的用户界面

图 1-2 建模工作窗口

1.1.2主要功能

UG NX5软件是由多个模块组成的,主要包括CAD、CAM、CAE、注塑模、钣金件、Web、管路应用、质量工程应用、逆向工程等应用模块,其中每个功能模块都以Gateway环境为基础,它们之间既有联系又相互独立。

UG/Gateway UG/Gateway为所有UG NX产品提供了一个一致的、基于Motif的进入捷径,是用户打开NX进入的第一个应用模块。Gateway是执行其他交互应用模块的先决条件,该模块为UG NX5的其他模块运行提供了底层统一的数据库支持和一个图形交互环境。它支持打开已保存的部件文件、建立新的部件文件、绘制工程图以及输入输出不同格式的文件等操作,也提供图层控制、视图定义和屏幕布局、表达式和特征查询、对 6

象信息和分析、显示控制和隐藏/再现对象等操作。

CAD模块 1.实体建模

实体建模是集成了基于约束的特征建模和显性几何建模两种方法,提供符合建模的方案,使用户能够方便地建立二维和三维线框模型、扫描和旋转实体、布尔运算及其表达式。实体建模是特征建模和自由形状建模的必要基础。

2.特征建模

UG特征建模模块提供了对建立和编辑标准设计特征的支持,常用的特征建模方法包括圆柱、圆锥、球、圆台、凸垫及孔、键槽、腔体、倒圆角、倒角等。为了基于尺寸和位置的尺寸驱动编辑、参数化定义特征,特征可以相对于任何其他特征或对象定位,也可以被引用复制,以建立特征的相关集。

3.自由形状建模

UG自由形状建模拥有设计高级的自由形状外形、支持复杂曲面和实体模型的创建。它是实体建模和曲面建模技术功能的合并,包括沿曲线的扫描,用一般二次曲线创建二次曲面体,在两个或更多的实体间用桥接的方法建立光滑曲面。还可以采用逆向工程,通过曲线/点网格定义曲面,通过点拟合建立模型。还可以通过修改曲线参数,或通过引入数学方程控制、编辑模型。

4.工程制图

UG工程制图模块是以实体模型自动生成平面工程图,也可以利用曲线功能绘制平面工程图。在模型改变时,工程图将被自动更新。制图模块提供自动的视图布局(包括基本视图、剖视图、向视图和细节视图等),可以自动、手动尺寸标注,自动绘制剖面线、形位公差和表面粗糙

度标注等。利用装配模块创建的装配信息可以方便地建立装配图,包括快速地建立装配图剖视、爆炸图等。

5.装配建模

UG装配建模是用于产品的模拟装配,支持“由底向上”和“由顶向下”的装配方法。装配建模的主模型可以在总装配的上下文中设计和编辑,组件以逻辑对齐、贴合和偏移等方式被灵活地配对或定位,改进了性能和减少存储的需求。参数化的装配建模提供为描述组件间配对关系和为规定共同创建的紧固件组和共享,使产品开发并行工作。

MoldWizard模块

MoldWizard是UGS公司提供的运行在Unigraphics NX软件基础上的一个智能化、参数化的注塑模具设计模块。MoldWizard为产品的分型、型腔、型芯、滑块、嵌件、推杆、镶块、复杂型芯或型腔轮廓创建电火花加工的电极及模具的模架、浇注系统和冷却系统等提供了方便的设计途径,最终可以生成与产品参数相关的、可用于数控加工的三维模具模型。

CAM模块

UG/CAM模块是UG NX的计算机辅助制造模块,该模块提供了对NC加工的CLSFS建立与编辑,提供了包括铣、多轴铣、车、线切割、钣金等加工方法的交互操作,还具有图形后置处理和机床数据文件生成器的支持。同时又提供了制造资源管理系统、切削仿真、图形刀轨编辑器、机床仿真等加工或辅助加工。

产品分析模块

UG产品分析模块集成了有限元分析的功能,可用于对产品模型进行受力、受热后的变形分析,可以建立有限元模型、对模型进行分析和对分析后的结果进行处理。提供线性静力、线性屈服分析、模拟分析和

稳态分析。运动分析模块用于对简化的产品模型进行运动分析。可以进行机构连接设计和机构综合,建立产品的仿真,利用交互式运动模式同时控制5个运动副,设计出包含任意关于注塑模中对熔化的塑料进行流动分析,以多种格式表达分析结果。注塑模流动分析模块用于注塑模中对熔化的塑料进行流动分析。具有前处理、解算和后处理的能力,提供强大的在线求解器和完整的材料数据库。

1.2 UG NX5的工作环境

在初始界面中,单击【标准】工具栏中的【新建】按钮,或者选择【文件】/【新建】选项,系统将弹出如图1-1所示的【文件新建】对话框。

图1-3 【文件新建】对话框

该对话框提供了3个选项卡:模型、图纸和仿真。用户可以根据需要选择对应的模板。首先选择“模型”选项卡中的“模型”模板,然后在“新文件名”组框中的“名称”文本框中输入新文件名(UG NX5要求存盘目录和文件名必须是英文字符),在“文件夹”文本框中选择文件保存目录,最后单击【确定】按钮,系统将弹出如图1-2所示的NX5基

本界面。

图1-4 UG的基本界面

NX5基本界面主要由标题栏、菜单栏、工具栏、绘图区、坐标系图标、提示栏、状态栏和资源导航器等部分组成。

1.标题栏

标题栏位于UG NX5用户界面的最上方,用来显示软件名称及版本号,以及当前的模块和文件名等信息,如果对部件已经做了修改,但还没进行保存,其后面还会显示“修改的”提示信息。

2.菜单栏

菜单栏位于标题栏的下方,包括了该软件的主要功能,每一项对应一个UG NX5的功能类别。它们分别是文件、编辑、视图、插入、格式、工具、装配、信息、分析、首选项、窗口和帮助。每个菜单标题提供一个下拉式选项菜单,菜单中会显示所有与该功能有关的命令选项。

3.工具栏

UG NX5有很多工具栏的选择,当启动默认设置时,系统只显示其中的几个,工具栏是一行图符,每个图符代表一个功能。工具栏与下拉菜单中的菜单项相对应,执行相同的功能,可以使用户避免在菜单栏中

查找命令的繁琐,方便操作。UG各功能模块提供了许多使用方便的工具栏,用户还可以根据自己的需要及显示屏的大小对工具栏图标进行设置。

4.提示栏

提示栏主要用于提示用户如何操作,是用户与计算机信息交互的主要窗口之一。在执行每个命令时,系统都会在提示栏中显示用户必须执行的动作,或者提示用户的下一个动作。

5.状态栏

状态栏位于提示栏的右方,显示有关当前选项的消息或最近完成的功能信息,这些信息不需要回应。

6.对话框轨道及其轨道夹

在UG NX5中,几乎所有对话框都打开在对话框轨道的预定义位置上,用户可拖动对话框轨道将轨道夹放置在所需的目标位置上,也可单击轨道夹临时隐藏一个打开的对话框。另外,可以单击轨道夹中的松开按钮松开对话框,让它们浮在屏幕上,反之单击夹住,使其锁紧在轨道夹位置处。

7.绘图区

绘图区是UG创建、显示和编辑图形的区域,也是进行结果分析和模拟仿真的窗口,相当于工程人员平时使用的绘图板。当光标进入绘图区后,指针就会显示为选择球。

8.坐标系图标

在UG NX5的窗口左下角新增了绝对坐标系图标。在绘图区中央有一个坐标系图标,该坐标系称为工作坐标系WCS,它反映了当前所使用的坐标系形式和坐标方向。

9.资源导航器

资源导航器用于浏览编辑创建的草图、基准平面、特征和历史记录等。在默认情况下,资源导航器位于窗口的左侧。通过选择资源导航器上的图标可以调用装配导航器、部件导航器、操作导航器、Internet、帮助和历史记录等。

1.3 产品设计的一般过程

在进行产品设计时,应该养成一种良好的产品设计习惯,这样可以节省设计时间,降低设计成本,提高产品的市场响应能力。在使用UG NX5软件进行产品设计时,需要了解产品的设计过程。

1.准备工作

(1)阅读相关设计的文档资料,了解设计目标和设计资源。(2)搜集可以被重复使用的设计数据。(3)定义关键参数和结构草图。(4)了解产品装配结构的定义。(5)编写设计细节说明书。

(6)建立文件目录,确定层次结构。

(7)将相关设计数据和设计说明书存入相应的项目目录中。2.设计步骤

(1)建立主要的产品装配结构。用自上而下的设计方法建立产品装配结构树。如果有些以前的设计可以沿用,可以使用结构编辑器将其纳入产品装配树中。其他的一些标准零件,可以在设计阶段后期加入到装配树中。因为大部分这类零件需要在主结构完成后才能定形、定位。

(2)在装配设计的顶层定义产品设计的主要控制参数和主要设计结构描述(如草图、曲线和实体模型等),这些模型数据将被下属零件所引用,以进行零件细节设计。同时这些数据也将用于最终产品的控制和修 12

改。

(3)根据参数和结构描述数据,建立零件内部尺寸关联和部件间的特征关联。

(4)用户对不同的子部件和零件进行细节设计。

(5)在零件细节设计过程中,应该随时进行装配层上的检查,如装配干涉、重量和关键尺寸等。

此外,也可以在设计过程中,在装配顶层随时增加一些主体参数,然后再将其分配到各个子部件或零件设计中。

1.4 三维造型设计步骤

1.理解设计模型

了解主要的设计参数、关键的设计结构和设计约束等设计情况。2.主体结构造型

建立模型的关键结构,如主要轮廓,关键定位孔确定关键的结构对于建模过程起到关键作用。

对于复杂的模型,模型分解也是建模的关键。如果一个结构不能直接用三维特征完成,则需要找到结构的某个二维轮廓特征。然后用拉伸旋转扫描的方法,或者自由形状特征去建立模型。

UG允许用户在一个实体设计上使用多个根特征,这样,就可以分别建立多个主结构,然后在设计后期对它们进行布尔运算。对于能够确定的设计部分,先造型,不确定的部分放在造型的后期完成。

设计基准(Datum)通常决定用户的设计思路,好的设计基准将会帮助简化造型过程并方便后期设计的修改。通常,大部分的造型过程都是从设计基准开始的。

3.零件相关设计

UG允许用户在模型完成之后再建立零件的参数关系,但更加直接的方法是在造型过程中直接引用相关参数。

困难的造型特征尽可能早实现。如果遇到一些造型特征实现较困难,尽可能将其放在前期实现,这样可以尽早发现问题,并寻找替代方案。一般来说,这些特征会出现在hollow、thicken、complex blending„„特征上。

4.细节特征造型

细节特征造型放在造型的后期阶段,一般不要在造型早期阶段进行这些细节设计,否则会大大加长用户的设计周期。

第二章平面连杆机构

2.1 平面四杆机构的基本形式

铰链四杆机构

所有运动副均为转动副的四杆机构称为铰链四杆机构,它是平面四杆机构的基本形式,其他四杆机构都可以看成是在它的基础上演化而来的。选定其中一个构件作为机架之后,直接与机架链接的构件称为连架杆,不直接与机架连接的构件称为连杆,能够做整周回转的构件被称作曲柄,只能在某一角度范围内往复摆动的构件称为摇杆。在铰链四杆机构中,有的连架杆能做整周转动,有的则不能,两构件的相对回转角为360 º的转动副称为整转副。整转副的存在是曲柄存在的必要条件,按照连架杆是否可以做整周转动,可以将其分为三种基本形式,即曲柄摇杆机构,双曲柄机构和双摇杆机构。

曲柄摇杆机构

铰链四杆机构的两个连架杆中若一个为曲柄,另一杆为摇杆,则此机构称为曲柄摇杆机构。曲柄摇杆机构的功能是:将转动转换为摆动,或将摆动转换为转动。

图 2-1 铰链四杆机构

(2)双曲柄机构

铰链四杆机构的两个连架杆若都是曲柄,则为双曲柄机构。在双曲柄机构中,常见的还有正平行四边形机构(又称正平行双曲柄机构)和反平行四边形机构(又称反平行双曲柄机构)。双曲柄机构的功能是:将等速转动转换为等速同向、不等速同向、不等速反向等多种转动。

图2-2 平行四边形机构

图 2-3 双摇杆机构 双摇杆机构

铰链四杆机构的两个连架杆都是摇杆,则称为双摇杆机构。双摇杆机构的功能是:将一种摆动转换为另一种摆动。

图 2-4 双摇杆机构

图2-5 鹤式起重机

2.2 铰链四杆机构中曲柄存在的条件

在铰链四杆机构中,有的连架杆能做整周转动,有的则不能。两构件的相对回转角为360º的转动副为整转副。整转副的存在条件是曲柄存 16

在的必要条件,而铰链四杆机构三种基本形式的区别在于机构中是否存在曲柄和有几个曲柄,为此,需要明确整转副和曲柄存在的条件。

(1)整转副存在的条件——长度条件

铰链四杆机构中有四个转动副,其能否做整周转动,取决于四构件的相对长度。在铰链四杆机构中,若最长构件长度lmax与最短构件长度lmin之和小于或等于其余两构件长度之和(其余两构件长度分别为l1、l2),则该机构中必存在整转副,且最短构件两端的转动副为整转副。即整转副存在的长度条件为

lmax+lmin<=l1+l2 反之,若lmax+lmin>l1+l2,则机构中没有整转副。(2)曲柄存在的条件

最短构件与最长构件长度之和小于或等于其余两构件长度之和。连架杆与机架两构件中必有一个是四构件中的最短杆。铰链四杆机构基本类型的判别方法

在铰链四杆机构中最短构件与最长构件长度之和小于或等于其余两构件长度之和时:

a.取最短构件相邻的构件作为机架,则该构件为曲柄摇杆机构; b.若取最短构件作为机架,则该机构为双曲柄机构;

c.若取对短构件对面的构件作为机架,则该机构为双摇杆机构。②当对短构件与最长构件长度之和大于其余两构件长度之和时,则不论取那个构件作为机架,机构均为双摇杆机构。

2.3 铰链四杆机构的演化

在实际应用中还广泛采用者滑块四杆机构,它是由铰链四杆机构演化而来的,含有移动副的四杆机构,称为滑块四杆机构,常用的有曲柄 17

滑块机构,导杆机构,摇块机构和定块机构几种形式。

(1)曲柄滑块机构

在如图所示的曲柄摇杆机构中,当曲柄1绕轴A转动时,铰链C将往复摆动。设将摇杆3做成滑块形式,并使其沿原话导轨往复移动,显然其运动性质并未发生改变;但此时铰链四杆机构已演化为曲线导轨的曲柄滑块机构。于是铰链四杆机构将变为常见的曲柄滑块机构。

曲柄转动中心至滑块导路的距离e,称为偏距,若e=0则将其称为对心曲柄滑块机构;若e≠0则将其称为偏心曲柄滑块机构。

设构件AB的长度为l1,构件BC的长度为l2,则保证杆AB杆成为曲柄的条件是:l1+e≤l2。

曲柄滑块机构用于转动与往复移动之间的运动转换,广泛应用于内燃机、空气压缩机、冲床和自动送料机等机械设备中。

曲柄滑块机构中,若取不同构件作为机架,则该机构将演化为定块机构、摇块机构或导杆机构等。

图 2-6 四连杆机构的演化

(a)曲柄摇杆机构;(b)曲柄滑块机构;(c)导杆机构

(2)定块机构

在图所示曲柄滑块机构中,如果将滑块作为机架,则曲柄滑块机构便演化为定块机构。

(3)摇块机构,如图所示曲柄滑块机构中若取2为固定构件,则可得摇块机构,这种机构广泛用于液压驱动装置中。

(4)导杆机构

如图所示曲柄滑块机构中,若取构件1作为机架,则曲柄滑块机构便演化为导杆机构。机构中构件4称为导杆,滑块3相对导杆滑动,并和导杆一起绕A点转动,一般取连杆2为原动件。当l1<l2时,构件2和构件4都能做整周转动,此机构称为转动导杆机构。

当l1>l2时,构件2能做整周转动,构件4只能在某一角度内摆动,则该机构成为摆动导杆机构。

连杆机构机传动特点

1.连杆机构中的运动副一般均为低副,因为低副两元素为面接触,故在传递同样载荷的条件下,两元素间的压强较小,可以承受较大的载荷,而且几何形状简单便于加工制造。

2.在连杆机构中,但原动件以同样的运动规律运动时,如果改变各构件的相对长度关系,便可使从动件得到不同的运动规律。

3.在连杆机构中,连杆上不同点的轨迹是不同形状的曲线(特称为连杆曲线),而且随着各构件相对长度关系的改变,这些连杆曲线的形状也将改变,从而可以得到各种不同形状的曲线,可以利用这些曲线来满足不同轨迹的要求。

4.连杆机构还可以方便的用来达到增力、扩大行程和实现较远距离的传动等目的。

第三章平面四杆机构的基本特性

3.1 四杆机构的极位

曲柄摇杆机构、摆动导杆机构和曲柄滑块机构中,当曲柄为原动件作整周连续转动时,从动件做往复摆动或往复移动的左右两个极限位置称为极位。

3.2 四杆机构从动件的急回特性

如图示,四杆机构从动件的回程所用时间小于工作行程所用的时间,称为该机构急回特性。

图 3-1 曲柄摇杆机构的急回特性

急回特性用行程速比系数K表示极位夹角θ—— 从动摇杆位于两极限位置时,原动件两位置所夹锐角。θ越大,K越大,急回特性越明显。急回特性能满足某些机械的工作要求,如牛头刨床和插床,工作行程要求速度慢而均匀以提高加工质量,空回行程要求速度快以缩短非工作时间,提高工作效率。

3.3 平面连杆机构的传力特性

传动角与压力角:如图示在机构处于某一定位置时,从动件上作用力与作用点绝对速度方向所夹的锐角α称为压力角。压力角的余角γ(γ=90 º-α)作为机构的传力特性参数,故称为传动角。

在四杆机构运动过程中,压力角和传动角是变化的,为使机构具有良好的传力特性应使压力角越小越好,传动角越大越好。

通常规定:

αmax ≤ [α] —— 许用压力角

γmin ≤ [γ] —— 许用传动角

最小传动角γmin 出现的位置: 曲柄与机架的两个共线位置,如图示同理,曲柄滑块机构最小传动角出现在曲柄与导路垂直位置。

图 3-2 平面连杆机构的传力特性 3.4 死点位置

当机构在运动过程中,出现传动角为零时(或压力角为90°),由于Pt = 0,则无论P力多大,均不能驱动从动件运动。这种“顶死”的现象称为机构的死点位置。死点出现在两类机构中:(1)曲柄摇杆机构、曲柄滑块机构和曲柄导杆机构中,作往复运动的构件为主动件时,曲柄与连杆共线位置会出现死点。

(2)平行四边形机构中,当主动曲柄与机架共线时,连杆也与输出曲柄与机架重合,从动件曲柄上传动角等于零,它将可能朝两个方向转动,也称为死点位置。

第四章 四连杆的三维造型

4.1 机架的三维造型

打开UG5.0,新建文件。点击新建按钮,系统弹出文件新建对话框。在名称文本框中输入文件名称jijia;单击确定,进入建模环境。

图 4-1 新建对话框

单击长方体按钮输入长度10,宽度288,高度20。

图 4-2 特征工具栏

图4-3 长方体对话框

图4-4 新建长方体

选择边倒圆按钮,输入半径10,在长方体两边倒圆。

图 4-5 特征操作工具栏

图 4-6 边倒圆对话框

图 4-7边倒圆后的长方体

选择圆柱体按钮,在长方体两边建立两个圆柱凸台,输入高度5,圆的直径20 24

图 4-8 圆柱对话框

图 4-9 在两端加圆柱体凸台

选择圆柱体按钮,在凸台上建立两个圆形孔。

图 4-10 机架

4.2 连架杆1的三维造型

新建文件系统弹出文件新建对话框。在名称文本框中输入文件名称lianjiagan;单击确定,进入建模环境。

图 4-11 新建对话框

单击长方体按钮,输入长度10,宽度200,高度20,单击确定按钮。

图 4-12 长方体对话框

单击边倒圆按钮,在长方体两边倒圆,半径输入10。

图 4-13 边倒圆后的长方体

在一端建立凸台,高度20,直径10。如图4-14

图 4-14在一端建立凸台

在另一端建立一个直径20高度为5的圆柱体,在圆柱体上面建立凸台,直径10,高度15。

图 4-15建立凸台

图4-16 连架杆1 4.3 连架杆2的三维造型

1、新建文件系统弹出文件新建对话框。在名称文本框中输入文件名称lianjiagan;单击确定,进入建模环境。

2、单击长方体按钮,输入长度10,宽度112,高度20,单击确定按钮。

3、单击边倒圆按钮,在长方体两边倒圆,半径输入10。

4、在一端建立凸台,高度20,直径10。

在另一端建立一个直径20高度为5的圆柱体,在圆柱体上面建立凸台,直径10,高度15。

图 4-17 连架杆2 4.4 连杆的三维造型

新建文件,系统弹出文件新建对话框,在名称文本框中输入名称liangan,单击确定,进入建模环境。

图 4-18 新建对话框

单击长方体按钮,输入长度10,宽度208,高度20,单击确定。

图 4-19 长方体对话框

选择边倒圆按钮,在两边倒圆,输入半径10。

图 4-20 边倒圆后的长方体

在两边建立两个直径10的孔。

图 4-21 连杆

第五章 四连杆的虚拟装配

5.1 进入装配模块

1.启动UG NX,新建一个文件。2.单击【标准】工具栏中的选择【装配】命令,进入装配模块。

按钮,在弹出的下拉菜单中5.2 添加组件机架

在菜单栏中选择【装配】【组件】【添加组件】命令,或者单击装配工具栏中的按钮,弹出【添加组件】对话框,如图所示。单击按钮,弹出【部件名】对话框,根据组件的存放路径选择组件机架jijia.prt,单击单击按钮,返回到【添加组件】对话框设置定位为“绝对原点”,按钮,将实体定位于原点,结果如图所示。

图 5-1 添加组件对话框

图5-2 添加机架

5.3 装配连架杆1 以“配对”的定位方式打开连架杆1组件lianjiagan1.prt,单击按钮进入配对条件对话框。

图5-3 配对条件对话框

单击配对按钮选择如图5-4所示红色的面,再选中如图5-5所示红色的面,单击确定按钮。

单击 按钮选择图5-6所示的红色的面,再选中如图5-7所示的红

色的面,单击确定按钮,最后得到如图5-8所示

图 5-4装配关系

图 5-5装配关系

图 5-6装配关系

图 5-7装配关系

图 5-8 装配连架杆1 5.4 装配连架杆2 同装配连架杆1,以“配对”方式打开连架杆2组件lianjiagan2.prt,单击按钮,装配结果如图5-9所示。

图 5-9 装配连架杆2 5.5 装配连杆

同装配连架杆(1)/(2)一样以“配对”方式打开连杆组件liangan.prt,单击配对按钮,进入配对条件对话框如图所示,单击配对类型里面的按钮,选择如图5-11所示的红色的面,再选中如图5-12所示的按钮,再单击中心

按钮,选择如图5-13所示

按钮,再单红色的面,单击的红色的面,再选中如图5-14所示的红色的面,单击击按钮,选择如图5-15所示红色的面,再选中如图5-16所示红色的按钮,再单击

按钮,得到最终装配图如图5-17所面单击示。

图 5-10 “配对条件”对话框

图 5-11装配关系

图 5-12装配关系

图 5-13装配关系

图 5-14装配关系

图 5-15装配关系

图 5-16装配关系

图 5-17 完成的装配图

第六章

平面四连杆机构的运动仿真

平面四连杆机构的运动分析,就是对机构上的某点的位移、轨迹、速度、加速度进行分析,根据原动件的运动规律,求解出从动件的运动规律。平面四连杆机构的运动设计方法有很多,传统的有图解法、解析法和实验法。

通过UG NX软件,对平面四连杆机构进行三维建模,通过预先给定尺,之后建立相应的连杆、运动副及运动驱动,对建立的运动模型进行运动学分析,给出构件上某点的运动轨迹及速度和加速度变化的规律曲线,用图形和动画来模拟机构的实际运动过程,这是传统的分析方法所不能比拟的。

运动仿真是基于时间的一种运动形式,即在指定的时间段中运动,UG的仿真分析过程分3个阶段进行:前处理(创建连杆、运动副和定义运动驱动);求解(生成内部数据文件);后处理(分析处理数据,并转化成电影文件、图表和报表文件)。

6.1 新建仿真

打开运动导航器,在文件名上右击新建仿真,选择动力学,单击确定按钮

图 6-1 运动导航器

图 6-2 环境对话框

6.2 新建连杆

单击按钮,打开新建连杆对话框,如图所示

图 6-3连杆对话框

选中连杆1,点击创建连杆loo1,再选中连杆2点击创建连杆loo2,再选中连杆3点击击

创建连杆loo3,再选中连杆4点创建连杆loo4,最后单击取消。打开运动导航器

在运动导航器里面可以看到新建的四个连杆,在连杆4上面右击选择固定连杆,把连杆4设置成固定的。如图所示

图 6-4 运动导航器中显示的连杆

图 6-5 固定连杆loo4

6.3 创建运动副

考虑到连杆与连杆之间考旋转副连接均作,将建立4个运动副,其中有2个运动副固定,为了使4个连杆的运动有连贯性,必须在创建运动副时,在各连杆之间建立联系,使各部件运动结成一个整体。

单击打开创建运动副对话框,如图所示,选择连杆1,创建旋

按钮创建旋转副。转副指定驱动类型为恒定初速度为10单击 43

图 6-6 运动副对话框

图 6-7 设置驱动类型

选择连杆2,在咬合连杆上打上勾,让其咬合连杆1,如图所示。单击按钮创建第二个运动副。

图6-8 创建运动副对话框

选中连杆3,在咬合连杆上打上勾,让你咬合连杆2。单击钮,创建第三个运动副。

按选中连杆3,在连杆3和连杆4咬合的中心建立旋转副,如图所示。单击按钮,创建第四个运动副。

图 6-9 运动副对话框

图 6-10 解算方案对话框

单击下的通过按按钮进行解算,设置时间为100,步数为100,勾选步数进行解算,点击确定进行解算。

经过解算,可对平面四杆机构进行运动仿真显示及其相关的后处理,通过动画可以观察机构的运动过程,并可以随时暂停、倒退,选择动画中的轨迹选项,可以观察机构的运动过程,还可以生成指定标记点的位移、速度、加速度等规律曲线。

第七章

平面四连杆的运动仿真分析

我们知道,连杆上转动副为周转副的条件是:最短杆长度+最长杆长度之和≤其余两杆长度之和:组成该周转副的两杆中必有一杆位最短杆。

分析:由预先给定的连杆长度数据,连杆1长度+机架长度≤其余两杆长度之和;所以转动副连杆1和机架之间的转动副为周转副,连杆1为曲柄,所以该机构应该为曲柄摇杆机构。点击运动仿真可以看到连杆正如分析的一样周转起来,确实是个曲柄。

7.1 运动副图表分析

曲柄(连杆1)为原动件,在其转动一周后,有两次与连杆2共线,如图所示。

这时摇杆(连杆3)分别处于两个被称为极位的位置,当曲柄以等角速转动一周时,摇杆将在两个极位之间摆动,而且较明显地看到从一个极位到另一个极位要用的时间长,这就是摇杆的急回特性。

摆杆角速度变化

为了用UG定量地说明摇杆的急回特性,可以用UG中的Graphing功能,选定连杆2与连杆3构成的旋转副,Y轴属性请求选择速度,分量选择角度幅值,即表示角速度,接着点击确定输出图标,即可得出如图7-3所示图标。从表可以知道,摆杆从曲柄和连杆重合位置到曲柄和连杆共线位置需要20s,从曲柄和连杆共线到曲柄和连杆重合需要16s,从时间上说明了摆杆的急回特性。

图 7-3摆杆角速度变化曲线

运动副1的分析

因为机架是固定不动的,所以运动副1的角速度应该为0,如图所示

图 7-4 机架的角速度的变化曲线

运动副2的分析

运动副2设置的是恒定角速度为10度/秒,由图7-5所示可以看出其

角速度为10度/秒

图 7-5 曲柄的角速度变化曲线

运动副3的分析

图 7-6 连杆的角速度变化曲线

运动副5的分析

图 7-7 摆杆角速度变化曲线

从表可以知道,摆杆从曲柄和连杆重合位置到曲柄和连杆共线位置需要20s,从曲柄和连杆共线到曲柄和连杆重合需要16s,从时间上说明了摆杆的急回特性。

7.2 死点位置

当摇杆为主动件进行运动分析时,在如图所示的两个位置会出现不能使曲柄转动的“顶死”现象,机构的这种位置称为死点。在一些运动中我们应尽量避免这种现象的出现,为了使机构能顺利地通过死点而正常运转,可以采取组合机构或者采用安装飞轮加大惯性的方法,借惯性作用使机构闯过死点。

第五篇:数控加工仿真实验报告

数控技术实验报告

实验名称:数控加工仿真系统实验

实验日期:2012-1-9

一、实验目的

1、学会运用计算机仿真技术,模拟数控车床、数控铣床完成零件加工的全过程;

2、在宇龙数控仿真系统中进行加工仿真实验;

3、为后续的“数控编程实训”,实地操作数控机床进行数控加工,积累和打下操作技能训练的基础。

二、实验基本要求

1、熟悉并掌握FANUC 0i系统仿真软件面板操作过程;

2、按给定车削零件图样,编制加工程序,在计算机上运用仿真软件,进行模拟加工;

3、按给定铣削零件图样,编制加工程序,在计算机上运用仿真软件,进行模拟加工。

三、仿真实验设备

1、待加工零件图纸参数

2、宇龙数控仿真系统软件、操作电脑

四、主要操作步骤

第一部分:

1、启动宇龙数控仿真系统软件,选择合适的机床类型,根据待加工图样定义毛胚零件,正确装夹毛胚零件并安放在机床。

2、选择合适的加工刀具。

3、激活机床。检查急停按钮是否松开,若未松开,点击急停按钮,将其松开。按下操作面板上的“启动”按钮,加载驱动,当“机床电机”和“伺服控制”指示灯亮,表示机床已被激活。

4、机床回参考点。在回零指示状态下选择操作面板上的X轴,点击“+”按钮,使X轴回零,回零后相应操作面板上“X原点灯”的指示灯变亮,同时LCD上的X坐标变为“0.000”。相应的调整机床依次使Y,Z轴回零。机床回零结束后LCD显示的坐标值(XYZ:0.000,0.000,0.000),操作面板指示灯亮为回零状态。机床运动部件(铣床主轴、车床刀架)返回到机床参考点。

5、对刀,实验中选用刚性芯棒进行对刀。刚性芯棒采用检查塞尺松紧的方式对刀,同时将基准工具放置在零件的左侧(正面视图)对刀方式。

6、X轴方向对刀:点击机床操作面板中手动操作按钮,将机床切换到JOG状态,进

(4)按LCD画面软键【操作】,再点击画面软键,再按画面【READ】对应软件;(5)在MDI键盘在输入域键入文件名:O1111;

(6)点击[EXEC]对应软键,直接导入数控程序:O1111,并在LCD屏显示。

6、仿真零件加工程序代码如下: O1111;G54 G00 X-10.Y-10.Z100.;T01;M03 S500;G43 G00 Z5.H01;G01 Z-2.F100;G41 G01 X0.Y-5.D01;Y40.;X40.Y60.;G02 X80.Y20.R40.;G02 X60.Y0.R20.;G01 X-5.;G40 G00 X-10.Y-10.;G49 G00 Z100.M05;M30;

7、仿真零件加工图样如下:

下载UG教程,齿轮设计,运动仿真,仿真加工word格式文档
下载UG教程,齿轮设计,运动仿真,仿真加工.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    solidworks运动仿真总结

    【声明】 为了帮助广大SW爱好者和学习者更加方便,高效地学习和应用SW运动仿真(动画)来表达自己的作品,下面是作者在学习过程中遇到和总结一些问题,希望能对学者有帮助。 运动仿真......

    adams运动仿真教学

    起重机的建模和仿真,如下图所示。 1)启动ADAMS 1. 运行ADAMS,选择create a new model; 2. modal name 中命名为lift_mecha; 3. 确认gravity 文本框中是earth normal (-global Y......

    PROE运动仿真教学

    机构仿真之运动分析关键词:PROE 仿真运动分析 重复组件分析 连接 回放 运动包络 轨迹曲线机构仿真是PROE的功能模块之一。PROE能做的仿真内容还算比较好,不过用好的兄弟不多。......

    野火运动仿真教学

    辅助论坛(http://bbs.caxss.com/) 致力于打造成为全球最大、最专业的ProE教程资源网站。这里集中了Proe免费视频教程,ProE光盘教教程,Proe电子教程, Proe自顶向下 行为建模......

    数控机床仿真模拟加工实验报告(大全5篇)

    数控机床仿真模拟加工实验报告 实验目的 1、熟悉典型数控加工仿真软件——宇龙数控加工仿真软件的特点及其应用; 2、通过软件系统仿真操作和编程模拟加工,进一步熟悉实际数控......

    数控加工仿真系统的应用

    《数控加工仿真系统》的功能教学功能本软件具备对数控机床操作全过程和加工运行全环境仿真的功能。可以进行数控编程的教学,能够完成整个加工操作过程的教学。使原来需要在数......

    数控加工实训仿真报告

    数控加工实训仿真报告 ——刘照照一、 有关FANUC Oi 标准(前置刀架)数控车床的对刀 1、首先选择所需的刀具,如下图所示,其次是定义毛培及下料。启动机床,复位操作,进行手动对刀,启......

    数控仿真编程与加工实训大全

    实 训 报 告 学生姓名: 学生学号: 专业班级:机制 实训地点: 实训时间:11.28-12.9 指导老师: 目 录 一、实训目的 二、实训要求 三、实训内容 1、数控车床实训一 (1)、......