高二物理教案09.2.振幅、周期和频率.DOC

时间:2019-05-15 01:15:01下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高二物理教案09.2.振幅、周期和频率.DOC》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高二物理教案09.2.振幅、周期和频率.DOC》。

第一篇:高二物理教案09.2.振幅、周期和频率.DOC

振幅、周期和频率

一、教学目标:

1.知道什么是振幅、周期和频率

2.理解周期和频率的关系

3.知道什么是振动的固有周期和固有频率

二、教学重点:

1.简谐运动的振幅、周期和频率的概念.2.关于振幅、周期和频率的实际应用.三、教学难点:

1.振幅和位移的联系和区别.2.周期和频率的联系和区别.四、教学方法:

1.通过分析类比引入描述简谐运动的三个物理量:振幅、周期和频率.2.运用cai课件使学生理解振幅和位移、周期和频率的联系和区别.3.通过演示、讲解、实践等方法,加深对三个概念的理解.4.通过实验研究,探索弹簧振子的固有周期的决定因素.五、教学过程

导入新课

1.讲授:前边我们学过了直线运动,我们知道:对于匀速直线运动,所受合外力为零,描述该运动的物理量有位移、时间和速度,对于匀变速直线运动,物体所受的合外力是恒量,描述它的物理量有时间、速度、位移和加速度,而上节课我们研究了合外力为回复力的简谐

运动,那么描述简谐运动需要哪些物理量呢?

2.类比引入

我们知道:简谐运动是一种往复性的运动,而我们学过的匀速圆周运动也是一种往复性的运动,所以研究简谐运动时我们也有必要像匀速圆周运动一样引入周期、频率等物理量,本节课我们就来学习描述简谐运动的几个物理量[板书:振幅、周期和频率]

新课教学

(一)振幅

1.在铁架台上悬挂一竖直方向的弹簧振子,分别用大小不同的力把弹簧振子从平衡位置拉下不同的距离.2.学生观察两种情况下,弹簧振子的振动有什么不同.3.学生代表答:

①两种情况下,弹簧振子振动的范围大小不同;

②振子振动的强弱不同.4.教师激励评价,并概括板书:

同学们观察得很细,得到了正确的结论,在物理中,我们用振幅来描述物体的振动强弱.①振幅是描述振动强弱的物理量;

②振动物体离开平衡位置的最大距离叫振幅;

③振幅的单位是米.5.取一段琴弦,使其两端固定且被张紧,用实物投影仪进行投影.①第一次使琴弦的振幅小些,听它发出的声音的强弱;

②第二次使琴弦的振幅大些,听它发出的声音的强弱.比较后,加深对振幅的理解.6.用投影片出示问题,振幅和位移有什么区别?

①用实物投影仪投影弹簧振子所做的振动,并用cai课件模拟该运动.②学生观察上述运动,并总结振幅和位移的区别和联系.③学生代表答:

a.振幅是指振动物体离开平衡位置的最大距离;而位移是振动物体所在位置与平衡位置之间的距离.b.对于一个给定的振动,振子的位移是时刻变化的,但振幅是不变的.c.位移是矢量,但振幅是标量.d.振幅等于最大位移的数值.(二)周期和频率

1.介绍什么是全振动?

①用多媒体展示如图所示的全振动[物体从o→a→o→a′→o]

②学生描述:从a点开始,一次全振动的完整过程[a→o→a′→o→a] 从a′点开始,一次全振动的完整过程:[a′→o→a→o→a′]

2.在两个劲度系数不同的弹簧下挂两个质量相同的物体,让这两个弹簧振子以相同的振幅振动,观察到振子振动的快慢不同.3.问:用什么来描述简谐运动的快慢呢?

学生阅读课文后回答:

①用周期和频率来描述机械振动的快慢.②老师总结并板书:

做简谐运动的物体完成一次全振动所需的时间,叫做振动的周期,单位:秒.单位时间内完成的全振动的次数,叫频率,单位:赫兹.③周期和频率之间的关系:t=1 f

4.过渡设问:如果改变弹簧振子的振幅、振动的周期是否会改变呢?

(三)研究弹簧振子的周期与什么因素有关

1.提出问题:猜想弹簧振子的振动周期可能由哪些因素决定?

①教师同时演示两个不同的弹簧振子(弹簧不同,振子小球质量也不同),学生观察到:两个弹簧振子的振动不同步,说明它们的周期不相等.②学生猜想:影响弹簧振子周期的因素可能有:振幅、振子的质量、弹簧的劲度系数.2.我们要想证明猜想是否正确,必须通过实验验证,那么同学们讨论一下:研究弹簧振子振动的周期你准备采用哪些实验装置?

3.方案:弹簧一端固定,另一端系着小球,让小球在竖直方向上振动.4.研究弹簧振子周期的决定因素.①介绍实验的有关注意事项

a.介绍秒表的正确读数及使用方法.b.应选择振子经过平衡位置的时刻作为开始计时的时刻

.t

n

②给每二位同学发一块秒表,全班同学同时测讲台上演示的弹簧振子的振动周期.③实验一:用同一弹簧振子,质量不变,振幅较小与较大时,测出振动的周期t1和

t1′并进行比较后得到结论:

弹簧振子的振动周期与振幅大小无关.④实验二:用同一弹簧,拴上质量较小和较大的小球,在振幅相同时,分别测出振动的周期t2和t2′,比较后得到结论.弹簧振子的振动周期与振子的质量有关,质量较小时,周期较小.⑤实验三:保持小球的质量和振幅不变,换用劲度系数不同的弹簧,测出振动的周期t3和t3′,比较后得到结论.弹簧振子的振动周期与弹簧的劲度系数有关,劲度系数较大时,周期较小.5.通过上述实验,我们得到:

弹簧振子的周期由振动系统本身的质量和劲度系数决定,而与振幅无关,所以把周期和频率叫做固有周期和固有频率.六、巩固练习

1.弹簧振子振幅取决于开始振动时外界因素,振幅的大小标志着系统总机械能的多少.2.如图所示,弹簧振子在aa′间做简谐振动,o为平衡位置,aa′间距离是10cm,a′→a运动时间是1s,则(cd)

a.振动周期是1s,振幅是10cm

b.从a′→o→a振子做了一次全振动

c.经过两次全振动,振子通过的路程是40cm

d.从a′开始经过3s,振子通过的路程是30cm

3.一个做简谐运动的质点,先后以同样大小的速度通过相距10cm的a、b两点,历时0.5s.过b点后再经过0.5s质点以大小相等、方向相反的速度再次通过b点,则质点振动的周期是(c)

a.0.5s b.1.0s c.2.0s d.4.0s

a b

七、小结

1.振幅是振动物体离开平衡位置的最大距离;振动物体完成一次全振动所需要的时间叫周期;单位时间内完成全振动的次数叫频率.2.当振动物体以相同的速度相继通过同一位置所经历的过程就是一次全振动;一次全振动是简谐运动的最小运动单元,振子的运动过程就是这一单元运动的不断重复.3.由于物体振动的周期和频率只与振动系统本身有关,所以也叫固有周期和固有频率.八、板书设计

c.振动周期的求解方法:t=,t表示发生n次全振动所用的总时间.振动物体离开平衡位置的最大距离(m),是标量 a表示振动的强弱 等于振动物体的最大位移的绝对值 做简谐振动的物体完成一次全振动所用的(s)(t只有物体振动状态再次恢复到与起始时刻完全相同 成一次全振动

单位时间内完成的全振动的次数(hz)t=(f)1 f

当周期t与频率f是振动系统本身的性质决定时,叫固

有周期或固有频率

第二篇:振幅、周期和频率物理教案

一、素质教育目标

(一)知识教学点

1.知道什么是振幅、周期和频率,知道什么是固有周期和固有频率.

2.理解并掌握周期和频率的关系

(二)能力训练点

1.用对比的方法认识描述简谐运动的特征量:振幅、周期和频率.

2.在分析振子的振幅、周期和频率的过程中,提高学生的观察能力及解决实际问题的能力.

3.学会使用秒表,掌握用秒表测弹簧振子周期的操作技能.

(三)德育渗透点

1.不同性质的运动包含各自不同的特殊矛盾.

2.事物矛盾的特殊性规定着它的特殊本质,使它与别的事物区别开来.

(四)美育渗透点

通过丰富多彩的仪器,给学生展示一幅美的画面,激发学生的学习兴趣.

二、学法引导

通过学生的观察来引导学生确定研究简谐振动的参量及如何确定.通过控制变量法来确定各个参量的决定因素.

三、重点·难点·疑点及解决办法

1.重点

(1)振幅、周期和频率的概念

(2)振幅、周期和频率在实际中的运用.

2.难点

振幅和位移、周期和频率的区别

3.疑点

振动的周期和频率、振动的固有周期和固有频率各自的物理意义.

4.解决办法

(1)运用对比描述几种典型运动的特征量.

(2)运用挂图、幻灯或多媒体课件加深对振幅、周期和频率概念的认识.

(3)教师演示、讲解、理论实践相结合,理解三个概念.

四、课时安排

1课时

五、教具学具准备

劲度系数不同的两支弹簧、质量不同的砝码、幻灯片、幻灯机、多媒体课件、秒表(五十只)、挂图、铁架台.

六、师生互动活动设计

1.教师用实验引导学生思考、分析,确定参量及决定因素.

2.学生通过观察、分析、归纳并通过控制变量去探索所学内容.

七、教学步骤

(一)明确目标

(略)

(二)整体感知

本节描述了周期性运动的几个基本概念,是进一步认识简谐运动的基础课,也为后面交流、电磁振荡等知识的学习打下基础.

(三)重点、难点的学习与目标完成过程

【新课导入】

多媒体课件(或幻灯片)

几种典型运动的比较运动种类 受力特点描述运动物理量匀速直线运动

合外力为零(理想状态不受力)t、s、v匀变速直线运动 合外力是恒量t、s、v、a匀速圆周运动

合外力垂直于速度,且大小不变t、s、v、w简谐运动 合外力为回复力,且 ?

【新课教学】

演示,将竖直弹簧振子从平衡位置往下拉一小段距离,释放后,观察它的振动;然后再往下拉稍大一段距离,释放后,再观察它的振动.

这两次振动的范围大小不同,可用下述物理量区分.

一、振幅

1.定义:振动物体离开平衡位置的最大距离,单位:m

演示,竖直弹簧振子从平衡位置拉下的距离不同,振子振动的强弱不同,幻灯实物投影,比较琴弦振动振幅不同时声音的强弱.

2.作用:描述振动的强弱(如图中的oa或)

振幅和位移的区别是什么?

对于一个给定的振动,振子的位移是时刻变化的,但振幅是不变的,位移是矢量,振幅是标量,它等于最大位移的数值.

演示.让挂上相同重物而劲度系数不同的两个竖直弹簧振子以相同的振幅振动,观察振子振动的快慢不同.

提问,用什么物体量来描述简谐运动的快慢?

二、周期和频率

1.周期(t):振动物体完成一次全振动所需的时间,单位:s

2.频率(f):单位时间完成全振动的次数,单位:hz

讲授:一次全振动(往返一次)是指振子从 或 .

3.作用:描述振动的快慢.

4.测量仪器:秒表、节拍器.

5.竖直弹簧振子周期的研究.

(1)介绍秒表的正确读数及使用方法.

(2)开始计时的时刻应选择振子经过平衡位置的时刻.

(3)振动周期用平均值法,即取全振动次数n=30(或50)次的振动时间上,得平均周期

(4)数全振动次数时,可选倒数5-4-3-2-l-0再顺数l-2-3……在数到0时立即按下启动键.

(5)全班同学同时测讲台上演示的弹簧振子的振动周期.

实验:同一弹簧振子,质量不变,振幅较小与较大时,同学各测周期t

结论:振子的振动周期与振幅大小无关.

实验:同一弹簧振子,振幅不变,质量较小与较大时,同学各测同期t

结论:振子的振动周期与振子的质量有关,质量较小时,周期较小.

实验:质量不变,不同弹簧振子(劲度系数k较小与较大时),同学各测周期t

结论:振子的振动周期与弹簧的劲度系数有关,k较大时,周期较小.

弹簧振子的振动周期只决定于振子的质量和弹簧的劲度系数,而与振幅大小无关,只决定于振动系统本身,因此把振动周期和频率叫做固有周期和固有频率.

(四)总结、扩展

1.振幅是描述振动强弱的物理量,是振子离开平衡位置的最大距离.

2.周期和频率是描述振动快慢的物理量.

振动的物体完成一次全振动所需的时间,叫做振动的周期,用t表示.

单位时间内完成全振动的次数,叫做振动的频率,用f表示.

周期与频率存在如下关系式:

3.振幅、周期和频率可以作为描述作振动或其他周期性运动的物体的特征量,振幅表示振动物体最大振动幅度,也可以表示速度的最大值—速度的振幅,加速度的最大值—加速度的最大值一加速度的振幅,振福还表示按正弦或余弦规律变化的物理量所具有的最大幅度值.

【例】 1.弹簧振子从距平衡位置5cm处由静止释放,全振动10次所用的时间为8s,那么振子的振幅是 m,周期是 s,频率是 hz,8s内的位移大小是 m,8s内的路程是 m

2.甲物体完成30次全振动的时间内,乙物体恰好完成5次全振动,那么甲、动两物体振动周期之比是,振动频率之比是 .

八、板书设计

二、振幅、周期和频率

一、振幅

1.定义:振动物体离开平衡位置的最大距离

2.作用:描述振动的强弱

二、周期和频率

1.周期(t):振动物体完成一次全振动所需的时间.

2.频率(f):单位时间完成全振动的次数.

3.作用:描述振动的快慢.

4.测量仪器:秒表、节拍器等.

5.竖直弹簧振子周期的研究.

6.固有频率的含义.

第三篇:高二物理教案

写一份优秀教案是设计者教育思想、智慧、动机、经验、个性和教学艺术性的综合体现。下面是小编为大家搜集整理出来的有关于高二物理教案范文,希望可以帮助到大家!

《库仑定律》

【课 题】人教版《普通高中课程标准实验教科书物理(选修3—1)》第一章第二节《库仑定律》

【课 时】1学时

【三维目标】

知识与技能:

1、知道点电荷的概念,理解并掌握库仑定律的含义及其表达式;

2、会用库仑定律进行有关的计算;

3、知道库仑扭称的原理。

过程与方法:

1、通过学习库仑定律得出的过程,体验从猜想到验证、从定性到定量的科学探究过程,学会通过间接手段测量微小力的方法;

2、通过探究活动培养学生观察现象、分析结果及结合数学知识解决物理问题的研究方法。

情感、态度和价值观:

1、通过对点电荷的研究,让学生感受物理学研究中建立理想模型的重要意义;

2、通过静电力和万有引力的类比,让学生体会到自然规律有其统一性和多样性。

【教学重点】

1、建立库仑定律的过程;

2、库仑定律的应用。

【教学难点】

库仑定律的实验验证过程。

【教学方法】

实验探究法、交流讨论法。

【教学过程和内容】

<引入新课>同学们,通过前面的学习,我们知道“同种电荷相互排斥,异种电荷相互吸引”,这让我们对电荷间作用力的方向有了一定的认识。我们把电荷间的作用力叫做静电力,那么静电力的大小满足什么规律呢?让我们一起进入本章第二节《库仑定律》的学习。

<库仑定律的发现>

活动一:思考与猜想

同学们,电荷间的作用力是通过带电体间的相互作用来表现的,因此,我们应该研究带电体间的相互作用。可是,生活中带电体的大小和形状是多种多样的,这就给我们寻找静电力的规律带来了麻烦。

早在300多年以前,伟大的牛顿在研究万有引力的同时,就曾对带电纸片的运动进行研究,可是由于带电纸片太不规则,牛顿对静电力的研究并未成功。

(问题1)大家对研究对象的选择有什么好的建议吗?

在静电学的研究中,我们经常使用的带电体是球体。

(问题2)带电体间的作用力(静电力)的大小与哪些因素有关呢?

请学生根据自己的生活经验大胆猜想。

<定性探究>电荷间的作用力与影响因素的关系

实验表明:电荷间的作用力F随电荷量q的增大而增大;随距离r的增大而减小。

(提示)我们的研究到这里是否可以结束了?为什么?

这只是定性研究,应该进一步深入得到更准确的定量关系。

(问题3)静电力F与r,q之间可能存在什么样的定量关系?

你觉得哪种可能更大?为什么?(引导学生与万有引力类比)

活动二:设计与验证

<实验方法>

(问题4)研究F与r、q的定量关系应该采用什么方法?

控制变量法——(1)保持q不变,验证F与r2的反比关系;

(2)保持r不变,验证F与q的正比关系。

<实验可行性讨论>、困难一:F的测量(在这里F是一个很小的力,不能用弹簧测力计直接测量,你有什么办法可以实现对F大小的间接测量吗?)

困难二:q的测量(我们现在并不知道准确测定带电小球所带的电量的方法,要研究F与q的定量关系,你有什么好的想法吗?)

(思维启发)有这样一个事实:两个相同的金属小球,一个带电、一个不带电,互相接触后,它们对相隔同样距离的第三个带电小球的作用力相等。

——这说明了什么?(说明球接触后等分了电荷)

(追问)现在,你有什么想法了吗?

<实验具体操作>定量验证

实验结论:两个点电荷间的相互作用力,与它们的电荷量的乘积成正比,与它们距离的二次方成反比。

<得出库仑定律>同学们,我们一起用了大约20分钟得到的这个结论,其实在物理学发展史上,数位伟大的科学家用了近30年的时间得到的并以法国物理学家库仑的名字来命名的库仑定律。

启示一:类比猜想的价值

读过牛顿著作的人都可能推想到:凡是表现这种特性的相互作用都应服从平方反比定律。这似乎用类比推理的方法就可以得到电荷间作用力的规律。正是这样的类比,让电磁学少走了许多弯路,形成了严密的定量规律。马克·吐温曾说“科学真是迷人,根据零星的事实,增添一点猜想,竟能赢得那么多的收获!”。科学家以广博的知识和深刻的洞察力为基础进行的猜想,才是最具有创造力的思维活动。

然而,英国物理史学家丹皮尔也说“自然如不能被目证那就不能被征服!”

启示二:实验的精妙

1785年库仑在前人工作的基础上,用自己设计的扭称精确验证得到了库仑定律。(库仑扭称实验的介绍:这个实验的设计相当巧妙。把微小力放大为力矩,将直接测量转换为间接测量,从而得到静电力的作用规律——库仑定律。)

<讲解库仑定律>

1.内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的二次方成反比,作用力的方向在它们的连线上。

2.数学表达式:

(说明),叫做静电力常量。

3.适用条件:(1)真空中(一般情况下,在空气中也近似适用);

(2)静止的;(3)点电荷。

(强调)库仑定律的公式与万有引力的公式在形式上尽管很相似,但仍是性质不同的两种力。我们来看下面的题目:

<达标训练>

例题1:(通过定量计算,让学生明确对于微观带电粒子,因为静电力远远大于万有引力,所以我们往往忽略万有引力。)

(过渡)两个点电荷的静电力我们会求解了,可如果存在三个电荷呢?

(承前启后)两个点电荷之间的作用力不因第三个点电荷的存在而有所改变。因此,多个点电荷对同一个点电荷的作用力等于各点电荷单独对这个点电荷的作用力的矢量和。

例题2:(多个点电荷对同一点电荷作用力的叠加问题。一方面巩固库仑定律,另一方面,也为下一节电场强度的叠加做铺垫。)

(拓展说明)库仑定律是电磁学的基本定律之一。虽然给出的是点电荷间的静电力,但是任何一个带电体都可以看成是由许多点电荷组成的。所以,如果知道了带电体的电荷分布,就可以根据库仑定律和平行四边形定则求出带电体间静电力的大小和方向了。而这正是库仑定律的普遍意义。

<本堂小结>(略)

<课外拓展>

1、课本第8页的“科学漫步”栏目,介绍的是静电力的应用。你还能了解更多的应用吗?

2、万有引力与库仑定律有相似的数学表达式,这似乎在预示着自然界的和谐统一。课后请同学查阅资料,了解自然界中的“四种基本相互作用”及统一场理论。

《气体的等温变化》

教学内容:人教版的普通高中课程标准实验教科书选修3—3教材第八章气体第一节气体的等温变化。

教学设计特点:突出物理规律形成的感性基础和理性探索的有机结合;通过问题驱动达成教目标的有效实现;重视物理从生活中来最终回到生活中去。

1.教学目标1、1知识与技能

(1)知道什么是等温变化;

(2)掌握玻意耳定律的内容和公式;知道定律的适用条件。

(3)理解等温变化的P—V图象与P—1/V图象的含义,增强运用图象表达物理规律的能力;

1、2过程与方法

带领学生经历探究等温变化规律的全过程,体验控制变量法以及实验中采集数据、处理数据的方法。

1、3情感、态度与价值观

让学生切身感受物理现象,注重物理表象的形成;用心感悟科学探索的基本思路,形成求实创新的科学作风。

2、教学难点和重点

重点:让学生经历探索未知规律的过程,掌握一定质量的气体在等温变化时压强与体积的关系,理解 p—V 图象的物理意义。

难点:学生实验方案的设计;数据处理。

3、教具:

塑料管,乒乓球、热水,气球、透明玻璃缸、抽气机,u型管,注射器,压力计。

4、设计思路

学生在初中时就已经有了固体、液体和气体的概念,生活中也有热胀冷缩的概念,但对于气体的三个状态参量之间有什么样的关系是不清楚的。新课程理念要求我们,课堂应该以学生为主体,强调学生的自主学习、合作学习,着重培养学生的创新思维能力和实证精神。这节课首先通过做简单的演示实验,让学生明白气体的质量、温度、体积和压强这几个物理量之间存在着密切的联系;然后与学生一道讨论实验方案,确定实验要点,接着师生一道实验操作,数据的处理,得出实验结论并深入讨论,最后简单应用等温变化规律解决实际问题。

5.教学流程:(略)

6.教学过程

6、l课题引入

演示实验:变形的乒乓球在热水里恢复原状

乒乓球里封闭了一定质量的气体,当它的温度升高,气体的压强就随着增大,同时体积增大而恢复原状。由此知道气体的温度、体积、压强之间有相互制约的关系。本章我们研究气体各状态参量之间的关系。

对于气体来说,压强、体积、温度与质量之间存在着一定的关系。高中阶段通常就用压强、体积、温度描述气体的状态,叫做气体的三个状态参量。对于一定质量的气体当它的三个状态参量都不变时,我们就说气体处于某一确定的状态;当一个状态参量发生变化时,就会引起其他状态参量发生变化,我们就说气体发生了状态变化。这一章我们的主要任务就是研究气体状态变化的规律。

出示课题: 第八章 气体

师问:同时研究三个及三个以上物理量的关系,我们要用什么方法呢?请举例说明。

生:控制变量法

比如要研究压强与体积之间的关系,需要保持质量和温度不变,再如要研究气体压强与温度之间的关系,需要保持质量和体积不变。

师:我们这节课首先研究气体的压强和体积的变化关系。

我们把温度和质量不变时气体的压强随体积的变化关系叫做等温变化。出示本节课题:

第一节 气体的等温变化6、2 新课进行

一、实验探究

1、学生体验压强与体积的关系得出定性结论

全体同学体验: 每个同学用力在口腔中摒住一口气,然后用手去压脸颊,你会怎么样,思考为什么?

小组体验:每桌同学用一只小的注射器体验:一个同学用手指头封闭一定质量的气体,另一个同学缓慢压缩气体,体积减小时第一个同学的手指有什么感觉,说明什么呢?反之当我们拉动活塞增大气体体积时,手指有什么感觉,说明什么呢?要求学生体验并说出自己的感觉和结论(即压缩气体,体积减小,压强增大;反之,体积增大压强减小)

2、猜想

引导学生猜想:我们猜想:在一般情况下,一定质量的气体当温度不变时,气体的压强和体积之间可能有什么定量关系呢?

学生:压强与体积成反比例关系(从最简单的定量关系做起)

师:一定质量的气体在发生等温变化时压强与体积是否是成反比例的关系,需要我们进一步研究、这节课我们用实验探究这一课题。

3、实验验证:

(1)实验设计:

首先,要求学生完整的复述我们的实验目的:探究一定质量的气体在温度不变情况下压强与体积之间的定量关系、要求学生根据放在桌上的器材,思考试验方案,并思考以下几个问题:

问题1:本实验的研究对象是什么?如何取一定质量的气体?实验条件是什么?如何实现这一条件?

学生讨论回答:研究对象是一定质量的气体,用活塞封闭一定质量的气体在注射器内以获取,实验条件是气体质量不变,气体温度不变;活塞加油增加密闭性,推拉活塞改变体积和压强;不用手握注射器;缓慢推拉活塞,稳定后再读数。

(或者有其他的实验方案)

问题2: 数据收集 本实验中应该要收集哪些数据? 用什么方法测量?

学生:要收集气体的不同压强和体积,用气压计可以测量压强,注射器上面的读数可以得到体积。

问题3:数据处理 怎样处理上述数据才能得到等温条件下压强与体积之间的正确关系呢?(学生讨论并回答)

学生:常用数据处理办法有计算法,图象法等。

老师:能不能说得更具体一点呢?

学生:就是先把V和P乘起来,看看各组的乘积是否相等(或者近似相等),从而得到结论;图像法就是以V为横坐标,P为纵坐标,在用描点作图法,把得到的数据作到坐标系中,再连线,看图像的特点,从而得到两者的定量关系。

再让一个学生把我们刚才分析得到的比较好的实验方法再复述,然后师生互助完成实验。

2、实验过程:

师生共同完成实验: 老师推、拉活塞,一名学生读取数据,另一名学生设计记录表格并记录数据。

数据处理:①简单计算 找压强和体积之间的关系

②学生描绘图象(提示作P—V图像)能否得出结论?

总结提问:各小组是如何处理数据的,结论如何?(实物投影展示)

问题4:若P—V图象为双曲线的一支,则能说明P与V成反比。但能否确定我们做出就一定是是双曲线的一支呢?(还是猜测)我们怎样进一步P和V之间的关系呢?

教师:有一种思想叫做转化的思想。若P—V图象为一双曲线,那么P—1/V图象是什么样子?(过原点的一条直线)那我们就再作一条P—1/V图象看看吧!

(师)计算机拟合:把P—V图象转化为P—1/V图象。我们看到一定质量的气体,在温度不变的情况下,P—1/V图象是一条(几乎)过原点的直线,表明压强与体积成反比。

(三)实验结论:在误差允许的范围内,一定质量的气体在温度不变的条件下压强与体积成反比。(学生叙述)

师:大家看到我们作出来的这条直线,还不是很准确,大家可以分析在实验过程中有哪些地方可能引起实验误差?

学生讨论分析产生误差的原因、早在17世纪,英国科学家玻意耳和法国科学家马略特分别通过更严谨的实验研究得出了这个结论,被称为玻意耳定律。

二、玻意耳定律

1、内容:一定质量的某种气体,在温度不变的条件下压强P与体积V成反比。

2、公式:PV=C(常量)或P1V1=P2V2(其中P1V1和 P2V2分别为气体在两个状态下的压强和体积)

3、图象:P—1/V图象:过原点的直线——等温线

P—V图象:双曲线的一支——等温线

三、拓展思考

问题5:在同一温度下,取不同质量的同种气体为研究对象,PV乘积C一样吗?即对不同的气体,C是一个普适常量吗?(学生思考不能求解或回答不一样)

师问:怎样才能得到正确的结果呢?(猜想—实验验证)

学生:改变气体的质量用同样的方法重新测量,测量数据记录在同一表格中,通过简单的计算就能得到结果。

结论:不一样。质量越大,PV乘积越大。P—V图象离坐标轴越远,P—1/V图象斜率越大。

问题6:取相同质量的同种气体,在不同温度下,作出的P—V图象是否一样?(学生猜想——验证)

结论:不一样。温度较高时,PV乘积较大,P—V图象离坐标轴越远,P—1/V图象斜率较大。

四、玻意耳定律的应用之定性解释:

问题一:气球涨大视频。学生分析。

问题二:小实验。装水的瓶子下有小洞,当盖子打开时水会喷出,然后合上盖子则水就不会持续地流出了。

解释:盖子打开时,小孔上方的压强始终大于外面的压强,所以水会喷出,当盖子盖上时,水的上方被封闭了一定质量的气体,当有水流出后,瓶中空气的体积变大,根据波意耳定律压强变小,当孔上方压强小于外部大气压时,水就流不出去了。

五.课堂小结

1、方法 ①研究多变量问题时用控制变量法

②实验探究方法:猜想——验证——进一步猜想——再验证——得到结论

2、知识 玻意耳定律:一定质量的某种气体,在温度不变的条件下压强P与体积V成反比。

六.教学后记:

1.课堂上让学生从自身体验开始,充分参与科学探究的全过程,熟悉科学探究未知世界的一般流程,并坚持渗透实事求是和精益求精的科学精神。

2.教学中对应用数学方法处理物理数据,从而得出简洁的物理学规律的过程,让学生多练习多体验,以使学生真正掌握,并且多给时间让学生从图像中找出规律,以提高学生认识图像与应用图像分析问题的能力。

3.教学中学生参与小实验及视频材料能很好地吸引学生的注意力,提高教学的有效性。

4、物理来源于社会生活实践,反之也能解释自然界及生活和生产中的相关现象,有效杜绝物理和生活相脱节的现象发生、也有利于学生正确物理观的形成。

《简谐运动的描述》

1、理解振幅、周期和频率的概念,知道全振动的含义。

2、了解初相位和相位差的概念,理解相位的物理意义。

3、了解简谐运动位移方程中各量的物理意义,能依据振动方程描绘振动图象。

4、理解简谐运动图象的物理意义,会根据振动图象判断振幅、周期和频率等。

重点难点:对简谐运动的振幅、周期、频率、全振动等概念的理解,相位的物理意义。

教学建议:本节课以弹簧振子为例,在观察其振动过程中位移变化的周期性、振动快慢的特点时,引入描绘简谐运动的物理量(振幅、周期和频率),再通过单摆实验引出相位的概念,最后对比前一节得出的图象和数学表达式,进一步体会这些物理量的含义。本节要特别注意相位的概念。

导入新课:你有喜欢的歌手吗?我们常常在听歌时会评价,歌手韩红的音域宽广,音色嘹亮圆润;歌手王心凌的声音甜美;歌手李宇春的音色沙哑,独具个性……但同样的歌曲由大多数普通人唱出来,却常常显得干巴且单调,为什么呢?这些是由音色决定的,而音色又与频率等有关。

1、描述简谐运动的物理量

(1)振幅

振幅是振动物体离开平衡位置的①最大距离。振幅的②两倍表示的是振动的物体运动范围的大小。

(2)全振动

振子以相同的速度相继通过同一位置所经历的过程称为③全振动,这一过程是一个完整的振动过程,振动质点在这一振动过程中通过的路程等于④4倍的振幅。

(3)周期和频率

做简谐运动的物体,完成⑤全振动的时间,叫作振动的周期;单位时间内完成⑥全振动的次数叫作振动的频率。在国际单位制中,周期的单位是⑦秒,频率的单位是⑧赫兹。用T表示周期,用f表示频率,则周期和频率的关系是⑨f=。

(4)相位

在物理学中,我们用不同的⑩相位来描述周期性运动在各个时刻所处的 不同状态。

2、简谐运动的表达式

(1)根据数学知识,xOy坐标系中正弦函数图象的表达式为 y=Asin(ωx+φ)。

(2)简谐运动中的位移(x)与时间(t)关系的表达式为 x=Asin(ωt +φ),其中 A代表简谐运动的振幅,ω叫作简谐运动的“圆频率”,ωt+φ代表相位。

1、弹簧振子的运动范围与振幅是什么关系?

解答:弹簧振子的运动范围是振幅的两倍。

2、周期与频率是简谐运动特有的概念吗?

解答:不是。描述任何周期性过程,都可以用这两个概念。

3、如果两个振动存在相位差,它们振动步调是否相同?

解答:不同。

主题1:振幅

问题:(1)同一面鼓,用较大的力敲鼓面和用较小的力敲鼓面,鼓面的振动有什么不同?听上去感觉有什么不同?

(2)根据(1)中问题思考振幅的物理意义是什么?

解答:(1)用较大的力敲,鼓面的振动幅度较大,听上去声音大;反之,用较小的力敲,鼓面的振动幅度较小,听上去声音小。

(2)振幅是描述振动强弱的物理量,振幅的大小对应着物体振动的强弱。

知识链接:简谐运动的振幅是物体离开平衡位置的最大距离,是标量,表示振动的强弱和能量,它不同于简谐运动的位移。

主题2:全振动、周期和频率

问题:(1)观察课本“弹簧振子的简谐运动”示意图,振子从P0开始向左运动,怎样才算完成了全振动?列出振子依次通过图中所标的点。

(2)阅读课本,思考并回答下列问题:周期和频率与计时起点(或位移起点)有关吗?频率越大,物体振动越快还是越慢?振子在一个周期内通过的路程和位移分别是多少?

(3)完成课本“做一做”,猜想弹簧振子的振动周期可能由哪些因素决定?假如我们能看清楚振子的整个运动过程,那么从什么位置开始计时才能更准确地测量振动的周期?为什么?

解答:(1)振子从P0出发后依次通过O、M'、O、P0、M、P0的过程,就是全振动。

(2)周期和频率与计时起点(或位移起点)无关;频率越大,周期越小,表示物体振动得越快。振子在一个周期内通过的路程是4倍的振幅,而在一个周期内的位移是零。

(3)影响弹簧振子周期的因素可能有振子的质量、弹簧的劲度系数等;从振子经过平衡位置时开始计时能更准确地测量振动周期,因为振子经过平衡位置时速度最大,这样计时的误差最小。

知识链接:完成全振动,振动物体的位移和速度都回到原值(包括大小和方向),振动物体的路程是振幅的4倍。

主题3:简谐运动的表达式

问题:阅读课本有关“简谐运动的表达式”的内容,讨论下列问题。

(1)一个物体运动时其相位变化多少就意味着完成了全振动?

(2)若采用国际单位,简谐运动中的位移(x)与时间(t)关系的表达式x=Asin(ωt+φ)中ωt+φ的单位是什么?

(3)甲和乙两个简谐运动的频率相同,相位差为,这意味着什么?

解答:(1)相位每增加2π就意味着完成了全振动。

(2)ωt+φ的单位是弧度。

(3)甲和乙两个简谐运动的相位差为,意味着乙(甲)总是比甲(乙)滞后个周期或次全振动。

知识链接:频率相同的两个简谐运动,相位差为0称为“同相”,振动步调相同;相位差为π称为“反相”,振动步调相反。

1、(考查对全振动的理解)如图所示,弹簧振子以O为平衡位置在B、C间做简谐运动,则()。

A、从B→O→C为全振动

B、从O→B→O→C为全振动

C、从C→O→B→O→C为全振动

D、从D→C→O→B→O为全振动

【解析】选项A对应过程的路程为2倍的振幅,选项B对应过程的路程为3倍的振幅,选项C对应过程的路程为4倍的振幅,选项D对应过程的路程大于3倍的振幅,又小于4倍的振幅,因此选项A、B、D均错误,选项C正确。

【答案】C

【点评】要理解全振动的概念,只有振动物体的位移与速度第同时恢复到原值,才是完成全振动。

2、(考查简谐运动的振幅和周期)周期为T=2 s的简谐运动,在半分钟内通过的路程是60 cm,则在此时间内振子经过平衡位置的次数和振子的振幅分别为()。

A、15次,2 cm B、30次,1 cm

C、15次,1 cm D、60次,2 cm

【解析】振子完成全振动经过轨迹上每个位置两次(除最大位移处外),而每次全振动振子通过的路程为4个振幅。

【答案】B

【点评】一个周期经过平衡位置两次,路程是振幅的4倍。

3、图示为质点的振动图象,下列判断中正确的是()。

A、质点振动周期是8 s

B、振幅是4 cm

C、4 s末质点的速度为负,加速度为零

D、10 s末质点的加速度为正,速度为零

【解析】由振动图象可得,质点的振动周期为8 s,A对;振幅为2 cm,B错;4 s末质点经平衡位置向负方向运动,速度为负向最大,加速度为零,C对;10 s末质点在正的最大位移处,加速度为负值,速度为零,D错。

【答案】AC

【点评】由振动图象可以直接读出周期与振幅,可以判断各个时刻的速度方向与加速度方向。

4、(考查简谐运动的表达式)两个简谐运动分别为x1=4asin(4πbt+π)和x2=2asin(4πbt+π),求它们的振幅之比、各自的频率,以及它们的相位差。

【解析】根据x=Asin(ωt+φ)得:A1=4a,A2=2a,故振幅之比 = =

2由ω=4πb及ω=2πf得:二者的频率都为f=2b

它们的相位差:(4πbt+π)—(4πbt+π)=π,两物体的振动情况始终反相。

【答案】2∶1 2b 2b π

【点评】要能根据简谐运动的表达式得出振幅、频率、相位。

拓展一:简谐运动的表达式

1、某做简谐运动的物体,其位移与时间的变化关系式为x=10sin 5πt cm,则:

(1)物体的振幅为多少?

(2)物体振动的频率为多少?

(3)在时间t=0、1 s时,物体的位移是多少?

(4)画出该物体简谐运动的图象。

【分析】简谐运动位移与时间的变化关系式就是简谐运动的表达式,将它与教材上的简谐运动表达式进行对比即可得出相应的物理量。

【解析】简谐运动的表达式x=Asin(ωt+φ),比较题中所给表达式x=10sin 5πt cm可知:

(1)振幅A=10 cm。

(2)物体振动的频率f= = Hz=2、5 Hz。

(3)t=0、1 s时位移x=10sin(5π×0、1)cm=10 cm。

(4)该物体简谐运动的周期T==0、4 s,简谐运动图象如图所示。

【答案】(1)10 cm(2)

2、5 Hz(3)10 cm(4)如图所示

【点拨】在解答简谐运动表达式的题目时要注意和标准表达式进行比较,知道A、ω、φ各物理量所代表的意义,还要能和振动图象结合起来。

拓展二:简谐振动的周期性和对称性

2、如图甲所示,弹簧振子以O点为平衡位置做简谐运动,从O点开始计时,振子第到达M点用了0、3 s的时间,又经过0、2 s第二次通过M点,则振子第三次通过M点还要经过的时间可能是()。

A、s B、s C、1、4 s D、1、6 s

【分析】题目中只说从O点开始计时,并没说明从O点向哪个方向运动,它可能直接向M点运动,也可能向远离M点的方向运动,所以本题可能的选项有两个。

【解析】如图乙所示,根据题意可知振子的运动有两种可能性,设t1=0、3 s,t2=0、2 s

第一种可能性:=t1+=(0、3+)s=0、4 s,即T=1、6 s

所以振子第三次通过M点还要经过的时间t3=+2t1=(0、8+2×0、3)s=1、4 s

第二种可能性:t1—+=,即T= s

所以振子第三次通过M点还要经过的时间t3=t1+(t1—)=(2×0、3—)s= s。

【答案】AC

【点拨】解答这类题目的关键是理解简谐运动的对称性和周期性。明确振子往复通过同一点时,速度大小相等、方向相反;通过关于平衡位置对称的两点时,速度大小相等、方向相同或相反;往复通过同一段距离或通过关于平衡位置对称的两段距离时所用时间相等。另外要注意,因为振子振动的周期性和对称性会造成问题的多解,所以求解时别漏掉了其他可能出现的情况。

第四篇:高二物理教案电场-电场和电场强度

电场和电场强度

【教学结构】

一.一.电场,是物质的一种特殊形态.1.电荷周围存在电场.分析库仑力:QA对QB的作用力,是在其周围产生电场,通过电场作用给B.2.电场力,QB在QA产生的电场中受到的力.电荷在电场中受到的力称为电场力.同一电荷在不同电场中或在同一电场不同位置所受电场力的大小和方向均可能不同.二.电场强度.描述电场力的性质的物理量 1.1.电场的强弱,电荷q放在电场A处所受电场力为FA,放置B处受电场力为FB,若FA>FB到A处电场比B处强.2.2.电场强度:描述电场强弱的物理量.FEq.放入电场中某一点的电荷受到的电场力跟它电量的比值,叫这点 的电场强度,简称为场强.其物理意义为:单位电量的电荷在电场中受到的电场力.这是物理中常用的一种方法.同于单位时间物体的位移表示物体运动快慢.3.3.场强是描述电场性质的物质的物理量,只由电场决定,与检验电荷无关.例

FAEAq,EA与q的大小无关,与q是否存在无关.不能理解如在A点场强为EA与FA成正比,与q成反比.EFq4.4.场强是矢量.其大小按定义式计算即可,其方向为正电荷的受力方向为该点场强方向.其单位为NC.5.5.电场强度和电场力是两个不同的物理量,就像速度和位移是完全不同的两个概念.最

根本不同的是:场强是表示电场的性质的物理量,电场力是电荷在电场中受的电场的作用力.还应在大小、方向、单位等诸方面加以比较,它们的关系是FEq或FEq.6.6.点电荷在真空中电场的场强.在点电荷Q形成的电场中,距Q为r处放入点电荷q,如

图1所示,q受的电场力即库仑力

义或该处场强为

EFKQqr2,根据场强定

FQK2qr,r可取任意值,因此EKQr2即为点电荷在真空中场强公式,Q为场源电量,r为某点到场源的距离.k为静电常数.其方向,若Q为正;+q受力方向如图所示,即为该点场强方向,若Q为负,场强方向与图示方向相反.若把+q换成-q,所受电场力方向正与场强方向相反.注意:

EEKQr2是适用于点电荷在真空中的电场.而

Fq适用各种电场.7.场强可以合成分解,并遵守平行四边形法则,如图示2所示.QA与QB在C处的场强分别为EA、EB,E 即是E与E的合成场强.若在C处放一个-q点电荷,AB所受电场力方向应与E反方向.三.三.电场线

1.电场线是描述电场强度分布的一族曲线.描述方法:用曲线的疏密描述电场的强弱,用曲线某点的切线方向表示该点场强方向.2.2.电场的特点:(1)(1).在静电场中,电场线从正电荷起,终于负电荷,不闭合曲线.(2)(2).电场线不能相交,否则一点将有两个场强方向.(3)(3).电场线不是电场里实际存在的线,是为使电场形象化的假想线.3.3.点电荷的电场线.图

3、图4为正、负点电荷电场线的分布,应熟悉.从图5可看出,E1为+Q在A处的场强,E2为-Q在A处的场强,E为E1与E2的合场强,正好为电场线在A的切线。两个点电荷形成的电场中,每条电场线上每个点符合上述的关系。

4.匀强电场

(1)(1).定义:在电场的某一区域里,如果各点场强

大小和方向都相同,这个区域的电场叫匀强

电场.(2)(2).电场线如图6所示.电场线互相平行的直线,线间距离相等.(3)(3).两块靠近、正对且等大平行的金属板,分别带等量 正负电荷时,它们之间的电场是匀强电场.边缘附近除外.四.四.电场中的导体.1.1.导体的特征:导体内部有大量可以自由移动的电荷.金属导体可自由移动是自由电子.2.2.静电感应:导体内的自由电荷是电场的作用而重新分布的现象.认真分析如图所示的物理过程:把金属导体置于匀强电场

中.金

属导体中自由电子在电场力作用向左运动,达到左外表面,而右外表面带正电.金属导体外表面带的等量正负电荷称为感应电荷,感应电荷形成电场E的方向与电场E方向相反向左,E随着感应电荷增加而变大,当E=E时,导体内场强为零, 自由电子不受电场力作用,停止定向运动.达到静电平衡.静电平衡:导体中(包括表面)没有电荷走向移动的状态叫静电平衡.3.3.在导体处于静电平衡状态时有(1)(1).在导体内部的场强处处为零(2)(2).导体表面任何一点场强方向与该点表面垂直.(3)(3).电荷只能分布在外表面上.4.4.利用处于静电平衡状态时,导体内部场强处处为零的特点,利用金属网罩(金属包皮)把外

电场遮住,使内部不受电场影响即静电屏数.【解题点要】

例一.例一.在电场中A处放点电荷q,其受电场力为F,方向向左,则A处场强大小为, 方向为

.若将A处放点电荷为-2q,则该处电场强度将,方向将

.解析:根据电场强度定义式

EAFq.场度方向向左,在A处放-2q点电荷.该处场强大小,方向都不变.注意:场强是表示电场性质的物理量.是由电场决定,与点电荷电量无关,与点电荷电性无关.例二.例二.如图8所示,一个质量为30g带电量

17.108C的半径极小的小球,用丝线悬挂在某匀

强电场中,电力线与水平面平行.当小球静止时,测得悬线与竖直夹角为30°,由此可知匀强电场方向

,电场强度大小为

NC.(g取s2)

解析:分析小球受力,重力mg竖直向下,丝线拉力T沿丝

线方向向上,因为小球处于平衡状态,还应受水平向左的电场力F.小球带负电,所受电场力方向与场强方向向反,所以场强方向水平向右.小球在三个力作用之下处于平衡状态.三个力的合力必为零.所以

2m10F=mgtg30°又FEq

Eq=mgtg30° 30103103310.107NC817.10E=mgtg30°=

例三.例三.关于电场线,下述说法中正确的是 A.A.电场线是客观存在的

B.B.电场线与电荷运动的轨迹是一致的.C.C.电场线上某点的切线方向与与电荷在该点受力方向可以不同.D.D.沿电场线方向,场强一定越来越大.解析:电场线不是客观存在的,是为了形象描述电场的假想线,A选项是错的.B选项也是错的,静止开始运动的电荷所受电场力方向应是该点切线方向,下一时刻位置应沿切线方向上,可能在电场线上,也可能不在电场线上,轨迹可能与电场线不一致.何况电荷可以有初速度,运动轨迹与初速度大小方向有关,可能轨迹很多,而电场线是一定的.正电荷在电场中受的电场力方向与该点切线方向相同,而负电荷所受电场力与该点切线方向相反,选项C是正确的.场强大小与场强的方向无关,与电场线方向无关 ,D选项是错的.本题答案应是:C.例四.在x轴上A、B两处分别放有两个点电荷,A处为-Q,B处为+2Q,在x轴上某处,两个电荷各自产生电场强度数值为EA和EB,则()A.EA=EB之点,只有一处,该处合场强为0;B.B.EA=EB之点有两处,一处合场强为0,另一处合场强为2EA C.C.EA=EB之点共有三处,其中两处合场强为0;另一处合场强为2EA D.D.EA=EB之点共有三处,其中一处合场强为0,另二处合场强为2EA

解析:根据题意画出图9,在AB之间某点x1,-Q在x1处产生的场强EAKQrA2.+2Q产生的场强

22EBKQ122rrB2,当A2rB时,EA=EB,EA方向向左,EB的方向向左,合场强

E=2EA.在A点左侧x2处,Ax2=rA,Bx2=rB,rA2rB存在, EA=EB,EA的方向向右,EB的方向向左,合场强E=0.122rArB2不可能, EA=EB不存在.所以EA=EB之点有在B点右侧x3处, Ax2>Bx2, 两处,且合场强一处为0,另一处为2EA,答案应选,B.例五.例五.如图10所示,正电荷q在电场力作用下由p向Q做加速运动,而且加速度越来越大, 那么可以断定,它所在的电场是图中哪能一个?()

解析:带电体在电场中做加速运动,其电场力方向与加速度方向相同,加速度越来越大电荷所受电场力应越来越大,电量不变,电场力FEq,应是E越来越大.电

场线描述电场强度分布的方法是,电场线密度越大,表示场强越大,沿PQ方向.电场线密度增大的情况才符合题的条件.应选D.例六.例六.如图11所示,在匀强电场中的O点放

置点电荷Q,其带电量为2.0108C,此时距

O点10cm处的P点,场强恰好为零.求原匀

强电场的场强大小是多少?若以O点为圆心,以OP长为半径作一圆,在O点正上方圆周上S点的场强的大小是多少?方向如何? 解析:P点场强EP=0,应为原场E与点电荷Q在P产生场强EQ的合场强。E与EQ大小相等方向相反。大小关系为

8Q2.010EEQK29.010918.103NC2op(01.).Q在S点产生场强大小等于EQ,方向向上,与原场强E垂直,S处场强ES是E与EQ的合场强,如图12所示。ES2E2.5103NC.方向:与E成45°角向上.【课余思考】

1.什么是电场强度?其方向是如何规定的,写出场强定义式和点电荷在真空中各点场强的计算式? 2.2.区分电场强度,电场力两个概念.【同步练习】 1.1.下列关于电场强度的叙述正确的是()A.A.电场中某点的场强在数值上等于单位电荷受到的电场力 B.电场中某点的场强与该点检验电荷所受电场力成正比

C.电场中某点的场强与方向就是检验电荷在该点所受电场力方向 D.D.电场中某点的场强与该点有无检验电荷无关

2.真空中两个带电量分别为Q和4Q的正点电荷,位于相距为30cm的A、B两点,将另一个正电荷q置于AB连线上的C点,q受的合力恰好为零,C点距A

cm处.若将电荷q取走,C点场强为

NC.3.3.如图13所示,AB为体积可以忽略的带

电小

88球,QA2.010C,QB2.010C,AB相距3cm,在水平外电场作用下AB保持静止,悬线都沿竖直方向,则外电场的

场强

,方向

,AB中点处总场强大小为

,方向为

.4.在场强为E,方向竖直向下的匀强电场中,有两个质量均为m的带电小球,电量分别为+2q和-q.用长为l的绝缘细线相连,另用绝缘细线系住带正电的小球悬挂于O处,处于平衡状态,如图14所示,重力加速度为g,则细线对O点的作用力等于

.52.010NC水平向左、【参改答案】1.AD 2.10、O 3.16.106NC、水平向右4.2mg+Eq

第五篇:[高二物理教案10-1]

[高二物理教案10-1] 10.1 波的形成和传播

一、教学目标

1、知识目标:

①知道直线上机械波的形成过程 ②知道什么是横波,波峰和波谷 ③知道什么是纵波,密部和疏部

④知道“机械振动在介质中传播,形成机械波”,知道波在传播运动形式的同时也传递了能量

2、能力目标:

①培养学生进行科学探索的能力 ②培养学生观察、分析和归纳的能力 ③培养学生的空间想象能力和思维能力 3.情感目标:

①培养学生细心、认真、一丝不苟做实验的品质,进而培养学生实事求是的科学态度和良好的工作作风

②培养学生互相团结、分工协作的团队精神

二、教学重点、难点分析

机械波的形成过程及传播规律是本节课的重点,也是本节课的难点。解决方案:通过课堂实验和课件演示以及巩固练习来突破重难点,同时引导学生看书

三、教学方法

实验探索和计算机辅助教学

四、教具

丝带、波动演示箱、水平悬挂的长弹簧、音叉、计算机、投影仪、大屏幕、自制CAI课件

五、教学过程(-)引入新课

[演示]抖动丝带的一端,产生一列凹凸相间的波在丝带上传播(激发兴趣,引出课题)

在这个简单的例子中,我们接触到一种广泛存在的运动形式——波动,请同学们再举出几个有关波的例子。(学生举例,活跃气氛;让学生在大量生活实例中感触波的存在,增强感性认识。)

学生会列举水波、声波、无线电波、光波。教师启发,大家听说过地震吗?学生会想到地震波。

水波、声波、地震波都是机械波,无线电波、光波都是电磁波。这一章我们学习机械波的知识,以后还会学习电磁波的知识。

【板书】机械波

(二)进行新课

现在学习第一节,波的形成和传播。【板书】

一、波的形成和传播

[演示]拨动水平悬挂的柔软长弹簧一端,产生一列疏密相间的波沿弹簧传播; [演示]敲击音叉,听到声音,这是声波在空气中传播(指明,虽然眼睛看不到波形,但它客观存在,也是疏密相间的波形)

(演示实验,进一步为学生提供感性认识,激发兴趣)

师生共同分析,得出波产生的条件:①波源,②介质。(为研究波的形成奠定基础)

波是怎样形成的呢?为什么会有不同的波形?波传播的是什么呢?(设置疑问,激发学生的探究欲望)

【板书】实验探索

发放“探索波的形成和传播规律”的实验报告,进行实验探索并完成实验报告。实验目的:探索波的形成原因和传播规律

实验

(一),学生分组实验:每两人一条丝带(60cm左右),观察丝带上凹凸相间的波。实验步骤:

(1)、将丝带一端用手指按在桌面上,手持另一端沿水平桌面抖动,在丝带上产生一列凹凸相间的波向另一端传播。

(2)、在丝带上每隔大约2~3cm用墨水染上一个点,代表丝带上的质点。重复步骤(1)。观察丝带上的质点依次被带动着振动起来,振动沿丝带传播开去,在丝带上形成凹凸相间的波。

①思考:丝带的一端振动后,为什么后面的质点能被带动着运动起来?_________________如果将丝带剪断,后面的质点还能运动吗?___________ ②分析:丝带上凹凸相间的波形是怎样产生的?___________________(可以参阅课本第3页)

③观察丝带上的质点是否随波向远处迁移?__________ 实验

(二),观察波动演示器上凹凸相间的波:(因器材有限,可以教师操作,引导学生注意观察)

实验步骤:

(1)、逆时针转动摇柄,演示屏上的质点排成一条水平线。(表示各质点都处在平衡位置)

(2)、顺时针转动摇柄,各个质点依次振动起来。(注意观察各个质点振动的先后顺序)

现象:①后面的质点总比前面的质点开始振动的时刻_______,从总体上看形成凹凸相间的波。

②各质点的振动沿________方向,波的传播沿_______方向,质点振动方向与波的传播方向_______。

③质点是否沿波的传播方向迁移?_______ 这种波叫做横波,在横波中凸起的最高处叫做波峰,凹下的最低处叫做波谷。实验

(三),观察弹簧上产生的疏密相间的波。实验步骤:(1)、拨动水平悬挂的柔软长弹簧一端,产生一列疏密相间的波沿弹簧传播。(2)、在弹簧上某一位置系一根红布条,代表弹簧上的质点,重复步骤(1)。①观察::红布条是否随波迁移?________说明了什么?_____________ ②分析:弹簧上疏密相间的波形是怎样产生的?____________________(类比丝带上波产生的分析方法,锻炼学生的知识迁移能力)

实验

(四),观察波动演示器上疏密相间的波: 实验步骤:

(1)、逆时针转动摇柄,演示屏上的质点排成一条水平线。(2)、顺时针转动摇柄,各个质点依次振动起来。

现象:①后面的质点总比前面的质点开始振动的时刻________,从总体上看形成疏密相间的波。

②各质点的振动沿________,波的传播沿_______方向,质点振动方向与波的传播方向_______。

③质点是否沿波的传播方向迁移?_______ 这种波叫做纵波,在纵波中最密处叫做密部,最疏处叫做疏部。分析实验得出结论:

①不论横波还是纵波,介质中各个质点发生振动并不随波迁移。因此,波传播的是_________________,而不是介质本身。

②波传来前,各个质点是静止的,波传来后开始振动,说明他们获得了能量。这个能量是从波源通过前面的质点传来的。因此:波是传递_________的一种方式。

【板书】

1、机械振动在介质中的传播,形成机械波。

2、机械波的分类:横波、纵波

3、波传播的是振动形式,是振动的能量。

师生双边活动,实验探索,总结规律。(从感性认识上升到理性认识,实现认识上的第一次飞跃。)

(三)计算机辅助教学:

1、波的分类演示

2、横波的形成过程及传播规律

3、纵波的形成过程及传播规律(形象直观,巩固升华)

(四)知识应用:

1、课本中提到地震波既有横波,又有纵波。你能想象在某次地震时,位于震源正上方的建筑物,在纵波和横波分别传来时的振动情况吗?为什么?(从理性认识回到感性认识,实现认识的第二次飞跃)

2、本来是静止的质点,随着波的传来开始振动,有关这一现象的说法正确的有:

A、该现象表明质点获得了能量 B、质点振动的能量是从波源传来的

C、该质点从前面的质点获取能量,同时也将振动的能量向后传递 D、波是传递能量的一种方式

E、如果振源停止振动,在介质中传播的波也立即停止 F、介质质点做的是受迫振动

(五)布置作业:

1、书面作业:列举生活中常见的有关机械波的例子(横波、纵波各一例)简述它们是如何形成的。(培养学生观察生活并用所学物理知识解决实际问题的能力和表达能力)

2、动脑作业:发生地震时,从地震源传出的地震波为什么能造成房屋倒塌、人员伤亡的事故?请用本节所学知识加以解释。(学以致用,巩固提高)

3、动手作业:制作简易的横波演示器。

使用大约24根饮料吸管,回形针,胶带纸。展开胶带纸,每隔2.5cm左右粘一根吸管。每根吸管两端各别上一个回形针。把胶带的一端挂在铁架台的横杆上,拨动上端(或下端)的吸管,使回形针左右振动,就可以看到横波的传播现象。(有兴趣的同学可以制作其他的实验器。)(培养学生动手能力和团结协作的能力)

4、课外模拟波的形成:按照课本第4页图10—6,分组模拟波的形成。(培养学生的团队精神)

(多种形式激发兴趣、提高能力)教后随感:

思维方法是解决问题的灵魂,是物理教学的根本;亲自实践参与知识的发现过程是培养学生能力的关键,离开了思维方法和实践活动,物理教学就成了无源之水、无本之木。学生素质的培养就成了镜中花,水中月。

下载高二物理教案09.2.振幅、周期和频率.DOCword格式文档
下载高二物理教案09.2.振幅、周期和频率.DOC.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    [高二物理教案11-4]

    [高二物理教案11-4] 11.42 物体的内能 热量 一、教学目标 1.知识目标: (1)了解内能改变的两种方式:做功和热传递 (2)知道做功和热传递在改变物体内能上是等效的,知道两者的区别,了解......

    高二物理教案:电功率

    高二物理教案:电功率 【摘要】步入高中,相比初中更为紧张的学习随之而来。在此高二物理栏目的小编为您编辑了此文:高二物理教案:电功率希望能给您的学习和教学提供帮助。 本文......

    高中物理 电磁振荡的周期和频率教案 人教版第二册

    18.2 电磁振荡的周期和频率 一、教学目标 1.理解LC振荡电路的固有周期(频率)的决定因素 2.会用公式T2LC或f的计算 二、重点、难点分析 1.重点:LC振荡电路的周期公式,频率公式是教材......

    高二物理教案电场-电场和电场强度14

    电场和电场强度 【教学结构】 一.一.电场,是物质的一种特殊形态. 1.电荷周围存在电场.分析库仑力:QA对QB的作用力,是在其周围产生电场,通过电场作用给B. 2.电场力,QB在QA产生的电......

    高二物理教案电场-电势、电势差和等势面

    电势 电势差 等势面一、教学目标 1.在物理知识方面要求: (1)了解什么是电势。 (2)掌握电势差、等势面的概念,在头脑中建立不同场等势面图景。 2.渗透物理学方法的教育,运用理想化方法......

    高二物理教案电磁感应-自感

    五、自感 教学目的 1.知道什么是自感现象和自感电动势 2.知道自感系数是表示线圈本身特性和物理量。知道它的单位 3.知道自感现象的利和弊以及它们应用和防止 教具 通电自感演......

    高二物理教案 牛顿第一定律教案

    高二物理教案 牛顿第一定律教案 (一)教学目的 1.知道惯性定律,常识性了解伽利略理想实验的推理过程. 2.通过实验分析,初步培养学生科学的思维方法. (二)重点与难点 重点......

    高二物理教案机械波--波的形成和传播

    [物理精品教案] “波的形成和传播”创新教学设计和教案 山东省高青一中 贾玉兵 256300波是一种重要而普遍的运动形式,也是高中物理的一个难点。“波的形成和传播”是“机械波......