组态教案

时间:2019-05-15 01:07:04下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《组态教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《组态教案》。

第一篇:组态教案

先导知识学习

内容提要

本章介绍计算机控制系统的基本组成和分类,采用组态控制技术的计算机控制系统和一般计算机控制系统的异同以及常用组态控制产品。0.1 计算机控制系统

计算机控制就是用计算机控制某种设备使其按照要求工作。人们熟知的机器人就是在计算机的控制下工作的,工厂自动化生产线、家用电器中也普遍使用计算机控制。利用计算机控制各种设备,是电气工程师和技术人员的一项基本工作。

计算机在实现其控制功能的时候往往还需要一些设备的配合,这些设备与计算机、被控设备一起统称为计算机控制系统。0.1.1 人是如何对设备进行控制的?

现在通过水罐水位控制实例说明人工控制的方法与过程。对于图0.1水罐,通常采用以下方法:

(1)观察水位—用眼睛。

(2)判断与计算:将实际水位和期望的水位进行比较,根据差值先判断需要开大还是关小进水阀门,再根据差值估计进水阀开度的改变量—用大脑。(3)行动:改变阀门开度—用手。(4)重复步骤(1)~(3),直到水位达到期望范围。

图0.1 水罐对象

0.1.2 自动控制系统的组成

如果用水位变送器代替人眼,用电动调节器代替人脑、用电动调节阀代替人手,用给定器输入水位给定值,就构成了一个水位自动控制系统,如图0.2所示。

图0.2 水位自动控制系统

在该系统中,水位变送器不断地检测水位,并将其转换成电流信号送给电动调节器,电动调节器像人脑一样接收水位信号和水位给定信号,将两者进行比较,根据偏差计算出给水调节阀门的开度,并将开度信号以电流形式送给电动调节阀门,电动调节阀门根据电流大小改变给水阀门开度,调节给水流量,从而达到控制水位的目的。

由水位自动控制系统,我们引出了一般自动控制系统的典型组成结构,如图0.3所示。

图0.3 一般自动控制系统方框图1 有时候,也将一般自动控制系统的方框图画成图0.4,偏差=给定值-测量值

图0.5 开环控制系统方框图

开环控制用在不需要精确控制被控参数,或被控对象受到的干扰较少,被控参数不经常波动等情况下。

0.1.3 计算机控制系统的组成

计算机控制系统的控制器全部采用计算机。而一般自动控制系统的控制器则形式多样,可能是由继电器、接触器构成的一个电路,可能是一块独立的仪表,也可能是某种机械装置。

计算机控制系统的组成框图如图0.7所示。与一般自动控制系统相比,还有一个主要的不同,它增加了输入接口(the Input Interface)和输出接口(the Output Interface),统称为输入输出接口或I/O接口(I/O Interface)。输入接口的主要作用是将检测环节的输入信号(通常为电信号)转换为计算机能够接收的数字信号;输出接口的主要作用是将计算机输出的数字信号转换为电信号输出给执行器。

图0.7 一般计算机控制系统的结构组成

0.2 计算机控制系统中使用的计算机

0.2.1 计算机控制系统中使用计算机的种类

经常使用的计算机主要有三种:IPC、PLC、MCU。0.2.2 IPC、PLC、MCU系统性能特点比较 0.3 组态控制技术

0.3.1 在计算机控制系统中组态技术的两个层面

1.组态的本来含义

组态(Configuration)的意思就是模块的任意组合。2.在计算机控制系统中组态的两个层面

在计算机控制系统中,组态含有硬件组态和软件组态两个层面的含义。

所谓硬件组态,是指系统大量选用各种专业设备生产厂家提供的成熟通用的硬件设备,通过对这些设备的简单组合与连接实现自动控制系统。

这些通用设备包括控制器(IPC、PLC和以MCU为核心的各种控制器)、各种检测设备(传感器和变送器)、各种执行设备(电磁阀、气缸、电动机等)、各种命令输入设备(按钮、给定设备),还有各种I/O接口设备。

这些通用设备一般都做成具有标准尺寸和标准信号输出的模板或模块,它们就像积木一样,可以根据需要组合在一起。

所谓软件组态就是利用专业软件公司提供的工控软件进行系统程序设计。这些软件提供了大量工具包供设计者组合使用,因此被称为组态软件。利用组态软件工程技术人员可以方便地进行监控画面制作和程序编制。0.3.2 采用组态技术的计算机控制系统的优越性

采用硬件组态和软件组态的方式构成控制系统有以下优越性:(1)开发周期短。(2)系统可靠性高。

(3)对工程技术人员的要求不高,便于推广。(4)构成的系统通用性强,便于维护。0.4 计算机控制系统有哪些形式? 0.4.1 数据采集系统的功能与结构

数据采集系统也称为DAS—Data Acquisition System。其结构如图0.12所示。被控对象中待检测的各种模拟量和开关量通过传感器和变送器,分别经模拟量和开关量输入接口进入计算机,计算机对各信号进行采集、处理后,送显示器、打印机、报警器等设备。

DAS系统的特点是只进行参数检测,不进行控制。I/O接口只有模拟量输入(AI—Analog Input)和开关量输入(DI—Digital Input)接口。这种系统常用于早期的计算机检测系统中,其优点是可以用一台计算机对多个参数进行巡回采集和处理,显示界面好,便于管理。

图0.12 数据采集系统 0.4.2 直接数字控制系统的功能与结构

直接数字控制称为DDC—Direct Digital Control。其系统结构如图0.13所示。计算机既可对生产过程中的各个参数进行巡回检测,还可根据检测结果,按照一定的算法,计算出执行器应该的状态(电磁阀的通与断、调节阀的开度、电动机的启动与停止、电动机的转速等)。DDC系统的I/O接口除了AI和DI外,还有模拟量输出(AO—Analog Output)接口和开关量输出(DO—Digital Output)接口。

DDC控制是真正的计算机控制系统,与DAS相比,其特点是既检测,也控制。由于控制算法用程序编制,可以实现继电器和仪表不能实现的许多功能。DDC适用于控制回路较少的场合。

图0.13 直接数字控制系统

0.4.3 集散控制系统的功能与结构

集散式控制系统也称为分布式控制系统,简称DCS—Distributed Control System。

集散式控制常用于较大规模的控制系统中,可以很好地解决DDC系统可靠性和统筹性的矛盾。其总体思想是分散控制,集中管理,即用几台计算机分别控制若干个回路,再用一台计算机与这些计算机进行通信,了解各个计算机的工作情况,根据需要向它们发出不同命令。

集散式控制系统的规模可大可小,可以只有两级(称下位机和上位机),也可以多级。典型的三级结构为过程控制级、控制管理级和生产管理级,如图0.14所示。

过程控制级由各控制站组成,控制站可以是DAS,也可以是DDC,用来进行生产的前沿检测与控制。控制管理级由工程师站、操作员站、数据记录检索站等组成,供工程师进行程序调试;操作员进行生产监控、手动操作、报表打印、数据查询等。生产管理级由生产管理信息系统组成,可进行生产情况汇总与调度。

图0.14 DCS系统的组成

0.4.4 现场总线控制系统的功能与结构

现场总线系统简称FCS—Field Control System。

DDC系统中计算机与计算机之间的通信采用数字信号通过网络连接。但现场传感器、变送器、执行器仍使用模拟信号。每个传感器、变送器或执行器至少有两根信号线需要连接。当系统中需要检测和控制的参数较多时,施工工作量较大。另一方面,模拟信号在传输时的抗干扰性能比较差,造成系统可靠性下降。

FCS是继DCS之后的新一代分布式控制系统。系统首先要求现场变送器和执行器能直接输出或接收数字信号,使用时将它们“挂在”现场总线上,通过网络与计算机相连。现场总线系统的施工量减少了,抗干扰性能也比较高。本项目小结

计算机控制系统由被控对象、检测器、I/O接口、计算机和执行器几部分组成。计算机控制系统使用的计算机有PLC、MCU、IPC等。它们具有不同的特点,分别用于不同的控制领域。

计算机控制系统可分为:数据采集系统(DAS)、直接数字控制(DDC)系统、集散式控制系统(DCS)和现场总线控制系统(FCS)。

组态控制技术是计算机控制技术发展的结果,采用组态控制技术的计算机控制系统最大的特点是从硬件设计到软件开发都具有组态性,因此系统的可靠性和开发速度提高了,开发难度却下降了。组态软件的可视性和图形化管理功能也为生产管理和运行维护提供了方便。学习项目1 用IPC和MCGS实现机械手监控系统 内容提要

本章通过机械手控制实例学习采用MCGS组态软件、IPC和I/O板卡构成计算机控制系统的方法。

首先提出系统控制要求,然后对机械手对象进行分析,确定了控制方案。之后进行了接口部件的选型,确定使用中泰PCI-8408板卡作为I/O接口设备,并根据其接线端子定义画出系统接线图。最后详细介绍了用MCGS进行监控画面制作、监控程序编写与调试的方法。

1.1 机械手监控系统的方案设计 1.1.1 机械手监控系统的控制要求

机械手(Mechanical Hand)能模仿人手和手臂的某些动作功能,用以抓取、搬运物品或操作工具,被广泛应用于机械制造、冶金、电子、轻工和核工业等部门。图1.1所示是几种机械手的外观。

(a)(b)图1.1(b)所示的机械手为搬运机械手,其任务是将前一个工序加工好的工件送到下一个工位,已知待搬运工件在机械手初始位置正下方。对此机械手有如下控制要求:

按下启动/停止按钮SB1后,机械手下移至工件处→夹紧工件→携工件上 升→右移至下一个工位上方→下移至指定位置→放下工件→上移→左移,回到原始位置,此过程反复循环执行。

机械手运动过程中,松开启动/停止按钮SB1,机械手停在当前位置,再次按下启动/停止按钮,机械手继续运行。

机械手运动过程中,按下复位停止按钮SB2后,机械手并不马上停止,也不主动复位,而是继续工作,直到完成本周期操作,回到原始位置,之后停止,不再循环。

松开复位按钮,退出复位状态,之后再按启动/停止按钮机械手重新开始循环操作。

1.1.2机械手监控系统对象分析

被控对象—机械手。

控制目标—使机械手能够接收启动、停止、复位命令,能够抓取工件运送到指定 位置。

被控参数—机械手运动轨迹和抓放动作。运动轨迹可分解为四个点:左上位(机械手初始位)、左下位(工件初始位)、右上位、右下位(工件目标位)。

控制变量—共六个,分别是伸缩缸电磁阀的伸出线圈和缩回线圈、升降缸电磁阀的上升线圈和下降线圈、夹紧缸电磁阀的夹紧线圈和放松线圈。1.1.3 机械手监控系统初方案制订

机械手的控制可采用闭环形式实现,也可采用开环实现。开环方框图如图1.4所示。

图1.4 开环控制的机械手系统方框图

1.开环控制机械手监控系统方案

根据控制要求,系统需要两个操作按钮输入启停和复位命令。

由于机械手系统的各个位置点比较固定,每一段的运行时间已知且相对稳定。计算机接收到启动/停止按钮送来的启动信号后,只要按如下时间顺序接通各个线圈即可:

按下启动/停止按钮SB1后,机械手下移5s→夹紧2s→上升5s→右移10s→下移5s→放松2s→上移5s→左移10s(s为秒),最后回到原始位置,自动循环。松开启动/停止按钮SB1,机械手停在当前位置。

按下复位停止按钮SB2后,机械手在完成本次操作后,回到原始位置,然后停止。松开复位停止按钮SB2,退出复位状态。2.闭环控制机械手监控系统方案

闭环控制需要安装六个位置开关(位置检测传感器),检测是否到达左上、左下、右上、右下、夹紧、放松位置,计算机将根据这些位置开关的状态和输入命令控制6个线圈的得电与否。机械手控制系统的闭环方案如图1.5所示。

闭环控制显然在硬件结构上比开环控制复杂。开环控制靠经验时间控制6个线圈,不检测是否运动到位。理论上闭环控制的控制精度高于开环。

图1.5 闭环控制的机械手系统方框图 3.本系统采纳方案

对于本系统,由于控制精度要求不高,以上两个方案都是可行的,我们从简单入手,取开环控制方案。

1.2 机械手监控系统的软、硬件设备选型与电路设计 1.2.1 命令输入设备选型

本系统命令输入设备只需要1个启动/停止按钮、1个复位/停止按钮,根据控制要求,可选用带自锁功能的按钮,也可选用旋转开关。1.2.2 传感器和变送器选型

由于采用开环结构,此部分工作免去。1.2.3 执行器选型

本系统执行器是机械手上的电磁阀。共4个,其中3个为伸缩、升降、夹紧阀,另一个可做旋转缸控制阀,控制机械手的旋转。本系统暂不考虑旋转运动。1.2.4 I/O接口设备选型 1.I/O接口设备的种类

I/O接口设备是连接计算机和检测器、执行器的桥梁。有以下种类:(1)按照输入输出信号的性质,I/O接口设备可分为:AI、AO、AI/AO、DI、DO、DI/DO、混合信号接口等。

(2)按照产品的结构,I/O接口设备可分为:板卡、模块、PLC、智能仪表等。2.选择机械手系统的I/O设备

机械手系统的I/O点如表1.2所示。

本项目选择中泰公司板卡产品。

1.2.5 机械手监控系统方框图和电路接线图绘制 1.接线端子板

PCI-8408板卡通过安装在计算机背板上的37针D型插座与外部设备连接,为方便安装,厂家提供了专门的接线端子板,其中PS-037是最简单的一种,它以接线端子形式与输入输出设备相连,通过D型插座和电缆与计算机内的板卡相连。2.机械手监控系统方框图

机械手监控系统方框图见图1.18所示。

图1.18 机械手系统方框图

1.3 机械手系统监控软件的设计与调试 1.3.1 工程的建立

(1)双击桌面“MCGS组态环境”图标,进入组态环境,出现如图1.27所示画面,屏幕中间窗口为工作台。

(2)单击“文件” →“新建工程”,如图1.28所示。

(3)单击“文件”菜单,弹出下拉菜单,单击“工程另存为”,弹出文件保存窗口,如图1.29所示。

(4)选择希望的路径,在文件名一栏内输入工程名,如“机械手监控系统”,单击“保存”按钮,工程建立完毕。1.3.2变量的定义

变量也叫数据对象。变量(即数据对象)的定义方法如下。1.变量分配

变量定义前需要对系统进行分析,确定需要的变量,本系统至少有8个变量,见表1.6。

2.变量定义步骤

(1)单击工作台中的“实时数据库”选项卡,进入“实时数据库”窗口页。(2)单击工作台右侧“新增对象”按钮,在数据对象列表中立刻出现了一个新的数据对象,如图1.31所示。

(3)选中该数据对象,单击右侧“对象属性”按钮或直接双击该数据对象,弹出“数据对象属性设置”窗口,如图1.32所示。

(4)将“对象名称”改为:启动停止按钮;“对象初值”改为:0;“对象类型”改为:开关型;“对象内容注释”栏填入:机械手启停控制信号,输入,1有效。

(5)单击“确定”按钮。(6)重复(2)~(5),定义其他7个数据对象。(7)单击“保存”按钮。1.3.3 画面的设计与编辑

参考的监控画面设计如图1.33所示,画面中画出了机械手的简单示意图,并设计了6个指示灯,代表机械手的上、下、左、右、夹紧、放松等动作。运行时,指示灯应随动作变化做相应指示。画面中还设计了两个状态指示灯,代表启动按钮和复位按钮的状态。当按下机械手上的启动和复位按钮时,它们将进行相应的指示。

画面设计包括建立画面、编辑画面两个步骤。1.建立画面

图1.33 监控画面

2.编辑画面

(1)进入画面编辑环境。

(2)输入文字“机械手监控系统”。(3)画地平线。(4)画矩形。(5)画机械手。

(6)画机械手左侧和下方的滑杆。(7)画指示灯。(8)画按钮。

1.3.4 动画连接与调试

画面编辑好以后,需要将画面中的图形与前面定义的数据对象关联起来,以便运行时,画面上的内容能随变量变化。

将画面上的对象与变量关联的过程叫动画连接,下面介绍如何对按钮和指示灯进行动画连接。

1.按钮的动画连接 2.指示灯的动画连接 1.3.5 控制程序的设计

系统要求具有如下功能:

按下启动/停止按钮SB1后,机械手下移5s→夹紧2s→上升5s→右移10s→下移5s→放松2s→上移5s→左移10s(s为秒),最后回到原始位置,自动循环。

松开“启动/停止”按钮,机械手停在当前位置。

按下“复位停止”按钮SB2后,机械手在完成本次操作后,回到原始位置,然后停止。

松开“复位停止”按钮SB2,退出复位状态。

上述功能需要通过编写控制程序实现。在MCGS中编写控制程序与一般程序设计语言编程有较大的不同,它采用策略组态的形式。

所谓运行策略,可以简单地理解为系统运行与控制的思想和方法。MCGS提供了许多“策略构件”,如定时器、计数器、脚本程序等供系统设计人员使用。编程就是根据系统的需要,对这些策略构件进行组态。

观察机械手监控系统的控制要求,不难发现,控制过程不过是使各个电磁阀定时、顺序动作。让电磁阀动作很简单,只要设法使相应的变量置0或置1即可。MCGS提供了定时器构件,因此可以利用它实现定时功能。在具体设计之前先来学习定时器的使用。

1.定时器的使用

(1)在策略中添加定时器构件。(2)定时器的功能。

① 启停功能。即能在需要的时候被启动,当然也能在需要的时候被停止。② 计时功能。即启动后进行计时。

③ 定时时间设定功能。即可以根据需要设定定时时间。④ 状态报告功能。即是否到设定时间。

⑤ 复位功能。即在需要的时候将定时器清零。复位与停止不同,停止后不再计时,复位则是使计时时间变为0。

2.利用定时器和脚本程序实现机械手的定时控制

(1)根据机械手控制要求,计算出机械手完成一个循环回到初始位置需44s,因此首先将定时器定时时间修改为44。

(2)将脚本程序添加到策略行。(3)脚本程序编辑注意事项。

① 要按MCGS的语法规范写程序,否则语法检查通不过。② 可以利用提供的功能按钮(如剪切、复制、粘贴等)。③ 可以利用脚本语言和表达式列表(如IF…THEN、+、-等)。④ 可以利用操作对象和函数列表(如系统函数、数据对象等)。⑤ “>”(大于)、“<”(小于)、“=”(等于)、’(单引号)等符号应在纯英文或“英文标点”状态输入。

⑥ 注释以单引号“'”开始。

(4)机械手控制脚本程序清单。机械手程序分定时器控制、运行控制和停止控制三部分。定时器控制程序完成启动按钮和复位按钮对定时器的控制;运行控制程序完成定时器对上升、下降等动作的控制;停止程序完成停止处理。1.4 机械手监控系统的软、硬件联调 1.4.1 机械手监控系统电路连接

(1)断开所有电源。

(2)按图1.66所示连接按钮和接线端子板PS-037。

图1.66 按钮SB1、SB2与PCS-037(PCI-8408)接线图

(3)按图1.67所示连接电磁阀和接线端子板PS-037。(4)如果机械手实训设备上已集成了按钮和电磁阀,只将端子留出,可按图1.68所示连接。

(5)用37芯D型电缆将接线端子板和计算机内的PCI-8408连接起来。(6)接线检查。

图1.67 电磁阀与PS-037(PCI-8408)DO通道的连接

图1.68 已集成好的机械手与接线端子板的连接 1.4.2 在MCGS中进行PCI-8408板卡设备的连接与配置 连接过程包括添加设备、设置设备属性、调试设备三部分。1.4.3 系统软、硬件联调 学习项目2 用IPC和MCGS实现电动大门监控系统

内容提要

本章通过电动大门控制实例学习采用MCGS组态软件、IPC和PLC构成计算机监控系统的方法。

首先提出系统控制要求,然后对电动大门对象进行分析,确定了控制方案。之后进行了接口部件的选型,确定S7-200 CPU 222作为I/O接口设备,并根据其接线端子定义画出系统接线图。最后详细介绍了用MCGS进行监控画面制作、监控程序编写与调试的方法。

2.1电动大门监控系统的方案设计 2.1.1电动大门监控系统的控制要求

独立的电动大门控制用普通继电器和单片机实现比较多见。工控机用在系统有多种设备需要监控的场合,如智能楼宇系统等。电动大门有如下控制要求:

(1)门卫在警卫室通过操作开门按钮、关门按钮和停止按钮控制大门。

(2)当门卫按下开门按钮后,报警灯开始闪烁,提示所有人员和车辆注意。5s后,门开始打开,当门完全打开时,门自动停止,报警灯停止闪烁。

(3)当门卫按下关门按钮时,报警灯开始闪烁,5s后,门开始关闭,当门完全关闭时,门自动停止,报警灯停止闪烁。

(4)在门运动过程中,任何时候只要门卫按下停止按钮,门马上停在当前位置,报警灯停闪。

(5)关门过程中,只要门夹住人或物品,门立即停止运动,以防发生伤害。(6)能在计算机上动态显示大门运动情况。

图1 电动大门 2.1.2电动大门监控系统对象分析 1.电动大门的驱动装置

电动大门的运动由电动机驱动。电动大门功率一般要求不高,多采用单相异步电动机,主要技术参数如下: 输入电压:~220V±10% 50Hz 电机功率:370W 电机转速:1400r/min 输出转速:46.6r/min 重量:18kg 启动电流:3A 2.电动大门的主电路

电动大门的开关门动作可通过电动机正、反转实现。3.电动大门对象分析 被控对象—电动大门。

被控参数—开关门动作、报警灯闪烁。

控制目标—使电动大门能够接收开门、关门、停止等命令,并发出正、反转信号,大门动作后,还应能够检测是否已经全部打开或关闭,是否夹到人或物品,能够自动停止。

控制变量—共两个,分别控制正转继电器和反转继电器。2.1.3电动大门监控系统的方案制定 1.开环控制电动大门监控系统方案

开环方案若想使大门打开后停止,只能人工操作停止按钮,或者仿照机械手系统用定时器实现自动停止。

2.闭环控制电动大门监控系统方案

电动大门控制系统的闭环方案如图3所示。

图3 闭环控制的电动大门系统方框图

闭环控制系统需要安装3个传感器,检测门是否已全部打开、关闭,是否夹到人或物品。闭环控制在硬件结构上比开环开销略大,但可以实现到位后自动停止。3.本系统采纳方案: 从人身安全、公共利益,提高自动化程度、降低劳动强度考虑,本系统选择闭环方案

2.2电动大门监控系统的软、硬件设备选型与电路设计 2.2.1命令输入设备选型

本系统命令输入设备只需要1个开门按钮、1个关门按钮、1个停止按钮。为安装方便,可选择带按钮盒的三联按钮。2.2.2传感器和变送器选型

大门极限位置检测用行程开关实现,行程开关安装在大门两侧,大门开关到位后碰到行程开关,触点动作。检测是否夹到人或物品的传感器叫安全触板,它安装在大门上。本系统应选择至少2个行程开关,1个安全触板开关。2.2.3执行器选型 1.中间继电器选型

本系统被控对象是单相异步电动机,电动机参数如下: 输入电压:~220V±10% 50Hz ;电机功率:370W 电机转速:1400r/min ;输出转速:46.6r/min 重量:18kg ;启动电流:3A 为控制电动机正、反转,需要2个中间继电器,每个继电器至少带3个常开触点。可选择施耐德中间继电器。2.报警灯选型

系统还需要一个报警灯,可选择施耐德旋转反射信号灯,型号为 XVR-1M04,交流220V供电,发红光。2.2.4计算机选型

可选择研华PPC-125T平板电脑,该计算机将显示器与主机集成在一起,结构紧凑,使用时需外接键盘、鼠标。计算机提供了1个PCI扩展插槽、4个COM口、4个USB口、2个以太网接口等,供与外部设备进行连接。有关研华公司及其产品的情况可登陆http://www.xiexiebang.com/网站查询。2.2.5 I/O接口设备选型

1.电动大门系统的I/O点如表2.1,共有6个DI,3个DO。

2.选择电动大门系统的I/O设备

本系统可选择西门子S7-200 PLC系列的CPU222作I/O接口设备。2.2.6电动大门监控系统的方框图和电路接线图绘制(1)电动大门监控系统方框图如图4所示。

图4 采用CPU222作接口设备的电动大门系统方框图

(2)S7-200PLC CPU222与按钮、中间继电器、报警灯的连接如图5所示。

图5 RXM4AB2U7中间继电器与电容运行单相电动机的连接 2.3电动大门监控系统软件的设计与调试 2.3.1工程的建立 2.3.2变量的定义 1.变量分配

根据表2.2,本系统至少有9个变量,如表2.3。

2.在MCGS中添加变量

图 9 监控画面

2.3.3画面的设计与编辑

1.建立画面 2.编辑画面

本系统画面设计可参考图9。(1)进入画面编辑环境。

(2)输入文字“电动大门监控系统”。(3)画地平线。(4)画墙体。

(5)画电动大门。

(6)画行程开关和安全触板开关。打开绘图工具箱中的图库,找不到合适样式(7)画轮子和报警灯(8)画按钮。

(9)画状态指示灯。

制作好的画面如图13所示。

图13 制作完成的电动大门画面 2.3.4 动画连接与调试 1.按钮的动画连接

2.按钮动画连接效果的调试 3.指示灯的动画连接

4.指示灯动画连接效果调试 5.左右箭头的动画连接

6.左右箭头的动画连接调试 7.行程开关的动画连接

8.行程开关的动画连接效果调试

2.3.5 电动大门监控系统的控制任务及PLC与IPC的分工

电动大门系统控制程序的作用是根据“开门按钮”、“关门按钮”、“停止按钮”、“开门限位开关”、“关门限位开关”、“安全触板”这六个输入信号的情况,控制“报警灯”、“开门继电器”、“关门继电器”的动作。正如本章开始所述,系统要求具有如下功能:

(1)门卫在警卫室通过操作开门按钮、关门按钮和停止按钮控制大门。

(2)当门卫按下开门按钮后,报警灯开始闪烁,5s后,开门继电器闭合,门开始打开,直到碰到开门限位开关(门完全打开)时,门停止运动,报警灯停止闪烁。(3)当门卫按下关门按钮时,报警灯开始闪烁,5s后,关门继电器闭合,门开始关闭,直到碰到关门限位开关(门完全关闭)时,门停止运动,报警灯停止闪烁。(4)在门运动过程中,任何时候只要门卫按下停止按钮,门马上停在当前位置,报警灯停闪。

(5)关门过程中,只要门夹住人或物品,门立即停止运动,以防止发生伤害。(6)能在计算机上动态显示大门运动情况。

由于I/O接口设备使用PLC,而PLC本身也可以实现上述定时控制,因此有两种方案:

方案一:用PLC实现上述控制,IPC只进行监视。这时PLC既是I/O接口,也是控制器。PLC和IPC一起构成了一个两级结构的DCS系统,PLC是系统中的下位机或 称DDC计算机,负责控制任务;IPC是上位机或称监控计算机,负责监视和管理。

方案二:只用PLC进行I/O数据传递,IPC既进行监视也负责控制。我们用方案一实现电动大门控制。

2.3.6方案一 程序的编辑、模拟仿真运行和调试

此时控制任务主要由PLC完成。IPC只负责从PLC采集数据,然后在显示器上显示出来。

1.编辑调试PLC程序

(1)定义PLC符号表,如图16(a)所示。

(2)编辑PLC程序。一个可以实现本控制功能的PLC程序如图16(b)所示。由于报警灯选用的是旋转闪光报警灯,自带振荡电路,PLC程序中只送高、低电平即可。(3)下载并调试PLC程序。

图16 电动大门系统方案—PLC程序和符号表 2.编辑调试MCGS程序

当大门运动时,希望在计算机显示器上看到大门运动的动画效果。仿照机械手系统,做如下工作:

(1)在MCGS变量表中增加一个变量“水平移动参数”,数值型,初始值=0。(2)在MCGS循环策略的脚本程序中增加两条语句:

IF 开门继电器=1 THEN 水平移动参数=水平移动参数+1 IF 关门继电器=1 THEN 水平移动参数=水平移动参数-1(3)进行动画效果设置。(4)进行动画效果调试。

2.3.7方案二程序的编辑、模拟仿真运行和调试

此时所有控制任务由IPC实现。由控制要求知,系统需要两个5s定时器,因此需要增加8个与定时器有关的变量,见表2.4。

1.添加一个定时器策略 2.对定时器进行调试 3.编制脚本程序 略

2.4电动大门监控系统的软、硬件联调 2.4.1 方案一PLC程序的编辑与调试(1)编辑如图17所示控制程序。

(2)按表2.6进行程序在线调试,直到得到需要的结果。

图17 电动大门PLC控制程序

2.4.2 在MCGS中进行S7-200 PLC设备的连接与配置

连接过程包括添加设备、设置设备属性、调试设备三部分。2.4.3 软硬件联调 学习项目3 用IPC和MCGS实现储液罐水位监控系统 3.1 储液罐水位监控系统的方案设计 3.1.1 储液罐水位监控系统的控制要求

如图3.1所示为双储液罐对象。罐1中液体由泵输入,液体在其内按照工艺要求进行处理后送罐2,在罐2中进一步处理后送其他设备使用。对储液罐对象有如下控制要求:

(1)水位监测:能够实时检测罐

1、罐2中水位,并在计算机中进行动态显示。(2)水位控制:将水罐1水位H1控制在1~9m,水罐2水位H2控制在1~6m。(3)水位报警:当水位超出以上控制范围时报警。(4)当H2低于0.5m时采取必要保护措施。

(4)报表输出:生成水位参数的实时报表和历史报表,供显示和打印。(5)曲线显示:生成水位参数的实时趋势曲线和历史趋势曲线。

图3.1 储液罐对象组成

3.1.2 储液罐水位监控系统对象分析

由于负荷用水量(罐2出水阀开度)随时可能变化,造成储液罐水位随之改变,应该采用闭环形式随时检测水位变化并实时调整进水量。此外,罐1水位H1控制范围1-9m,罐2水位H2控制范围1-6m,范围都很宽,控制品质要求较低,因此控制系统结构、控制算法都可以简单。H2不在规定范围时,说明罐2进水量与出水量不平衡,理论上调节进水量和出水量都可以达到控制H2的目的。但出水量主要受负荷需求控制,一般不应限制,只能最大限度满足。因此当H2过高或过低时,应该调整其进水量。

由于H2控制精度要求不高,可采用H2过低时接通进水阀;H2过高时断开进水阀的方法。

同样,H1不在规定范围时,说明罐1进水量与出水量不平衡,可以通过调节罐1进水量或出水量达到控制H1的目的。罐1出水量已用于控制罐2水位,只能选择改变罐1进水量的方法控制H1。

同样由于H1控制要求不高,可采用H1过低时接通水泵;H1过高时断开水泵的方法。

此算法控制器输出的控制信号只有0和1两个值,对应执行器只有通和断两个 位置,被称为“位式控制”算法。当液位高于上限或低于下限时,控制器动作;当液位在上、下限之间时,控制器保持原来状态不变。在位式控制中,这种算法属于带有中间区的位式控制算法。当被控参数处于中间区时,控制器输出保持原有状态。从控制效果看,中间区往往是被控参数波动的范围,实际运行时,由于对象存在惯性,被控参数的波动范围可能略大于中间区。总结:

被控对象——储液罐1和2。

被控参数——罐1水位H1、罐2水位H2。

控制目标——使H1在1~9m范围;H2在1~6m范围。控制变量——罐1进水量和罐2进水量。控制算法——带中间区的位式控制算法。3.1.3 储液罐水位监控系统初方案制订

水位系统方框图如图3.4所示。水位H1和H2经检测后通过输入接口送计算机,计算机根据水位高低发出控制命令,控制命令通过输出接口作用到水泵、罐2进水阀上,实现对水位H1和H2的闭环控制。

图3.4 闭环控制的储液罐系统方框图

3.2 储液罐水位监控系统的软、硬件设备选型与电路设计 3.2.1 命令输入设备选型

本系统命令有:启动、停止、手动、自动。命令输入设备可使用外接按钮,也可直接利用键盘、鼠标,在计算机上输入。本系统采用第二种,直接在计算机上输入命令。

3.2.2 传感器和变送器选型 这里选用DBYG型扩散硅压力变送器。3.2.3 执行器选型 1.水泵选型

2.进水阀与出水阀选型 3.2.4 计算机选型

可选择研华ARK-5280嵌入式工控机。3.2.5 I/O接口设备选型

1.储液罐系统I/O点基本情况

储液罐系统的I/O点如表3.2,共有2个AI,3个DO。

2.储液罐系统的I/O设备选择 提供两种方案。

方案一:选择研祥PCL-818L多功能板卡作为I/O接口设备。方案二:选择西门子S7-200 PLC作为I/O接口设备。

3.2.6 利用PCL-818L板卡做接口设备的系统方框图和电路接线图绘制 1.储液罐监控系统方框图 2.储液罐监控系统接线图

图3.9 使用PCL-818L板卡作接口设备的储液罐系统方框图

3.储液罐监控系统I/O分配表

储液罐监控系统I/O分配表见表3.5。

3.2.7 利用S7-200 PLC做接口设备的系统方框图和电路接线图绘制 1.储液罐监控系统方框图

图3.18 使用CPU224XP型PLC作接口设备的储液罐系统方框图

2.储液罐监控系统接线图 3.储液罐监控系统I/O分配表

3.3 储液罐系统监控软件的设计与调试

第二篇:组态软件实验(三)教案

报警显示与报警数据

定义报警

定义报警的具体操作如下:

对于“液位1”变量,在实时数据库中,双击“液位1”,在报警属性中,选中“允许进行报警处理”;在报警设置中选中“上限报警”,把报警值设为:9米;报警注释为:水罐1的水已达上限值;在报警设置中选中“下限报警”,把报警值设为:1米;报警注释为:水罐1没水了。在存盘属性中,选中“自动保存产生的报警信息”。

对于液位2变量来说,只需要把“上限报警”的报警值设为:4米,其它一样。如下图:

属性设置好后,按“确认”即可。

报警显示

实时数据库只负责关于报警的判断、通知和存储三项工作,而报警产生后所要进行的其它处理操作(即对报警动作的响应),则需要您在组态时实现。具体操作如下:

在MCGS组态平台上,单击“用户窗口”,在“用户窗口”中,选中“水位控制”窗口,双击“水位控制”或单击“动画组态”进入。在工具条中单击“工具箱”,弹出“工具箱”,从“工具箱”中单击“报警显示”下图:

图标,变“十”后用鼠标拖动到适当位置与大小。如

双击,再双击弹出如下图:

在“报警显示构件属性设置”中,把“对应的数据对象的名称”改为:液位组,“最大记录次数”为:6,其它不变。按“确认”后,则报警显示设置完毕。此时按“F5”或直接按工具条中现了。

图标,进入运行环境,您会发现报警显示已经轻松地实报警数据

在报警定义时,我们已经让当有报警产生时,“自动保存产生的报警信息”,这时我们可以通过如下操作,看看是否有报警数据存在? 具体操作如下: 在“运行策略”中,单击“新建策略”,弹出“选择策略的类型”,选中“用户策略”,按“确定”。如图:

选中“策略1”,单击“策略属性” 按钮,弹出“策略属性设置”窗口,把“策略名称”设为:报警数据,“策略内容注释”为“水罐的报警数据”,按“确认”。如上图。

选中“报警数据”,单击“策略组态”按钮进入,在策略组态中,单击工具条中的“新增策略行”策略行图标,新增加一个策略行。再从“策略工具箱”中选取“报警信息浏览”,加到上,单击鼠标左键。如下图:

双击图标,弹出“报警信息浏览构件属性设置”窗口,在“基本属性”中,把“报警信息来源”中的“对应数据对象”改为:液位组。按”确认”按钮设置完毕。

按“测试”按钮,进入“报警信息 浏览”。如下图。

退出策略组态时,会弹出如下窗口,按“是”按钮,就可对所做设置进行保存。

如何在运行环境中看到刚才的报警数据呢?请按如下步骤操作:

在MCGS组态平台上,单击“主控窗口”,在“主控窗口”中,选中“主控窗口”,单击“菜单组态”进入。单击工具条中的“新增菜单项”

图标,会产生“操作0”菜单。双击“操作0”菜单,弹出“菜单属性设置”窗口。在“菜单属性”中把“菜单名”改为:报警数据。在“菜单操作”中选中“执行运行策略块”,选中“报警数据”,按“确认”设置完毕。如下图:

您现在直接按“F5”或直接按工具条中数据”打开报警历史数据。

图标,进入运行环境,就可以用菜单“报警修改报警限值

在“实时数据库”中,对“液位1”、“液位2”的上下限报警值都定义好了,如果用户想在运行环境下根据实际情况随时需要改变报警上下限值,又如何实现呢?在MCGS组态软件中,为您提供了大量的函数,可以根据您的需要灵活地进行运用。具体操作如下:

在“实时数据库”中选“新增对象”,增加四个变量,分别为:液位1上限、液位1下限、液位2上限、液位2下限,具体设置如下图:

在“用户窗口”中,选“水位控制”进入,在“工具箱”选“标签”选“输入框”用于输入上下限值,如下图:

图标用于文字注释,双击图标,进行属性设置,只需要设置“操作属性”,其它不变,如下图:

在MCGS组态平台上,单击“运行策略”,在“运行策略”中双击“循环策略”,双击进入脚本程序编辑环境,在脚本程序中增加如下语句:

!SetAlmValue(液位1,液位1上限,3)!SetAlmValue(液位1,液位1下限,2)!SetAlmValue(液位2,液位2上限,3)!SetAlmValue(液位2,液位2下限,2)

如果您对该函数!SetAlmValue(液位1,液位1上限,3)不了解,请求助“在线帮助”,定会给您满意的答案。按“帮助”按钮,弹出“MCGS帮助系统”,在“索引”中输入“!SetAlmValue”,如图:

报警动画

当有报警产生时,我们可以用提示灯显示,具体操作如下:

在“用户窗口”中选中“水位控制”,双击进入,单击“工具箱”中的“插入元件”

图标,进入“对象元件库管理”,从“指示灯”中选取如下图:大小放在适当位置。双击如图设置:

作为“液位1”的报警指示,调整

作为“液位2”的报警指示,现在我们再进入运行环境,看看整体效果,如图:

报表输出

实时报表

怎样实现实时报表呢?具体操作如下:

在MCGS组态平台上,单击“用户窗口”,在“用户窗口”中单击“新建窗口”按钮产生一个新窗口,单击“窗口属性”按钮,弹出“用户窗口属性设置”窗口,进行设置如图:

按“确认”按钮,再按“动画组态”进入“动画组态:数据显示”窗口。用“标签” 作注释:水位控制系统数据显示,实时数据,历史数据。在工具条中单击“帮助”

图标,拖放在“工具箱”中单击“自由表格”

图标上您,就会获得“MCGS在线帮助”,请仔细阅读,然后再按下面操作进行。在“工具箱”中单击“自由表格”

图标,拖放到桌面适当位置。双击表格进入,如要改变单元格大小,请把鼠标移到A与B或1与2之间,当鼠标变化时,拖动鼠标即可;单击鼠标右键进行编辑。如图:

在R1CB处单击鼠标右键,单击“连接”或直接按“F9”,再单击鼠标右键从实时数据库选取所要连接的变量双击或直接输入,如下图:

在MCGS组态平台上,单击“主控窗口”,在“主控窗口”中,单击“菜单组态”,在工具条中单击“新增菜单项” 单属性设置”窗口,如下图:

图标,会产生“操作0”菜单。双击“操作0”菜单,弹出“菜

按“F5”进入运行环境后,单击菜单项中的“数据显示”会打开“数据显示”窗口,实时数据就会显示出来。

历史报表

利用MCGS的历史表格构件做历史数据报表具体操作如下:

在MCGS开发平台上,单击“用户窗口”,在“用户窗口”中双击“数据显示”进入,在“工具箱”中单击“历史表格”

图标,拖放到桌面,双击表格进入,把鼠标移到在C1与C2之间,当鼠标发生变化时,拖动鼠标改变单元格大小;单击鼠标右键进行编辑。在R1C1输入“采集时间”,R1C2输入“液位1”,R1C3输入“液位2”。拖动鼠标从R2C1到R5C3,表格会反黑。如图:

在表格中单击鼠标右键,单击“连接”或直接按“F9”,单击“表格”菜单中“合并表元”选项,或直接单击工具条中“编辑条” 图标,从编辑条中单击“合并单元” 图标,表格中所选区域会出现反斜杠,如下图所示:

双击表格中反斜杠处,弹出“数据库连接设置”窗口,具体设置如图,设置完毕后按“确认”退出。

这时进入运行环境,就可以看到自己的劳动成果了。如果只想看到历史数据后面1位小数,可以这样操作,如图:

再讲方法二:用策略中的“存盘数据浏览”构件,如何实现历史报表的?具体操作如下:

在“运行策略”中单击“新建策略”按钮,弹出“选择策略的类型”,选中“用户策略”,按“确认”。单击“策略属性”,弹出“策略属性设置”,把“策略名称”改为:历史数据,“策略内容注释”为:水罐的历史数据,按“确认”。双击“历史数据”进入策略组态环境,从工具条中单击“新增策略行” 拖放在双击上,则显示如下:

图标,弹出“存盘数据浏览构件属性设置”窗口,按下图设置:

图标,再从“策略工具箱”中单击“存盘数据浏览”,单击“测试”按钮,进入“数据存盘浏览”,如图:

单击“退出”按钮,再单击“确认”按钮,退出运行策略时,保存所做修改。如果想在运行环境中看到历史数据,请在“主控窗口”中新增加一个菜单,取名为:历史数据,如图:

到此,实时报表与历史报表制作完毕。

第三篇:组态软件课程设计

《组态软件及应用》课程设计报告

基于组态软件的变频器状态监控状态设计

系 部: 专 业: 班 级: 姓 名: 学 号: 指导老师: 成 绩:

二零一五年十二月二十五日

目录

1.序言....................................................1 2.力控组态软件介绍........................................1 2.1 力控组态软件简介...........................................1 2.2力控组态软件特点............................................1 2.3软件基本组件................................................3 3.变频器应用的现状........................................3 4.变频器监控系统的硬件组成................................4 5.变频器监控系统要求......................................5 5.1监控系统技术要求............................................5 5.2监控系统具体要求............................................6 6.变频系统监控功能的实现及效果............................5 7.人机界面的特点功能与画面设计............................6 7.1人机界面的特点..............................................6 7.2人机界面的主要功能..........................................7 7.3人机界面的画面设计..........................................7 7.4监控系统软件组态............................................8 8.心得体会...............................................13 附录 参考文献..........................................13

1.序言

随着现代电力电子技术和微电子技术的迅猛发展,自动化、智能化程度的不断提高,高压大功率变频调速装置的应用已经非常普遍,同时由于高压变频器几乎都是工矿企业的关键设备,在工厂自动化中占有举足轻重的地位,因此对其控制功能、控制水平的要求也越来越高,尤其对于那些工艺过程较复杂,控制参数较多的工控系统来说,具备交互式操作界面、数据列表、报警记录和打印等功能已成为整个控制系统中重要的内容。而新一代工业人机界面的出现,对于在构建高压变频器监控系统时,实现上述功能,提供了一种简便可行的途径。工业人机界面,是一种智能化操作控制显示装置。工业人机界面由特殊设计的计算机系统32位芯片为核心,在液晶显示屏上罩盖有透明的电阻网络式触摸屏,触动屏幕时,电阻网络上的电阻和电压发生变化并由软件计算出触摸位置。新一代工业人机界面还具有简单的编程、对输入的数据进行处理、数据登录及配方等智能化控制功能。

2.力控组态软件介绍

2.1 力控组态软件简介

力控组态软件是对现场生产数据进行采集与过程控制的专用软件,位于自动控制系统监控层一级。它提供了良好的用户开发界面和简捷的工程实现方法,只要将其预设置的各种软件模块进行简单的“组态”,便可以非常容易地实现和完成监控层的各项功能,缩短了自动化工程师的系统集成的时间,大大的提高了集成效率。它能同时和国内外各种工业控制厂家的设备进行网络通讯,它可以与高可靠的工控计算机和网络系统结合,便可以达到集中管理和监控的目的,同时还可以方便的向控制层和管理层提供软、硬件的全部接口,来实现与“第三方”的软、硬件系统来进行集成。

2.2力控组态软件特点

力控组态软件在数据处理性能、容错能力、界面容器、报表等方面产生了巨大飞跃,功能更强大,主要特点如下:

提供在Internet/Intranet上通过IE浏览器以“瘦”客户端方式来监控工业现场的解决方案;

支持通过PDA掌上终端在Internet实时监控现场的生产数据,支持通过移动GPRS、CDMA、GSM网络与控制设备或其它远程力控节点通讯;

面向国际化的设计,同步推出英文版和繁体版,保证对多国语言版的快速支持与服务;

力控软件内嵌分布式实时数据库,数据库具备良好的开放性和互连功能,可以与MES、SIS、PIMS等信息化系统进行基于XML、OPC、ODBC、OLE DB等接口方式进行互连,保证生产数据实时地传送到以上系统内。

个分布式的数据库分别对连接自己的I/O Server进行采集数据和处理,如输入数据的量程变换、流量累积、报警检查,以及PID运算等,这种体系结构的优越性在于,各组件任务分配更合理,使您的系统实时性更好,稳定性更高。

在今天,企业管理者已经不再满足于在办公室内直接监控工业现场,基于网络浏览器的Web方式正在成为远程监控的主流,作为民族软件中国内最大规模SCADA系统的WWW网络应用的软件,力控R监控组态软件的分布式的结构保证了发挥系统最大的效率。力控®为满足企业的管控一体化需求提供了完整、可靠的解决方案。

图2.1 力控组态软件的应用结构

2.3软件基本组件

工程管理器、人机界面VIEW、实时数据库DB、I/O驱动程序、控制策略生成器以及各种网络服务组件等。

图2.2 力控组态软件框架图

3.变频器应用的现状

变频器的发展是世界生产力和经济高速发展的产物。近年来,交流变频调 速技术在我国有了突飞猛进的发展,变频调速在调速范围、调速精度、通讯功能、节约电能、工作效率等方面的优势是其他的交流调速方式无法比拟的。变频器就是基于交流电动机的变频调速而开发和应用的,它以体积小、重量轻、通用性强、使用范围广、保护功能完善、可靠性高、操作简便等优点,深受钢铁、冶金、矿山、石化、医药、食品、纺织、印染、机械、电力、建材、造纸 等行业的欢迎,使用变频器后经济效益和社会效益都非常显著。

PLC技术是一种以计算机技术为基础的新型工业控制装置。近几年来,PLC技术在各种工业过程控制、生产线自动控制及各类机电一体化设备控制中得到了广泛应用,成为工业控制领域的一项十分重要的应用技术。目前PLC已广泛应用于石油、化工、冶金、轻工、机械、电力等各行各业,实现了逻辑、步进、数字、机器人、模拟量等的自动控制。随着数字化时代的到来,软件领域将不断地向硬件渗透,不断地用软件来代替硬件,从而实现智能控制和生产自动化。PLC就是计算机技术向继电器等硬件领域渗透的产物,用软件来代替硬件,用软件程序代替硬件继电器,从而为系统的连接及改造提供了方便,可以节约成本提高工作效率。PLC可以说是专门为工业严酷的环境设计的小型计算机,已成为工业控制领域中占主导地位的基础自动化设备。

5.2监控系统具体要求

1)信号采集和数据处理: 对来自现场的非标准信号数据通过组态软件转换成标准信号。

2)状态显示:将变频器启动、停止、就绪、合闸、接通、运转、旁通、告警、外控等状态通过组态软件动态的显示于监控画面上,具有实时、动态效果。

3)监控操作: 对频率、温度、电流、电压、风压等进行自动实时监测。

4)操作画面:在操作画面上可查询装置的电压、电流、功率、温度等实时和历史数据,还可查询实时、历史曲线和设备状态并可按要求设定和打印出实时报表和历史报表。

6.变频系统监控功能的实现及效果

进行编程后的监测、控制系统,针对变频系统的特点,集实时显示、流程控制、数据采集、数据传输、工程报表、历史曲线和实时曲线显示等功能于一身,并能保存和打印历史数据为系统分析使用。可以完成如下功能:

1)实时监控设备工作状态,实现全生产过程实时管理。高压变频器运行状态十分重要,而监控系统的建立为管理部门提供的实时动态信息,能有效地帮助值班人员及时了解设备工作状态。

2)提供灵活的实时曲线和历史曲线显示功能。通过比较当前和历史趋势数据,特别是结合装备安全运行的多参数模型,可以及早报告故障隐患。

3)实时报表管理方便地解决了现场定时数据抄写、维护及繁琐的数据处理工作,记录员不必再每天花费大量的精力填写报表,提高了企业的办公能力和管理水平,取得了显著的经济效益和社会效益。

4)数据化的管理提高了企业数据的透明度并消除了人为因素,将成本核算纳入更规范的管理体系。

5)监控系统具有界面友好,易于操作,运行可靠,便于更改、扩充、升级等优点,同时,系统造价很低,具有较高的性价比。

7.人机界面的特点功能与画面设计

7.1人机界面的特点

人机界面是新一代高科技可编程终端,具备与各品牌PLC连线监控能力,适于在恶劣的工业环境中应用,可代替普通工控计算机。其主要特点有:

1)画面容量大,画面规划简单;

2)全中文操作软件,适用于Windows95/98/NT等环境,指令丰富,编程简单;

运行策略分别进行组态设置,如在用户策略中,利用策略工具箱添加脚本构件、存盘数据提取构件等,以实现所需的功能。

7.4监控系统软件组态

软件组态部分完成监控系统与操作人员间的交互界面,是实现对整个系统的监视、控制、调度和管理的核心。人机界面分为两部分,一部分是用于日常监视、系统参数设置的主界面,另一部分是用于指示、管理非日常监视信息,如各种报表、曲线及趋势图、历史记录等的子界面。1)帧发送

本设计的通信帧中有专门的广播帧用于此功能,如统一对所有变频器的输入运行命令和频率命令进行设定。广播帧格式与标准帧格式一样,区别在于其中的“站地址”位设定为:99号机。一般而言,大部分的变频器在PCAuto中都有驱动。如果系统采用的变频器在PCAuto中无驱动,则可以采取其他方式。这是因为PCAuto是基于ODBC标准的,能提供与第三方软件的通信方式,如采用DDE或OLE方式可以很方便地实现通信功能。

选用帧中选择要求(写入)帧格式如下(计算机<——>变频器):

图7.1 帧发送

2)画面设计

图7.2为变频器的监控组态界面。其中包括电流、电压、频率的列表显示、动画显示及实时曲线显示,便于从直观上了解电动机的运行状态。一旦出现报警情况,则立即进入报警状 态,并根据报警内容做出相应的处理(如紧急停机等),可实现电动机的正/反转、加/减速、停机等控制,还可以获得一些历史数据(表、曲线、图)及故障报警 等,极大地方便了生产操作人员对一线现场的监督、控制、管理。

图7.2 主控界面

3)建立实时数据库

在Draw的导航器中单击“实时数据库组态”,启动实时数据库组态程序。

图7.3 参数设置

5)I/O检查

可对各台变频器的通用输出/输入端子状态、用户选件输入状态等进行实时监视。通过对各台下位机的循环检测可知各台下位机与上位机的通信是否正常。6)维护信息

可显示各台变频器的机种、容量、ROM版本、累计运行时间、1小时变频器内最高温度及散热片最高温度、键盘面板、RS-485、选件卡的通信出错次数等信息,便于工程技术人员了解情况。7)报警信息

当出现故障时立刻进入报警子画面,显示报警的历史原因、报警时的输出电压、电流、频率、转矩及当时的设定值等、报警时输入/输出端子状态、最新报警发生次数及多重 报警等信息。通过查看报警信息及历史数据,极大地方便了现场技术人员的维护,使得维护更加准确、简捷,缩短故障处理时间,使生产更加稳定。

图7.7 故障界面

8.心得体会

通过这次课程设计,我翻阅了大量的相关书籍,从中学习领会了许多,这次课程设计主要是以力控组态软件为核心的监控系统,具有界面友好,易于操作,运行可靠,便于更改、扩充、升级等优点,同时,系统造价也远低于进口同类设备,具有较高的性价比。采用组态软件进行工业控制是现代化工业的一个发展方向。

本系统不仅实现了对高压变频器各参数的在线实时监测与控制,而且在实际使用过程中也取得了良好效果,加强了职能部门对高压变频器的监测,规范了职工行为。对高压变频器实现了系统化管理,提高了变频设备运转的可靠性,保证了现场的安全运行。

这次课程设计中也遇到了一些难题,虽然我的课程设计不是很成熟,还有很多不足之处,但还是感到欣慰,因为这里面的每一个页面,都有自己的劳动与同学的帮助。当看着自己的成果,真是莫大的幸福和欣慰。我相信其中的酸甜苦辣最终都会化为甜美的甘泉。

最后还要感谢老师,老师认真负责的工作态度,严谨的治学精神和深厚的理论水平都使我收益匪浅。她无论在理论上还是在实践中,都给与我很大的帮助,使我得到不少的提高这对于我以后的工作和学习都有一种巨大的帮助,感谢她耐心的辅导。

附录 参考文献

[1]赵良炳 现代电力电子技术基础 清华大学出版社 [2]田效伍 交流调速系统与变频器应用 机械工业出版社 [3]徐江海 单片机应用技术学程 机械工业出版社

第四篇:组态大作业

河南机电高等专科学校自动控制系

《组态软件及应用》学习报告

题目:力控组态软件控制策略特点、适用条件及主

要功能模块分析

系 部: 自动控制系

专 业: 电气自动化

班 级: 自136班

姓 名: 冯亚坤

学 号: 131415617 指导老师: 白敬彩

成 绩:

二零一五年十一月二十八日

一 力控组态软件控制策略特点

1.1 PC控制概述

随着计算机操作系统稳定性和监控组态软件可靠性的提高,提高监控组态软件的控制功能水平就变得越来越重要了。尤其是在少量监控点数的应用场合,PC机中插入或用串口连接

一、两块I/O板卡,只要在监控组态软件中进行一些简单的组态工作,就会完成用户所需要的控制功能,而且还降低了监控系统成本。

但它们还有不足之处,首先,这些控制设备内部的控制策略修改起来很不方便,有些控制策略在系统运行期间甚至是不允许修改的。其次,这些控制设备的控制能力十分有限,它们只能完成一些简单的常规控制,例如 DCS 的逻辑操作速度不高,而 PLC 的控制算法种类则偏少。这些缺陷严重制约着 设备性能的发挥。

这些控制设备与 PC 间都提供了便利的通讯手段,借助 PC 上组态软件提供的 策略控制器的丰富算法,就可以弥补这些设备在运算、控制能力上的不足,充分 发挥其作用。另外,PC-Based 设备已经实现了标准化、模块化,例如工业 PC 具有完整的 A/I、A/O、D/I、D/O、计数器等 I/O 卡件,这些 PC-Based 设备在电气性能指标 上完全符合工业界的要求,在可靠性、稳定性、甚至冗余设计等方面都能够满足 工厂的控制要求,而且因系统在成本、开放性、灵活性、界面等方面的优势而日 益受到用户的青睐,将给工业控制系统带来巨变。

目前基于工业PC的设备已经实现了标准化、模块化,它们具有完整的A/I、A/O、D/I、D/O、计数器等I/O卡件,基本上能够满足工厂的控制要求,而且系统在成本、开放性、灵活性、界面等方面的优势具有较大的优势,同时现场总线技术的发展使工业PC和现场总线构成的控制系统走向开放,开放使应用规模可以自由伸缩,扩展应用变得极为方便,同时降低了安装维护费用,最终使用户受益。

由PC板卡、现场总线模块构成的控制系统需要有核心的控制软件来对它们进行控制和指挥,力控的控制策略就是一款控制软件,来和现场总线和模块构成控制系统来完成复杂控制如串级控制、逻辑控制等,由控制策略构成的系统既可以单独存在,也可以与其它系统混合使用。

1.2 策略在力控中的结构

力控的控制策略是作为实时数据库上的一个组件,它的优点是可以和 HMI 共享全局数据库,见下图:

1.3 力控策略示例

力控的控制策略生成器以过程控制算法为主,是国内第一个商品化的控制策略生成器,能够使不同厂家、不同类型的设备同时参与一个对象的计算与控制。另外可以弥补一些设备控制能力和容量的不足。

在下图所示的例子中,一个中控室内共有三套控制设备,分别是:在1995年投入运行的A厂家生产的某型号 PLC X、在1992年投入使用的B厂家生产的 某型号控制器Y和在1990年投入使用的C厂家生产的数据采集器Z,假如一条工艺管道的压力信号(PI201)、流量信号(FI101)和温度信号(TI001),分布在X设备、Y设备和Z设备之中,而我们要计算其精确流量,使用控制策略生成器就十分方便。

与传统的DCS、PLC控制系统相比,控制策略生成器(StrategyBuilder)充分体现了控制功能丰富、系统组建灵活、扩展方便的特点。在控制策略生成器中有变量、数学运算、逻辑功能、程序控制和控制算法等类别的近70个功能块,运用这些功能块可搭建出各种功能强大的控制策略。

二 力控组态软件控制的适应条件

2.1 适应条件

力控控制策略生成器是一个既可以运行在Windows98/2000/NT环境,又可以运行于Windows CE、DOS等嵌入式环境的控制功能软件模块。它采用功能框图的方式为用户提供组态界面,具备与实时数据库、图形界面系统通讯的功能。其工作画面如图2-1所示。在此图中可看到画面的左侧列出了各种功能块,画面的右侧是由两个变量功能块和一个PID功能块搭建的一个PID控制回路。

在力控的控制策略生成器中,一个应用程序中可以有很多控制策略,但只能有一个主策略。主策略首先被执行,主策略可以调用其他策略。策略嵌套最多为4级,即0~3级,在这4级中,0级最高,3级最低。高级策略可以调用低级策略,而低级策略不可以调用高级策略。除3级最多可以有127个策略外,其他3个级别分别最多可以有255个策略。

2.2 基本准则

控制策略由一些基本功能块组成,一个功能块代表一种操作、算法或变量。功能块是策略的基本执行元素,类似一个集成电路块,有若干个输入和输出,每一个输入和输出管脚都有唯一的名称。

策略只能调用其子策略,不能跨级调用,如不允许主策略调用二级策略。一个功能块的输出可以输出到多个基功能块的输入上。一个功能块的输入只能来自一个输出。功能块的输出不能来自另一个块的输出。三 力控组态软件控制的主要功能模块

3.1 变量功能块

变量功能块用来为其它功能块提供初始操作数,最终运算结果的变量连接,在每一个变量功能块的属性框中都可以选择变量数据源/目的名称及其参数名称。

变量功能块包含的算法种类如下:

常数:该块输出一个常数,可以作为其他功能块的输入。没有输入,一个输出; 数据库输入变量:把实时数据库中的变量作为一个其它运算的一个输入。没有输入,一个输出;

数据库输出变量:把运算的结果输出到实时数据库的一个点参数中。一个输入,没有输出;

系统变量:一些特殊的变量,可以作为其它运算的输入。没有输入,一个输出: 输入变量:该功能块可以引用控制点中没有作为输入输出脚的参数,如 PID 控制 功能中的比例。没有输入,一个输出;

输出变量:该变量可以对控制点中的参数进行赋值。一个输入,没有输出;

变量功能块用来为其他功能块提供初始操作数、最终运算结果的变量连接。在每一个变量功能块的属性框中都可以选择变量数据源/目的名称及其参数名称。共有常数、输入变量、输出变量、系统变量、全局输入变量和全局输出变量等6个变量功能块。

3.2 数学运算功能块

数学运算功能块可完成变量的计算处理。共有加法、减法、乘法、除法、乘方、取余、绝对值、正弦、余弦、正切、反正弦、反余弦、反正切、自然底幂数、平方根、常用对数、自然对数和取整等18个数学运算功能块。

数学运算功能块包含的算法种类如下

加法:把两个操作数相加。Result = in1 + in2。三个输入,一个输出; 减法:把两个操作数相减。Result = in1in2。三个输入,一个输出;

求余:把两个操作数求余。如果输入 in2 等于 0,则输出为无效,后续计算 将不会计

算。三个输入,二个输出;

绝对值:求输入的绝对值。两个输入,一个输出;

反余弦:输入的反余弦。如果输入小于-1 或大于 1,则输出为无效,后续计算 将不会计算。两个输入,一个输出;

反正弦:输入的反正弦。如果输入小于-1 或大于 1,则输出为无效,后续计算 将不会计算。两个输入,一个输出;

反正切:输入的反正切。两个输入,一个输出; 余弦:输入的余弦 两个输入,一个输出; 正切:输入的正切 两个输入,一个输出; 正弦:输入的正弦 两个输入,一个输出;

指数:输入的以 e 为底的幂。两个输入,一个输出;

常用对数:输入的以 10 为底的常用对数。如果输入小于或等于 0,则输出为无 效,后续计算将不会计算。两个输入,一个输出;

自然对数:求自然对数。如果输入小于或等于 0,则输出为无效,后续计算将不 会计算。两个输入,一个输出;

平方根:输入的平方根,如果输入小于 0,则输出为无效,后续计算将不会计算。两个输入,一个输出;

取整:得到小于或等于输入的一个最大整数 两个输入,一个输出;

3.3逻辑功能块

每个逻辑块具有最多4个输入,并产生单一布尔输出。功能块可以要求实型或布尔型输入。实型输入可以是外部输入,内部输入或逻辑模块的输出。逻辑功能块包含的算法种类如下:逻辑与、逻辑或、逻辑异或、逻辑非、逻辑与非、逻辑或非、两个输入ON有效或门、三个输入ON有效或门、三个输入不一致、开关、定长度脉冲、最大时限脉冲、带死区的等于比较、带死区的不等于比较、带死区的大于等于比较、带死区的大于比较、带死区的小于比较、带死区的小于等于比较、延时、ON延时、OFF延时、看门狗、选通器、变化检测、RS触发器逻辑与功能:求三个输入的相与的结果。根据选择类型的不同,可以是逻辑与,字节与,字与,双字与。如果输入悬空,则该输入缺省是1(或0xFF,0xFFFF,0xFFFFFFFF)。参数: 参数数据类型功能类型字节0,位,1,字节,2,字,3,双字四个输入一个输出输入: 输入:

数据类型功能使能端逻辑量运算是否执行操作数1参数0 操作数2参数0 操作数3参数0 输出: 输出数据类型功能输出参数0计算结果

3.4 程序控制功能块

程序控制功能块用于不同控制策略之间的嵌套。共有跳转、调用子策略、返回和注释等4个功能块。

3.5 控制算法功能块

控制算法功能块主要用于完成各种模拟型的控制策略。共有纯滞后补偿、滤波器、一阶传递函数、模拟输入、模拟输出、数字输入、数字输出、计时器、计数器、PID控制器、线性变换、开关控制器

51、开关控制器

13、三者取中、限值器、累计器、比例器、温压补偿、高低选和平均、通用线性化、比值控制器、斜坡控制器、数字组合点、计算器、条件动作表、加权平均等近30个功能块。

控制策略提供开放的编程接口,可以嵌入用户自己的控制程序,完成各种优化控制、APC等高级控制功能。

第五篇:学习组态心得

“组态”的概念是伴随着集散型控制系统的出现而被广大的生产过程自动化技术人员所认识的。在工业控制技术的不断发展和应用过程中,PC(包括工控机)相比以前的专用系统具有的优势日趋明显。这些优势主要体现在:PC技术保持了较快的发展速度,各种相关技术已臻成熟;由PC构建的工业控制系统具有相对较低的运行成本;PC的软件资源和硬件资源丰富,软件之间的互操作性强;基于PC的控制系统易于学习和使用,可以容易地得到技术方面的支持。在PC技术向工业控制领域的渗透中,组态软件将占据非常特殊而且重要的地位。

组态软件提供了自动控制系统监控层一级的软件平台和开发环境,使用灵活的组态方式,为用户提供快速构建工业自动控制系统监控功能和数据采集与过程控制。组态软件能支持各种工控设备和常见的通信协议,并且通常应提供分布式数据管理和网络功能。对应于原有的人机接口软件的概念,组态软件应该是一个使用户能快速建立自己的hmi的软件工具。过去工控领域的用户通过手工编写hmi应用,开发时间长,效率低,可靠性差;通常是封闭的系统,选择余地小,往往不能满足需求,很难与外界进行数据交互,升级和增加功能都受到严重的限制。组态软件可以把用户从这些困境中解脱出来,利用组态软件的功能,构建一套最适合自己的应用系统。随着它的快速发展,实时数据库、实时控制、通讯及联网、开放数据接口、对I/O设备的广泛支持,已经成为它的主要内容。而且其全面支持activex、扩展能力强、支持OPC等工业标准、控制功能强。现代企业的生产已经趋向国际化、分布式的生产方式。internet将是实现分布式生产的基础。组态软件能够从原有的局域网运行方式跨越到支持internet进行访问的开放式系统。

随着工业控制系统应用的深入,在面临规模更大、控制更复杂的控制系统时,人们逐渐意识到原有的上位机编程的开发方式,对项目来说是费时费力的。同时,mis(管理信息系统,management information system)和cims(计算机集成制造系统,computer integrated manufacturing system)的大量应用,要求工业现场为企业的生产、经营、决策提供更详细和深入的数据,以便优化企业生产经营中的各个环节。组态软件也能满足这一需求。

组态软件的控制功能和前景

随着以工业PC为核心的自动控制集成系统技术的日趋完善,用户要考虑一些实质性的应用功能,如PLC,先进过程控制策略等。

软PLC是基于PC机开放结构的控制装置,它具有硬PLC在功能、可靠性、速度、故障查找等方面的特点,利用软件技术可将标准的工业PC转换成全功能的PLC过程控制器。软PLC综合了计算机和PLC的开关量控制、模拟量控制、数学运算、数值处理、通信网络等功能,通过一个多任务控制内核,提供了强大的指令集、快速而准确的扫描周期、可靠的操作和可连接各种I/O系统及网络的开放式结构。软PLC提供了与硬PLC同样的功能,而同时具备了PC环境的各种优点。随着企业提出的高柔性、高效益的要求,以经典控制理论为基础的控制方案已经不能适应,以多变量预测控制为代表的先进控制策略的提出和成功应用之后,先进过程控制受到了过程工业界的普遍关注。先进过程控制是指一类在动态环境中,基于模型、充分借助计算机能力,为工厂获得最大理论而实施的运行和控制策略。先进控制策略主要有:双重控制及阀位控制、纯滞后补偿控制、解耦控制、自适应控制、差拍控制、状态反馈控制、多变量预测控制、推理控制及软测量技术、智能控制(专家控制、模糊控制和神经网络控制)等,尤其智能控制已成为开发和应用的热点。组态软件产生于过程工业自动化的需求,目前,国内许多大企业纷纷投资,在装置自动化系统中实施先进控制。可以看出能嵌入先进控制和优化控制策略的组态软件必将受到用户的欢迎。

所以可以这样说,我们研制的这套系统的控制方式与技术已完全与现代企业接轨。中国的现代化建设正处于上升期,新项目的上马、基础设施的改造大量需要组态软件的应用,另一方面,传统产业的改造、原有系统的升级和扩容也需要组态软件的支撑。这套系统应该有一定的市场前景。

下载组态教案word格式文档
下载组态教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    MCGS组态课程设计恒压供水系统

    MCGS组态课程设计 —恒压供水系统 班级:0 班 姓名: 学号: 恒压供水系统概述 供水系统是国民生产生活中不可缺少的重要一环。传统供水方式占地面积大,水质易污染,基建投资多,而......

    《工业组态控制技术》实验报告

    课程名称:工业组态控制技术 任务一:我的第一个工程,时间3月8日 任务二:水箱控制,时间3月22日 任务三:用户权限的管理,时间 4月18日 任务一:我的第一个工程 一、工作任务 1、理解组态......

    力控组态监控软件简介

    第二节 监控组态软件简介 一、监控组态软件简介 1.概念 组态软件指一些数据采集与过程控制的专用软件,它们是在自动控制系统监控层一级 的软件平台和开发环境,能以灵活多样的......

    工业组态软件设报告污水处理系统

    北京科技大学 工业组态软件报告 学 院 专业班级 姓 名 学 号 指导教师 成 绩 2013 年 03 月 目录 污水处理系统 .............................................................

    辽宁工大电气自动化工业组态期末答案★

    1.什么是计算机控制系统? 计算机控制就是用计算机控制某种设备使其按照要求工作。计算机在实现其控制功能的时候往往还需要一些设备的配合,这些设备与计算机、被控设备一起统......

    我正在学习西门子触摸屏组态画面控制西门子PLC

    我正在学习西门子触摸屏组态画面控制西门子PLC,现有一事不明,望大侠们赐教。书上给出的模拟例程都是使用PLC的内部辅助继电器M(比如:M0.0、M0.1)来与HMI变量连接,触发输出位(譬如:Q0......

    学习plc单片机组态软件,嵌入式的一些心得

    学习plc,单片机,组态软件,嵌入式的一些心得 学习plc,单片机,组态软件,嵌入式的一些心得如果专注于某一兴趣,且投入进去,那么一定会有一种感觉:学习真的没完没了,永远有学不完的东西!p......

    基于组态技术的中波台员工培训软件的设计

    基于组态技术的中波台员工培训软件的设计 摘 要本文完成了一个在力控Forcecontrol 6.1组态软件平台上的员工培训软件的设计,该软件主要用于广西广播电视龙州中波员工设备操作......