第一篇:基于PROE进行减速器的设计及仿真
目 录 前言.......................................................................................................................................4 1.1 减速器的研究发展现状.......................................................................................................4 1.2 参数化设计必要性与可能性分析........................................................错误!未定义书签。1.3 参数化技术的研究进展.......................................................................错误!未定义书签。1.4 本论文的研究内容...............................................................................错误!未定义书签。2 减速器参数化设计及仿真的总体方案和技术路线................................错误!未定义书签。2.1 减速器参数化设计及仿真的总体方案.................................................错误!未定义书签。2.1.1 减速器的结构...................................................................................错误!未定义书签。2.1.2 基于PRO/E的参数原理....................................................................错误!未定义书签。2.1.3 基于PRO/E的模拟仿真....................................................................错误!未定义书签。2.1.4 减速器参数化设计及仿真的总体方案.............................................错误!未定义书签。2.2 减速器参数化设计及仿真的技术路线.................................................错误!未定义书签。3 减速器齿轮结构的设计.........................................................................错误!未定义书签。3.1 高速级齿轮设计...................................................................................错误!未定义书签。3.1.1 齿轮类型、精度等级、材料及齿数的确定......................................错误!未定义书签。3.1.2 齿面接触强度设计计算....................................................................错误!未定义书签。3.1.3 齿根弯曲强度校核计算....................................................................错误!未定义书签。3.1.4 齿轮模数、齿数设计计算................................................................错误!未定义书签。3.1.5 齿轮几何尺寸计算...........................................................................错误!未定义书签。3.2 低速级齿轮设计...................................................................................错误!未定义书签。3.2.1类型、精度等级、材料及齿数的确定..............................................错误!未定义书签。3.2.2 齿面接触强度设计计算....................................................................错误!未定义书签。3.2.3 齿根弯曲强度校核计算....................................................................错误!未定义书签。3.2.4 齿轮模数、齿数设计计算................................................................错误!未定义书签。3.2.5 齿轮几何尺寸计算...........................................................................错误!未定义书签。4 减速器PRO/E参数化设计.....................................................................错误!未定义书签。4.1 减速器零部件模型库的建立................................................................错误!未定义书签。4.2 齿轮的参数化造型...............................................................................错误!未定义书签。5 减速器的装配及其运动仿真..................................................................错误!未定义书签。5.1 减速器装配关系模型库的建立............................................................错误!未定义书签。5.2 装配的关键技术...................................................................................错误!未定义书签。5.3 装配过程的实现...................................................................................错误!未定义书签。5.4 减速器运动仿真...................................................................................错误!未定义书签。5.4.1 减速器的运动分析……………………………………………………………………………错误!未定
5.4.2 运动仿真的实现………………………………………………………………………………错误!未定义6 结论.......................................................................................................错误!未定义书签。参考文献.....................................................................................................错误!未定义书签。致谢.............................................................................................................错误!未定义书签。附录.............................................................................................................错误!未定义书签。附录1:外文原文.......................................................................................错误!未定义书签。附录2:外文中文翻译................................................................................错误!未定义书签。
摘 要
本次毕业设计的课题是基于Pro/E的一级圆柱齿轮减速器三维装配建模及运动仿真,研究的主要方向是机械工程及自动化。在各个基本零件运动的特点的基础上,引入创新的思维和概念,对零件进行组合以达到设计要求。齿轮减速器是日常生产加工中非常普遍的机械,由于结构复杂,生产过程较长,采用Pro/E进行辅助设计较为方便。
减速器的传统设计效率低而且容易出错,利用PRO/E的参数化建模功能,建立圆柱直齿轮的三维参数化模型。最后应用PRO/E的运动仿真功能,对减速器进行虚拟的装配和运动仿真。应用PRO/E的参数化设计和运动仿真功能,使得减速器设计直观、快捷、高效。该技术在机械工程、化工设备、汽车制造等很多领域有很强的实用性和推广价值。
关键词:减速器;运动仿真
如 前言
1.1 减速器的研究发展现状
减速器是一种由封闭在刚性壳体内的齿轮传动、蜗杆传动或齿轮—蜗杆传动所组成的独立部件,常用在动力机与工作机之间作为减速的传动装置;在少数场合下也用作增速的传动装置,这时就称为增速器。减速器由于结构紧凑、效率较高、传递运动准确可靠、使用维护简单,并可成批生产,故在现代机械中应用很广。国内的减速器多以齿轮传动、蜗轮蜗杆传动为主,但普遍存在着功率与重量比小,或者传动比大而机械效率过低的问题。另外,材料品质和工艺水平上还有许多弱点。自20世纪60年代以来,我国先后制订了JB1130-70《圆柱齿轮减速器》等一批通用减速器的标淮,除主机厂自制配套使用外,还形成了一批减速器专业生产厂。目前,全国生产减速器的企业有数百家,年产通用减速器20多万台左右,对发展我国的机械产品做出了贡献。60年代开始生产的少齿差传动、摆线针轮传动、谐波传动等减速器具有传动比大、体积小、机械效率高等优点。90年代初期,国内出现的三环(齿轮)减速器,是一种外平动齿轮传动的减速器,它可实现较大的传动比,传递载荷的能力也大。它的体积和重量都比定轴齿轮减速器轻,结构简单,效率亦高。由于该减速器的三轴平行结构,故使功率/体积(或重量)比值仍小。且其输入轴与输出轴不在同一轴线上,这在使用上有许多不便。北京理工大学研制成功的“内平动齿轮减速器”不仅具有三环减速器的优点,还有着大的功率/重量(或体积)比值,以及输入轴和输出轴在同一轴线上的优点,处于国内领先地位。
改革开放以来,我国引进一批先进加工装备,通过引进、消化、吸收国外先进技术和科研攻关,逐步掌握了各种高速和低速重载齿轮装置的设计制造技术。材料和热处理质量及齿轮加工精度均有较大提高,通用圆柱齿轮的制造精度可从JB179-60的8~9级提高到GB10095-88的6级,高速齿轮的制造精度可稳定在4~5级。部分减速器采用硬齿面后,体积和重量明显减小,承载能力、使用寿命、传动效率有了较大的提高,对节能和提高主机的总体水平起很大的作用。
目前,我国自行设计制造的高速齿轮减速器的功率为42000KW,齿轮圆周速度150m/s。但是我国大多数减速器的技术水平还不高,老产品不可能立即被取代,新老产品并存过渡会经历一段较长的时间。
如
1.2减速器的发展趋势
20世纪70年代末,世界减速器技术有了很大的发展。产品发展的总趋势是小型化、高速化、低噪声和高可靠性;技术发展中最引人注目的是硬齿面技术、功率分支技术和模块化技术。
到80年代,国外硬齿面技术已经成熟。采用优质的合金钢锻件、渗碳淬火磨齿的硬齿面齿轮,精度不低于ISO1328—1975的6级,综合承载能力为中硬齿面调质齿轮的3~4倍,为软齿面齿轮的4~5倍。一个中等规格的硬齿面减速器的重量仅为中硬齿面减速器的1/3左右,且噪声低、效率高、可靠性高。功率分支技术主要用于行星及大功率双分支以及多分支装置,如中心传动的水泥磨主减速器,其核心技术是均载。
对通用减速器而言,除普遍采用硬齿面技术外,模块化设计技术已成为其发展的一个主要方向。
当今,世界各国减速器的发展趋势是向六高、二低、二化方向发展。六高即高承载能力、高齿面硬度、高速度、高可靠性和高传动效率;二低即低噪声、低成本;二化即标准化、多样化。
促使减速器发展的主要因素有:
①理论知识的日趋完善,如齿轮强度计算方法、修形技术、变形计算、优化设计方法、齿根圆滑过渡等。
②齿轮采用好的材料,普遍采用各种优质合金钢锻件,材料和热处理质量控制水平提高。
③结构设计更合理。
④加工精度提高到ISO5-6级。
⑤轴承质量和寿命提高。
⑥润滑油质量提高。
1.3减速器箱体的研究现状
一级齿轮减速器是机械传动中应用较广泛的一种传动机构,可以用于传递任意两轴之间的运动和动力,是一个很重要的传动零件。运用PRO/E软件,设计人员可以在真实齿轮传动装置建造前建立整个机械系统的虚拟样机,并通过各种仿真分析对其进行工作性能预估和结构优化。
PRO/E是现今使用率最高的三维设计软件,涉及到了CAD、CAE以及CAM等领域。CAE软件的应用是工业设计中用来提升设计水平,降低成本的关键技术,跻身于CAE软件前列的Pro/mechanica允许工程师在创建实物物理模型之前,测试和优化设计的结构、动力、热以
如
及耐久性,冲击等方面的性能
目前对箱体的主要研究是:
① 运用现代的设计方法对箱体进行优化设计,一般优化的过程为:提出优化目标——建立合理的数学模型——施加约束——求解——得出结果并进行分析。分析方法可以用内点罚函数法、外点罚函数法、牛顿法、黄金分割法、二次插值法、约束随机方向搜索法、鲍威尔法、复合形法等。还有应用MATLAB中的优化设计工具对所得的目标函数进行运算得到最优解。
②对箱体结构的结构力学分析。应用一些有限元软件对箱体进行有限元分析。
③对箱体受热方面的研究。通过不同尺寸减速器箱体在不同温度下的数据的采集,运用数值分析的方法,得出箱体的某些参数与温度的关系。从而可以改变减速器箱体的某些参数来改善箱体的受热状况。
④减速器箱体的参数可视化研究。Visual C++6.0环境下,利用OpenGL对减速器箱体设计进行可视化编程,实现了减速器箱体的参数化三维建模和基本的动画显示。
⑤对箱体的振动方面进行的研究。按箱体工作振型频率响应函数的分析方法,找出了对噪声贡献最具有代表性的测点,为通过测试振动信号实现声压级的测量奠定了基础。
1.4本文研究对象及意义
由于齿轮减速器的种类很多,一些类型的减速器已有系列标准,并由专门的厂家进行生产,但对于传动布置、结构尺寸、功率、传动比有特殊要求的、标准一时间无法确定的,就需要自己另行设计与制造了。由于有特殊要求的减速器的设计周期长,设计过程麻烦,效率低,任务大,因而在整个的设计过程中如若可以将计算机辅助设计与一般的机械设计进行有机的结合,这样可以缩短产品的研发周期、提高生产效率、减少劳动强度、节约资源、减少人力资源的浪费。同时在设计的过程中进行运动仿真和受力的分析,可以进一步的验证设计的结果,得出最优的方案,有效避免原材料的浪费,最大限度的节约人力资源,降低生产的成本,创造更高的效益,因此采用软件对减速器的模型进行三维的建模和运动仿真的优势很明显,进行此项工作显得非常的重要。
对于一级圆柱齿轮减速的三维建模和运动仿真的研究,首先应该建立数据的模型,在数据支持的基础上,初步计算出减速器各个零部件的基本结构和大小,然后利用Pro/E画出各个零部件的基本机构,再利用各个零部件的关系进行虚拟的装配,最后施加虚拟外力,看减速器能否运动,验证前边参数化设计过程的正
如
确性。
第二篇:基于ProE的单级圆柱齿轮减速器的设计与仿真
广东石油化工学院
课程设计说明书
题目:基于Pro/E的单级圆柱齿轮减速器的设计与仿真
班级: 姓名: 学号: 指导老师:
I
广东石油化工学院
课程设计任务书
摘要
本次课程设计要求基于Pro/E的单级圆柱齿轮减速器的设计与仿真主要用于《机械设计基础》课程的教学过程中,使学生能够直观的看到减速器的外观和内部结构,并能观察传动过程。对于《机械设计基础》课程的教学资源库提供更好的资料,能够更好的实现项目化教学改革。要求学生根据所给定的参数,完成所有零件的尺寸设计和结构设计。用Pro/e完成三维建模,然后装配成减速器整体,并生成装配爆炸图,最后还要完成运动仿真。本次课程设计具体按排,第一周指导教师讲解设计题目、设计思路和说明书格式;学生查阅资料,根据条件计算单级圆柱齿轮减速器的各技术参数和主要零件尺寸;用Pro/E对减速器零件进行三维建模;第二周运动仿真,输出工程图;整理设计说明书,再进行答辩。
关键词:单级圆柱齿轮减速器PRO/E三维建模运动仿真
II
目录
摘要............................................................IⅠ 第一章 引言(绪论)............................................1
第二章 主要零件工程图与设计
2.1 单级圆柱齿轮减速器结构分析...........................3 2.2 固定箱体底座的设计...................................3 2.3 上箱体零件的造型设计.................................5 2.4 减速器内部轴的设计...................................6 2.5 齿轮的设计..........................................8 2.6 其他零件的设计......................................11 第三章 装配减速器
3.1分析减速器的模型....................................14 3.2减速器模型创建步骤..................................14 3.3减速器分解视图......................................17
第四章减速器运动仿真
4.1运动仿真概述........................................18 4.2元件连接............................................19 4.3机构仿真............................................19
第五章设计总结.................................................22 III IV
第一章 前言绪论
绪论
设计要求:单级圆柱齿轮减速器:输入功率2.169kw,输入转速480r/min,总传动比4,效率0.95,其他技术参数计算或者按照给定图纸;按计算结果和给定图纸进行减速器零件的三维建模,并装配,进行运动仿真检查零件间是否存在运动干涉;将主要零件(传动轴和齿轮)和装配体(标注关键尺寸)输出为工程图。要求螺栓、螺母等用简化画法,不用画出实际的螺纹。设计说明书的主体为Pro/E的操作(70%以上),参数计算占小部分(小于30%)
减速器的工作原理及其运用:减速器是一种动力传达机构,利用齿轮的速度转换器,将电机(马达)的回转数减速到所需要的回转数,并得到较大转矩的机构。在目前用于传递动力与运动的机构中,减速机的应用范围相当广泛。几乎在各式机械的传动系统中可以见到它的踪迹。从交通的船舶,汽车,机车,建筑用的重型机具,机械工业所用的加工机具及自动化生产设备,到日常生活中常见的家电,钟表等等。其应用从大动力的传输工作,到小负荷,精确的角度传输都可以见到减速器的应用,且在工业应用上,减速器具有减速及增加转矩功能。因此广泛应用在速度与扭矩的转换设备。在目前用于传递动力和运动的机构中,减速器的应用范围非常广泛。减速器的作用主要有:
(1)降速同时提高输出扭矩,扭矩输出比例按电机输出成减速比,但要注意不能超出减速器的额定扭矩。
(2)减速同时降低了负载的惯量,惯量的减少为减速比的平方。减速器一般用于低转速大扭矩的传动设备,把电动机,内燃机或其他高速运转的动力通过减速器的输入轴上的齿数少的齿轮啮合输出轴上的大齿轮来达到减速的目的,普通的减速器也会有几对相同原理齿轮达到理想的减速效果,大小齿轮的齿数之比,就是传动比。减速器是一种相对精密的机械,使用它的目的是降低转速,增加转矩。它的种类繁多,型号各异,不同种类用不同的用途。减速器的种类繁多,按照传动类型可以分为齿轮减速器,蜗杆减速器和行星齿轮减速器;按照传动级数不同可以分为单级和多级减速器;按照齿轮形状可以分为圆柱齿轮减速器,圆锥齿轮减速器和圆锥一圆柱齿轮减速器;按照传动的布置又可以分为展开式,分流式和同轴式减速器
PRO/E在机械设计中的应用:经过漫长的发展岁月,产品设计手段在不断
生产制造等几个大的方面,分别提供了完整的产品设计解决方案。在这里我们将利用Pro/E的机械设计及模具设计的功能进行三维的建模。是建立在统一基层上的数据上,不像一些传统的CAD/CAM系统建立在多个数据库上。所谓的单一数据库,就是工程中的资料全部来自一个库,使得每一个独立用户在为一件产品造型而工作,不管他是哪一个部门的。换言之,在整个设计过程的任何一处发生改动,亦可以前后反应在整个设计过程的相关环节上。3.全相关性
Pro/E的所有模块都是全相关的。这就意味着在产品开发过程中某一处进行的修改,能够扩展到整个设计中,同时自动更新所有的工程文档,包括装配体,设计图纸,以及制造数据。全相关性鼓励在开发周期的任一点进行修改,却没有任何损失,并使并行工程成为可能,所以能够使开发后期的一些功能提前发挥其作用。4.基于特征的参数化造型
Pro/E使用用户熟悉的特征作为产品几何模型的构造要求。5.数据管理
加速投放市场,需要在较短的时间内开发更多的产品。为了实现这种效率,必须允许多个学科的工程师同时对同一产品进行开发。数据管理模块的开发研制,正是专门用于管理并行工程中同时进行的各项工作,由于使用了Pro/E独特的全相关性功能,因而使之成为可能。
6.针对产品设计的不同阶段,Pro/E将产品分为工业设计,机械设计,功能模拟,生产制造等几个大的方面,分别提供了完整的产品设计解决方案。在这里我们将利用Pro/E的机械设计及模具设计的功能进行三维的建模。
2)创建底座上的孔
同样单击孔工具,接受默认项创建直孔,选取底座作为孔的放置平面,在孔的操作板上选取直孔,用草绘定义所钻孔的轮廓及剖面,注意在一些环节中要定义孔的中心轴,否则会出现草绘平面不成功,然后单击完成,用同样方法创作出其他的孔。3)创建轴承座上的孔
轴承座上孔的创作方法与其在凸缘上创建孔的方法基本相同,在此不作赘述。4)底板去除材料特征的创建
选取拉伸命令,选择底座作为草绘平面,然后绘制其剖面轮廓,然后在拉伸的操作板中选择去除材料选项,定义尺寸,然后单击完成。
倒圆角特征的创建:在工程工具栏中选取倒圆角命令,选取模型中需要倒圆角的边,在输入对应的值之后,单击完成。
创建辅助特征:下箱体的辅助特征包括放油尺凸台,创建该特征仅用到几个基本的特征命令,如拉伸,剪切,倒圆角等,创建过程不再详细介绍,完成所有的特征创建后的实体如下图所示:
图1减速器固定箱体
图2减速器上箱体
2.4 减速器内部轴的设计
1.新建零件
按照上一节建零件的方法建立一个新的零件,命名。a.创建齿轮轴的特征
单击旋转命令,在其操作板上选择放置,选取TOP平面作为草绘平面,打开草绘编辑器,绘制其剖截面,单击确定完成对草图的绘制,然后在旋转的操作板上输入要旋转的角度为360度,然后单击确定完成对轴的基本特征的创建如下图所示:
图4键槽
其中,另外一根轴的创建方法与其类似,在这里也不再做出详细的建模步骤。
2.5 齿轮的设计
齿轮的创建需要用到拉伸,剪切,倒角,镜像,阵列等,下面介绍一下齿轮的创建。
1.新建零件
按照第一节中的方法创建一个新的零件并命名。
2.创建齿轮基本圆
齿轮的基本圆尺寸是由齿轮的基本参数确定的,其创建过程分为以下三个步骤: a.创建任意尺寸的基本圆曲线。
单击基准工具栏栏中的创建草绘基准曲线对话框,在工作区中选择基准平面FRONT作为草绘平面,接受系统默认的其他放置参照,单击确定进入草绘编辑器,绘制四个任意尺寸的基本圆曲线,单击确定完成相应的草绘。b.添加齿轮参数
选择菜单工具中的参数选项,在弹出的参数对话框中,单击添加,将齿轮的各参数依次添加到参数列表中,并设置参数的类型数值以及指定的方式等,单击确定,完成对齿轮参数的添加。
4.创建齿轮的基本实体
创建齿顶圆的圆柱形实体特征和创建基本实体上的倒角特征。
5.创建齿轮的轮齿特征
创建齿轮的轮齿特征是依据实际加工齿轮的工艺原理,即在齿轮的基本实体上切出所有齿槽特征,同时生成齿轮的轮齿特征。其中生成的第一个齿槽特征如下图所示:
图6齿轮的轮齿特征
6.创建齿轮的辅助特征
齿轮的辅助特征包括辐板,齿轮轴孔等,齿轮孔的创建需要用到阵列,完成所有的齿轮的创建如下图所示:
其他零件包括端盖,滚动轴承螺钉,键等等,在这里不再作详细的叙述它们的创建步骤,其中端盖与轴承的创建如下图所示:
图9端盖
第三章 装配减速器
3.1分析减速器的模型
减速器中的零件包括上,下箱体,齿轮,齿轮轴,键,轴承,端盖,顶盖等主要零件和螺钉等辅助零件。在装配过程中为简便起见,可先将齿轮,齿轮轴,键,轴承装配成一个子组件,再将子组件与其他零件装配成整体模型。这样可以方便零件在整体模型中的定位,简化操作过程。而分解视图的目的是为了在不改变元件间实际设计距离的前提下,清楚的表示出零件模型元件之间的结构关系,生成组件后,还可以在组件中创建并修改多个分解状态来定义所有元件的分解位置等等。
3.2 减速器模型创建步骤
1.新建组件
打开新建对话框,选择组件,输入文件名字,单击使用默认模板复选框取消选中标志,单击确定,打开新文件选项对话框,选择mmns_asm_design模板,建立单位为公制的新文件。
2.新建子组件
单击工程特征工具栏中的创建选项,选择元件类型为子组件,类型为标准,输入名称,单击确定,进入组件创建环境,这时模型树中的子组件标识显示为激活状态,可以进行子组件的装配。
3.添加大轴和键两个元件到子组件
单击添加中的文件打开对话框,添加轴零件到工作区域,系统将添加到子组件的每一个元件放置到默认位置,即元件坐标系与子组件坐标系重合,不需要再对该元件进行定位约束。再添加键,过程如上,在元件放置对话框中设置元件的每一个约束类型为插入,根据提示选取正确的曲面作为两个放置参照,系统自动添加第二个约束,设置类型为插入,选择元件曲面作为参照,单击添加第三个约束,设置类型为匹配,选择正确的元件曲面作为放置参照,根据工作区域中显示的偏移方向输入偏移值为零,单击确定,完成对键的添加。
4.添加齿轮与滚动轴承到子组件
选择插入选项中的元件,在文件打开中选中齿轮文件,将齿轮元件放入到工作区域,在元件放置对话框中设置第一个约束类型为插入,选择元件曲面与组件曲面作为两个放置参照,设置第二个约束类型为匹配,选择元件曲面和组件曲面为放置参照,输入匹配值为零,添加第三个约束,设置类型为匹配,选择元件曲面和组件曲面作为放置参照,根据提示输入偏移值为零,单击确定完成对齿轮元件的添加。
滚动轴承的添加同上面所述,在此也不作多赘述。完成的子组件如下图所示:
图12小齿轮的子组件
1.添加元件底座和箱盖两个元件到组件
右击目录树的组件标识,在弹出的下拉菜单中,单击激活按钮将组建切换到激活状态,继续添加的元件将成为原组件中的元件,步骤如上面所述,添加辅助元件以后完整的装配体如下图所示:
图14减速器的分解视图
4.3 机构仿真
单击应用程序Mechanism,进入机械模式
1.定义齿轮从动连接结构
单击工具栏中的齿轮选项,弹出齿轮副对话框,单击新建按钮,弹出齿轮副定义,对话框,接受系统默认名称和默认的传动类型,选取大齿轮的连接轴,系统会自选取齿轮的主体和托架,在直径输入框中输入值,单击齿轮2选项卡,显示有关齿轮2的对话框,选取齿轮2的连接为连接轴,系统会自动选取齿轮的主体和托架,在直径输入栏中输入数值,接受属性中的齿轮比选项为节圆直径。单击确定在齿轮副对话框中显示齿轮副的名称,此时点击关闭按钮。此时在齿轮中就会显示出齿轮副连接的标识。
2.添加驱动器
单击工具栏中的伺服电动机对话框,单击新建,在显示的对话框中接受系统默认的从动实体类型,选取相应的连接为连接轴,单击轮廓选项卡,在位置旁边选取速度规范,接受当前轴的位置为零位置,接受系统默认的模为常数,输入A值,即确定传动轴的转速,单击确定,此时在工作区域上就会显示出驱动器的标识。
3.运动分析
在分析对话框中,单击新建按钮,显示伺服电动机定义对话框,接受系统默认的分析类型和开始时间。设置运动的结束时间与帧频,系统会自动计算帧数和最小间隔时间,接受系统默认的电动机driverl。单击运动可以查看齿轮的运行情况。在分析对话框中显示分析结果的名称,单击运行按钮,把运动结果存入结果集,单击关闭按钮关闭对话框。
4.结果回放
单击工具栏中的播放按钮,弹出回放的对话框,单击回放的播放键,从中可以将仿真结果制作成动画进行播放。单击捕获按钮,在弹出的对话框中可以对结果进行一系列格式的动画制作,用保存副本可以将动画保存。
第三篇:PROE运动仿真教学
机构仿真之运动分析
关键词:PROE 仿真
运动分析 重复组件分析 连接 回放 运动包络 轨迹曲线机构仿真是PROE的功能模块之一。PROE能做的仿真内容还算比较好,不过用好的兄弟不多。当然真正专做仿真分析的兄弟,估计都用Ansys去了。但是,Ansys研究起来可比PROE麻烦多了。所以,学会PROE的仿真,在很多时候还是有用的。坛子里关于仿真的教程也有过一些,但很多都是动画,或实例。偶再发放一份学习笔记,并整理一下,当个基础教程吧。希望能对学习仿真的兄弟有所帮助。术语
创建机构前,应熟悉下列术语在PROE中的定义:
主体(Body)定义并约束相对运动的主体之间的关系。
自由度(Degrees of Freedom)在屏幕上用鼠标拾取并移动机构。动态(Dynamics)作用于旋转轴或平移轴上(引起运动)的力。齿轮副连接(Gear Pair Connection)不移动的主体。其它主体相对于基础运动。
接头(Joints)研究机构的运动,而不考虑移动机构所需的力。环连接(Loop Connection)主体受电动机或负荷作用时的移动方式。
放置约束(Placement Constraint)记录并重放分析运行的结果。
伺服电动机(Servo Motor)与主体相关的局部坐标系。LCS 是与主体中定义的第一个零件相关的缺省坐标系。UCS全局坐标系。组件的全局坐标系,它包括用于组件及该组件内所有主体的全局坐标系。运动分析的定义
在满足伺服电动机轮廓和接头连接、凸轮从动机构、槽从动机构或齿轮副连接的要求的情况下,模拟机构的运动。运动分析不考虑受力,它模拟除质量和力之外的运动的所有方面。因此,运动分析不能使用执行电动机,也不必为机构指定质量属性。运动分析忽略模型中的所有动态图元,如弹簧、阻尼器、重力、力/力矩以及执行电动机等,所有动态图元都不影响运动分析结果。如果伺服电动机具有不连续轮廓,在运行运动分析前软件会尝试使其轮廓连续,如果不能使其轮廓连续,则此伺服电机将不能用于分析。使用运动分析可获得以下信息:
几何图元和连接的位置、速度以及加速度
元件间的干涉
机构运动的轨迹曲线
作为 Pro/ENGINEER 零件捕获机构运动的运动包络 重复组件分析
WF2.0以前版本里的“运动分析”,在WF2.0里被称为“重复组件分析”。它与运动分析类似,所有适用于运动分析的要求及设定,都可用于重复组件分析,所有不适于运动分析的因素,也都不适用于重复组件分析。重复组件分析的输出结果比运动分析少,不能分析速度、加速度,不能做机构的运动包络。
使用重复组件分析可获得以下信息: 几何图元和连接的位置 元件间的干涉
机构运动的轨迹曲线 运动分析工作流程
创建模型:定义主体,生成连接,定义连接轴设置,生成特殊连接 检查模型:拖动组件,检验所定义的连接是否能产生预期的运动 加入运动分析图元:设定伺服电机
准备分析:定义初始位置及其快照,创建测量 分析模型:定义运动分析,运行
结果获得:结果回放,干涉检查,查看测量结果,创建轨迹曲线,创建运动包络 装入元件时的两种方式:接头连接与约束连接
向组件中增加元件时,会弹出“元件放置”窗口,此窗口有三个页面:“放置”、“移动”、“连接”。传统的装配元件方法是在“放置”页面给元件加入各种固定约束,将元件的自由度减少到0,因元件的位置被完全固定,这样装配的元件不能用于运动分析(基体除外)。另一种装配元件的方法是在“连接”页面给元件加入各种组合约束,如“销钉”、“圆柱”、“刚体”、“球”、“6DOF”等等,使用这些组合约束装配的元件,因自由度没有完全消除(刚体、焊接、常规除外),元件可以自由移动或旋转,这样装配的元件可用于运动分析。传统装配法可称为“约束连接”,后一种装配法可称为“接头连接”。
约束连接与接头连接的相同点:都使用PROE的约束来放置元件,组件与子组件的关系相同。约束连接与接头连接的不同点:约束连接使用一个或多个单约束来完全消除元件的自由度,接头连接使用一个或多个组合约束来约束元件的位置。约束连接装配的目的是消除所有自由度,元件被完整定位,接头连接装配的目的是获得特定的运动,元件通常还具有一个或多个自由度。“元件放置”窗口:(yd1)
接头连接的类型
接头连接所用的约束都是能实现特定运动(含固定)的组合约束,包括:销钉、圆柱、滑动杆、轴承、平面、球、6DOF、常规、刚性、焊接,共10种。
销钉:由一个轴对齐约束和一个与轴垂直的平移约束组成。元件可以绕轴旋转,具有1个旋转自由度,总自由度为1。轴对齐约束可选择直边或轴线或圆柱面,可反向;平移约束可以是两个点对齐,也可以是两个平面的对齐/配对,平面对齐/配对时,可以设置偏移量。
圆柱:由一个轴对齐约束组成。比销钉约束少了一个平移约束,因此元件可绕轴旋转同时可沿轴向平移,具有1个旋转自由度和1个平移自由度,总自由度为2。轴对齐约束可选择直边或轴线或圆柱面,可反向。
滑动杆:即滑块,由一个轴对齐约束和一个旋转约束(实际上就是一个与轴平行的平移约束)组成。元件可滑轴平移,具有1个平移自由度,总自由度为1。轴对齐约束可选择直边或轴线或圆柱面,可反向。旋转约束选择两个平面,偏移量根据元件所处位置自动计算,可反向。
轴承:由一个点对齐约束组成。它与机械上的“轴承”不同,它是元件(或组件)上的一个点对齐到组件(或元件)上的一条直边或轴线上,因此元件可沿轴线平移并任意方向旋转,具有1个平移自由度和3个旋转自由度,总自由度为4。
平面:由一个平面约束组成,也就是确定了元件上某平面与组件上某平面之间的距离(或重合)。元件可绕垂直于平面的轴旋转并在平行于平面的两个方向上平移,具有1个旋转自由度和2个平移自由度,总自由度为3。可指定偏移量,可反向。
球:由一个点对齐约束组成。元件上的一个点对齐到组件上的一个点,比轴承连接小了一个平移自由度,可以绕着对齐点任意旋转,具有3个入旋转自由度,总自由度为3。
6DOF:即6自由度,也就是对元件不作任何约束,仅用一个元件坐标系和一个组件坐标系重合来使元件与组件发生关联。元件可任意旋转和平移,具有3个旋转自由度和3个平移自由度,总自由度为6。
刚性:使用一个或多个基本约束,将元件与组件连接到一起。连接后,元件与组件成为一个主体,相互之间不再有自由度,如果刚性连接没有将自由度完全消除,则元件将在当前位置被“粘”在组件上。如果将一个子组件与组件用刚性连接,子组件内各零件也将一起被“粘”住,其原有自由度不起作用。总自由度为0。
焊接:两个坐标系对齐,元件自由度被完全消除。连接后,元件与组件成为一个主体,相互之间不再有自由度。如果将一个子组件与组件用焊接连接,子组件内各零件将参照组件坐标系发按其原有自由度的作用。总自由度为0。接头连接类型:(yd2)
接头连接约束:常规
常规:也就是自定义组合约束,可根据需要指定一个或多个基本约束来形成一个新的组合约束,其自由度的多少因所用的基本约束种类及数量不同而不同。可用的基本约束有:匹配、对齐、插入、坐标系、线上点、曲面上的点、曲面上的边,共7种。在定义的时候,可根据需要选择一种,也可先不选取类型,直接选取要使用的对象,此时在类型那里开始显示为“自动”,然后根据所选择的对象系统自动确定一个合适的基本约束类型。常规—匹配/对齐:对齐)。单一的“匹配/对齐”构成的自定义组合约束转换为约束连接后,变为只有一个“匹配/对齐”约束的不完整约束,再转换为接头约束后变为“平面”连接。这两个约束用来确定两个平面的相对位置,可设定偏距值,也可反向。定义完后,在不修改对象的情况下可更改类型(匹配
常规—插入:选取对象为两个柱面。单一的“插入”构成的自定义组合约束转换为约束连接后,变为只有一个“插入”约束的不完整约束,再转换为接头约束后变为“圆柱”连接。
常规—坐标系:选取对象为两个坐标系,与6DOF的坐标系约束不同,此坐标系将元件完全定位,消除了所有自由度。单一的“坐标系”构成的自定义组合约束转换为约束连接后,变为只有一个“坐标系”约束的完整约束,再转换为接头约束后变为“焊接”连接。
常规—线上点:选取对象为一个点和一条直线或轴线。与“轴承”等效。单一的“线上点”构成的自定义组合约束转换为约束连接后,变为只有一个“线上点”约束的不完整约束,再转换为接头约束后变为“轴承”连接。
常规—曲面上的点:选取对象为一个平面和一个点。单一的“曲面上的点”构成的自定义组合约束转换为约束连接后,变为只有一个“曲面上的点”约束的不完整约束,再转换为接头约束后仍为单一的“曲面上的点”构成的自定义组合约束。
常规—曲面上的边:选取对象为一个平面/柱面和一条直边。单一的“曲面上的点”构成的自定义组合约束不能转换为约束连接。自由度与冗余约束
自由度(DOF)是描述或确定一个系统(主体)的运动或状态(如位置)所必需的独立参变量(或坐标数)。一个不受任何约束的自由主体,在空间运动时,具有6个独立运动参数(自由度),即沿XYZ三个轴的独立移动和绕XYZ三个轴的独立转动,在平面运动时,则只具有3个独立运动参数(自由度),即沿XYZ三个轴的独立移动。
主体受到约束后,某些独立运动参数不再存在,相对应的,这些自由度也就被消除。当6个自由度都被消除后,主体就被完全定位并且不可能再发生任何运动。如使用销钉连接后,主体沿XYZ三个轴的平移运动被限制,这三个平移自由度被消除,主体只能绕指定轴(如X轴)旋转,不能绕另两个轴(YZ轴)旋转,绕这两个轴旋转的自由度被消除,结果只留下一个旋转自由度。冗余约束指过多的约束。在空间里,要完全约束住一个主体,需要将三个独立移动和三个独立转动分别约束住,如果把一个主体的这六个自由度都约束住了,再另加一个约束去限制它沿X轴的平移,这个约束就是冗余约束。
合理的冗余约束可用来分摊主体各部份受到的力,使主体受力均匀或减少磨擦、补偿误差,延长设备使用寿命。冗余约束对主体的力状态产生影响,对主体的对运动没有影响。因运动分析只分析主体的运动状况,不分析主体的力状态,在运动分析时,可不考虑冗余约束的作用,而在涉及力状态的分析里,必须要适当的处理好冗余约束,以得到正确的分析结果。系统在每次运行分析时,都会对自由度进行计算。并可创建一个测量来计算机构有多少自由度、多少冗余。
PROE的帮助里有一个门铰链的例子来讲冗余与自由度的计算,但其分析实丰有欠妥当,各位想准确计算模型的自由度的话,请找机构设计方面的书来仔细研究一番。这也不是几句话能说明白的,我这里只提一下就是了,不再详.约束转换
接头连接与约束连接可相互转换。在“元件放置”窗口的“放置”页面和“连接”页面里,在约束列表下方,都有一个“约束转换”按钮。使用此按钮可在任何时候根据需要将接头连接转换为约束连接,或将约束连接转换为接头连接。
在转换时,系统根据现有约束及其对象的性质自动选取最相配的新类型。如对系统自动选取的结果不满意,可再进行编辑。转换的规则,可参考PROE的自带帮助。不过,没有很好的空间想像力和耐性的兄弟就不用看了。
需要记住的一个:曲线上的点、曲面上的点、相切约束,在转换时是不会转换成常规连接的。下图显示“约束转换”和“反向”按钮:(yd3)基础与重定义主体
基础是在运动分析中被设定为不参与运动的主体。
创建新组件时,装配(或创建)的第一个元件自动成为基础。
元件使用约束连接(“元件放置”窗口中“放置”页面)与基础发生关系,则此元件也成为基础的一部份。
如果机构不能以预期的方式移动,或者因两个零件在同一主体中而不能创建连接,就可以使用“重定义主体”来确认主体之间的约束关系及删除某些约束。
进入“机构”模块后,“编辑”—>“重定义主体”进入主体重定义窗口,选定一个主体,将在窗口里显示这个主体所受到的约束(仅约束连接及“刚体”接头所用的约束)。可以选定一个约束,将其删除。如果删除所有约束,元件将被封装。“重定义主体”窗口:(yd4)
特殊连接:凸轮连接
凸轮连接,就是用凸轮的轮廓去控制从动件的运动规律。PROE里的凸轮连接,使用的是平面凸轮。但为了形象,创建凸轮后,都会让凸轮显示出一定的厚度(深度)。
凸轮连接只需要指定两个主体上的各一个(或一组)曲面或曲线就可以了。定义窗口里的“凸轮1”“凸轮2”分别是两个主体中任何一个,并非从动件就是“凸轮2”。如果选择曲面,可将“自动选取”复选框勾上,这样,系统将自动把与所选曲面的邻接曲面选中,如果不用“自动选取”,需要选多个相邻面时要按住Ctrl。如果选择曲线/边,“自动选取”是无效的。如果所选边是直边或基准曲线,则还要指定工作平面(即所定义的二维平面凸轮在哪一个平面上)。
凸轮一般是从动件沿凸轮件的表面运动,在PROE里定义凸轮时,还要确定运动的实际接触面。选取了曲面或曲线后,将会出线一个箭头,这个箭头指示出所选曲面或曲线的法向,箭头指向哪侧,也就是运动时接触点将在哪侧。如果系统指示出的方向与想定义的方向不同,可反向。关于“启用升离”,打开这个选项,凸轮运转时,从动件可离开主动件,不使用此选项时,从动件始终与主动件接触。启用升离后才能定义“恢复系数”,即“启用升离”复选框下方的那个“e”。因为是二维凸轮,只要确定了凸轮轮廓和工作平面,这个凸轮的形状与位置也就算定义完整了。为了形象,系统会给这个二维凸轮显示出一个厚度(即深度)。通常我们可不必去修改它,使用“自动”就可以了。也可自已定义这个显示深度,但对分析结果没有影响。需要注意:
A.所选曲面只能是单向弯曲曲面(如拉伸曲面),不能是多向弯曲曲面(如旋转出来的鼓形曲面)。B.所选曲面或曲线中,可以有平面和直边,但应避免在两个主体上同时出现。
C.系统不会自动处理曲面(曲线)中的尖角/拐点/不连续,如果存在这样的问题,应在定义凸轮前适当处理。
凸轮可定义“升离”、“恢复系数”与“磨擦”。凸轮定义窗口:(yd5)
特殊连接:齿轮连接
齿轮连接用来控制两个旋转轴之间的速度关系。在PROE中齿轮连接分为标准齿轮和齿轮齿条两种类型。标准齿轮需定义两个齿轮,齿轮齿条需定义一个小齿轮和一个齿条。一个齿轮(或齿条)由两个主体和这两个主体之间的一个旋转轴构成。因此,在定义齿轮前,需先定义含有旋转轴的接头连接(如销钉)。
定义齿轮时,只需选定由接头连接定义出来的与齿轮本体相关的那个旋转轴即可,系统自动将产生这根轴的两个主体设定为“齿轮”(或“小齿轮”、“齿条”)和“托架”,“托架”一般就是用来安装齿轮的主体,它一般是静止的,如果系统选反了,可用“反向”按钮将齿轮与托架主体交换。“齿轮2”或“齿条”所用轴的旋转方向是可以变更的,点定义窗口里“齿轮2”轴右侧的反向按钮就可以,点中后画面会出现一个很粗的箭头指示此轴旋转的正向。
速比定义:在“齿轮副定义”窗口的“齿轮1”、“齿轮2”、“小齿轮”页面里,都有一个输入节圆直径的地方,可以在定义齿轮时将齿轮的实际节圆直径输入到这里。在“属性”页面里,“齿轮比”(“齿条比”)有两种选择,一是“节圆直径”,一是“用户定义的”。选择“节圆直径”时,D1、D2由系统自动根据前两个页面里的数值计算出来,不可改动。选择“用户定义的”时,D1、D2需要输入,此情况下,齿轮速度比由此处输入的D1、D2确定,前两个页面里输入的节圆直径不起作用。速度比为节圆直径比的倒数,即:齿轮1速度/齿轮2速度=齿轮2节圆直径/齿轮1节圆直径=D2/D1。齿条比为齿轮转一周时齿条平移的距离,齿条比选择“节圆直径”时,其数值由系统根据小齿轮的节圆数值计算出来,不可改动,选择“用户定义的”时,其数值需要输入,此情况下,小齿轮定义页面里输入的节圆直径不起作用。
图标位置:定义齿轮后,每一个齿轮都有一个图标,以显示这里定义了一个齿轮,一条虚线把两个图标的中心连起来。默认情况下,齿轮图标在所选连接轴的零点,图标位置也可自定义,点选一个点,图标将平移到那个点所在平面上。图标的位置只是一视觉效果,不会对分析产生影响。要注意的事项:
A.PROE里的齿轮连接,只需要指定一个旋转轴和节圆参数就可以了。因此,齿轮的具体形状可以不用做出来,即使是两个圆柱,也可以在它们之间定义一个齿轮连接。
B.两个齿轮应使用公共的托架主体,如果没有公共的托架主体,分析时系统将创建一个不可见的内部主体作为公共托架主体,此主体的质量等于最小主体质量的千分之一。并且在运行与力相关的分析(动态、力平衡、静态)时,会提示指出没有公共托架主体。齿轮定义窗口:(yd6)
特殊连接:槽连接
槽连接是两个主体之间的一个点----曲线连接。从动件上的一个点,始终在主动件上的一根曲线(3D)上运动。槽连接只使两个主体按所指定的要求运动,不检查两个主体之间是否干涉,点和曲线甚至可以是零件实体以外的基准点和基准曲线,当然也可以在实体内部。曲线可以是任何一组相邻曲线(即要求相连,不必相切),可以是基准曲线,也可以是实体/曲面的边,可以是开放的,也可以是封闭的。
点可以是任何一个基准点或顶点,但只能是零件中的,组件中的点不能用于槽连接。
运动时,从动件上的点始终在主动件上的指定曲线上,如果曲线是一条(组)开放曲线,则此曲线(曲线组)的首末两个端点为槽的默认端点,如果是一条(组)封闭曲线,则默认无端点。如果希望运动区间不是在整条曲线(曲线组)上,而只是在其中的一段上,则需要自定义槽的端点。对于开放曲线(曲线组),只要指定新的端点就可以了,对于封闭曲线,指定两个新端点后,系统自动选取被两端点分割出的两段曲线中的一段为运行区间,如果不是所需要的,点“反向”选取另
一段。定义槽端点可选取基准点、顶点、曲线/边/曲面,如果选的是曲线/边/曲面,则槽端点为槽曲线与所选曲线/边/曲面的交点。槽连接可定义“恢复系数”与“磨擦”。槽连接定义窗口:(yd7)
拖动与快照
拖动,是在允许的范围内移动机械。快照,对机械的某一特殊状态的记录。可以使用拖动调整机构中各零件的具体位置,初步检查机构的装配与运动情况,并可将其保存为快照,快照可用于后续的分析定义中,也可用于绘制工程图。
“机构”----“拖动”,进入“拖动”窗口,此窗口具有一个工具栏,工具栏左第一个按钮为“保存快照”,即将当前屏幕上的状态保存为一个快照,左第二个按钮为“点拖动”,即点取机构上的一个点,移动鼠标以改变元件的位置,左第三个按钮为“主体拖动”,选取一个主体,移动鼠标以改变元件的位置。右侧两个按钮为“撤消”和“恢复”,每一次拖动,系统都会记录入内存,使用此两按钮,可查看已做的各次拖动的结果。“快照”页和“约束”页,分别有一个列表,显示当前已经定义的快照和为当前拖动定义的临时约束。
快照列表左侧有一列工具按钮,第一个为显示当前快照,即将屏幕显示刷新为选定快照的内容;第二个为从其它快照中把某些元件的位置提取入选定快照;第三个为刷新选定快照,即将选定快照的内容更新为屏幕上的状态;第四个为绘图可用,使选定快照可被当做分解状态使用,从而在绘图中使用,这是一个开关型按钮,当快照可用于绘图时,列表中的快照名前会有一个图标;第五个是删除选定快照。
约束列表显示已为当前拖动所定义的临时约束,这些临时约束只用于当前拖动操作,以进一步限制拖动时各主体之间的相对运动。
“高级拖动选项”提供了一组工具,用于精确限定拖动时被拖动点或主体的运动。拖动窗口:(yd8)
恢复系数与磨擦
即碰撞系数,其物理定义为两物体碰撞后的相对速度(V2-V1)与碰撞前的相对速度(V10-V20)的比值,即e=(V2-V1)/(V10-V20),它的值介于0到1之间。典型的恢复系数可从工程书籍或实际经验中得到。恢复系数取决于材料属性、主体几何以及碰撞速度等因素。在机构中应用恢复系数,是在刚体计算中模拟非刚性属性的一种方法。完全弹性碰撞的恢复系数为 1。完全非弹性碰撞的恢复系数为 0。橡皮球的恢复系数相对较高。而湿泥土块的恢复系数值非常接近0。
摩擦阻碍凸轮或槽的运动。摩擦系数取决于接触材料的类型以及实验条件。可在物理或工程书籍中查找各种典型的摩擦系数表。需要分别指定静磨擦系数和动磨擦系数,且静磨擦系数应大于动磨擦系数。要在力平衡分析中计算凸轮滑动测量,必须指定凸轮连接的磨擦系数。恢复系数与磨擦可用于凸轮连接和槽连接,也可用于连接轴设置。连接轴设置
“机构”—“连接轴设置”,可为由接头连接(如销钉)产生的连接轴定义一些具体的属性,包括:连接轴的位置,连接轴的零参照,连接轴的再生位置(用于重复组件分析),连接轴的运动限制、恢复系数及磨擦。
进入此窗口后,需先选取一连接轴,然后再对此轴进行各种设置。
“连接轴位置”,这里显示的是连接轴的两个零参照间的位置或距离,未改变时,显示的是当前屏幕上这个位置时的值。如果自己输入一个数值并回车(对于旋转轴,此数值为-180到180,如超出此范围或超出“属性”里设置的限制范围,系统将自动转换成可接受的范围内的值),屏幕上的组件也将临时改变位置以反映当前修改,如果按了“生成零点”,则将当前位置设定为连接轴零点,其它测量都从此零点位置开始。点了“生成零点”后,“指定参照”将无效。如果选了“指定参照”,则“生成零点”无效。“指定参照”可为连接轴的两个主体分别选定零位置的几何参照。选取“再生值”,可让组件在非连接轴零点位置再生,这个用于重复组件分析中。
“启用限制”,设置接头运动时的最大最小运动范围及恢复系数。对于旋转轴,“最小”值为-180到180之间且小于最大值,“最大”值为-180到180之间且大于最小值。恢复系数用来模拟当连接轴运动到限制位置时的冲击力。
“启用磨擦”,设置接头的两个主体之间相互运动的阻力。需指定静磨擦系数和动磨擦系数,对于旋转轴,还应指定一个大于零的接触半径值,它用于定义磨擦扭矩作用于连接轴上的半径。静磨擦系数应大于动磨擦系数。
在任何连接轴上,都不能创建多个连接轴零点。不能为球接头定义连接轴设置。另外,不能编辑属于多旋转 DOF 接头(如 6DOF 或某个一般连接)的旋转连接轴的连接轴设置。连接轴设置窗口:(yd9)
连接轴设置:零点参照的要求
定义旋转轴的零点时,要注意以下事项:
点-点零点参照 :以垂直于旋转轴的方向从每一点绘制向量。这两个向量对连接零点应重合。这两个点不能位于连接轴上。点-平面零参照 : 包含点和旋转连接轴的平面应平行于为连接零点选取的平面。该点不能位于连接轴上。
平面-平面零参照 : 这两个平面在连接零点处平行。两个平面都必须平行于旋转轴。定义平移轴的零点参照时应注意下列事项:
点-点零参照:在连接零点处,两点之间在平移连接轴方向上的距离将为零。
点-平面零参照:在连接零点处,平面和点之间在平移连接轴方向上的距离将为零。该平面必须垂直于连接轴。
平面-平面零参照:在连接零点处,平面间的距离为零。两个平面都必须垂直于连接轴。定义平面或轴承连接的连接轴零点参照时应注意:
平面连接:为避免不可预测的行为,只能为平面平移轴定义点-点或点-平面零点参照。同样,只能为平面旋转轴定义平面-平面零点参照。
轴承连接:必须在包含轴承接头方向定义的主体上选取一个点或平面,即具有点-线约束的直线。系统将此参照与定义轴承连接的点对齐。伺服电动机
伺服电动机可规定机构以特定方式运动。伺服电动机引起在两个主体之间、单个自由度内的特定类型的运动。伺服电动机将位置、速度或加速度指定为时间的函数,并可控制平移或旋转运动。通过指定伺服电动机函数,如常数或线性函数,可以定义运动的轮廓。可从多个预定义的函数中选取,也可输入自己的函数。可在一个图元上定义任意多个伺服电动机。
如果为非连续的伺服电动机轮廓选取或定义了位置或速度函数,在进行运动或动态分析时这个伺服电动机将被忽略。但是,可在重复组件分析中使用非连续伺服电动机轮廓。当用图形表示非连续伺服电动机时,系统将显示信息指示非连续的点。
伺服电动机分为两种,一种是连接轴伺服电机,用于定义某一旋转轴的旋转运动,一种是几何伺服电机,用于创建复杂的运动,如螺旋运动。连接轴伺服电机只需要选定一个事先由接头连接(如销钉)所定义的旋转轴,并设定方向即可,连接轴伺服电机可用于运动分析。几何伺服电机需要选取从动件上的一个点/平面,并选取另一个主体上的一个点/平面作为运动的参照,并需确定运动的方向及种类,几何伺服电机不能用于运动分析。连接轴伺服电机选取一根旋转轴,并指定方向。几何伺服电机根据选取的对象分以下几种:
从动“点”,参照“点”,平移;从动“点”,参照“平面”,旋转;从动“平面”,参照“平面”,旋转;从动“点”,参照“平面”,平移;从动“平面”,参照“平面”,平移。其中,前三种需要再选取一条直边来定义运动方向,后两种不需要。
电机轮廓也即是从动件的运动规律,对于平移运动,它是长度(单位:mm)对时间的函数,对于旋转,它是角度(单位:度)对时间的函数。点最下方的“图形”按钮,将会以图形的方式显示出电机的轮廓,其横轴就是时间,其纵轴,就是位置或速度或加速度。“模”定义的就是图形的形状,“规范”里定义的就是“模”所定义的图形的纵轴所代表的意义。模有九种:常数、斜坡、余弦、SCCA、摆线、抛物线、多项式、表、用户定义的。规范有三种:位置、速度、加速度。其中模里的SCCA这一种,只能用于描述加速度(即对应的“规范”只能是加速度)。“规范”为位置时,无需自己定义初始位置,为速度时,需定义“初始角”,为加速度时,需定义“初始角”和“初始角速度”,默认位置为当前屏幕上的位置。
点“规范”下的那个按钮,可进入“连接轴设置”窗口,对当前电机所用的连接轴进行设置。伺服电动机定义窗口:(yd10)
电动机的轮廓(模)
电动机的模用来描述电动机的轮廓,定义模时,需选定模函数并输入函数的系数值。对于伺机服电动机,函数中的X为时间,对于执行电动机,函数中的X为时间或选取的测量参数。
模函数一共有九种:常数、斜坡、余弦、SCCA、摆线、抛物线、多项式、表、用户定义的。下面先说说常数、斜坡、余弦、摆线、抛物线、多项式这六种。常数,函数为q=A,A为一常数。此用于需要恒定轮廓时。
斜坡,即线性,函数为q=A+B*X,A为一常数,B为斜率。用于轮廓随时间做线性变化时。余弦,函数为q=A*cos(360*X/T+B)+C,A为幅值,B为相位,C为偏移量。用于轮廓呈余弦规律变化时。
摆线,函数为q=L*X/T-L*sin(2*pi*X/T)/2*pi,L为总高度,T为周期。用于模拟凸轮轮廓输出。抛物线,函数为q=A*X+(1/2)*B*X^2,A为线性系数,B为二次项系数。用于模拟电动机的轨迹。多项式,函数为q=A+B*X+C*X^2+D*X^3,A为常数,B为线性系数,C为二次项系数,D为三次项系数。用于模拟一般的电动机轨迹。电动机的模:SCCA 此函数只能用于加速度伺服电机,不能用于执行电机。它用来模拟凸轮轮廓输出。它称做“正弦-常数-余弦-加速度”运动,缩写为SCCA。它一共有五个参数: A = 渐增加速度归一化时间部分 B = 恒定加速度归一化时间部分 C = 递减加速度的归一化时间部分 H = 幅值 T = 周期
其中A + B + C = 1,用户必须提供 A 和 B 的值、幅值和周期。SCCA 设置的值按下表计算:
y = H * sin [(t*pi)/(2*A)]
0 <= t < A 时
y = H
A <= t <(A + B)时 y = H * cos [(tB)*pi/(2*C)]
(A+B)<= t <(A + B + 2C)时
y =H * cos [(t2B-2C)*pi/(2*A)]
(A+2B+2C)<= t <= 2*(A + B + C)时 上式中的t 是归一化时间,按下式进行计算: t=ta*2/T(ta:实际时间;T:SCCA轮廓周期)如果ta大于T,轮廓将重复自身。电动机的模:七种函数图例
下图给出了七种函数的模所代表的电机轮廓。各函数的参数值: 常数:A=8。斜坡(线性):A=18,B=-1.2。余弦:A=6,B=40,C=3,T=5。摆线:L=12,T=8 抛物线:A=4,B=-0.6 多项式:A=7,B=-1.5,C=1,D=-0.1 SCCA:A=0.4,B=0.3,H=5,T=10 图例:(yd11)电动机的模:表
电动机的模类型选择为“表”,也就是指定N个点,以这些点为节点,按线性或样条插值的方式构建一条通过所有点的曲线,这条曲线就是电动机的轮廓。如电动机的模是指定给“位置”或“速度”的(即“规范”为位置或速度),插值方式可选“线性拟合”或“样条拟合”之一,如是指定给“加速度”并用于伺服电机(即“规范”为加速度),则插值方式只能是“线性拟合”。样条拟合构建的曲线比线性拟合构建的曲线平滑一点。
类型选为“表”后,在“模”类型的下方会出现一个列表框,可用框右侧的“增加行”/“删除行”来向列表中加增加或删除行。这个表由N行两列构成,第一列是时间(即电机轮廓的横轴,如是执行电机或力,也可能是别的测量变量而不是时间),第二列是模(即电机轮廓的纵轴)。每一行有一个时间值和一个模值,这两个数代表电机轮廓上的一个点。输入时要注意的时,时间列只能是递增或递减的。
下图示例的取值为:第一列:1,2,3,4,5;第二列:5,8,11,15,22;线性拟合。(yd12)
创建并执行运动分析 “机构”----“分析”----“新建”。
类型里选择“运动学”或“重复的组件”。然后设置“优先选项”页和“电动机”页。对于运动分析和重复组件分析,“外部负荷”页是不可用的。
“优先选项”页里设置运动的起止时间及定义动画时域,并可设定主体锁定、连接锁定及初始位置。主体锁定使两个主体在运动分析(或重复组件分析)期间不做相对运动,由接头连接设定的自由度在分析期间不起作用。连接锁定使选定的连接在分析期间保持当前配置。设置主体锁定需选择一个先导主体,如果选择先导主体时用了中键,则用基体作为先导主体。连接锁定可以用于接头连接、凸轮连接、槽连接,不能用于齿轮连接,对于齿轮副,只能锁定产生齿轮轴的接头连接。初始位置选取当前位置作为分析起点,或用一先前保存的快照作分析起点。
“电动机”页里设置用于分析的电动机。对于运动分析和重复组件分析,只能用连接轴伺服电动机,几何伺服电动机及执行电动机都不可用。可以设定各个电动机的作用时间,以实现多个电动机分时段起作用。
定义结束后点“运行”,将执行分析,并产生一个结果集。分析定义窗口:(yd13)
回放:干涉与动画
“回放”用来查看机构中零件的干涉情况、将分析的不同部分组合成一段影片、显示力和扭矩对机构的影响,以及在分析期间跟踪测量的值。可以将运动分析结果捕捉为MPEG动画文件或一系列的JPG、TIF或BMP文件。可以创建运动包络。“机构”----“回放”,启动“回放”窗口。在“结果集”里,选择将用于回放的运动分析(或重复组件分析)结果集。
“干涉”页面设置干涉检查选项。检查模式有四种:无干涉、快速检查、两个零件、全局干涉。“无干涉”即不检查干涉;“快速检查”是进行较低层次的检查,选用此模式将自动选中“停止回放”选项;“两个零件”是只检查所选定的两个零件之间的干涉情况;“全局干涉”是检查所有零件的所有类型的干涉。检查选项有两个:包括面组、停止回放。“包括面组”是曲面也将参与干涉检查;“停止回放”是一旦检查到干涉,回放就停止。
“影片进度表”页设置回放的结果片段。“显示时间”,如选中,则在回放时会在屏幕左上角显示回放已进行的时间。“缺省进度表”选中则回放整个结果集,如取消此项,则在其下方的时间段列表启动,可自已输入要播放的时间段,如果输入多个时间段,则按从上到下的次序依次播放,同一时间段可多次输入,以实现此小段的重复播放,如某时间段的“开始”时间大于“结束”时间,则此小段将反向播放。要修改某一时间段的起止时间,先在列表中选中此时间段,再输入新的开始、结束时间,点“更新”按钮确认修改。默认情况下,“显示时间”和“缺省进度表”都是选中的。
回放分析结果时,可显示代表与分析相关的测量、力、扭矩、重力和执行电动机的大小和方向的三维箭头。使用显示箭头可查看负荷对机构的相对影响。对于力、线性速度和线性加速度矢量,显示单头箭头,对于力矩、角速度和角加速度矢量显示双头箭头。箭头的颜色取决于测量或负荷的类型。回放分析结果时,箭头的大小将改变,以反映测量值、力或扭矩的计算值。箭头方向随计算矢量方向而改变。“显示箭头”页里的“测量”列表中,列出所选结果集中所有可用箭头显示的测量,“输入负荷”列表中,列出所选结果集中所有可用箭头显示的负荷。
设置好以上各参数后,点“回放”窗口左上角的“播放”按钮,则进入“动画”窗口。在此窗口可按前面的设置对回放结果进行动画演示。“捕捉”按钮,可将动画结果保存为MPEG动画文件或一系列的JPG、TIF或BMP文件。选中“照片级渲染帧”,输出结果的图片质量较高。回放窗口:(yd14)动画捕捉:(yd15)
回放:可用箭头显示的测量与负荷
不是所有的测量与负荷都可以用箭头显示。可用箭头显示的测量有:
连接反作用(接头):青色箭头。顶端位于指定连接轴、指向接头的 DOF 方向。
连接反作用(凸轮):青色箭头。法向反作用力,顶端位于两个凸轮的接触点处,指向凸轮的法线方向。切向反作用力,顶端位于两个凸轮的接触点处,并指向凸轮的切线方向。连接反作用(槽):青色箭头。顶端指向从动点和槽之间的接触点处。
连接反作用(齿轮副):青色箭头。顶端指向在上面施加了力或扭矩的齿轮体。净负荷:洋红色箭头。在用于定义图元的点之间延伸,对于电动机它指向连接轴,对于力它指向点,对于扭矩、点对点弹簧和阻尼器它指向主体的质心。箭头指向所施加的力的方向。测力计反作用: 深绿色箭头。指向力的作用点且与力同向。速度: 黄色箭头。顶端位于指定点或连接轴、指向运动方向。
加速度: 红色箭头。顶端位于指定点或连接轴、指向运动方向。重量: 棕色箭头。指向重力加速度方向。
距离间隔:顶端位于指定点,指向彼此相背离的两个共线的洋红色箭头。
速度间隔:顶端位于指定点的两个共线的黄色箭头。当点作相互远离而运动时,速度值为负,并且显示箭头的指向彼此相对。当点彼此相对运动时,速度值为正,并且显示箭头的指向彼此远离。加速度间隔:顶端位于指定点的两个共线的红色箭头,对于负值其指向彼此相对,对于正值其指向彼此远离。
只有计算方法为“每一时间步距”的以上各种测量才会出现在“回放”窗口的“显示箭头”页面的“测量”列表中。
可用箭头显示的负荷有:
重力:棕色箭头。顶端位于各主体的质量中心、指向重力加速度方向。执行电动机:绿色箭头。顶端位于指定连接轴、指向接头的 DOF 方向。力: 橙色箭头。顶端位于作用点。
扭矩: 双头橙色箭头。指向主体质量中心。
点对点力:顶端位于指定点或顶点的两个共线的洋红色箭头,对于负值力箭头指向彼此相对,对于正值力箭头指向彼此远离。回放:运动包络
“机构”----“回放”,启动“回放”窗口,在“回放”窗口工具栏里,使用“保存”(左起第三个按钮)可将当前的分析结果集(含所作的设置)保存为.pbk文件(机构回放文件),使用“另存为”(左起第五个按钮)可将当前分析结果集保存为.fra文件(框架文件、帧文件),使用“打开”(左起第二个按钮)一个.pbk文件用于回放。
当“结果集”中列表为非空时,工具栏会增加第六个按钮,即“创建运动包络”。点此按钮进入“创建运动包络”窗口。在此窗口可设置包络质量级别、包络所包含的元件、特殊处理、输出文件类型。包络质量级别,等级为1到10共10级,级别数字越小,运算越快,所创建的包络三角形数也越少,质量每提升一级,创建的包络三角形数约增加一倍,相应的,运算所需时间也越多,同一模型的同一设定下,等级10所创建的三角形数约为等级1的512倍。因此,创建时应先选较低的质量级别,如所选质量级别创建的包络不能满足要求,再调整为上一级别。
默认情况下,创建运动包络包含运动分析的全部元件,也可点“选取元件”下方的箭头后,自行选取创建包络需要的元件。
如不希望软件忽略模型的骨架或面组,可清除“特殊处理”下方的“忽略骨架”或“忽略面组”的复选框。
输出格式有四种:零件、轻重量零件、STL、VRML。零件,即输出为普通零件;轻重量零件,即输出为具有轻重量的多面体零件;STL即输出为STL文件(后缀:.stl);VRML文件即输出为VRML文件(后缀:wrl)。选择输出为“零件”或“轻重量零件”,系统将默认选中“使用缺省模板”。
设置好以上项目后,点“预览”,将会在主窗口中计算并显示出当前设置下创建的运动包络效果。如对包络效果的局部细节不满意,可点“颠倒三角对”前面的箭头,然后自已对某些细节处的三角形进行调整。调整完后点“创建”,生成输出文件。
如果保存了.pbk文件,则在标准环境下,点“分析”----“运动分析”,进入“运动分析”窗口,可在此窗口重放运动分析及设置和预览运动包络。如果保存了.fra文件,则在标准环境下点“文件”----“保存副本”,在文件类型里选择“运动包络”,确定后将调出“创建运动包络”窗口,并要求打开一个.fra文件。余下的操作同前。创建运动包络:(yd16)
另存为运动包络:(yd19)回放:测量
可以创建测量,用来分析系统在整个运动过程中的各种具体参数,如位置、速度、力等,为改进设计提供资料。创建分析之后即可创建测量,但查看测量的结果则必须有一个分析的结果集,与动态分析相关的测量,一般应在运行分析之前创建。运动分析通常提供以下测量:
位置、速度、加速度、间隔、Pro/ENGINEER特征、自由度、冗余、时间、主体方向、主体角速度、主体角加速度等。
重复组件分析通常提供以下测量: 位置、间隔(距离)、自由度、冗余、时间、主体方向、主体角速度、主体角加速度、Pro/ENGINEER 特征等。
“机构”----“测量”,进入“测量结果”窗口,在此可新建、编辑、删除、复制测量。载入一个结果集
后,选择此结果集,可查看所创建的测量在此结果集的结果。点击窗口左上角的“绘制图形”按钮,将以曲线图表示所选测量在当前结果集中的结果。示例:创建一个计算系统自由度的测量,步骤如下:
“机构”----“测量”----点击“测量”下方的第一个图标----在“测量定义”窗口的“类型”下选择“系统”----“属性”里选择“自由度”----确定。测量包括各种类型的测量,每一个测量也有多种计算方法,因此测量是一个内容较多较广的话题,本文只略作介绍,进一步的内容,请兄弟们自己研究或偶下一步再做专讲此内容的教程。测量:(yd17)
回放:轨迹曲线
轨迹曲线用来表示机构中某一元素相对于另一零件的运动。它分为“轨迹曲线”与“凸轮合成曲线”两种。“轨迹曲线”表示机构中某一点或顶点相对于另一零件的运动。“凸轮合成曲线”表示机构中某曲线或边相对于另一零件的运动。
“机构”----“轨迹曲线”进入“轨迹曲线”窗口。首先要选取一个参照零件,即“纸零件”(Paper Part),如选择基础,则按中键即可。然后选取曲线类型,即“轨迹曲线”还是“凸轮合成曲线”,对“轨迹曲线”,要求选取一个点(基准点、顶点、曲线端点),对“凸轮合成曲线”,要求选取一条(组)曲线或边。然后指定曲线类型,选取一个结果集,点“预览”查看将生成的轨迹曲线,点“确定”创建轨迹曲线并保存入参照零件中。
“曲线类型”分2D和3D两种,“轨迹曲线”可选2D或3D,“凸轮合成曲线”则只能是2D。
“轨迹曲线”,2D,系统创建一条由一系列点组成的描述选定点运动的样条曲线,即轨迹曲线,并将它与一个坐标系三个基准平面合并到一个组里,这个组保存入参照零件(纸零件)。
“轨迹曲线”,3D,系统将创建一系列的基准点,这些点的位置由参照零件的初始坐标系确定,再创建一条通过所有基准点的空间样条曲线,基准点与样条曲线合并为一个组,保存在参照零件(纸零件)中。
“凸轮合成曲线”,2D,系统创建两条由一系列点组成的描述选点边(曲线)组的首尾两个端点的运动的样条曲线,即轨迹曲线,并将它们各与一个坐标系三个基准平面合并到一个组里,所创建的两个组保存在参照零件(纸零件)中。创建轨迹曲线:(yd18)
实例:创建模型
前面把运动分析的基本知识都讲过了。下面再来一个实例。各位请用实例part来动手做一做,认真理解前面的内容。
下面是这个实例的大致步骤。
创建模型:即创建用于运动分析的装配体。
1.装配基体,以普通装配将“Engine”装入装配体中,为第一个元件。2.装入左轴承,bearing_L,装于Engine的左侧轴承座,刚性连接。3.装入右轴承,bearing_R,装于Engine的右侧轴承座,刚性连接。4.装入曲轴,Rotate_rod,销钉连接。
5.装入曲柄,Link,装于曲轴上,销钉连接。
6.装入气缸,Piston,与Engine圆柱连接,与Link销钉连接。7.装入大齿轮,Gear_out,销钉连接。
8.装入连杆,Rod_in_long,装于Engine的两根轴线之一上,滑动杆连接。9.装入转动杆,Rod_in_short,装于Engine顶部的独立杆上,销钉连接。10.装入活塞杆,Valve_in,装于Engine后侧的两根轴之一上,滑动杆连接。11.重复8-10步,装入另一组连杆、转动杆、活塞杆。
以上,在标准环境下进行组装。在为接头连接选取对象时要注意,同一个接头连接里可能有几个约束(如销钉有两个),这些约束所选取的对象应属于相同的两个主体,比如,销钉连接不能:轴对齐约束用了A和B主体的轴,而平移约束用A和C主体的点或面。在以上的操作中需要移动某主体时,可用“元件放置”页面里的“移动”。实例:加入特殊连接
上一步在标准环境下组装,所加入的连接,都是接头连接。接下来进入“机构”环境,进行其余的操作。首先,要加入各特殊连接,即根据运动需要,加入凸轮、槽、齿轮连接。本实例三种特殊连接都存在。
1.创建凸轮连接。“机构”----“凸轮”----“新建”,选择Gear_out的左侧凸轮面(选中“自动选取”),选择左侧Rod_in_long的下部圆柱面。
2.创建凸轮连接。选择Gear_out的右侧凸轮面,选择右侧Rod_in_long的下部圆柱面。
3.创建槽连接。“机构”----“槽”----“新建”,选择Rod_in_short上的基准点PNT1,选择Rod_in_long顶部的曲线。
4.重复第三步,创建另一侧的Rod_in_shor与Rond_in_long之间的槽连接。5.创建槽连接。选择Value_in上的基准点PNT1,选择Rod_in_short上的曲线。6.重复第五步,创建另一侧的Value_in与Rod_in_short之间的槽连接。
7.创建齿轮连接。“机构”----“齿轮副”----“新建”,选择上一节第四步(装入曲轴)产生的旋转轴、上一节第7步(装入大齿轮)产生的旋转轴。旋转方向暂不能确定,可先不用管,待运动分析执行时看方向如果反了,再编辑齿轮连接,将旋转轴方向反向一下即可。以上操作,如果需要移动某主体的位置,请用“机构”----“拖动”。实例:加入伺服电机,创建并执行分析、回放
创建好装配体,并创建好所需的特殊连接后,就可以创建伺服电动机、创建测量,接下来创建分析、执行分析。执行分析后可回放结果,将结果保存为动画、创建运动包络、创建轨迹曲线、查看测量结果及测量的图形。
1.创建伺服电动机。“机构”----“伺服电动机”----“新建”,选择Rotate_rod与Link之间的销钉连接生成的旋转轴,“规范”里选“速度”,“模”里选“常数”,A=20。(如A值太大,运动时大齿轮可能会因显示误差及视觉误差而看到回退及反转现象)。
2.创建测量。“机构”----“测量”,进入测量窗口,创建几个测量。
3.定义分析。“机构”----“分析”----“新建”,类型里选“运动学”或“重复的组件”。对于此窗口里的其它项,如不了解,可不用自己去设定。(或模型树中“运动定义”上右键,“新建”)。
4.执行分析。在上一步的窗口里,点“运行”。系统即开始执行分析,在主窗口的最下方,会出现一个进度条。如果出现错误,将弹出一个提示窗口。
5.回放。执行完分析后,就可进行结果的回放。“机构”----“回放”(或模型树“回放”上右键“播放”)。在此可进行干涉检查、编辑动画段、结果输出为动画或图片、创建运动包络。
6.查看测量结果。“机构”----“测量”。在结果集列表里点取刚才执行分析产生的结果集,所有定义出的测量都会显示出结果,并可用图形查看。也可在此创建不必在运行前创建的测量,并即时显示出其结果。
7.创建轨迹曲线。“机构”----“轨迹曲线”。选取要查看其轨迹的点或边,选取轨迹类型,查看或创建轨迹曲线。实例:part
好,运动分析(含重复组件分析)是PROE机构仿真的最基础的一个,也是最简单的一个。弄明白运动分析是做好其它分析的前提。以上内容详细的把运动分析的全过程所要注意的事项及所需要知道的内空都讲了一遍,并提供了一个实例。请各位根据讲解和实例自行试验,确保真正的理解。其它的仿真模块和电动机的自定义模、测量的定义,本文不再讲,希望以后能有时间再整理类似教程。
第四篇:《主减速器设计》
第三章
主减速器设计
一、主减速器结构方案分析
主减速器的结构形式主要是根据齿轮类型、减速形式的不同而不同。
主减速器的齿轮主要有螺旋锥齿轮、双曲面齿轮、圆柱齿轮和蜗轮蜗杆等形式。
1.螺旋锥齿轮传动
螺旋锥齿轮传动(图5-3a)的主、从动齿轮轴线垂直相交于一点,齿轮并不同时在全长上啮合,而是逐渐从一端连续平稳地转向另一端。另外,由于轮齿端面重叠的影响,至少有两对以上的轮齿同时啮合,所以它工作平稳、能承受较大的负荷、制造也简单。但是在工作中噪声大,对啮合精度很敏感,齿轮副锥顶稍有不吻合便会使工作条件急剧变坏,并伴随磨损增大和噪声增大。为保证齿轮副的正确啮合,必须将支承轴承预紧,提高支承刚度,增大壳体刚度。
图5—3 主减速器齿轮传动形式
a)螺旋锥齿轮传动 b)双曲面齿轮传动 c)圆柱齿轮传动 d)蜗杆
传动
2.双曲面齿轮传动
双曲面齿轮传动(图5-3b)的主、从动齿轮的轴线相互垂直而不相交,主动齿轮轴线相对从动齿轮轴线在空间偏移一距离E,此距离称为偏移距。由于偏移距E的存在,使主动齿轮螺旋角1大于从动齿轮螺旋角2(图5—4)。根据啮合面上法向力相等,可求出主、从动齿轮圆周力之比
F1cos1F2cos2
【中文word文档库】-专业海量word文档免费下载:http://www.xiexiebang.com(5-1)
图5-4双曲面齿轮副受力情况
式中,F1、F2分别为主、从动齿轮的圆周力;β
1、β2分别为主、从动齿轮的螺旋角。
螺旋角是指在锥齿轮节锥表面展开图上的齿线任意一点A的切线TT与该点和节锥顶点连线之间的夹角。在齿面宽中点处的螺旋角称为中点螺旋角(图5—4)。通常不特殊说明,则螺旋角系指中点螺旋角。
双曲面齿轮传动比为
i0sF2r2r2cos2F1r1r1cos1
(5-2)式中,i0s为双曲面齿轮传动比;r1、r2分别为主、从动齿轮平均分度圆半径。
螺旋锥齿轮传动比i0L为
i0Lr2r1
(5-3)令Kcos2cos,则i0sKi0L。由于1>2,所以系数K>1,一般
1为1.25~1.50。这说明:
1)当双曲面齿轮与螺旋锥齿轮尺寸相同时,双曲面齿轮传动有更大的传动比。
2)当传动比一定,从动齿轮尺寸相同时,双曲面主动齿轮比相应的螺旋锥齿轮有较大的直径,较高的轮齿强度以及较大的主动齿轮轴和轴承刚度。
3)当传动比一定,主动齿轮尺寸相同时,双曲面从动齿轮直径比相应的螺旋锥齿轮为小,因而有较大的离地间隙。
另外,双曲面齿轮传动比螺旋锥齿轮传动还具有如下优点: 1)在工作过程中,双曲面齿轮副不仅存在沿齿高方向的侧向滑动,而且还有沿齿长方向的纵向滑动。纵向滑动可改善齿轮的磨合过程,使其具有更高的运转平稳性。
2)由于存在偏移距,双曲面齿轮副使其主动齿轮的1大于从动齿轮的2,这样同时啮合的齿数较多,重合度较大,不仅提高了传动平稳性,而且使齿轮的弯曲强度提高约30%。
3)双曲面齿轮传动的主动齿轮直径及螺旋角都较大,所以相啮合轮齿的当量曲率半径较相应的螺旋锥齿轮为大,其结果使齿面的接触【中文word文档库】-专业海量word文档免费下载:http://www.xiexiebang.com 强度提高。
4)双曲面主动齿轮的变1大,则不产生根切的最小齿数可减少,故可选用较少的齿数,有利于增加传动比。
5)双曲面齿轮传动的主动齿轮较大,加工时所需刀盘刀顶距较大,因而切削刃寿命较长。6)双曲面主动齿轮轴布置在从动齿轮中心上方,便于实现多轴驱动桥的贯通,增大传动轴的离地高度。布置在从动齿轮中心下方可降低万向传动轴的高度,有利于降低轿车车身高度,并可减小车身地板中部凸起通道的高度。
但是,双曲面齿轮传动也存在如下缺点:
1)沿齿长的纵向滑动会使摩擦损失增加,降低传动效率。双曲面齿轮副传动效率约为96%,螺旋锥齿轮副的传动效率约为99%。
2)齿面间大的压力和摩擦功,可能导致油膜破坏和齿面烧结咬死,即抗胶合能力较低。3)双曲面主动齿轮具有较大的轴向力,使其轴承负荷增大。
4)双曲面齿轮传动必须采用可改善油膜强度和防刮伤添加剂的特种润滑油,螺旋锥齿轮传动用普通润滑油即可。
由于双曲面齿轮具有一系列的优点,因而它比螺旋锥齿轮应用更广泛。
一般情况下,当要求传动比大于4.5而轮廓尺寸又有限时,采用双曲面齿轮传动更合理。这是因为如果保持主动齿轮轴径不变,则双曲面从动齿轮直径比螺旋锥齿轮小。当传动比小于2时,双曲面主动齿轮相对螺旋锥齿轮主动齿轮显得过大,占据了过多空间,这时可选用螺旋锥齿轮传动,因为后者具有较大的差速器可利用空间。对于中等传动比,两种齿轮 传动均可采用。
3.圆柱齿轮传动
圆柱齿轮传动(图5—3c)一般采用斜齿轮,广泛应用于发动机横置且前置前驱动的轿
车驱动桥(图5—5)和双级主减速器贯通式驱动桥。
【中文word文档库】-专业海量word文档免费下载:http://www.xiexiebang.com
图5—5 发动机横置且前置前驱动轿车驱动桥 4.蜗杆传动
蜗杆(图5—3d)传动与锥齿轮传动相比有如下优点:
1)在轮廓尺寸和结构质量较小的情况下,可得到较大的传动比(可大于7)。
2)在任何转速下使用均能工作得非常平稳且无噪声。3)便于汽车的总布置及贯通式多桥驱动的布置。4)能传递大的载荷,使用寿命长。5)结构简单,拆装方便,调整容易。
但是由于蜗轮齿圈要求用高质量的锡青铜制作,故成本较高;另外,传动效率较低。
蜗杆传动主要用于生产批量不大的个别重型多桥驱动汽车和具有高转速发动机的大客车上。
主减速器的减速形式可分为单级减速、双级减速、双速减速、单双级贯通、单双级减速配以轮边减速等。
【中文word文档库】-专业海量word文档免费下载:http://www.xiexiebang.com
1.单级主减速器
单级主减速器(图5—6)可由一对圆锥齿轮、一对圆柱齿轮或由蜗轮蜗杆组成,具有结构简单、质量小、成本低、使用简单等优点。但是其主传动比i0不能太大,一般i0≤7,进一步提高i0将增大从动齿轮直径,从而减小离地间隙,且使从动齿轮热处理困难。
单级主减速器广泛应用于轿车和轻、中型货车的驱动桥中。
2.双级主减速器
双级主减速器(图5—7)与单级相比,在保证离地间隙相同时可得到大的传动比,i0一般为7~12。但是尺寸、质量均较大,成本较高。它主要应用于中、重型货车、越野车和大客车上。
整体式双级主减速器有多种结构方案:第一级为锥齿轮,第二级为圆柱齿轮(图5—8a);第一级为锥齿轮,第二级为行星齿轮;第一级为行星齿轮,第二
图5—6 单级主减速器 级为锥齿轮(图5—8b);第一级为圆柱齿轮,第二级
为锥齿轮(图5—8c)。
对于第一级为锥齿轮、第二级为圆柱齿轮的双级主减速器,可有纵向水平(图5—8d)、斜向(图5—8e)和垂向(图5—8f)三种布置方案。
纵向水平布置可以使总成的垂向轮廓尺寸减小,从而降低汽车的质心高度,但使纵向尺寸增加,用在长轴距汽车上可适当减小传动轴长度,但不利于短轴距汽车的总布置,会使传动轴过短,导致万向传动轴夹角加大。垂向布置使驱动桥纵向尺寸减小,可减小万向传动轴夹角,但由于主减速器壳固定在桥壳的上方,不仅使垂向轮廓尺寸增大,而且降低了桥壳刚度,不利于齿轮工作。这种布置可便于贯通式驱动桥的布置。斜向布置对传动轴布置和提高桥壳刚度有利。
在具有锥齿轮和圆柱齿轮的双级主减速器中分配传动比时,圆柱齿轮副和锥齿轮副传动
比的比值一般为1.4~2.O,而且锥齿轮副传动比一般为1.7~3.3,这样可减小锥齿轮啮合时的轴向载荷和作用在从动锥齿轮及圆柱齿轮上的载荷,同时可使主动锥齿轮的齿数适当增多,使其支承轴颈的尺寸适当加大,以改善其支承刚度,提高啮合平稳性和工作可靠性。
3.双速主减速器
双速主减速器(图5—9)内由齿轮的不同组合可获得两种传动比。它与普通变速器相配合,可得到双倍于变速器的挡位。双速主减速器的高低挡减速比是根据汽车的使用条件、发动机功率及变速器各挡速【中文word文档库】-专业海量word文档免费下载:http://www.xiexiebang.com 比的大小来选定的。大的主减速比用于汽车满载行驶或在困难道路上行驶,以克服较大的行驶阻力并减少变速器中间挡位的变换次数;小的主减速比则用于汽车空载、半载行驶或在良好路面上行驶,以改善汽车的燃料经济性和提高平均车速。
图5-7双级主减速器
【中文word文档库】-专业海量word文档免费下载:http://www.xiexiebang.com
图5-8双级主减速器布置方案
双速主减速器可以由圆柱齿轮组(图5-9a)或行星齿轮组(图5-9b)构成。圆柱齿轮式双速主减速器结构尺寸和质量较大,可获得的主减速比较大。只要更换圆柱齿轮轴、去掉一对圆柱齿轮,即可变型为普通的双级主减速器。行星齿轮式双速主减速器结构紧凑,质量较小,具有较高的刚度和强度,桥壳与主减速器壳都可与非双速通用,但需加强行星轮系和差速器的润滑。
图5—9 双速主减速器 a)圆柱齿轮式 b)行星齿轮式
1-太阳轮 2-齿圈 3-行星齿轮架 4-行星齿轮
5-接合齿轮
对于行星齿轮式双速主减速器,当汽车行驶条件要求有较大的牵引力时,驾驶员通过操纵机构将啮合套及太阳轮推向右方(图示位置),接合齿轮5的短齿与固定在主减速器上的接合齿环相接合,太阳轮1就与主减速器壳联成一体,并与行星齿轮架3的内齿环分离,【中文word文档库】-专业海量word文档免费下载:http://www.xiexiebang.com 而仅与行星齿轮4啮合。于是,行星机构的太阳轮成为固定轮,与从动锥齿轮联成一体的齿圈2为主动轮,与差速器左壳联在一起的行星齿轮架3为从动件,行星齿轮起减速作用,其减速比为(1+a),a为太阳轮齿数与齿圈齿数之比。在一般行驶条件下,通过操纵机构使啮合套及太阳轮移到左边位置,啮合套的接合齿轮5与固定在主减速器壳上的接合齿环分离,太阳轮1与行星齿轮4及行星齿轮架3的内齿环同时啮合,从而使行星齿轮无法自转,行星齿轮机构不再起减速作用。显然,此时双速主减速器相当于一个单级主减速器。
双速主减速器的换挡是由远距离操纵机构实现的,一般有电磁式、气压式和电一气压综合式操纵机构。由于双速主减速器无换挡同步装置,因此其主减速比的变换是在停车时进行的。双速主减速器主要在一些单桥驱动的重型汽车上采用。
4.贯通式主减速器
贯通式主减速器(图5-10,图5-1 1)根据其减速形式可分成单级和双级两种。单级贯通式主减速器具有结构简单,体积小,质量小,并可使中、后桥的大部分零件,尤其是使桥壳、半轴等主要零件具有互换性等优点,主要用于轻型多桥驱动的汽车上。根据减速齿轮形式不同,单级贯通式主减速器又可分为双曲面齿轮式及蜗轮蜗杆式两种结构。双曲面齿轮式单级贯通式主减速器(图5-lOa)是利用双曲面齿轮副轴线偏移的特
【中文word文档库】-专业海量word文档免费下载:http://www.xiexiebang.com
图5—10 单级贯通式主减速器 a)双曲面齿轮式 b)蜗轮蜗杆式
点,将一根贯通轴穿过中桥并通向后桥。但是这种结构受主动齿轮最少齿数和偏移距大小的
限制,而且主动齿轮工艺性差,主减速比最大值仅在5左右,故多用于轻型汽车的贯通式驱
动桥上。当用于大型汽车时,可通过增设轮边减速器或加大分动器速比等方法来加大总减速
比。蜗轮蜗杆式单级贯通式主减速器(图5—10b)在结构质量较小的情况下可得到较大的 速比。它使用于各种吨位多桥驱动汽车的贯通式驱动桥的布置。另外,它还具有工作平滑无
声、便于汽车总布置的优点。如蜗杆下置式布置方案被用于大客车的贯通式驱动桥中,可降 低车厢地板高度。
对于中、重型多桥驱动的汽车,由于主减速比较大,多采用双级贯通式主减速器。根据齿轮的组合方式不同,可分为锥齿轮一圆柱齿轮式和圆柱齿轮一锥齿轮式两种形式。锥齿轮一圆柱齿轮式双级贯通式主减速器(图5—11a)可得到较大的主减速比,但是结构高度尺寸大,主动锥齿轮工艺性差,从动锥齿轮采用悬臂式支承,支承刚度差,拆装也不方便。圆柱齿轮一锥齿轮式双级贯通式主减速器(图5—11b)的第一级圆柱齿轮副具有减速和贯通的作用。有时仅用作贯通用.将其速比设计为1。在设计中应根据中、后桥锥齿轮的布置、旋转方向、双曲面齿轮的偏移方式以及圆柱齿轮副在锥齿轮副前后的布置位置等因素来确定
锥齿轮的螺旋方向,所选的螺旋方向应使主、从动锥齿轮有相斥的轴【中文word文档库】-专业海量word文档免费下载:http://www.xiexiebang.com 向力。这种结构与前者
相比,结构紧凑,高度尺寸减小,有利于降低车厢地板及整车质心高度。
图5—11 双级贯通式主减速器 a)锥齿轮一圆柱齿轮式 b)圆柱齿轮一锥齿轮式
1-贯通轴 2-轴间差速器
5.单双级减速配轮边减速器
在设计某些重型汽车、矿山自卸车、越野车和大型公共汽车的驱动桥时,由于传动系总传动比较大,为了使变速器、分动器、传动轴等总【中文word文档库】-专业海量word文档免费下载:http://www.xiexiebang.com
成所受载荷尽量小,往往将驱动桥的速比分配得较大。当主减速比大于12时,一般的整体式双级主减速器难以达到要求,此时常采用轮边减速器(图5—12)。这样,不仅使驱动桥的中间尺寸减小,保证了足够的离地间隙,图5—12 轮边减速器
【中文word文档库】-专业海量word文档免费下载:http://www.xiexiebang.com
a)圆柱行星齿轮式 b)圆锥行星齿轮式 c)普通外啮合圆柱齿轮式
1-轮辋 2-环齿轮架 3-环齿轮 4-行星齿轮 5-行星齿轮架 6-行星齿轮轴 7-太阳轮 8-锁紧螺母 9、10-螺栓 11-轮毂 12-接合轮 13-操纵机构 14-外圆锥齿轮 15-侧盖
而且可得到较大的驱动桥总传动比。另外,半轴、差速器及主减速器从动齿轮等零件由于所受载荷大为减小,使它们的尺寸可以减小。但是由于每个驱动轮旁均设一轮边减速器,使结构复杂,成本提高,布置轮毂、轴承、车轮和制动器较困难。
圆柱行星齿轮式轮边减速器(图5-12a)可以在较小的轮廓尺寸条件下获得较大的传动比,且可以布置在轮毂之内。作驱动齿轮的太阳轮连接半轴,内齿圈由花键连接在半轴套管上,行星齿轮架驱动轮毂。行星齿轮一般为3~5个均匀布置,使处于行星齿轮中间的太阳轮得到自动定心。圆锥行星齿轮式轮边减速器(图5-1 2b)装于轮毂的外侧,具有两个轮边减速比。当换挡用接合轮12位于图示位置时,轮边减速器位于低挡;当接合轮被专门的操纵机构1 3移向外侧并与侧盖1 5的花键孔内齿相接合,使半轴直接驱动轮边减速器壳及轮毂时,轮边减速器位于高挡。
普通外啮合圆柱齿轮式轮边减速器,根据主、从动齿轮相对位置的不同,可分为主动齿轮上置和下置两种形式。主动齿轮上置式轮边减速器主要用于高通过性的越野汽车上,可提高桥壳的离地间隙;主动齿轮下置式轮边减速器(图5-12c)主要用于城市公共汽车和大客车上,可降低车身地板高度和汽车质心高度,提高了行驶稳定性,方便了乘客上、下车。
二、主减速器主、从动锥齿轮的支承方案
主减速器中必须保证主、从动齿轮具有良好的啮合状况,才能使它们很好的工作。齿轮的正确啮合,除与齿轮的加工质量、装配调整及轴承、主减速器壳体的刚度有关以外,与齿轮的支承刚度密切相关。
1.主动锥齿轮的支承
主动锥齿轮的支承形式可分为悬臂式支承和跨置式支承两种。悬臂式支承结构(图5-13a)的特点是在锥齿轮大端一侧采用较长的轴颈,其上安装两个圆锥滚子轴承。为了减小悬臂长度倪和增加两支承间的距离b,以改善支承刚度,应使两轴承圆锥滚子的大端朝外,使作用在齿轮上离开锥顶的轴向力由靠近齿轮的轴承承受,而反向轴向力则由另一轴承承受。为了尽可能地增加支承刚度,支承距离b应大于2.5倍的悬臂长度a,且应比齿轮节圆直径的70%还大,另外靠近齿轮的轴径应不小于尺寸a。为了方便拆装,应使靠近齿轮的轴承【中文word文档库】-专业海量word文档免费下载:http://www.xiexiebang.com 的轴径比另一轴承的支承轴径大些。靠近齿轮的支承轴承有时也采用圆柱滚子轴承,这时另一轴承必须采用能承受双向轴向力的双列圆锥滚子轴承。支承刚度除了与轴承形式、轴径大小、支承间距离和悬臂长度有关以外,还与轴承与轴及轴承与座孔之间的配合紧度有关。
图5—13 主减速器锥齿轮的支承形式
a)主动锥齿轮悬臂式 b)主动锥齿轮跨置式 c)从动锥齿轮
悬臂式支承结构简单,支承刚度较差,用于传递转矩较小的轿车、轻型货车的单级主减速器及许多双级主减速器中。
跨置式支承结构(图5-13b)的特点是在锥齿轮的两端均有轴承支承,这样可大大增加支承刚度,又使轴承负荷减小,齿轮啮合条件改善,因此齿轮的承载能力高于悬臂式。此外,由于齿轮大端一侧轴颈上的两个相对安装的圆锥滚子轴承之间的距离很小,可以缩短主动齿轮轴的长度,使布置更紧凑,并可减小传动轴夹角,有利于整车布置。但是跨置式支承必须在主减速器壳体上有支承导向轴承所需要的轴承座,从而使主减速器壳体结构复杂,加工成本提高。另外,因主、从动齿轮之间的空间很小,致使主动齿轮的导向轴承尺寸受到限制,有时甚至布置不下或使齿轮拆装困难。跨置式支承中的导向轴承都为圆柱滚子轴承,并且内外圈可以分离或根本不带内圈。它仅承受径向力,尺寸根据布置位置而定,是易损坏的一个轴承。
在需要传递较大转矩情况下,最好采用跨置式支承。2.从动锥齿轮的支承
从动锥齿轮的支承(图5-13c),其支承刚度与轴承的形式、支承间的距离及轴承之间的分布比例有关。从动锥齿轮多用圆锥滚子轴承支承。为了增加支承刚度,两轴承的圆锥滚子大端应向内,以减小尺寸c+d。为了使从动锥齿轮背面的差速器壳体处有足够的位置设置加强肋以增强支承稳定性,c+d应不小于从动锥齿轮大端分度圆直径的70%。为了使载荷能尽量均匀分配在两轴承上,应尽量使尺寸c等于或大于尺寸d。在具有大的主传动比和径向尺寸较大的从动锥齿轮的主减速器中,为了限制从动锥齿轮因受轴向力作用而产生偏移,在从动锥齿轮的外缘背面加设辅助支承(图5-14)。辅助支承与从动锥齿【中文word文档库】-专业海量word文档免费下载:http://www.xiexiebang.com 轮背面之间的间隙,应保证偏移量达到允许极限时能制止从动锥齿轮继续变形。主、从动齿轮受载变形或移动的许用偏移量如图5-15所示。
图5—14 从动锥齿轮辅助支承 图5—15 主、从动锥齿轮的许用偏移量
三、主减速器锥齿轮主要参数的选择
主减速器锥齿轮的主要参数有主、从动锥齿轮齿数z1和z2、从动锥齿轮大端分度圆直径D2和端面模数ms主、从动锥齿轮齿面宽b1和b2、双曲面齿轮副的偏移距E、中点螺旋角、法向压力角等。
1.主、从动锥齿轮齿数z1和z2
选择主、从动锥齿轮齿数时应考虑如下因素: 1)为了磨合均匀,z1、z2之间应避免有公约数。
2)为了得到理想的齿面重合度和高的轮齿弯曲强度,主、从动齿轮齿数和应不少于 40。
3)为了啮合平稳、,噪声小和具有高的疲劳强度,对于轿车,z1一般不少于9;对于货 车,z1一般不少于6。
4)当主传动比主。较大时,尽量使z1取得少些,以便得到满意的离地间隙。
5)对于不同的主传动比,z1和z2应有适宜的搭配。2.从动锥齿轮大端分度圆直径D2和端面模数m。
对于单级主减速器,D2对驱动桥壳尺寸有影响,D2大将影响桥壳离地间隙;D2小则
影响跨置式主动齿轮的前支承座的安装空间和差速器的安装。
D2可根据经验公式初选
D2KD23Tc【中文word文档库】-专业海量word文档免费下载:http://www.xiexiebang.com(5-4)式中,为D2从动锥齿轮大端分度圆直径(mm);KD2为直径系数,一般为13.0~15.3;Tc
为从动锥齿轮的计算转矩(N·m),TcminTce,Tcs(见本节计算载荷确定部分)。
ms由下式计算
msD2z2
(5-5)式中,ms为齿轮端面模数。
同时,ms还应满足
msKm3Tc
(5-6)式中,Km为模数系数,取0.3~0.4。
3.主、从动锥齿轮齿面宽b1和b2
锥齿轮齿面过宽并不能增大齿轮的强度和寿命,反而会导致因锥齿轮轮齿小端齿沟变窄引起的切削刀头顶面宽过窄及刀尖圆角过小。这样,不但减小了齿根圆角半径,加大了应力集中,还降低了刀具的使用寿命。此外,在安装时有位置偏差或由于制造、热处理变形等原因,使齿轮工作时载荷集中于轮齿小端,会引起轮齿小端过早损坏和疲劳损伤。另外,齿面过宽也会引起装配空间的减小。但是齿面过窄,轮齿表面的耐磨性会降低。
从动锥齿轮齿面宽b2推荐不大于其节锥距A2的0.3倍,即b2≤0.3A2,而b2应满足b2≤10ms,一般也推荐b2=0.155D2。对于螺旋锥齿轮,b1一般比b2大10%。
4.双曲面齿轮副偏移距E E值过大将使齿面纵向滑动过大,从而引起齿面早期磨损和擦伤;E值过小,则不能发挥双曲面齿轮传动的特点。一般对于轿车和轻型货车E≤0.2D2且E≤40%A2;对于中、重型货车、越野车和大客车,E≤(0.10~0.12)D2,且E≤20%A2。另外,主传动比越大,则E也应越大,但应保证齿轮不发生根切。
双曲面齿轮的偏移可分为上偏移和下偏移两种。由从动齿轮的锥顶向其齿面看去,并使主动齿轮处于右侧,如果主动齿轮在从动齿轮中心线的上方,则为上偏移;在从动齿轮中心线下方,则为下偏移。如果主动齿轮处于左侧,则情况相反。图5-16a、b为主动齿轮轴线下偏移情况,图5-16c、d为主动齿轮轴线上偏移情况。
【中文word文档库】-专业海量word文档免费下载:http://www.xiexiebang.com
图5—16 双曲面齿轮的偏移和螺旋方向 a)、b)主动齿轮轴线下偏移 c)、d)主动齿轮轴线上偏移
5.中点螺旋角
螺旋角沿齿宽是变化的,轮齿大端的螺旋角最大,轮齿小端的螺旋角最小。
弧齿锥齿轮副的中点螺旋角是相等的,双曲面齿轮副的中点螺旋角是不相等的,而且1>2,1与2之差称为偏移角(图5-4)。
选择时,应考虑它对齿面重合度F、轮齿强度和轴向力大小的影响。越大,则F也越大,同时啮合的齿数越多,传动就越平稳,噪声越低,而且轮齿的强度越高。一般F应不小于1.25,在1.5~2.0时效果最好。但是过大,齿轮上所受的轴向力也会过大。
汽车主减速器弧齿锥齿轮螺旋角或双曲面齿轮副的平均螺旋角一般为35°~40°。轿车选仔较大的值以保证较大的F,使运转平稳,噪声低;货车选用较小值以防止轴向力过大,通常取35°。
6.螺旋方向
从锥齿轮锥顶看,齿形从中心线上半部向左倾斜为左旋,向右倾斜为右旋。主、从动锥旨轮的螺旋方向是相反的。螺旋方向与锥齿轮的旋转方向影响其所受轴向力的方向。当变速导挂前进挡时,应使主动齿轮的轴向力离开锥顶方向,这样可使主、从动齿轮有分离趋势,号止轮齿卡死而损坏。
7.法向压力角
法向压力角大一些可以增加轮齿强度,减少齿轮不发生根切的最少齿数。但对于小尺寸的齿轮,压力角大易使齿顶变尖及刀尖宽度过小,并使齿轮端面重合度下降。因此,对于轻负荷工作的齿轮一般采用小压力角,可使齿轮运转平稳,噪声低。对于弧齿锥齿轮,轿车:
货车:为20°;重型货车:为22°一般选用14°30′或16°;30′。对于双曲面齿轮,大齿轮轮齿两侧压力角是相同的,但小齿轮轮齿两侧的压力角是不等的,选取平均压力角时,轿车为19°或【中文word文档库】-专业海量word文档免费下载:http://www.xiexiebang.com
20°,货车为20°。或22°30′。
四、主减速器锥齿轮强度计算
(一)计算载荷的确定
汽车主减速器锥齿轮的切齿法主要有格里森和奥利康两种方法,这里仅介绍格里森齿制锥齿轮计算载荷的三种确定方法。
(1)按发动机最大转矩和最低挡传动比确定从动锥齿轮的计算转矩Tce
TceKdTemaxki1ifi0n
(5-7)式中,为计算转矩(N·m);其它见表4-1的注释。
(2)按驱动轮打滑转矩确定从动锥齿轮的计算转矩
TcsrrG2m2imm
(5-8)式中,Tcs为计算转矩(N·m);其它见表4-1的注释。
(3)按汽车日常行驶平均转矩确定从动锥齿轮的计算转矩TcF
TcFFtrrimmn
(5-9)式中,TcF为计算转矩(N·m);Ft为汽车日常行驶平均牵引力(N);其它见表4-1的注释。
用式(5-7)和式(5-8)求得的计算转矩是从动锥齿轮的最大转矩,不同于用式(5-9)求得的日常行驶平均转矩。当计算锥齿轮最大应力时,计算转矩Tc取前面两种的较小值,即TcminTce,Tcs;当计算锥齿轮的疲劳寿命时,Tc取TcF。
主动锥齿轮的计算转矩为
TzTci0G
(5-10)式中,Tz为主动锥齿轮的计算转矩(N·m);i0为主传动比;G为主、从动锥齿轮间的传动效率。计算时,对于弧齿锥齿轮副,G取95%;对于双曲面齿轮副,当i0>6时,G取85%,当i0≤6时,G取90%。
(二)主减速器锥齿轮的强度计算 在选好主减速器锥齿轮主要参数后,可根据所选择的齿形计算锥齿轮的几何尺寸,而后根据所确定的计算载荷进行强度验算,以保证锥齿轮有足够的强度和寿命。
【中文word文档库】-专业海量word文档免费下载:http://www.xiexiebang.com 轮齿损坏形式主要有弯曲疲劳折断、过载折断、齿面点蚀及剥落、齿面胶合、齿面磨损等。下面所介绍的强度验算是近似的,在实际设计中还要依据台架和道路试验及实际使用情况等来检验。
1.单位齿长圆周力
主减速器锥齿轮的表面耐磨性常用轮齿上的单位齿长圆周力来估算
pFb2
(5-11)式中,p为轮齿上单位齿长圆周力;F为作用在轮齿上的圆周力;b2为从动齿轮齿面宽。
按发动机最大转矩计算时
p2kdTemaxkigifnD1b2103
(5-12)式中,ig为变速器传动比;D1为主动锥齿轮中点分度圆直径(mm);其它符号同前。
按驱动轮打滑转矩计算时
prr2G2m2D2b2imm
(5-13)式中符号同前。
许用的单位齿长圆周力[p]见表5-1。在现代汽车设计中,由于材质及加工工艺等制造质量的提高,[p]有时高出表中数值的20%~25%。
表5—1 单位齿长圆周力许用值[p]
2.轮齿弯曲强度
锥齿轮轮齿的齿根弯曲应力为
【中文word文档库】-专业海量word文档免费下载:http://www.xiexiebang.com
w2Tk0kskm103kvmsbDJw
(5-14)式中,w为锥齿轮轮齿的齿根弯曲应力(MPa);T为所计算齿轮的计算转矩(N·m),对于从动齿轮,TminTce,Tcs和TcF,对于主动齿轮,T还要按式(5-10)换算;k0为过载系数,一般取1;ks为尺寸系数,它反映了材料性质的不均匀性,与齿轮尺寸及热处理等因素有关,当ms≥1.6mm时,ks=(ms/25.4)0.25,当ms<1.6mm时,ks=0.5;km为齿面载荷分配系数,跨置式结构:悬臂式结构:km=1.0~1.1,km=1.10~1.25;kv为质量系数,当轮齿接触良好,齿距及径向跳动精度高时,kv=1.0;b为所计算的齿轮齿面宽(mm);D为所讨论齿轮大端分度圆直径(mm);.jw为所计算齿轮的轮齿弯曲应力综合系数,取法见参考文献[10]。
上述按minTce,Tcs计算的最大弯曲应力不超过700MPa;按TcF计算的疲劳弯曲应力不应超过210MPa,破坏的循环次数为6106。
3.轮齿接触强度
锥齿轮轮齿的齿面接触应力为
jcpD12TZk0kmkfkvbjj103
(5-15)式中,j为锥齿轮轮齿的齿面接触应力(MPa);D1为主动锥齿轮大端分度圆直径(mm);b取b1和b2的较小值(mm);ks为尺寸系数,它考虑了齿轮尺寸对淬透性的影响,通常取1.0;kf为齿面品质系数,它取决于齿面的表面粗糙度及表面覆盖层的性质(如镀铜、磷化处理等),对于制造精确的齿轮,kf取1.0;cp为综合弹性系数,钢对钢齿轮,cp取232.6N/mm,jj为齿面接触强度的综合系数,取法见参考文献12[10];k0、km、kv见式(5-14)的说明。
上述按minTce,Tcs计算的最大接触应力不应超过2800MPa,按TcF计算的疲劳接触应力不应超过1750MPa。主、从动齿轮的齿面接触应力是相同的。
五、主减速器锥齿轮轴承的载荷计算
1.锥齿轮齿面上的作用力
锥齿轮在工作过程中,相互啮合的齿面上作用有一法向力。该法向力可分解为沿齿轮切线方向的圆周力、沿齿轮轴线方向的轴向力及垂直于齿轮轴线的径向力。
【中文word文档库】-专业海量word文档免费下载:http://www.xiexiebang.com(1)齿宽中点处的圆周力.齿宽中点处的圆周力F为
F2TDm2
(5-16)
式中,T为作用在从动齿轮上的转矩;Dm2为从动齿轮齿宽中点处的分度圆直径,由式(5-17)确定,即
Dm2D2b2sin2(5-17)式中,D2为从动齿轮大端分度圆直径;b2为从动齿轮齿面宽;2为从动齿轮节锥角。
由F1Fcos1cos可知,对于弧齿锥齿轮副,作用在主、从动22齿轮上的圆周力是相等的;对于双曲面齿轮副,它们的圆周力是不等的。
(2)锥齿轮的轴向力和径向力图5-1 7为主动锥齿轮齿面受力图。其螺旋方向为左旋,从锥顶看旋转方向为逆时针。FT为作用在节锥面上的齿面宽中点A处的法向力。在A点处的螺旋方向的法平面内,FT分解成两个相互垂直的力FN和Ff。FN垂直于OA且位于∠OOA所在的平面,Ff位于以OA为切线的节锥切平面内。Ff在此切平面内又可分解成沿切线方向的圆周力F和沿节锥母线方向的力Fs。F与Ff之间的夹角为螺旋角,FT与Ff之间的夹角为法向压力角。这样有
FFTcoscos
(5-18)
FNFTsinFtancos
(5-19)
FsFTcossinFtan
(5-20)于是作用在主动锥齿轮齿面上的轴向力Faz和径向力Frz分别为
FazFNsinFscos
(5-21)
FrzFNcosFssin
(5-22)若主动锥齿轮的螺旋方向和旋转方向改变时,主、从动齿轮齿面上所受的轴向力和径向力见表5-2。
表5-2 齿面上的轴向力和径向力
轴承上的载荷确定后,很容易根据轴承型号来计算其寿命,或根据寿命要求来选择轴承型号。
【中文word文档库】-专业海量word文档免费下载:http://www.xiexiebang.com
六、锥齿轮的材料
驱动桥锥齿轮的工作条件是相当恶劣的,与传动系其它齿轮相比,具有载荷大、作用时间长、变化多、有冲击等特点。它是传动系中的薄弱环节。锥齿轮材料应满足如下要求:
1)具有高的弯曲疲劳强度和表面接触疲劳强度,齿面具有高的硬度以保证有高的耐磨性。
2)轮齿芯部应有适当的韧性以适应冲击载荷,避免在冲击载荷下齿根折断。
3)锻造性能、切削加工性能及热处理性能良好,热处理后变形小或变形规律易控制。
4)选择合金材料时,尽量少用含镍、铬元素的材料,而选用含锰、钒、硼、钛、钼、硅等元素的合金钢。
汽车主减速器锥齿轮目前常用渗碳合金钢制造,主要有20CrMnTi、20MnVB、20MnTiB、22CrNiMo和l 6SiMn2WMoV等。
渗碳合金钢的优点是表面可得到含碳量较高的硬化层(一般碳的质量分数为0.8%一1.2%),具有相当高的耐磨性和抗压性,而芯部较软,具有良好的韧性,故这类材料的弯曲强度、表面接触强度和承受冲击的能力均较好。由于较低的含碳量,使锻造性能和切削加工性能较好。其主要缺点是热处理费用高,表面硬化层以下的基底较软,在承受很大压力时可能产生塑性变形,如果渗透层与芯部的含碳量相差过多,便会引起表面硬化层剥落。
为改善新齿轮的磨合,防止其在运行初期出现早期的磨损、擦伤、胶合或咬死,锥齿轮在热处理及精加工后,作厚度为0.005~0.020mm的磷化处理或镀铜、镀锡处理。对齿面壶行应力喷丸处理,可提高25%的齿轮寿命。对于滑动速度高的齿轮,可进行渗硫处理以击高耐磨性。渗硫后摩擦因数可显著降低,即使润滑条件较差,也能防止齿面擦伤、咬死习胶合。
【中文word文档库】-专业海量word文档免费下载:http://www.xiexiebang.com
第五篇:减速器设计心得[推荐]
在这次减速器设计过程中,理论基础知识把握得不牢固,在设计中难免会出现这样那样的题目,如:在选择计算标准件的时候可能会出现误差,假如是联系紧密或者循序渐进的计算误差会更大,在查表和计算上精度不够正确;其次:在确定设计方案,选择电动机方面就被“卡住了”,拖了好久,同学在这方面的知识比较缺乏,幸好得到了老师的指点,找到了方法,把题目解决了;再次,在轴的设计方面也比较薄弱,联轴器的选择,轴的受力分析等方面都碰到了困难,在同学的帮助下逐步解决了。这些都暴露出了前期我在这些方面知识的欠缺和经验的不足。对于我来说,收获最大的是方法和能力;那些分析和解决题目的能力。在整个课程设计的过程中,我发现我们学生在经验方面十分缺乏,空有理论知识,没有理性的知识;有些东西可能与实际脱节。总体来说,我觉得像课程设计这种类型的作业对我们的帮助还是很大的,它需要我们将学过的相关知识系统地联系起来,从中暴露出自身的不足,以待改进!
本次的课程设计,培养了我综合应用机械设计课程及其他课程的理论知识和理论联系实际,应用生产实际知识解决工程实际题目的能力;在设计的过程中还培养出了我们的团队精神,同学们共同协作,解决了很多个人无法解决的题目;在今后的学习过程中我们会更加努力和团结。
但是由于水平有限,难免会有错误,还看老师批评指正
课程设计心得体会
作为一名机械设计制造及自动化大四的学生,我觉得能做这样的课程设计是十分有意义。在已度过的三年大学生活里我们大多数接触的是专业基础课。我们在课堂上把握的仅仅是专业基础课的理论面,如何往面对现实中的各种机械设计?如何把我们所学到的专业基础理论知识用到实践中往呢?我想做类似的大作业就为我们提供了良好的实践平台。在做本次课程设计的过程中,我感慨最深确当属查阅了很多次设计书和指导书。为了让自己的设计更加完善,更加符合工程标准,一次次翻阅机械设计书是十分必要的,同时也是必不可少的。我们做的是课程设计,而不是艺术家的设计。艺术家可以抛开实际,尽情在幻想的世界里翱翔,我们是工程师,一切都要有据可依.有理可寻,不切实际的构想永远只能是构想,永远无法升级为设计。记得我曾经设计了一个很“艺术化”的减速器箱盖吊钩,然后找老师询问,结果马上被老师否定了,由于这样的设计,理论上可用,实际上加工困难,增加产品本钱。所以我们工程师搞设计不要以为自己是艺术家,除非是外形包装设计。
作为一名专业学生把握一门或几门制图软件同样是必不可少的,固然本次课程设计没有要求用 auto CAD制图,但我却在整个设计过程中都用到了它。用cad制图方便简洁,易修改,速度快,我的设计,大部分尺寸都是在cad上设计出来的,然后按这尺寸画在图纸上。这样,有了尺寸就能很好的控制图纸的布局。
另外,课堂上也有部分知识不太清楚,于是我又不得不边学边用,时刻巩固所学知识,这也是我作本次课程设计的第二大收获。整个设计我基本上还满足,由于水平有限,难免会有错误,还看老师批评指正。希看答辩时,老师多提些题目,由此我可用更好地了解到自己的不足,以便课后加以弥补。
1.理论和实践同等重要。理论能指导实践,使你能事半功倍,实践能上升成为理论,为以后的设计打下基础。从校门走出后,一定要重视实践经验的积累,要多学多问。师德培训心得学习体会
经过学校的师德培训,以及对《教学纲要》的解读,心里颇有感触。切合实际,适时而为是我们当前教育教学中所面临的首要任务。高尚的德行是教师为人师之核心,一些道德失范的教师实际上是失去了教师本质的人。虽然中西方的师道存在较大的差异,但对教师职业道德都很重视。在我国,自古以来对教师的职业道德都有很高的要求,强调为人师表、以身立教,以及对学生的人格感化。西方则一贯强调通过教师的道德、人格感化学生。赫尔巴特指出:“教学如果没有进行道德教育,只是一种没有目的的手段”,这要求教师的日常教育教学行为要具有“教育性”。现代教育的培养目标发生了很大的变化,要求教师不仅要做到“传授知识”,而且还要通过传授知识去实现学生“人格的建设性变化”,这就意味着教师对学生的发展负有更全面的责任。因此,对教师专业素质的要求不只是知识与技能的发展,还要提高教师内在的专业品质,即实现教师个体专业技能与专业精神在知行范畴和道德范畴的高度统一。可见,做教师难,做一个符合标准师德的教师更难。官方给予教师的称号是“人类灵魂的工程师”、“园丁”,已经到了神的境界,其实我们压根儿就是人。
师德建设作为提高教师道德的系统工程,对促进教师专业发展是具有特殊而重要的意义。从师德建设与教师专业发展的密切关系来看,实现师德建设与教师专业发展的一体化是必要的。现在,教师在专业发展中技术至上的倾向仍占优势,加以社会竞争如此激烈,现实如此残酷,如何使师德建设与教师专业发展相结合,是我们一直探讨的话题。教师的专业发展是具有阶段性,在不同的阶段教师面临不同的发展任务,其发展水平、需求、心态、信念也各不相同。所以,我觉得教师专业道德的发展与教师专业发展的阶段特征也应该是有阶段性的,同时也受到教师专业实践与整体专业水平所制约。比如,新入职的教师和学生发生“矛盾与冲突”,很可能是由于教师专业知识与专业能力不足引起的。因此,师德建设要适应教师专业发展的阶段特征,确定师德建设的目标,在内容、方法上也要有所侧重。因此,师德教育作为师德建设的一个重要组成部分,应与教师专业实践相结合。尽管教师专业发展的途径众多,但是都不能代替教师在学校教育教学场景中的日常专业实践。师德主要表现在教师的专业实践当中,专业实践也是教师师德建设的重要途径。教师的许多优良品质是在专业实践中形成与发展的,专业道德规范只有在专业实践中才能内化为教师的专业品质。道德具有实践性与情境性的特征,不同的教育教学情境会呈现出不同的道德现象与道德问题,教师在实际工作中究竟会如何做,在专业实践中能不能主动按照教师专业道德规范履行自己的职责,这与他本人的实践经验有着极大的关系。因此,师德教育要与教师日常的专业发展紧密结合,让教师在专业实践过程中,通过对道德现象、道德问题,甚至是道德冲突的认识、解释与诠释来提高师德修养与能力。脱离教师专业实践的师德教育难以深入教师心灵,更难以激起教师内在的道德需要。所以师德培训不能这样的说教,更不能一刀切,一培训就一哄上,其实现实已经告诉我们这样的师德培训是没有效果的,这样做有自欺欺人,掩耳盗铃之嫌疑。
最后,说一句,要成为真正的机械工程师,不是一步就能完成的,要慢慢积累,路慢慢其修远兮,吾将上下而求索!